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Summary 
 
Ebola virus (EBOV) causes epidemics with high case fatality rates, yet remains understudied 
due to the challenge of experimentation in high-containment and outbreak settings. To better 
understand EBOV infection in vivo, we used single-cell transcriptomics and CyTOF-based 
single-cell protein quantification to characterize peripheral immune cell activity during EBOV 
infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein 
profiles, providing insight into pathogenesis. We find that immature, proliferative 
monocyte-lineage cells with reduced antigen presentation capacity replace conventional 
circulating monocyte subsets within days of infection, while lymphocytes upregulate apoptosis 
genes and decline in abundance. By quantifying viral RNA abundance in individual cells, we 
identify molecular determinants of tropism and examine temporal dynamics in viral and host 
gene expression. Within infected cells, we observe that EBOV down-regulates STAT1 mRNA 
and interferon signaling, and up-regulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), 
nominating cellular pathways the virus manipulates for its replication. Overall, this study sheds 
light on EBOV tropism, replication dynamics, and elicited immune response, and provides a 
framework for characterizing interactions between hosts and emerging viruses in a maximum 
containment setting. 
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Introduction 
 
Ebola virus (EBOV) is among the world’s most lethal pathogens, with an estimated case fatality 
rate of 66% in the recent epidemic in the Democratic Republic of the Congo (Ilunga Kalenga et 
al., 2019; World Health Organization, 2019) and 40% in the 2013–2016 epidemic in West Africa 
(Lo et al., 2017). EBOV infection in humans causes Ebola virus disease (EVD), characterized by 
fever, malaise, muscle aches, and gastrointestinal distress, rapidly progressing to coagulopathy, 
shock, and multi-organ failure (Malvy et al., 2019). While recently developed vaccines (Kennedy 
et al., 2017) and monoclonal antibody therapeutics (Mulangu et al., 2019) have shown great 
promise for preventing and treating EVD, case fatality rates in treated patients still exceed 30%, 
highlighting the need for further research into disease pathogenesis. 
 
Studies of EVD pathogenesis, while paramount, face numerous logistical challenges which have 
limited their scope relative to studies of other pathogens. Experiments involving live EBOV 
require maximum containment (e.g., biosafety level 4 [BSL-4]) and therefore are restricted to a 
small number of highly specialized research facilities. In vivo studies are especially challenging: 
human EVD is difficult to study in the midst of deadly outbreaks in resource-limited settings, 
necessitating animal models. However, commonly used laboratory mouse lines are resistant to 
naturally occurring EBOV isolates, limiting their utility for research (Bray, 2001; Rasmussen et 
al., 2014). Moreover, rodents and other small animal models such as ferrets lack the 
primate-specific NPC1 genotype (Diehl et al., 2016), the key cellular receptor for EBOV entry 
(Carette et al., 2011; Côté et al., 2011), and do not always recapitulate human EVD-like disease 
(Bray et al., 2001; Geisbert et al., 2002). EVD in nonhuman primates (NHPs) most closely 
resembles human EVD (Bennett et al., 2017; Geisbert et al., 2015; St Claire et al., 2017), but 
NHP studies are often limited to small sample sizes, which reduces power to identify statistically 
significant trends and to discern meaningful inter-individual variability. 
 
The two predominant approaches to studying EVD – analyzing infected cells in culture and 
infected animals in vivo – have revealed important, if somewhat contradictory, aspects of how 
EBOV impacts the host immune system. In cell culture, EBOV infects myeloid cells, potently 
inhibiting both production of type 1 interferon (Basler et al., 2003; Gupta et al., 2001; Harcourt et 
al., 1998) and signal transduction downstream of interferon receptors (Harcourt et al., 1999; 
Kash et al., 2006; Leung et al., 2006; Reid et al., 2008). Under-activation of this key innate 
antiviral response hinders the ability of antigen-presenting cells to activate the adaptive immune 
system to combat infection (Bosio et al., 2003; Lubaki et al., 2013; Mahanty et al., 2003), a key 
determinant of fatal outcomes (Baize et al., 1999) and could be due to reduced presentation of 
viral proteins by antigen-presenting cells (Lüdtke et al., 2016). In contrast to these culture-based 
findings, EVD in vivo is characterized by high fever and dramatic up-regulation of hundreds of 
interferon stimulated genes (Caballero et al., 2016; Liu et al., 2017; Reynard et al., 2019; 
Speranza et al., 2018), correlating with the release of dozens of inflammatory cytokines 
(Caballero et al., 2016; Reynard et al., 2019; Wauquier et al., 2010), suggesting that an aberrant 
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over-activation of innate and adaptive immunity underlies much of EVD pathology, rather than 
solely virus-mediated cytotoxicity (Geisbert et al., 2003a, 2003b). 
 
High-throughput single-cell technologies, such as single-cell RNA-sequencing (scRNA-Seq) and 
protein quantification by CyTOF (Bendall et al., 2011), have made it possible to analyze the 
response of individual cells to viral infection at unprecedented resolution (Hamlin et al., 2017; 
Hein and Weissman, 2019; Newell et al., 2012; O’Neal et al., 2019; Russell et al., 2018, 2019; 
Steuerman et al., 2018; Zanini et al., 2018a; Zhao et al., 2020). By generating mRNA or protein 
profiles for thousands of cells in a sample, these methods can quantify the cell-type composition 
and expression programs of individual cells -- signals that are obscured in bulk measurements. 
By quantifying viral RNA within individual cells, scRNA-Seq allows comparison of gene 
expression between infected and uninfected cells in a diseased host (i.e., bystander cells), 
which can yield a far more nuanced view of host (Steuerman et al., 2018) and viral (Hein and 
Weissman, 2019) gene expression within infected cells. Further, this approach can be used to 
disentangle the direct effects of EBOV infection within a cell from the effect of the inflammatory 
cytokine milieu. However, many scRNA-Seq technologies require droplet generator devices and 
inactivation protocols that can be challenging to establish in a maximum containment facility. As 
a result, such approaches have yet to be applied to a risk group 4 (RG-4) pathogen such as 
EBOV. Furthermore, high-volume exhaust, superheated components, and other aspects of 
CyTOF instrumentation make these devices incompatible with installation in maximum 
containment facilities (Logue et al., 2019), necessitating development of new protocols 
compatible with sample inactivation to study RG-4 pathogens. 
 
