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Abstract 
 
The fitness effects of random mutations are contingent upon the genetic and environmental 
contexts in which they occur, and this contributes to the unpredictability of evolutionary 
outcomes at the molecular level. Despite this unpredictability, the rate of adaptation in 
homogeneous environments tends to decrease over evolutionary time, due to diminishing 
returns epistasis, causing relative fitness gains to be predictable over the long term. Here, we 
studied the extent of diminishing returns epistasis and the changes in the adaptive mutational 
spectra after yeast populations have already taken their first adaptive mutational step. We used 
three distinct adaptive clones that arose under identical conditions from a common ancestor, 
from which they diverge by a single point mutation, to found populations that we further evolved. 
We followed the evolutionary dynamics of these populations by lineage tracking and determined 
adaptive outcomes using fitness assays and whole genome sequencing. We found compelling 
evidence for diminishing returns: fitness gains during the 2nd step of adaptation are smaller than 
those of the 1st step, due to a compressed distribution of fitness effects in the 2nd step. We also 
found strong evidence for historical contingency at the genic level: the beneficial mutational 
spectra of the 2nd-step adapted genotypes differ with respect to their ancestor and to each other, 
despite the fact that the three founders’ 1st-step mutations provided their fitness gains due to 
similar phenotypic improvements. While some targets of selection in the second step are shared 
with those seen in the common ancestor, other targets appear to be contingent on the specific 
first step mutation, with more phenotypically similar founding clones having more similar 
adaptive mutational spectra. Finally, we found that disruptive mutations, such as nonsense and 
frameshift, were much more common in the first step of adaptation, contributing an additional 
way that both diminishing returns and historical contingency are evident during 2nd step 
adaptation. 
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Introduction 
Stephen Jay Gould argued that historical contingency makes evolutionary outcomes largely 
unpredictable, and that were we to replay the “tape of life”, we would likely end up with a 
different world each time1. However, frequently observed instances of both parallel2–4 and 
convergent5–7 evolution suggest that, at least under some circumstances, adapting populations 
may simply take different paths to the same peak on a fitness landscape. Environmental 
similarities, genotypic relatedness and proximity to an optimum in the fitness landscape 
constitute some of the constraints contributing to convergent or parallel adaptive responses4,8–21. 

Closely related genotypes are often employed to study the effects of evolutionary history 
on adaptation in various experimental systems22–30. A frequent observation is that fitness gains 
decrease over time during adaptive evolution—termed diminishing returns—most convincingly 
demonstrated in cases where founders with differing initial fitness are used24,25,27,28,30. However, 
support for the role of historical contingency during adaptation is not uniformly consistent. For 
example, evolutionary history has been shown to both contribute23 and not contribute26 to 
defining subsequent adaptive mutational spectra in closely related Pseudomonas aeruginosa 
lineages, while historical contingency in related evolving Escherichia coli populations manifested 
at a phenotypic but not at a molecular level29. By contrast, evidence of first-step adaptive 
mutations in Saccharomyces cerevisiae being mutually exclusive due to reciprocal sign 
epistasis22,31,32 is clearly supportive of historical contingency. Nevertheless, experiments 
founded with related S. cerevisiae clones spanning a range of fitness effects, suggest that 
convergence at a molecular level can and does occur30. Such apparently contradictory results 
may stem from differences in evolutionary timescales, population sizes and culture conditions 
(serial transfer vs. continuous culture in chemostats). For example, longer timescales (up to 
several hundreds of generation) that allow for the rise of lineages to frequencies sufficient for 
easy detection via sequencing, also result in clonal interference, a consequence of clonal 
propagation in well-mixed environments24,33–37. Given enough time, clonal interference will result 
in a somewhat predictable outcome because of competition among adaptive lineages that will 
reproducibly lead to fixation of those with the highest fitness30,34,38–40. 

The application of molecular barcoding to experimental microbial evolution (EME), for 
the purpose of tracking lineages, has enabled high-resolution characterization of evolutionary 
processes4,20,21,39–41, importantly, on shorter timescales (less than a few hundred generations). 
Such studies have revealed a plethora of available adaptive mutations that increase in 
frequency early in the evolution, but most of which will eventually go extinct due to being 
outcompeted by high fitness lineages later in the evolution4,39,41. The increase in our detection 
limit permitted by lineage tracking has allowed high resolution characterization of these adaptive 
events that typically go extinct in experimental evolutions. This has provided us the opportunity 
to re-examine the prevalence of diminishing returns and historical contingency, while taking into 
consideration both evolutionary timescales and fitness effects.  

Here we used DNA barcoding to investigate how closely-related adapted genotypes of 
S. cerevisiae, each with a single mutation relative to their common ancestor, evolve in the 
environment under which they were originally selected4,41. The evolutionary environment is 
serial-transfer under glucose-limitation, where cells undergo lag, fermentation and respiration 
growth phases within each growth cycle. Common adaptive strategies of the 1st step adaptation 
in this environment included upregulation of the RAS/PKA and TOR/Sch9 pathways4; our 
founders for the 2nd-step evolutions carry either a cyr1, a gpb2 (both of which upregulate the 
Ras/PKA pathway), or a tor1 (which upregulates the TOR/Sch9 pathway) mutation. All three of 
these mutants have increased cell size and higher fitness relative to their ancestor4,20, though 
their fitness advantages manifest differently within lag, fermentation and respiration growth 
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phases20. We evolved barcoded populations of each of these three mutants and characterized 
rates of adaptation, and the distributions of fitness effects (DFE) of second step mutations. We 
then isolated hundreds of independent adaptive lineages and performed whole genome 
sequencing and fitness remeasurements. We found that 2nd-step mutations confer a smaller 
fitness advantage than the 1st-step mutations in the respective backgrounds where they arise, 
consistent with diminishing returns epistasis. We also found that there is a partial overlap in the 
molecular basis of the 2nd-step of adaptation between genetic backgrounds: the TOR/Sch9 
pathway mutant frequently adapted via mutations in the RAS/PKA pathway, while the RAS/PKA 
pathway mutants, cyr1 and gpb2, sometimes acquired mutations in the TOR/Sch9 pathway. On 
the other hand, we rarely identify second-step mutations that further modify the same pathway. 
We also found that the spectrum of adaptive mutations shifted from affecting pathways that 
regulate the cell cycle and nutrient signaling to pathways that affect stress responses. Targets 
of selection include genes in the HOG, retrograde flow (RTG) and glutathione biosynthesis 
pathways. Whereas GSH1, which functions in the glutathione biosynthetic pathway, was a 
target of selection in all backgrounds, the HOG pathway was targeted only in the TOR/Sch9 
pathway mutant and the RTG pathway was mutated in the RAS/PKA mutants. The RAS/PKA 
pathway mutants had similar relative changes in fitness and adaptive mutational spectra to one 
another, that differed from those of the TOR/Sch9 pathway mutant. Finally, we found that the 
second step mutations were less likely to be disruptive (nonsense and frameshift mutations) 
compared to first step mutations. Altogether, our data show that a single adaptive change is 
sufficient to cause further genetic divergence during adaptation, demonstrating that historical 
contingency does influence the outcome evolutionary outcomes, and that the DFE between first 
and second step mutations differs, consistent with diminishing returns epistasis. 
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Materials and Methods 
Strains and strain handling 
All strains used are S288C derivatives, which were evolved and characterized previously4,20,41 
(Table 1). Yeast strains and pools were saved as glycerol stocks at -80°C. Yeast 
transformations were performed by a lithium acetate/PEG method42. 
 
Yeast Growth Media and Growth Cycle 
Evolutionary and fitness remeasurement conditions matched those used previously4,41. Briefly, 
M3 medium, consisting of 5x Delft medium43 with 4% ammonium sulfate and 1.5% dextrose, 
was used. Serial batch cultures were conducted by growing cells in 100 mL M3 medium in 500 
mL Delong flasks (Bellco) at 30°C and 223 RPM. Yeast was grown for 48 hours between 
transfers and for each new cycle 400 μL of the grown culture (~8 x 107 cells) were used as 
inoculum for the new culture, resulting in a 1:250 bottleneck.  
 
Construction and characterization of the founder strains of the evolutions 
The prelanding pad strain (SHA118, Table 1) that is receptive to barcoding41 was transformed 
with a galactose-inducible HO-containing plasmid. The strain diploidized upon exposure to 
galactose and a diploid clone was sporulated and dissected; a MATa derivative was isolated 
(GSY5375, Table 1) and saved for subsequent crosses with the evolved clones. Loss of the 
HO-containing plasmid was verified by absence of growth on appropriate selective medium. 
Strains GSY5481, GSY5128 and GSY5153, derived from evolution under glucose limitation and 
previously characterized4,20,41 (Table 1), were backcrossed twice to GSY5375. Competitive 
fitness of segregants and evolved parents was assayed in triplicate compared to a fluorescent 
derivative of the ancestor, as in 4, with the following modifications: to increase throughput the 
assays were performed in 5 mL cultures in tubes incubated in a roller drum, instead of 100 mL 
cultures in flasks. As a result, the fitness estimates deviate from those previously reported4 (Fig. 
S1, Table S1). Additionally, since the derived strains do not contain a barcode (which 
reconstitutes a URA3 gene), they require uracil, so the fitness assays were performed in M3 
medium supplemented with uracil. All segregants were genotyped for the variant of interest by 
amplification of the respective locus and Sanger sequencing. The oligos used for genotyping 
are shown in table S2. 
 
Barcoding 
Strains GSY6701, GSY6702 and GSY6703 (Table 1) were transformed with a low and high 
complexity barcode, consecutively. These strains have the YBR209w locus replaced with the 
prelanding pad (corresponding to strain SHA11841). The low complexity barcode was derived by 
PCR amplification of part of the L001 plasmid library, containing the lox66 site, the DNA 
barcode, the artificial intron, the 3’ half of URA3, and HygMX44. The fragment was amplified with 
primers BC_F-DY and BC_R1-DY (Table S2), from 12 ng of L001 library in a 50 µL reaction with 
PrimeSTAR (TAKARA, Mountain View, CA) using the following conditions: hot start, initial 
denaturation at 98°C for 2’, 30 cycles of 98°C for 30”, 55°C for 15” and 72°C for 3’, and final 
extension at 72°C for 10’. The product was purified with the QIAquick PCR purification kit 
(QIAGEN, Germantown MD), transformed into each of GSY6701, GSY6702 and GSY6703 and 
successful transformants were selected on YPD + Hygromycin. Single transformants were 
further transformed with the high complexity library (pBAR3)41 with the following modification: 
after transformation the cells were grown on liquid YP + 2% galactose for ~16 hours for Cre 
recombinase induction prior to selection on SC-ura plates with 2% glucose. Cell growth was 
estimated by cell counting immediately after transformation and before plating. The number of 
unique transformants was estimated by plating a dilution on selective medium and correcting for 
growth. After one day of growth on selective medium the transformants were pooled and saved 
as glycerol stocks at -80°C (high complexity subpools with a common low complexity barcode). 
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The final founding pools for the evolutions were constructed by pooling high complexity 
subpools to an estimated total of ~700,000 unique transformants per initial clone. 
 
Evolution experiments 
Evolution experiments were conducted as described previously41. Briefly, 108 cells of each of 
the founding populations were used to inoculate 100 mL of SC-ura, 2% dextrose, supplemented 
with hygromycin in 500 mL Delong flasks (Bellco). The cells were grown for 24 hours at 30°C 
and 223 RPM, the end of which was considered generation 0 of the evolution experiment. 400 
μL of the initial culture were used to inoculate M3 medium in duplicate, as described in the 
‘Yeast Growth Media and Growth Cycle’ section. The evolution experiments were conducted for 
a total of 20 transfers, corresponding to approximately 160 generations. Prior to each transfer 
the medium was prewarmed at 30°C for 1 hour. For each timepoint, 2 x 1 mL aliquots were 
saved as glycerol stocks at -80°C and the rest of the culture was spun down, resuspended in 5 
mL sorbitol buffer (0.9 M sorbitol, 100 mM Tris pH 7.5, 100 mM EDTA), aliquoted in Eppendorf 
tubes (~1 mL each), and saved at -20°C to be used for genomic DNA and barcode library 
preparations. 
 
Clone isolation 
Individual clones were sorted at the Stanford Shared FACS facility either from all timepoints 
(one or two 96-well plates each) for ploidy determination, or from selected timepoints (10 plates 
each of the following timepoints: cyr1 evolution, replicate 1, timepoint 20 (generation 160), gpb2 
evolution, replicates 1 and 2, timepoint 13 (generation 104) and tor1 evolution, replicate 1, 
timepoint 12 (generation 96)) for fitness remeasurements, ploidy determination and whole 
genome sequencing. 
 
Ploidy assay 
Ploidy was determined with a high-throughput benomyl-based assay as described4. 
 
Genomic DNA and library preparation for barcode lineage tracking  
Genomic DNA was prepared as follows. An aliquot of cells stored at -20°C was thawed at room 
temperature. The cells were spun down, washed once in water, resuspended in 400 µL lysis 
buffer (0.9 M sorbitol, 50 mM Na phosphate pH 7.5, 240 µg/mL zymolase, 14 mM β-
mercaptoethanol) and incubated at 37°C for 30 minutes. After the incubation, 40 µL 0.5 M 
EDTA, 40 µL 10% SDS and 56 µL 20 mg/mL proteinase K (Life Technologies 25530-015) were 
added consecutively, with brief vortexing after each addition, and the samples were incubated at 
65°C for 30 minutes. Subsequently, the samples were cooled on ice for 5’, 200 µL of 5 M 
potassium acetate were added, and the samples were mixed by shaking and incubated on ice 
for an additional 30 minutes. Following incubation, the samples were spun down at full speed in 
a microcentrifuge for 10 minutes, and the supernatant was transferred to a new tube with 750 
µL isopropanol and was let to rest on ice for 5 minutes. The precipitated nucleic acid was spun 
down full speed in a microcentrifuge for 10 minutes and washed twice with 70% ethanol. After 
the second wash the nucleic acid was let to dry completely and then it was resuspended in 50 
µL 10 mM Tris pH 7.5. Overnight incubation at room temperature or short incubation at 65°C 
sometimes was necessary for complete resuspension. RNA was digested with the addition of 
0.5 µL 20 mg/mL RNase A (Fisher Scientific, Waltham MA) and incubation at 65°C for 30 
minutes. 