Here, we describe the first investigation of an RG-4 agent under maximum containment with 
high-dimensional single-cell technologies. We apply CyTOF and Seq-Well--a portable single-cell 
RNA-seq platform (Gierahn et al., 2017; Hughes et al., 2019)--to a combined total of 90 
peripheral blood mononuclear cell (PBMC) samples (90 by CyTOF, 28 by Seq-Well) collected 
from 21 rhesus monkeys prior to infection or at multiple timepoints following lethal EBOV 
challenge in vivo. We further inoculated PBMCs with EBOV ex vivo, using pre-defined 
experimental parameters, and profiled their gene expression with Seq-Well. These data allow us 
to dissect host-virus interactions and comprehensively catalog changes in cell-type abundance 
and cell state over the course of EVD. Moreover, as EBOV harbors an RNA genome and 
transcribes polyadenylated mRNAs, we were able to detect viral RNA within individual cells, 
allowing us to define EBOV tropism with high resolution and identify EBOV-associated 
transcriptional changes in putative pro- and antiviral genes. 
 
We find that EVD leads to widespread changes in the circulating monocyte populations in vivo, 
both in NHPs as well as in acute human infections, with replacement of conventional monocyte 
subsets with a highly proliferative monocyte precursor population and a macrophage-like 
population that is enriched for EBOV-infected cells. Furthermore, by comparing infected and 
uninfected bystander monocytes, we resolve the apparent contradiction between in vivo and in 
vitro studies of EBOV. We find that bystander cells of all major immune cell types express an 
interferon response program, but that this response is suppressed specifically within infected 

4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.148957doi: bioRxiv preprint 

https://paperpile.com/c/R4Bbga/ayrtR+OR3a
https://paperpile.com/c/R4Bbga/NKEYm
https://paperpile.com/c/R4Bbga/KqOKy+hVtTV+wpNmn+5F9IQ+7LNvH+4ECO2+m4VL2+dor0o+Gdqy4
https://paperpile.com/c/R4Bbga/KqOKy+hVtTV+wpNmn+5F9IQ+7LNvH+4ECO2+m4VL2+dor0o+Gdqy4
https://paperpile.com/c/R4Bbga/KqOKy+hVtTV+wpNmn+5F9IQ+7LNvH+4ECO2+m4VL2+dor0o+Gdqy4
https://paperpile.com/c/R4Bbga/hVtTV
https://paperpile.com/c/R4Bbga/4ECO2
https://paperpile.com/c/R4Bbga/4ECO2
https://paperpile.com/c/R4Bbga/Ug75u
https://paperpile.com/c/R4Bbga/eozrg+TqleZ
https://doi.org/10.1101/2020.06.12.148957
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

monocytes in vivo, consistent with previous studies in culture. In addition to down-regulating 
host antiviral genes, we observe that EBOV drives the up-regulation of candidate pro-viral 
genes, such as DYNLL1 and HSPA5, within infected cells. Taken together, this dataset 
constitutes a unique resource for the study of EBOV, enabling the study of host immune 
response in infected and bystander cells across cell types, in natural (in vivo) and 
experimentally controlled (ex vivo) contexts. 

Results 
 
Single-cell characterization of RNA and protein expression in circulating immune 
cells from Ebola virus infected rhesus monkeys 
 
To comprehensively profile EBOV-induced immune dysfunction in vivo, we collected peripheral 
immune cells from rhesus monkeys prior to infection and at multiple days post-infection (DPI), 
corresponding to several stages of acute EVD (Figure 1). Cohorts of ≥3 nonhuman primates 
(NHPs) were sacrificed as baseline uninfected controls (B), at pre-defined DPI, or upon 
reaching pre-determined humane euthanasia criteria. These cohorts were recently 
characterized for viral load, clinical score, blood chemistry (Bennett et al. in submission) and 
liver pathology (Greenberg et al., 2020). Viral load first became detectable in all animals on DPI 
3, preceding detectable clinical signs (e.g., fever) by 1–2 days (Figure 2A ). Clinical signs of 
EVD progressed until humane euthanasia criteria were uniformly reached between DPI 6–8 
(Figure S1A ). For each NHP, cells collected multiple times throughout disease were used for 
CyTOF, while cells collected prior to infection and at sacrifice were used for CyOF and Seq-Well 
(Figure S1B ). 
 