A two-step PCR protocol was used to amplify the barcoded locus (see 4 for primer 
details). The first amplification was conducted using OneTaq 2X Master Mix (NEB, Ipswich MA), 
a total of 6 µg genomic DNA and a limited amount of primers in 6 x 50 µL reactions with the 
following composition: 1X OneTaq Mix, 50 nM each forward and reverse primer, 2 mM MgCl2, 
20 ng/µL gDNA, in the following conditions: hot start, initial denaturation at 94°C for 10’, 3 cycles 
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of 94°C for 3’, 55°C for 1’ and 68°C for 1’, and final extension at 68°C for 1’. The 6 reactions 
were combined, purified using the QIAquick PCR purification kit (QIAGEN, Germantown MD) 
and eluted into 30 µL EB buffer. All the eluate was used as template in a single 50 µL 2nd 
reaction, with the following composition: 0.5 µL Herculase II fusion DNA polymerase (Agilent, 
Santa Clara CA) per 50 µL reaction, 1xHerculase buffer, 1 mM dNTPs and 500 nM each of PE1 
and PE24, and was amplified in the following conditions: hot start, initial denaturation at 98°C for 
2’, 20 cycles of 98°C for 10”, 69°C for 20” and 72°C for 30”, and final extension at 72°C for 1’. 
Barcode libraries were pooled isostoichiometrically and sequenced on an Illumina NextSeq 550. 
 
DFE / Mutational Fitness Spectrum u(s) inference 
Lineage tracking from barcode sequencing was reconstructed as described in 41 and using 
https://github.com/Sherlock-Lab/Barcode_seq/blob/master/bartender_BC1_BC2.py with some 
minor modifications. Briefly, after extraction of the UMI, and both low and high complexity 
barcodes from the sequencing read, low complexity barcodes were clustered against their 
expected sequences, whereas the high complexity barcodes were pooled across all libraries 
and clustered with bartender (v1.1)45. The updated reads and the UMIs were used to derive raw 
barcode counts, which were assembled into the raw count lineage trajectories. Low coverage 
timepoints and barcodes that appeared in a single timepoint (considering replicate evolutions) or 
had no reads at timepoint 0 were excluded from subsequent analysis. The included timepoints 
and the number of reads and barcodes per timepoint are shown in table S3. Filtered raw count 
lineage trajectories are provided for each replicate evolution (Supplemental data: lineage 
trajectory data). 

Using the lineage frequency changes over time, lineages’ fitness per generation (s) and 
establishment time (tau) were estimated using the same method as in 41. Lineages with reads 
between 20-30 at each timepoint were treated as neutral and were used to estimate population 
mean fitness. Lineage tracking data from generation 0 to generation 136 were used for fitness 
inference in all evolutions, except for gpb2 evolution replicate 1, for which we only had adequate 
data up to generation 120. Lineage tracking data for the ancestor up to generation 112 and 96, 
for replicates 1 and 2, respectively, were used for fitness inference as in 41. The generations 
chosen are the times at which adapted lineages have reached a sufficient frequency in the 
population, while the majority of such lineages theoretically carry a single beneficial mutation. 

Mutations can occur during the barcoding process and prior to the onset of the 
experiment, some of which can be beneficial in the evolutionary condition41. To characterize the 
mutational rate during the evolution, lineages with such pre-existing mutations were removed 
from fitness inference. The following two criteria were used to define lineages with pre-existing 
mutations: 1) being adaptive in both evolutionary replicates and 2) having an establishment time 
< -2/s in at least one replicate.  

Mutation rates in different fitness intervals were calculated using equation 101 in 41:  
!(#) · &# · [1 + # · ln,-! · !(#) · &#.] = 	2(&(#), 4) · "

#!∙# (1) 
where &# = 0.002 is the fitness interval considered, !(#) the mutation rate within a specific 
fitness interval [#, # + &#], -! = 10$% the approximated largest size the population has reached 
during the barcoding process, and 2(&(#), 4) the summed frequency of lineages whose fitness 

are within the interval [#, # + &#]	at generation 4. The error of the estimated !(#) is 8&(")∙*"+ , 

where - = 6 ∙ 10, is the approximated effective population size during evolution. 
Note that the barcode sequencing coverage of the ancestor evolutions was ~10-20X 

higher than those of cyr1, gpb2 and tor1 evolutions (Table S3, compare to Table 2 in 
Supplementary information in 41). To avoid biases introduced by sequencing coverage 
differences, we down-sampled the ancestor sequencing data to a depth comparable to those of 
the cyr1, gpb2 and tor1 evolutions: 2 x 107 at time 0 and 3 x 106 at the rest of the timepoints. 
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Fitness was inferred before and after down-sampling. Lineages with 5-10 reads were treated as 
neutrals to infer the population mean fitness (vs 20-30 used in the full datasets). 
 
Barcode determination of isolated clones 
To identify the barcodes of the isolated clones in 96-well plates, we employed a 2- (column, 
row) or 3- (column, row, plate) dimensional pooling strategy, inspired by 46. Briefly, we arranged 
20 plates per batch into a 4 columns x 5 rows plate matrix and constructed 48 column pools 
from clones out of 40 wells each and 40 row pools from clones out of 48 wells each. For the 
second batch we included semi-redundant half-plate pools (40 pools from clones out of 48 wells 
each) to increase the successful barcode recovery rate. We pooled our samples after cell 
growth and prepared barcode libraries for Illumina sequencing. Barcodes were recovered for 
each well at a rate of ~90%, which was somewhat dependent on the barcode diversity of the 
sampled timepoint (identical barcodes in multiple wells makes it more challenging 
algorithmically to match barcodes to wells). 
 
High-throughput Fitness Measurements and Analysis 
Pooling of clones 
Clones isolated from the evolutions were pooled together for high-throughput fitness assays. 
We used a multi-pronged pinner to take clones from frozen stock and pin them into a set of 96 
deep-well plates with 700 µL YPD medium in each well. Cells were grown at 30°C for 2 days to 
reach saturation without shaking. 500 µL of 50% glycerol were added into each well using a 
multichannel pipette. 1 mL of the mixture from each well was pooled, and the final pool was 
mixed and aliquoted into 2 mL Eppendorf tubes, which were stored at -80°C for future fitness 
measurements.  
 
Preculture 
Each replicate fitness experiment was initiated with a 1 mL frozen aliquot of the pooled cell 
culture, thawed at room temperature, and inoculated into 15 mL M3 in a 500 mL Delong flask. 
The culture was grown at 30°C and 223 RPM overnight for cell propagation. 400 µL of the 
overnight culture were inoculated into 100 mL of fresh M3 medium and precultured at the 
standard condition for 2 days.  

A derivative of the ancestor carrying a restriction site in the barcode region was used to 
compete with the pool of evolved clones for fitness measurements4. The ancestor clone was 
resurrected from frozen stock onto M3 agar plates and grown for 2 days until colonies were 
visible. A single colony was inoculated into 3 mL of M3 medium and grown for 48 hours (30°C in 
a roller drum). 400 µL of that culture were used to inoculate precultures (100 mL M3 medium in 
500 mL Delong flasks, 223 RPM 30°C). 
 
Competition 
Fitness assays were conducted by mixing the pooled preculture with the ancestor preculture in 
a 1:9 ratio (time 0) and growing the resulting population for four successive growth cycles 
(timepoints 1, 2, 3 and 4), under the evolutionary condition. At the end of each cycle, 400 µL cell 
culture were inoculated into 100 mL fresh media to start the next cycle. Cells were collected at 
time 0, and at the end of each of the four growth cycles. The cell pellet from each sample was 
resuspended in 5 mL sorbitol solution (0.9 M sorbitol, 0.1 M Tris-HCL pH 7.5, 0.1 M EDTA pH 
8.0), aliquoted into 2 mL Eppendorf tubes and stored at -20°C. Three technical replicates were 
performed per fitness assay. Genome extraction, barcode amplification and Illumina sequencing 
were conducted for each sample (timepoint and replicate).  
 
Genomic DNA Sample Preparation 
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Genomic DNA was isolated and treated as described in the ‘Genomic DNA and library 
preparation for barcode lineage tracking’ section. 
 
Fitness Estimation 
DNA barcodes were sequenced on an Illumina NextSeq 500/550 platform and their abundances 
were used to estimate lineages’ frequencies in the population, as previously described4. Fitness 
estimates were conducted for all clones against the neutrals from the wild type evolution and for 
clones derived from each ancestral genotype separately against the neutrals of the specific 
genotype. The source code for computing these fitness estimates can be found at https://github. 
com/barcoding-bfa/fitness-assay-python. We ran two iterations of the script. First, we used all 
barcode counts as input and recovered fitness estimates and barcodes that were likely to be 
neutral. Barcodes identified by the first iteration were associated with their physical position on 
the 96-well plates in frozen stock, and the ploidy of the clones they represent. For the second 
iteration, apart from the barcode counts, a list of specifically haploid neutral clones was also 
provided (this is an optional argument of the fitness estimation algorithm). Fitness estimates 
from the 2nd run were used for further analysis. Final fitness estimates were calculated by 
inverse variance weighting of estimates from all three replicates.  
 
Genome-wide sequencing library preparation 
Genomic DNA libraries were constructed as described previously40. Briefly, clones selected for 
sequencing were grown in 500 µL YPD in 96 deep-well plates for two days at 30°C without 
shaking. 400 µL of saturated cell culture were used for DNA extraction with the Invitrogen 
PureLink Pro 96 Genomic DNA Kit (Catalog no. K1821-04A) in a 96-well format. Libraries were 
prepared and multiplexed with Nextera technology, and a high throughput protocol47. Samples 
were sequenced on an Illumina HiSeq 4000 with 2x150 bp paired end reads. 
 
Variant calling 
SNP, small indel and structural variants were called for 105 clones using Sentieon Genomic 
Tools Version 201711.02, as described previously21. Briefly, FASTQ files were trimmed using 
cutadapt version 1.1648 and trimmed reads were mapped to the S. cerevisiae S288C reference 
genome R64-1-1 
(https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/) using 
bwa49. Mapped and sorted reads were then used for the variant calling. Variants were further 
annotated using snpEff and SNPSift50. The source code for variant calling and annotation can 
be found at https://github.com/liyuping927/DNAscope-variants-calling. 
 
Variant filtering 
To eliminate false positive variants, we applied the following filters. First, variants from lineages 
with an average genome-wide coverage < 10, and all mitochondrial variants were filtered out. 
Second, variants in FLO1 and FLO9 genes were filtered out due to poor alignment in both 
genomic regions. Third, variants present in more than five clones and at least two genetic 
backgrounds out of CYR1, GPB2 and TOR1 mutants, they were likely present in the common 
ancestor and were filtered out. Fourth, variants with a quality score < 150 and only occurring in 
one clone were filtered out. Locus alignment against the reference genome was visually 
inspected to assess variants present in more than one clone, but with a quality score < 150 in at 
least one of them. Provided that the implicated loci were well-covered and not in highly 
repetitive regions, the variants were considered bona fide regardless of their quality score. 
Otherwise, they were discarded in all clones where they occurred. Lastly, we manually verified 
variants that passed the above filtering by inspecting the corresponding loci alignments against 
the reference genome and further filtering out false positives, typically occurring in highly 
repetitive or poorly sequenced regions.  
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Results 
Experimental design 
Previously, we evolved a population of barcoded haploid yeast cells in a 2-day serial transfer 
condition under glucose limitation and isolated thousands of evolved clones from cycle 11 (after 
~88 generations)4,41. Such a timescale was long enough for adaptive clones to rise to a 
sufficient frequency in the population, while short enough that the majority of adaptive clones 
carries only a single causative mutation. We then measured the fitness of thousands of isolated 
clones under the evolutionary condition and whole genome sequenced hundreds of adaptive 
clones to identify their causative mutations4. Two major adaptive strategies were observed: self-
diploidization, and upregulation of nutrient-sensing pathways, including the RAS/PKA pathway 
and the TOR/Sch9 pathway4. We refer to this prior evolution experiment as the “1st-step 
evolution”. 

Here, we chose three adapted clones from the 1st-step evolution. Compared to their 
common ancestor, each adapted clone carries one of the following mutations: a presumptive 
gain-of-function mutation in a positive regulator (cyr1) of the Ras-PKA pathway, a loss-of-
function mutation in a negative regulator (gpb2) of the same pathway, and a presumptive gain-
of-function mutation in a positive regulator (tor1) of the Tor pathway (Table 1). The founding 
populations were derived from adapted clones via backcrossing with a mating-type switched 
version of the unbarcoded wild-type ancestor (strain GSY5375, Table 1). Fitness advantages of 
the derived strains were validated and shown to be monogenic and segregate with the mutation 
(Fig. S1, Table S1). These derivatives were then re-barcoded and further evolved for 160 
generations in the same environment. We refer to this further evolution as the “2nd-step 
evolution” (Fig. 1). We performed low coverage barcode sequencing (average of 27 reads per 
barcode for timepoint 0 and 12 reads per barcode for the rest; see Table S3) of the populations 
over the course of the evolutions (Fig. S2) and used these data to estimate the fraction of 
adapted individuals at each timepoint (Fig. S3). Based on these data, as well as ploidy assays 
(Fig. S4), we isolated thousands of clones from cycles 20, 13 and 12, corresponding to 
generations 160, 104 and 96 (cells roughly divide 8 times during each cycle), from the “2nd-step 
evolution” of cyr1, gpb2 and tor1, respectively, where ~25% to 50% of the individuals in the 
population are estimated to be adaptive. Fitness remeasurements and genome-wide 
sequencing were conducted for these evolved clones isolated from the 2nd step evolution. 
Fitness estimates are expressed per generation (assuming 8 generations per growth cycle) for 
consistency with the bulk of the literature, although we are aware that fitness advantage is not 
equally distributed within the growth cycle20. In this study, we refer to the original ancestor used 
in the 1st-step evolution as the “wild-type” ancestor and we refer to the founders of the 2nd-step 
evolutions, tor1, gpb2 and cyr1 mutants, as “adapted” ancestors. 
 