After standard quality control filters (Materials and Methods), we obtained single-cell 
transcriptomes and 42-protein CyTOF profiles from ~58,000 and ~15,000,000 PBMCs, 
respectively. We visualized these data with uniform manifold approximation and projection 
(UMAP) non-linear dimensionality reduction (Becht et al., 2018; McInnes et al., 2018) (Figures 
2B, 2C, 2E, 2F, and 2H ). Unsupervised clustering of either the transcriptomes or a 
down-sampled set of 1,100,000 protein profiles (Materials and Methods) yielded clusters that 
could be readily identified as the major circulating immune cell types using well-known RNA and 
protein markers (Figures 2B, 2C, S2A, and S2B). The CyTOF-based clustering gave 
concordant results with an approach based on manual gating of conventional cell-type marker 
genes (Figures S3A and S3B, Materials and Methods ). After batch correction of the CyTOF 
data and integration of the transcriptomes to adjust for technical sources of variation (Materials 
and Methods ), samples were well-distributed across cell-type clusters (Figures S2C–S2F) but 
separated by DPI (Figures 2E and 2F), suggestive of dynamic cell states over the course of 
disease progression. By sub-clustering within broad cell-type categories, we further identified 
cell subtypes based on the expression of identifying marker genes (Figure S4). 
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Cell-type abundance, proliferation, and EBOV infection rates vary throughout 
EVD 
 
In addition to the major PBMC cell types, a cluster of immature neutrophils emerged during 
EVD, marked by high gene expression of CD177 and SOD2, and protein expression of CD66 
and CD11b. Though neutrophils are typically removed during density-based PBMC isolations, 
immature neutrophils (i.e., band cells) – which are less dense than mature polymorphonuclear 
neutrophils – can be released from the bone marrow and co-isolate with PBMCs in infectious 
and autoimmune inflammatory conditions (Carmona-Rivera and Kaplan, 2013; Darcy et al., 
2014; Deng et al., 2016), including during EVD (Eisfeld et al., 2017). Neutrophils were almost 
entirely absent from baseline samples in our data but constituted a high proportion of cells in 
late EVD samples (scRNA-Seq: 0.2% of baseline cells compared to 65.1% of late EVD cells; 
CyTOF: 9.3% of baseline compared to 49.8% of late EVD; Figures S5A and S5B), which 
supports the hypothesis that band cells are released into the periphery from the bone marrow in 
response to cytokines elicited during EVD. 
 
Next, we quantified absolute abundance of each cell type over the course of EVD by combining 
CyTOF data with complete blood counts (CBC) (Materials and Methods) (Bennett et al. in 
submission). CBC provided direct neutrophil, lymphocyte, and monocyte abundances, and we 
integrated CBC and CyTOF data to obtain differential abundances of the lymphocyte cell types. 
Cell-type percentage estimates based on CyTOF were in general agreement with those based 
on scRNA-Seq (Figure S5A). 
 
In agreement with previous NHP studies (Ebihara et al., 2011; Fisher-Hoch et al., 1985), there 
was a >5-fold increase in neutrophil abundance by DPI 4 relative to baseline, before levels 
returned to baseline in late EVD (p < .05 for DPI 3–4, p  = 0.059 for DPI 5, Wilcoxon signed-rank 
test, Figures 2D and S5B ). Also consistent with previous studies, we observed a marked 
decrease in lymphocyte abundance with NK cells declining one day before the other cell types 
(p < 0.05 on DPI 3–6 for B, NK, CD8+ T, and CD4+ T; except for CD4+ T on DPI 5, Wilcoxon 
signed-rank test). Interestingly, all lymphocyte populations slowly recovered after DPI 4 (Figure 
S5B). Monocyte abundance initially increased >2-fold before declining precipitously between 
DPI 4 and 5. 
 
Changes in circulating cell-type abundance could reflect cell proliferation and/or death, as well 
as movement of cells into and out of bone marrow, lymph, and tissues. While we were unable to 
directly quantify rates of death or movement between different compartments, we estimated the 
fraction of actively dividing cells using the proliferation marker Ki67 (encoded by the gene 
MKI67) in both the CyTOF and scRNA-Seq data, and found good agreement between the two 
modalities (Figure S5C). 
 
The fraction of Ki67+ monocytes increased dramatically from 17% at baseline to 56% at DPI 5 
and remained >40% for the remainder of disease (p = 1.1x10 -5 rank-sum test of DPI 5-8 vs. 
baseline samples), suggesting an increase in proliferation (Figures 2G and S5D). By contrast, 
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neutrophil proliferation remained roughly constant (Figures 2G and S5D) despite the dramatic 
changes in abundance (Figures 2D and S5B), further evidence that immature neutrophils were 
released from the bone marrow during disease (Summers et al., 2010). Intriguingly, the fraction 
of dividing T and NK cells stayed relatively constant for most of the time course but increased 
dramatically on DPI 8 for both of the NHPs (out of 6 total) that survived until then, both by RNA 
(Figure S5C ) and protein levels (p = 0.022 rank-sum test of DPI 8 vs. baseline for NK, CD8+ T, 
and CD4+ T, Figure S5D ). Proliferation is a core component of effective T-cell mediated viral 
clearance, but requires time for activated T cells to accumulate; the observation that significant 
proliferation of circulating T cells only occurred in the 2 animals that survived until the latest DPI 
suggests that those animals may have begun to mount a T-cell response. 
 
Not all cell types support EBOV entry and replication; here, we were able to identify which cells 
were infected in vivo using scRNA-Seq because EBOV has an RNA genome and produces 
poly-adenylated mRNA transcripts (Figure 2H). However, uninfected cells may also contain 
EBOV reads due to ambient RNAs that contaminate single-cell profiles (Fleming et al., 2019; 
Young and Behjati, 2018). We therefore developed a statistical approach to identify infected 
cells as those that contain more EBOV transcripts than would be expected by chance, based on 
the relative abundance of EBOV-mapped transcripts in a cell and the amount of ambient RNA 
contamination (Materials and Methods). This allowed us to control the false positive rate (FPR) 
at a pre-specified level while maximizing power to call infected cells. At a FPR of 1%, we were 
well-powered to identify an infected cell when ≥1% of its transcripts mapped to EBOV, and 
estimated an average sensitivity of 51% when ≥0.1% of cellular transcripts derived from EBOV 
(Figure S2G ) though the sensitivity for a given cell depends on read depth and other 
parameters (Materials and Methods). In addition, we spiked uninfected Madin-Darby canine 
kidney (MDCK) cells into a subset of PBMC samples to serve as a negative control (Table S1, 
Materials and Methods ). 
 