The Distribution of Fitness Effects (DFE) is compressed for the second adaptive step 
We used lineage tracking data to estimate the distribution of beneficial fitness effects for each 
adapted ancestor from the 2nd-step evolutions and compare them to that of the wild-type 
ancestor from the 1st-step evolutions41 (datasets 1 and 2 in 39) (Fig. S2). Since the barcode 
sequencing depth was higher for the 1st-step evolutions (Table S3), we downsampled the 1st-
step evolutions’ data to a depth comparable to that of the 2nd-step evolutions and calculated 
fitness and mutation rates (Fig. S5). Fitness inference remained similar upon downsampling 
(Fig. S5 A) and so did the mutation rate spectra for fitness above 4% (Fig. S5 B-C). We suspect 
that this discrepancy comes as a consequence of the faster adaptation of the wild type 
ancestor, resulting in very fit lineages dominating the population and neutral and lower fitness 
lineages thus being present at a low frequency. By down-sampling, we essentially limited our 
ability to detect lineages below ~4% fitness per generation, largely represented by diploids. 
Despite the lower barcode sequencing coverage, lineages with fitness <0.04 in the 2nd-step 
evolutions were readily detectable, in contrast to the 1st-step evolutions at comparable coverage 
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(Fig. S5 C). Thus, high coverage lineage tracking data from 39 (datasets 1 and 2 without 
downsampling) are used for the 1st step evolution, while low coverage lineage tracking data are 
used for the 2nd step evolution. 

Diminishing returns models of epistasis predict that the magnitude of fitness gains 
decreases as lineages approach a fitness optimum. Prior work has suggested that diminishing 
returns is at least partially due to decreased fitness gains as adaptive mutations occur along the 
same line24,25,27,28,30, however, the DFE beyond the first step has not been characterized. Our 
data allow us to directly compare the DFEs of two consecutive adaptation steps. We used the 
wild-type DFE for the first step and overlaid to the DFE of each of the adapted ancestors (Fig. 
2). The density data were used to estimate mutation rates for diploidization and higher fitness 
mutations (Table 2). First, we observed a peak around fitness ~0.03-0.04 per generation across 
all genotypes. Our previous studies suggest that these peaks likely correspond to diploidization, 
shown to be adaptive in the wild-type background4 . Follow-up ploidy assays and fitness re-
measurements of individual clones confirmed the prevalence and fitness advantage of 
diploidization during the 2nd-step evolutions (see below for details). Additionally, 2nd-step 
evolutions manifest lower mutation rates over a wide fitness range beyond 0.04 per generation, 
and as the magnitude of fitness increases, the mutational fitness spectra decline at a faster rate 
compared to the 1st-step. Finally, adapted ancestors are devoid of very high fitness mutations 
compared to the wild-type ancestor, as demonstrated by the large difference in the mutation 
rates at fitness interval 0.07-0.12 and by the scarcity of lineages with fitness >0.12 for the 
adapted ancestors (Table 2). Overall, compared to the wild-type adaptation, the 2nd-step 
adaptation with cyr1, gpb2 and tor1 mutants as immediate ancestors not only have smaller 
magnitudes of fitness gains as expected based on previous studies25, but also consistently have 
lower beneficial mutation rates, which has not been previously characterized. This suggests that 
diminishing returns in our system is driven by both declining fitness gains and decreased 
beneficial mutation rates. Based on this change in the DFE, we hypothesize that the adaptive 
genetic bases during the 2nd- step evolution will differ, opening up the possibility that they are 
contingent on the first adaptive step.  
 
Fitness increases of isolated adaptive clones from the 2nd-step evolutions tend to be 
smaller 
Having analyzed the DFE from the lineage tracking data during the evolutions themselves, we 
followed up with a characterization of the distributions of fitness effects of individual clones 
isolated from each of the 2nd-step evolutions. Clones were isolated from a single timepoint from 
each evolution and their fitness effects were quantified against the wild-type ancestor under 
conditions identical to their evolutionary condition, by a bulk fitness assay. We directly 
compared the distribution of fitness effects between the 1st and the 2nd-step evolutions, by 
including in our assays a set of isolated clones from the 1st-step evolutions4. Based on fitness 
and ploidy measurements, we classified isolated clones into four categories, consistent with the 
classification we used previously4. “Neutral haploids” are haploids with a similar fitness to their 
immediate ancestor. “Adaptive haploids” are haploids with a higher fitness compared to their 
immediate ancestor, presumably carrying adaptive mutation(s). “Pure diploids” are diploids 
without additional beneficial mutations. “High-fitness diploids” are diploids with a fitness 
significantly higher than the mean diploid fitness, and likely harbor beneficial mutation(s) 
besides diploidy. 

Figure 3 shows the distributions of fitness effects per genotype, as calculated relative to 
the wild-type (panels to the left of the wild-type) and to their adapted ancestor (panels to the 
right of the wild-type). Isolated clones from the 1st-step evolution include the 2nd-step parental 
strains (corresponding points are annotated with larger dots in the wild-type panel, Fig. 3), 
whose fitness value is included in table S1 (under ‘Fitness evolved remeasurements’). 
Deviations from earlier estimates4 can be attributed to different population mean fitness resulting 
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from inclusion of fitter strains in the pool. Neutral clones from the 2nd-step evolutions are 
expected to have fitness comparable to their respective parental strains from the 1st-step 
evolution, and that is the case for the cyr1 and gpb2 genotypes. However, neutral clones from 
the tor1 genotype evolution have higher fitness than their unbarcoded ancestor, suggesting the 
possibility of the presence of mutation(s) that arose during the barcoding process. Overall, 
adapted clones from each of the three 2nd-step evolutions have further increased fitness 
compared to those from the 1st-step evolution (Fig. 3, fitness relative to the wild-type ancestor). 
However, the fitness increase of this 2nd step is smaller than the fitness increase of the 1st step 
(Fig. 3, fitness relative to the immediate ancestor), suggesting a slower adaptation rate, 
consistent with the data from the lineage tracking during the evolutions. In particular, during the 
1st-step evolution, adaptive clones gain benefits up to ~0.18 per generation compared to their 
WT ancestor. During the 2nd step evolutions, adaptive clones gain smaller fitness benefits 
compared to their immediate ancestors. The most fit clones gain benefits of ~0.09, ~0.10, and 
~0.12 per generation compared to their cyr1, gpb2, and tor1 ancestors, respectively. In 
agreement with diminishing returns, there is an anti-correlation between ancestor fitness and 
highest fitness evolved (Fig. S6, Pearson r = -0.95). We cross-validated our fitness estimates 
from the lineage tracking data from the evolutions and from the bulk competition assays, by 
plotting the estimates against each other (Fig. S7). Fitness values of lineages for which fitness 
was inferred from the evolution data approximately match the fitness values from the 
competition data. Discrepancies between the two datasets are expected to reflect cases where 
a single barcode represents more than a single genotype in the fitness inference from the 
lineage tracking data. The raw data for figures 3 and S7 are available in supplemental data, 
fitness dataset. 
 
Molecular targets of adaptation are contingent upon the founding genotype 
To study the genetic basis of adaptation on the different genetic backgrounds, we performed 
whole genome sequencing on hundreds of adaptive clones isolated from the 2nd step evolution. 
The genetic basis of the 1st step evolution has been previously characterized4. Table 3 
summarizes the molecular targets per founder and Fig. 4 shows their overlap in terms of genes 
and pathways. We observed similarities and differences in the mutational targets between the 
1st- and 2nd-step evolutions and among the 2nd-step evolutions.  