Monocytes comprised the main infected cell population in vivo, first detectable at DPI 4, with an 
increasing fraction of infected monocytes thereafter (Figure 2I). Consistent with previous 
studies, T cells, B cells, and neutrophils were not identified as infected more often than would 
be expected by chance (1% FPR threshold), nor more often than MDCK control cells. We did 
not observe any infected plasmacytoid (pDC) or conventional dendritic cells (cDC) in circulation, 
though infected DCs have been observed in culture and in lymph nodes (Geisbert et al., 2003c) 
(see Discussion). 
 
Interferon response drives gene expression programs across multiple cell types 
 
Having examined temporal shifts in the frequency of each immune cell type, we next sought to 
comprehensively catalog changes in their respective gene expression profiles throughout EVD. 
To increase statistical power to detect differentially expressed genes, we grouped cells into EVD 
stages based on clinically relevant phenomena: "incubation" which precedes detectable viral 
load or clinical signs (DPI 1 and 2; CyTOF only), "early" when there is detectable viral load but 
no clinical signs (DPI 3), "middle" when there is detectable viral load and clinical signs (DPI 4 
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and 5), and "late" when animals uniformly reached human euthanasia criteria (DPI 6–8) (Figure 
1). 
 
We compared transcriptomes of cells from each EVD stage to baseline for each cell type 
individually (Materials and Methods). This identified 1,437 differentially expressed genes with 
an FDR corrected q-value < 0.05 and a fold-change of greater than 30% in at least one cell type 
and stage (Table S2). To identify patterns of gene expression associated with cell type and 
time, we performed unsupervised clustering of the differential expression signatures and 
identified 11 modules of genes sharing similar patterns of changes (Figures 3A and 3B, Table 
S3, Materials and Methods ). We excluded neutrophils, pDCs, cDCs, and plasmablasts 
because of small sample sizes. Three modules which we term "Global" were broadly up or 
down-regulated across cell types, and the remaining modules were cell-type specific.  
 
The “Global up” module contained 136 genes, consisting mostly of regulators and targets of the 
interferon (IFN) alpha (α) and gamma (γ) signal transduction cascade such as STAT1, IRF7 , 
MX1, and ISG15 . Gene sets labeled “response to interferon alpha”, and “response to interferon 
gamma” were significantly enriched in this module (IFNα: OR = 69.5, q = 8x10 -39; IFNγ: OR = 
45.9, q = 1x10 -39; Fisher's exact test; Table S3 ). The emergence of an IFN response was 
consistent with another observation: IFNγ mRNA rises >10-fold in CD8+ T-cells from an average 
of 0.4 transcripts per ten thousand (TP10K) at baseline to 5.0 at mid stage EVD. Concurrently, 
type 1 IFN (α/β) mRNAs rose from undetectable at baseline to 0.03–0.05 TP10K at late EVD in 
monocytes, along with a large number of other cytokines (Figure S6A). However, the increase 
in type 1 IFN mRNAs was not statistically significant, as IFN mRNAs are expressed transiently 
(Lin et al., 2011). To further characterize the dynamics of the IFN response, we assigned an 
interferon stimulated gene (ISG) score to each cell, reflecting the average expression of 
literature-annotated ISGs that overlap with the "Global up" module (Table S3, Materials and 
Methods ). The median ISG score increased substantially throughout EVD across each cell type 
(p < 1x10 -5 for all cell types and periods, rank-sum test, Figure 3C). 
 
As there is substantial overlap between the genes stimulated by IFNα and IFNγ, we sought to 
determine if one cytokine predominated, or if both acted independently. We therefore identified 
genes that were annotated as regulated by IFNα but not IFNγ (i.e., uniquely IFNα-regulated) 
and vice versa. Both uniquely IFNα- and uniquely IFNγ-regulated genes were significantly 
enriched in the “Global up” module (q < 0.01, Table S3 ), with a larger fold-change for the 
uniquely IFNα-regulated genes (IFNα OR = 20.9, IFNγ OR = 16.6). This pattern held true for 
each cell type and EVD stage separately (Figure S6B). These results suggest that both IFNα 
and IFNγ substantially and independently influenced the gene expression profiles of circulating 
cells during EVD.  
 
The "Global late down" module contained 144 genes that were predominantly down-regulated 
across cell types during late EVD. It contained numerous regulators of translation initiation and 
elongation (e.g. EEF2, EEF1D , EIF3E , and PABPC1; REACTOME_TRANSLATION gene set 
enrichment q = 5.2x10 -7, Table S3 ), which is consistent with a core antiviral function of IFN 
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being to down-regulate translation (Li et al., 2015). The “Global down” module contained 156 
genes, and similar to "Global late down", included several other genes involved in translation 
(e.g. QARS , NOP53 , and EIF3D ). In addition, this module was most significantly enriched for 
the HALLMARK_MITOTIC_SPINDLE gene set (q = 8.5x10 -7) suggesting a global 
down-regulation of cell cycling upon activation. 
 
Cell-type and temporally-specific modules underlie cell states related to clinical 
phenomena in EVD 
 
After elucidating the global effects of EBOV infection on immune cells, we next investigated the 
transcriptional responses specific to each cell population.  
 
The 2 modules “B/T early up” and “Lymph late up” reflect changing gene expression states of 
lymphocytes at different stages of acute EVD. “B/T early up” is strongly associated with the 
gene set HALLMARK_TNFA_SIGNALING_VIA_NFKB (q = 1.3x10 -9) and is characterized by 
many lymphoid activation genes including the canonical marker CD69 (Testi et al., 1994), CD48 
(McArdel et al., 2016), and the transcription factor FOS (Foletta et al., 1998). This module is 
unlikely to represent antigen-dependent activation via the BCR/TCR as it occurs in most 
lymphocytes and does not coincide with proliferation. Indeed, several of the top up-regulated 
genes, such as GADD45B and ZFP36L2, are associated with growth arrest. In addition, the 5th 
most enriched gene set in the “B down” module is 
“REACTOME_ANTIGEN_ACTIVATES_B_CELL_RECEPTOR_LEADING_TO_GENERATION_
OF_SECOND_MESSENGERS” (q = 0.00017) suggesting a reduction in BCR activation 
generally. Thus, the “B/T early up” module likely represents a cytokine-mediated, 
non-antigen-dependent activation of lymphocytes. 
 
The “Lymph late up” module is up-regulated in late EVD across all lymphocyte cell types. The 
top associated gene sets implicate DNA repair (PUJANA_ATM_PCC_NETWORK, q = 0.00031) 
and apoptosis via TRAIL (HAMAI_APOPTOSIS_VIA_TRAIL_UP, q = 0.00032). This latter gene 
set is potentially consistent with previous reports of T-cell apoptosis in EVD (Geisbert et al., 
2000; Iampietro et al., 2017; Wauquier et al., 2010) and with the lymphopenia in our dataset 
(Figure 2D ). 
 
The “NK mid up” module is highly specific to NK cells during early EVD (Figure 3A) and is most 
enriched for “MARSON_BOUND_BY_FOXP3_STIMULATED” (q = 0.071) and 
“BIOCARTA_CDC42RAC_PATHWAY” (q = 0.08, Table S3 ). FOXP3  expression is 
characteristic of invariant NK cells (Engelmann et al., 2011) that secrete a wide variety of 
cytokines in response to stimulation (Krovi and Gapin, 2018). The CDC42/RAC pathway is 
essential for the polarization of cytolytic granules in NK cells, a requirement for effective 
cytotoxicity (Sinai et al., 2010; Tybulewicz and Henderson, 2009). This suggests that NK cells 
became activated with increased cytotoxicity in the mid EVD stage, but not in late EVD. 
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Monocytes express reduced MHC class II mRNAs and proteins independent of 
infection status 
 
Monocytes were of particular interest. In addition to being the preferred target of EBOV (Figure 
2I), they had far more significant gene expression changes during EVD than the other cell types. 
1,020 genes (11.6% of total genes tested) were differentially expressed in monocytes at one or 
more EVD stages versus baseline, compared to 505 genes (6.6%) for B cells, the cell type with 
the second most differentially expressed genes. We therefore focused our attention on 
characterizing monocytes in detail. 
 
One prominent feature of the monocyte differential expression profile was the striking 
down-regulation of several MHC class II (MHC-II) genes by mid and late EVD (Figure 3D). 
Monocytes and professional antigen-presenting cells display viral antigens on MHC-II proteins 
at the cell surface to stimulate the adaptive immune response. While IFNγ typically up-regulates 
MHC-II gene and protein expression (Steimle et al., 1994), we observed decreased MHC-II on 
monocytes despite elevated IFNγ mRNA levels in T cells (Figure S6A) and widespread IFNγ 
transcriptional response in monocytes (Figure S6B). Previous reports have described loss of 
HLA-DR, one of the 4 MHC-II proteins, during EBOV infection of monocytes ex vivo (Hensley et 
al., 2002), in experimentally infected NHPs (Menicucci et al., 2017) and in human EVD cases 
(Lüdtke et al., 2016), similar to observations of reduced HLA-DR on monocytes in patients 
experiencing septic shock (Wolk et al., 2000). However, the specific MHC genes affected, the 
cell-type specificity, temporal dynamics, and relationship with EBOV infection status, have not 
been previously described. 
 
We observed widespread changes in levels of MHC genes throughout EVD (Figure 4A). The 
most striking decreases occurred in MHC-II genes of monocytes (>5-fold for DPA, DPB , and 
DRA by late EVD, q  < 1x10 -21 for all MHC-II genes), with smaller effect-size changes in MHC-I 
genes (<1.7-fold increase for A, A3 , and B at late disease, q < 5x10 -4). B cells displayed modest 
reductions in MHC-II genes as well (>1.9-fold for DPA, DPB , DRA, and DQA1 at late disease, q 
< 1x10 -22). pDCs and cDCs showed no statistically significant reduction of any MHC-II gene (q > 
0.05) but our dataset contained few DCs (Table S1), so we had less power to detect these 
effects. We observed a corresponding pattern in the protein levels by CyTOF: in monocytes, 
HLA-DR protein levels decreased to a greater extent than in the other cell types (p < 1x10 -61 for 
monocytes in early, mid, and late stages, rank-sum test, Figure 4B), with a more modest 
reduction of HLA-DR in B cells at DPI 5–8 (p = 0.0012, rank-sum test) (Figure S6C ). This 
phenomenon held true for each individual NHP; even as monocytes became activated, 
demonstrated by up-regulation of the canonical activation marker CD38 (Amici et al., 2018) 
(Figures 4C and S3D ), they showed dramatic down-regulation of average HLA-DR protein 
expression in monocytes at DPI 5–8 versus baseline (p = 9.5x10 -7, rank-sum test) (Figure 4D ). 
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Reduced MHC-II expression in monocytes was not a direct consequence of EBOV infection. 
Only a small (~5%) percentage of monocytes were infected at mid EVD (Figure 2I), suggesting 
that the striking decreased levels of MHC-II genes was unlikely to be specific to infected cells. 
Moreover, we confirmed that the average expression of MHC-II genes was comparable or even 
higher in infected cells relative to uninfected cells in NHPs with EVD (i.e. bystanders) (Figure 
4E). Thus we conclude that the MHC-II decrease in monocytes observed in EVD is independent 
of direct viral infection. 
 