Genes in the RAS/PKA and TOR/Sch9 pathways are the major adaptive targets during 
the 1st-step evolution and are also targets during the 2nd-step evolution. However, the tor1 
mutant is more likely to acquire adaptive mutations in the RAS/PKA pathway (6 out of 21 multi-
hits in tor1, 1 out of 19 in cyr1, 0 out of 5 in gpb2), while cyr1 and gpb2 mutants are more likely 
to acquire mutations in the TOR/Sch9 pathway (1 out of 19 in cyr1, 2 out of 5 in gpb2, 0 out of 
21 in tor1). The observation that double mutants on the RAS/PKA and TOR/Sch9 pathways are 
more fit than their corresponding single mutants and were selected for, whereas double mutants 
on the same pathway were not, suggests that the TOR and RAS/PKA pathways are not 
redundant in how they increase fitness, as has been previously shown51.  

In contrast to the 1st-step targets of selection, stress response pathways were major 
targets of selection during the 2nd evolutionary step. GSH1 mutations were observed 8 times in 
total across all three genotypes of the 2nd-step evolution, yet no GSH1 mutations were observed 
during the 1st-step evolution. Similarly, mutations affecting the retrograde (RTG) pathway were 
exclusively observed in the RAS/PKA mutant backgrounds (7 out of 19 in cyr1, 1 out of 5 in 
gpb2, 0 out of 21 in tor1), while HOG pathway mutants were observed predominantly in the tor1 
mutant background (13 out of 21 in tor1 including pre-existing mutations, 2 out of 19 in cyr1, 1 
out of 5 in gpb2) and aro80 was also only observed in the tor1 mutant background (Table 3, Fig. 
4).  

Finally, the predominant adaptive mutation type differs between 1st- and 2nd-step 
evolution, in terms of the consequence the mutations have on the encoded protein. In particular, 
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adaptation via loss of function mutations is common during the 1st-step evolution, whereas the 
2nd-step of adaptation often selects presumptive gain-of-function mutations. Adaptive changes 
that increase signaling in RAS/PKA and TOR/Sch9 pathways, can be achieved either by loss of 
function mutations in negative regulators, or, rarely, by presumptive gain of function in positive 
regulators. Specifically, 53 out of 95 causative mutations (56%) from the 1st step evolution result 
in either a frameshift or stop-codon gained (nonsense), likely leading to the loss of function of 
the mutated gene. By contrast, only 14 out of 55 causative mutations (25%) from the 2nd step 
evolution are frameshift or stop-codon gain mutations. In our calculations we included mutations 
that are presented in table 3 as common targets of selection, as well as mutations that occurred 
in the background of a stronger causal mutation candidate (not included in table 3, see 
Supplemental Data, adaptive targets and WGS datasets for detailed lists). The beneficial 
mutation types between the 1st- and 2nd-step evolutions are significantly different (chi-square p-
value = 6E-4), which also indicates shifting beneficial mutation spectra during adaptation. It is 
also likely that if 2nd-step adaptation is more likely to result from gain-of-function mutations, then 
this may be partly responsible for decreased mutational target size, given that loss-of-function 
mutations occur more easily than gain-of-function mutations52.  
 
Negative epistasis may contribute to a narrower DFE 
In theory, diminished fitness gains could result from allele pairs that interact negatively, 
Fitness(AB)<Fitness(A)+Fitness(B), and/or could be a reflection of the order in which adaptive 
mutations are selected (higher fitness mutations should be favored first). We estimated the 
extent of negative epistasis at the gene level. Availability of mutations affecting the same genes 
in both 1st- and 2nd-step evolutions, and of fitness effects of the implicated genotypes (single or 
double mutants), allows for a crude estimation of epistatic interactions among targets of 
selection. We considered the average fitness effects of alleles in two genes when they occur 
either singly (fitness averaged from all alleles of a gene, data from 1st-step evolutions) or 
together (fitness averaged from all genotypes that had the 2 genes mutated, data from 2nd-step 
evolutions) in the wild-type background, for genes where such data were available (Fig. 5). In all 
cases, 2nd-step adapted mutants are more fit than either of the 1st-step adapted mutants. The 
range of expected fitness for a genotype with both genes mutated, without epistasis between 
them (grey bar in Fig. 5), is represented by the 95% confidence interval of the sum of the mean 
fitness of mutants in each gene. Only ksp1 in combination with either cyr1 or gpb2 was 
consistent with negative epistasis. The remaining combinations have fitness effects that do not 
deviate from the expectation of an additive model. Thus, these data only provide weak evidence 
for the hypothesis that negatively interacting alleles contribute to diminishing returns in our 
experiments. 
 
Diploidization is adaptive across genotypes 
Diploidization is a major adaptation strategy during evolution experiments founded with haploid 
yeast4,53,54. Previously, we demonstrated that during evolution of the wild-type ancestor, by 
generation 88, ~54% of the population was diploid. The majority of these diploids do not carry 
additional adaptive mutations and have a similar fitness advantage to one another over their 
wild-type ancestor (~0.045 per generation)4. Diploidization remained an adaptive strategy after 
acquisition of a first adaptive mutation across all genetic backgrounds. We directly estimated 
changes in the diploid fraction over evolutionary time based on benomyl sensitivity (Fig. S3). 
The assays suggested an increase in the fraction of diploid individuals over time (Fig. S3, Table 
S4). As a comparison, at generation 88 diploid individual fractions were on average 32%, 16%, 
10% and 45% for the wild-type, cyr1, gpb2 and tor1 evolutions, based on assaying ~60-190 
individuals per timepoint, for most timepoints. Interestingly, diploidization in the tor1 background 
approached fixation in both replicates (96% and 88%) at generation 160, unlike the rest of the 
evolutions. That could be attributed to chance or may instead reflect either an otherwise 
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comparatively weak adaptation potential for tor1, or an increased fitness for diploidy in a tor1 
background compared to the other backgrounds.  

We used the fitness remeasurement data to calculate the fitness advantage of diploids in 
the context of different genetic backgrounds, including the wild-type ancestor. We observed two 
dominant groups of clones with distinct fitness (Fig. 3), which correspond to neutral haploids 
and pure diploids4. Pure diploids from wild-type, cyr1, gpb2 and tor1 genetic backgrounds have 
fitness advantages of ~0.045, 0.029, 0.031 and 0.043 per generation, respectively, relative to 
their immediate ancestors (Fig. 3). Although, these values are similar, there is an anti-
correlation between ancestor fitness and diploidization fitness advantage (Fig. S6, Pearson r = -
0.91), in concordance with the earlier observation that the highest fitness gains occur in the 
lowest fitness background. We also used the mutational fitness spectra to estimate 
diploidization mutation rates (Fig. 2). Diploidization mutation rates were assumed to correspond 
to the peaks of the mutation fitness spectra at the fitness interval ~3-4% per generation. The 
fitness values that correspond to these peaks along with their respective rates are shown in 
table 2. Average diploidization fitness across genotypes is comparable with the fitness 
estimates from the remeasurements data, albeit a little lower for the wild-type and tor1 
backgrounds. We consider the values from the fitness remeasurements more accurate and 
comparable to each other, since clones were competing in the same pool against a mostly wild-
type population. The average across replicates mutation rates that correspond to these peaks 
are 2.03x10-5, 3.29x10-7, 1.19x10-7 and 3.35x10-6 for the wild-type, cyr1, gpb2 and tor1 
ancestors, respectively. The value for the wild type is comparable to what has been previously 
reported on the diploidization rates in haploids during propagation53. The adapted genotypes 
display lower rates, matching the overall trend of lower mutation rates across all fitness 
intervals. Still, these data collectively suggest that diploidization remains a prevalent adaptation 
strategy after acquisition of a first adaptive mutation. 
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Discussion 
We characterized 2nd-step evolutions in terms of the DFE and adaptive mutational spectra and 
compared them to previously described 1st-step evolutions4,41. We used adapted clones, each 
carrying a single beneficial mutation compared to a common ancestor, as founders for the 2nd-
step evolutions. We found that even a single step towards adaptation suffices to alter 
subsequent adaptation rates and adaptive mutational spectra. 