To identify co-regulated genes as well as possible drivers of MHC-II down-regulation, we looked 
for other genes with expression correlated with MHC-II in monocytes (Materials and Methods). 
Many of the most correlated genes were functionally involved in the antigen presentation 
pathway, such as CD74 (Spearman ρ = 0.42, p = 1.8x10 -296), which chaperones MHC-II to the 
endosome and prevents premature binding of antigen (Schröder, 2016); LGMN (Spearman ρ = 
0.41, p = 8.1x10 -286), a protease that cleaves proteins to facilitate peptide presentation on 
MHC-II (Dall and Brandstetter, 2016); and, B2M (Spearman ρ = 0.33, 2.6x10 -175), a component 
of the MHC class I complex (Figure 4A). In addition, one of the most associated genes was 
ZFP36  (Spearman ρ = 0.43, p < 1x10 -296), a protein that directly regulates mRNA stability and 
turnover of MHC-II and other immune-related RNAs (Pisapia et al., 2019). These findings 
suggest that MHC-II and other genes involved in antigen presentation may be part of a single 
transcriptional module, co-regulated by ZFP36 and/or other genes. 
 
Characterization of differentially expressed genes between infected and 
bystander monocytes 
 
Next we characterized genes that were differentially expressed between infected and bystander 
monocytes, as these could represent host entry factors, restriction factors, or genes that are 
regulated by infection within a cell. For this and all subsequent differential expression analyses, 
EBOV transcripts were excluded from the denominator when normalizing cells by library size, to 
avoid a bias in the estimated expression levels of host genes in infected cells (Materials and 
Methods ). We identified 505 genes that were differentially expressed between infected and 
bystander monocytes (q < 0.05) of which 276 changed by more than 30% (Figure 5A, Table 
S4). 181 (18%) of the 1,020 genes that were differentially expressed in monocytes at one or 
more stages of EVD were also differentially expressed in infected monocytes relative to 
bystanders. 
 
We observed that the differentially expressed genes fell into 3 broad categories--genes 
associated with monocyte subtypes, genes associated with monocyte-to-macrophage 
differentiation, and interferon stimulated genes (ISGs)--which we explore in the sub-sections 
below. 

Emergence of CD14- CD16- immature monocyte precursors suggests emergency myelopoiesis  
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A notable feature of the differential expression profile was that CD14 and FCGR3 (which codes 
for CD16) were over-expressed in infected monocytes relative to bystanders. These two genes 
define classical (CD14+) and non-classical (CD16+) monocytes respectively (Kapellos et al., 
2019), which comprise the dominant monocyte subsets in the blood of healthy individuals. 
Classical monocytes are highly phagocytic scavenger cells, while non-classical monocytes are 
involved in complement and antibody-mediated phagocytosis. To understand the role of 
monocyte subsets and other genes affecting monocyte heterogeneity across EVD, we 
visualized the transcriptome profiles of just the monocytes in two dimensions using UMAP. The 
monocytes separated by DPI and by EBOV infection status, consistent with changing cell states 
over the disease course (Figure 5B). At baseline, monocytes separated into 2 distinct clusters, 
marked by high expression of CD14 (Figure 5B , bottom half of the blue lobe of DPI panel) or 
CD16 (Figure 5B , top half of the blue lobe of DPI panel), consistent with the conventional 
subtyping. 
 
However, monocyte subsets changed dramatically during EVD, with the decline of 
single-positive CD14+ and CD16+ monocytes, and the corresponding rise of 2 unusual 
populations: a large population of CD14- CD16- cells (double negatives [DNs]) and a smaller 
population of CD14+ CD16+ cells (double positives [DPs]). To visualize the dynamics of these 
populations, we plotted smoothed gene expression of CD14 and CD16 for each EVD stage 
(Figure 5C, Materials and Methods ). While 87.6% of cells fell into single CD14+ or CD16+ 
bins at baseline, this dropped to 33.8%, 35.6%, and 15.2% in the early, middle, and late stages 
of EVD, respectively. We confirmed a corresponding loss of single-positive CD14+ or CD16+ 
monocytes and a gain of DNs and DPs at the protein level by CyTOF (Figure 5D). In both RNA 
and protein measurements, these two populations began declining on DPI 3. 
 
At late EVD, the most frequent monocyte population was CD14- CD16- DN cells, which rose to 
make up 70.4% (by scRNA-Seq) or 56.7% (by CyTOF) of the monocytes. Given that they 
expressed neither of the canonical (CD14/CD16) monocyte marker genes, we confirmed that 
their overall gene expression profiles were most correlated with single-positive monocyte 
populations in late EVD (Pearson correlation R=0.80 CD14+, R=0.58 CD16+) and CD14+ 
monocytes at baseline (R=0.40), and were less correlated with neutrophils, DCs, and 
lymphocytes in late EVD (R=0.28, R=0.39, R=0.14, respectively) (Figure S7A). DNs first 
emerged on DPI 3, coinciding with the 2-fold increase in monocytes we observed on that day 
(Figure 2D ). The DN population is highly proliferative; while 0% of monocytes at baseline 
expressed moderate levels of Ki67 (smoothed log TP10K > 1), over 37% of DN monocytes 
expressed Ki67  beyond this threshold by late EVD (Figures S7B and S7C). Therefore, this 
population underlies the increased monocyte replication rates observed in the middle stage of 
EVD (Figure 2G ).  
 
To determine if a corresponding increase in DNs occurs in acute EVD in humans, we 
re-analyzed published CyTOF data from the 2013–2015 outbreak of 4 acute EVD cases that 
were treated at the Emory University Hospital Serious Communicable Diseases Unit (McElroy et 
al., 2020) (Materials and Methods). All of the human cases showed a congruent pattern to the 
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NHP data, with loss of conventional CD14+ and CD16+ single-positive monocytes and an 
emergence of proliferative (Ki67 hi ) DN monocytes (Figures 5E and S7D ). Then, the DNs 
disappeared and were replaced by the conventional CD14+ and CD16+ single positive 
monocytes at later days post symptom onset, as the human cases entered the convalescent 
period. Thus, the emergence of circulating DNs and the loss of conventional circulating 
monocyte subsets is a feature of human clinical cases as well as our NHP model of lethal EVD. 
 
The presence of proliferating DN monocytes was surprising because mature monocytes in 
circulation are believed to be non-dividing (van Furth et al., 1979). However, infectious and 
neoplastic diseases produce cytokines such as M-CSF that induce the release of proliferating 
immature myeloid cells from the bone marrow, a process known as emergency myelopoiesis 
(Chiba et al., 2018; Cuenca et al., 2015; Sayed et al., 2019). We therefore hypothesized that the 
DN population may reflect immature myeloid cells released from the bone marrow by 
emergency myelopoiesis. 
 
If DNs represent the product of emergency myelopoiesis, we might expect their gene 
expression profiles to be more similar to bone marrow resident monocyte precursors than 
circulating monocytes. To test this, we compared our monocyte populations against a reference 
scRNASeq dataset of bone marrow monocyte precursors (BM-MPs) from healthy human bone 
marrow (Hay et al., 2018) and mature monocytes from human PBMCs (Figures S7E–H, 
Materials and Methods ). Notably, the BM-MPs showed lower expression of CD14 and 
FCGR3A (the human CD16 gene) than mature monocytes, consistent with the diminished 
expression of these genes in DNs relative to baseline single-positive monocytes in the NHP 
data (Figure S7I ). In addition, the BM-MPs showed higher expression of MPO, AZU1 , S100A8, 
and S100A9 than mature monocytes (Figures S7I and S7J ), consistent with the observation 
that these genes are expressed at higher levels in DNs relative to baseline monocytes (Figure 
S7K). To formally test whether our monocyte populations were more similar to the mature 
PBMCs or the BM-MPs, we identified the nearest neighbor of each NHP monocyte in the 
reference dataset. As expected, DNs from mid and late EVD were significantly more likely to be 
matched with BM-MPs (32% at mid, 23% late), than single positive CD14+ or CD16+ 

monocytes, which almost exclusively were assigned to the corresponding circulating monocyte 
populations in the reference data (<10% assignment to BM-MPs assignment to BM-MPs for all 
non-DN populations and stages, except for CD16+ at late EVD which was 15%) (Figure 
5F).These findings suggest that DNs represent immature monocytes released from the bone 
marrow in response to the EVD cytokine milieu. 

Monocytes expressing markers of macrophage differentiation are enriched for EBOV infection 

 
In addition to DNs, we also observed CD14+ CD16+ DP cells, which rose to make up 20.4% of 
the monocytes by mid EVD (Figure 5C). A similar increase in DP monocytes has been 
observed in sepsis (Fingerle et al., 1993; Nockher and Scherberich, 1998) and other viral 
infections (Michlmayr et al., 2018; Zanini et al., 2018a). We found that the DP population 
harbored a disproportionately high percentage of EBOV-infected cells (Figure 5G), consistent 
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with the fact that CD14 and CD16 were both independently higher in EBOV infected monocytes 
than in bystanders (Figure 5A). At the late infection timepoints, 22.1% of DPs were infected 
compared to only 1.74% of DNs. Thus, the differential expression of CD14 and CD16 in infected 
cells results from increased infection of the DP cells, rather than increased expression of CD14 
on classical and CD16 on non-classical monocytes. 
 
We noticed that the differentially expressed genes between infected and bystander monocytes 
(Figure 5A , Table S4 ) and between DP and DN monocytes (Figure S8A, Table S5 ), were 
enriched for monocyte-to-macrophage differentiation associated genes, including known EBOV 
entry factors. It has been previously observed that freshly isolated monocytes are largely 
refractory to EBOV infection in cell culture, but that EBOV entry factors are up-regulated during 
in vitro macrophage differentiation, allowing increased infection (Martinez et al., 2013). In vivo, 
we observed higher levels of macrophage differentiation markers such as NR1H3, ADAMDEC1, 
and several cathepsins in infected cells relative to bystanders. Among these genes, the known 
EBOV entry factors cathepsin L (CTSL) and B (CTSB), and GNPTAB  (Carette et al., 2011; 
Gnirß et al., 2012) were all expressed at significantly higher levels in infected cells than 
bystanders (q = 6.7x10 -9, 3.8x10 -7, and 2.1x10 -3, respectively). By contrast, the cellular receptor 
NPC1 was not significantly differentially expressed, suggesting that natural variability in the 
mRNA abundance of NPC1 likely does not influence EBOV infectivity within circulating 
monocytes in rhesus monkeys.  
 