Diminishing returns epistasis is apparent at multiple levels in our study, including the 
magnitude of fitness gains and the rate of adaptation. Both maximum and diploidization fitness 
gains anticorrelate with founder fitness (Fig. S6), in agreement with diminishing returns acting 
globally25,30. We also observed a lower mutation rate to modestly adaptive genotypes, as well as 
a depletion of high fitness events compared to the wild-type ancestor. These diminished 
adaptation rates are also supported by fitness remeasurements of individual clones from the 
2nd-step evolution. Overall, these observations imply that both a smaller number of adaptive 
mutations and smaller fitness effects cause diminishing returns. Whole genome sequencing of 
adapted clones suggested that compared to the 1st step of adaptation, the 2nd-step was more 
often the result of presumptive gain-of-function mutations. Such mutations are rarer52, and that 
may provide a potential explanation for why we observe a smaller adaptive target (equivalent to 
a lower adaptation rate) in our experiments. 

In terms of their adaptive responses, wild-type and adaptive ancestors share common, 
converging, and diverging strategies. First, diploidization was a common and prevalent strategy 
among all genotypes. Second, adaptation through modifications of the RAS/PKA pathway was 
common between the tor1 mutant and the wild-type ancestor, whereas adaptation through 
modifications of the TOR pathway was common among the RAS/PKA mutants (cyr1 and gpb2) 
and the wild-type ancestor. This provides an example of convergent evolution, where genotypes 
with adaptive modifications in both pathways emerged from all three of the adapted ancestors. 
Combined with the fact that the same pathway was typically not mutated a second time (with 
one exception), this result is consistent with the idea that the Tor and Ras pathways are not 
redundant51. Sign epistasis between adaptive variants affecting the same pathway has been 
previously observed22, making it less likely for such double mutants to be selected. Finally, 
common adaptive responses during the 2nd-step evolution included mutations that potentially 
result in the upregulation of stress response pathways, which we did not observe in the 1st-step. 
Both TOR/Sch9 and RAS/PKA pathways, which were major targets during the 1st step 
adaptation, regulate growth and stress responses responding to extracellular stimuli51,54–57. 1st-
step adapted mutants had either RAS/PKA or TOR/Sch9 pathway upregulated4,20, which may 
decrease stress responses compared to their ancestor56–66. The adaptive basis of 2nd-step 
mutations may lie in the restoration of stress responses attenuated by overactive RAS/PKA or 
TOR/Sch9 pathways, as suggested by prior work51,57–66. In particular, all adapted ancestors 
evolved in this study acquired mutations in the GSH1 gene, and evidence suggests that these 
mutations are gain-of-function, possibly resulting in an enhanced stress response. First, Gsh1p 
catalyzes the first and rate-limiting step of glutathione biosynthesis67, while no other mutations in 
the pathway were detected. Second, all GSH1 mutations recovered were missense.  

We also observed specific adaptation routes available to either the tor1 mutant ancestor 
or the RAS/PKA mutant ancestors. Modifications of the retrograde pathway, including mutations 
in one positive (RTG2) and two negative (BMH1 and MKS1) regulators68, were specific to the 
RAS/PKA mutants. In line with our observations on the glutathione biosynthesis pathway, all 4 
mutations on RTG2 were missense, while the 2 mutations on BMH1 included a missense and a 
nonsense and the 2 mutations on MKS1 included a missense and an upstream modification, 
suggesting that selection favors an enhanced retrograde flow pathway. Retrograde flow is 
negatively regulated by the TOR pathway58,60,66, providing a potential explanation as to why 
modifications of this particular pathway were not observed in tor1 lineages: Modifications on 
retrograde flow, given an overactive TOR pathway, should be of larger effect, to overcome the 
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additional load of the TOR-induced inhibition. Such large effect modifications may be rare, while 
tor1 lineages are able to improve via different, more easily accessible routes, such as via 
modifications of the HOG pathway. Despite the common and converging adaptive responses, 
further adaptation also bears strong signatures of historical contingency, with mutational targets 
differing between wild type and adapted ancestors and between tor1 and to RAS/PKA adapted 
ancestors. In particular, phenotypic relatedness dictates the degree of divergence, as shown by 
earlier studies9. We did not observe adaptive events contingent specifically on either the cyr1 or 
the gpb2 mutations, reflecting the phenotypic similarity of the cyr1 and gpb2 genotypes4,9,20. 
Nevertheless, that does not preclude that with a larger sample size we may have observed 
genotype-specific adaptive responses for cyr1 and gpb2. 

Our results provide clear evidence for the role of evolutionary history in shaping 
selection. This suggests that after acquisition of a single adaptive mutation the selective 
pressure a population experiences can change, even in the absence of environmental 
perturbation. The first adaptive change might be considered to be in direct response to the 
environmental condition, where adapted lineages modified their nutrient signaling pathways to 
respond to an environment that predictably undergoes glucose feast and famine4,20. Adaptive 
changes in pleiotropic genes (such as those that regulate nutrient signaling) may include non-
adaptive or even maladaptive side effects. Thus, the set of second adaptive mutations may be 
constrained to adjust for pleiotropic consequences of the first, compensating for sub-optimal 
changes to the cellular network. This suggests that fine-tuning of the same pathway may be 
minimally beneficial in a majority of cases, compared to responses that adjust different 
pathways. Specific to our experiments, extensive literature (cited above) suggests that growth 
optimization comes with a cost in stress responses, and as a result, 2nd-step adaptation 
strategies targeting modification of stress responses may be contingent on the nature of the 
adaptive strategy caused by the 1st step. This shift in adaptive strategy may underlie the 
observation that the 2nd adaptive step was more often due to presumptive gain-of-function 
mutations. 
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Figure legends 
Figure 1. Experimental design. All evolutions were performed under identical conditions, 
including transfer and environmental conditions. The founders used in this study derived from 
adaptive clones isolated and characterized previously41,4. Each founder carries a single adaptive 
mutation (gpb2Y282*, cyr1S917Y and tor1F1712C), and was barcoded and propagated for 20 
transfers. Adaptive clones were isolated and characterized via fitness re-measurements and  
whole genome sequencing. 
 
Figure 2. Mutation rates and fitness effects are smaller during the 2nd-step evolutions, as 
compared to the 1st-step. Mutation rates per fitness bin were calculated for all 2nd-step 
evolutions and compared to the 1st-step (wild type). The complete wild-type evolution datasets 
were taken into account for the calculation (see Fig. S5). Y-axis error bars are shown and min 
and max are annotated with a horizontal line (most errors are very small). 
 
Figure 3. Distribution of fitness effects of 1st-step adapted clones following further 
adaptation. Fitness values of isolated clones are shown with respect to the wild-type ancestor 
(3 panels on the left) and with respect to their immediate ancestor (3 panels on the right). 
Fitness was measured in a pooled fashion from isolated clones of all immediate ancestor 
evolutions (including the wild-type), and arranged by ancestor. Haploids and diploids are shown 
in separate columns for each genotype. Clones with increased fitness within each group (high 
fitness diploids and adapted haploids) carry different annotation from pure diploids and neutral 
haploids. Larger dots in the ancestor cloud represent the adapted ancestors prior to barcoding 
and are color-coded to match the respective genotypes.  
 
Figure 4. Overlap in the mutational recurrent targets among adaptive and wild-type 
ancestors. The pathway and the gene names are annotated in each area. For number of hits, 
see table 3. T/S stands for TOR1/SCH9.  
 
Figure 5. Pairwise interactions among targets of selection have additive or negative 
effects when combined. The additive fitness effects were estimated at gene-level for pairs of 
genes with adaptive alleles on the wild-type background (data from 1st-step evolution), and are 
annotated with grey bars, representing the 95% confidence interval of the sum of the mean 
fitness of mutants in each gene. Additive fitness effects are compared to the fitness effects of 
genotypes with adaptive alleles at both genes (data from 2nd-step evolutions), as a proxy for 
epistasis. The dot color of the double mutants refers to the second mutation shown in each 
graph. The first mutation matches the mutation type of the adapted ancestors (cyr1 and tor1 are 
missense and gpb2 is a nonsense). 
 
Figure S1. The fitness advantage is a monogenic trait and co-segregates with the evolved 
variants. Fitness advantage was measured against a fluorescent version of the initial ancestor, 
for each parental evolved clone and for 4 segregants derived from 2 consecutive back-crosses 
of the evolved clone with their ancestor. From each cross, one segregant with the evolved 
variant and one segregant with the ancestral variant were assayed. Fitness was measured in 
triplicates. Generations 8, 24 and 40 were used for fitness estimation of the cyr1 mutant and 
derivatives. Generations 0, 8, 24 and 40 were used for fitness estimations of the gpb2 and tor1 
mutants and derivatives. 
 
Figure S2. Lineage trajectories over the course of the evolutions. Lineage frequencies 
were estimated from time course barcode sequencing data. Data from the wild-type evolutions 
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were subsampled from the counts in supplemental datasets 1 and 2 from39. A. Highlighted 
trajectories represent lineages with a fitness advantage and are colored by fitness. Grey 
trajectories represent neutral lineages, which are also shown in B. for clarity. In all cases 1000 
neutral trajectories are shown. 
 
Figure S3. Frequency of adaptive individuals over the course of the evolutions. The 
frequency was calculated using the barcode sequencing data. 
 
Figure S4. Diploid trajectories over the course of the evolutions. Diploid ratio was 
estimated via a benomyl-based ploidy assay. Data of the wild-type evolution are the same as in 
4, figure S7. Raw data are provided in table S4. 
 
Figure S5. Sequencing data downsampling does not affect the fitness calculation but 
affects the detection limit. Barcode sequencing data from the 1st-step evolutions were 
downsampled to depths comparable to the data from the 2nd-step evolutions. A. Fitness effects 
were estimated using the complete and the downsampled datasets for both replicates39. B-C. 
Mutation rates per fitness bin as calculated using the complete (B) and the downsampled (C) 
datasets. 
 
Figure S6. Highest and diploidization fitness gains anticorrelate with ancestor fitness. 
Fitness effects are expressed per generation. Pearson correlations equal -0.95 and -0.91, for 
highest and diploidization fitness effects, respectively. 
 
Figure S7. Fitness estimations from remeasurements of individual clones match the 
fitness values inferred from lineage tracking data of the evolutions. Fitness values were 
matched based on barcode identity and ploidy characterization was based on a benomyl assay 
for individual clones. 
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Figure 2
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Figure 3
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Figure 5
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Table 1. Strains used in this study 
 

Strain Genotype Description Reference 
GSY5096/ 
SHA118 

MATalpha, ura3Δ, ybr209w::GalCre-
natMX 

wild-type universal ancestor [35] 

GSY5375 MATa, ura3Δ, ybr209w::GalCre-natMX MATa version of the ancestor, 
used for back-crossing 

this study 

GSY6701 MATalpha, ura3Δ, ybr209w::GalCre-
natMX, cyr1S917Y 

evolution founder this study 

GSY6702 MATalpha, ura3Δ, ybr209w::GalCre-
natMX, gpb2Y282* 

evolution founder this study 

GSY6703 MATalpha, ura3Δ, ybr209w::GalCre-
natMX, tor1F1712L 

evolution founder this study 

GSY5481 MATalpha, ura3Δ, ybr209w::full barcode, 
cyr1S917Y 

evolved clone [4, 35] 

GSY5128 MATalpha, ura3Δ, ybr209w::full barcode, 
gpb2Y282* 

evolved clone [4, 35] 

GSY5153 MATalpha, ura3Δ, ybr209w::full barcode, 
tor1F1712L 

evolved clone [4, 35] 
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Table 2. Mutation rates per genotype from mutational fitness spectra 
 

genotype evolution 
diploidization 
fitness 

density 
(diploidization 
rate) 

diploidization 
rate 

average 
diploidization 
rate 

high fitness 
(>0.05) 
mutation 
rate 

average 
high fitness 
(>0.05) 
mutation 
rate 

high fitness 
(0.07-0.12) 
mutation 
rate 

high fitness 
(>0.12) 
mutation 
rate 

WT evo1 0.032 1.53E-02 3.05E-05 2.03E-05 1.42E-06 5.32E-06 5.18E-07 8.84E-10 
evo2 0.041 5.03E-03 1.01E-05 9.22E-06 7.57E-07 2.27E-08 

cyr1 evo1 0.036 1.27E-04 2.54E-07 3.29E-07 7.74E-08 8.49E-08 6.92E-09 0.00E+00 
evo2 0.029 2.02E-04 4.04E-07 9.25E-08 6.38E-09 8.59E-13 

gpb2 evo1 0.029 6.62E-04 1.32E-06 1.19E-06 1.27E-07 9.56E-08 1.14E-08 5.59E-12 
evo2 0.034 5.25E-04 1.05E-06 6.41E-08 9.48E-09 7.69E-14 

tor1 evo1 0.036 8.45E-04 1.69E-06 3.35E-06 3.39E-07 2.01E-07 8.69E-09 0.00E+00 
evo2 0.030 2.50E-03 5.01E-06 6.23E-08 8.56E-10 0.00E+00 
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Table 3: Genetic basis of adaptation per founder 
 
  Ancestor: 

Pathway 
Mutated 

gene WT CYR1 GPB2 TOR1 

RAS/PKA 

CYR1 3    
GPB1 5    
GPB2 13   2 
GPR1  1   
IRA1 39   1 
IRA2 10   1 
PDE2 11   1 
RAS2 2   1 
TFS1 1    
YAK1 1    

TOR/Sch9 

KOG1 1    
KSP1 1 1 1  
MDS3 1    
SCH9 2  1  
TOR1 1    

HOG 
HOG1  1   
PBS2    6 
SSK2 2 1 1 7 

RTG 
BMH1  1 1  
MKS1  2   
RTG2  4   

 GSH1  5 1 2 

 ARO80  3   
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