We suspected that up-regulation of the entry factors CTSL, CTSB , and GNPTAB  might be 
occurring as part of a general macrophage differentiation program. We tested this hypothesis 
using gene sets derived from published bulk RNA-Seq data of primary blood monocytes before 
and after differentiation into macrophages, in vitro (Dong et al., 2013) (Table S4). We found that 
genes that are up-regulated during in vitro differentiation were significantly enriched in infected 
cells (OR = 3.5, p  = 3.1x10 -11, Fisher's exact test) and genes that were down-regulated during 
differentiation were significantly enriched in bystanders (OR = 3.7, p = 4.2x10 -8, Fisher's exact 
test; combined chi-squared goodness of fit test p = 2.2x10 -30). Using gene set annotations from 
two other RNA-Seq studies of macrophage in vitro differentiation resulted in similar findings 
(chi-squared goodness of fit test p = 2.6x10 -9 (Saeed et al., 2014), Fisher's exact test p = 
5.7x10 -12 (Italiani et al., 2014)). Genes associated with differentiation into M2-polarized 
macrophages were more enriched among EBOV-infected cells than those of M1-polarized 
macrophages (OR = 7.8, p = 1.3x10 -10 compared to OR = 3.3, p  = 1.6x10 -3 (Italiani et al., 2014), 
Table S4 ). 
 
Next, we quantified the proportion of infected cells as a function of macrophage-differentiation, 
and found that infectivity increased along with expression of the macrophage differentiation 
program. To determine the relative activity of the macrophage program in each cell, we 
computed a “macrophage differentiation score” consisting of a weighted sum of the 618 genes 
that were significantly positively or negatively correlated with in vitro differentiation in the (Dong 
et al., 2013) dataset (Materials and Methods ). Ranking cells from lowest to highest 
macrophage score, we observed that the percentage of infected cells rose more than four-fold 
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from 3.0% to 15.0% (Figure 5H ). Thus, our data strongly suggests that of all circulating cells, 
EBOV predominantly infects monocytes with the highest expression of the macrophage 
differentiation program. 
 
Given that macrophage differentiation genes were over-expressed in DPs relative to DNs 
(Figure S8A ), we sought to understand the relationship between the CD14 and CD16 defined 
monocyte subsets and expression of the macrophage differentiation program. Comparing the 
overall macrophage score of the different CD14/CD16-marked subpopulations confirmed that 
DPs generally had the highest macrophage scores while DNs and single CD14+ cells had the 
lowest (Figure S8B). Thus, some of the enrichment of infected cells among the DP subset could 
potentially be attributed to their more ‘macrophage-like’ gene expression. 
 
However, there was substantial heterogeneity in macrophage scores within DPs and the other 
CD14/CD16-marked subsets, and we found that macrophage score and CD14/CD16 subset 
were independently predictive of infectivity. To demonstrate this, we stratified cells in each 
subset by macrophage score (above or below the median value across all subsets combined). 
This showed that less macrophage-like DPs were still more likely to be infected than more 
macrophage-like DNs, even though all cells in the former category had a lower macrophage 
score than all cells in the latter (p =1.9x10 -25, Fisher’s exact Test, Figure S8C ). However, within 
the DPs, more macrophage-like cells were more likely to be infected than less macrophage-like 
cells (p = 0.0003, Fisher’s exact Test, Figure S8C ). This suggests that infection could not be 
explained by either CD14/CD16 subset or macrophage score alone. As a further confirmation, 
we fit a logistic regression predicting the infection status of each cell using macrophage score, 
smoothed CD14 and CD16 expression values, and a CD14xCD16 interaction term (Materials 
and Methods ). As expected, the CD14xCD16 interaction term (which is highest in DPs) and 
macrophage score were positively associated with infection status, and the CD14 and CD16 
terms were negatively associated (p < 0.01 for all coefficients). These findings demonstrate that 
monocyte CD14/CD16 subset and differentiation status independently impact the probability of 
a cell being infected with EBOV, in vivo. 

Interferon stimulated genes are down-regulated in infected monocytes relative to bystanders 

 
Finally, we noticed that several key ISGs such as MX1 were expressed at lower levels in 
infected cells than in bystanders (MAST q = 7.7x10 -14, rank-sum test p  = 2.0x10 -5, Figures 5A 
and 5I) . To determine if infection had a suppressive effect on overall ISG expression, we 
compared the magnitude of the interferon response (defined previously as the ISG score, 
Materials and Methods ) between infected and bystander cells at late EVD. While both 
bystander and infected monocytes at late EVD had higher ISG scores than monocytes at 
baseline, ISG scores were lower in infected cells than bystanders (not statistically significant by 
rank-sum test, Figure S8D ). More strikingly, there was a significant negative correlation 
between ISG score and the percentage of cellular transcripts derived from EBOV (i.e., the 
intracellular viral load) (Spearman ρ = -0.62, p = 1.1x10 -11, Figure 5J ). This suggests that ISGs 
are down-regulated during viral replication within infected cells (see Figure 7 and Discussion). 
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Single-cell transcriptomics of ex vivo infected PBMCs reveals temporal dynamics 
in viral gene expression 
 
In order to more thoroughly probe viral and host gene expression changes during the viral life 
cycle, we sought to obtain transcriptomes from a greater number of infected cells. Thus, we 
isolated PBMCs from 2 healthy rhesus monkeys (NHP1 and NHP2) and inoculated them ex vivo 
with either live EBOV, EBOV rendered replication-incompetent by gamma irradiation (Feldmann 
et al., 2019), or media only as a control (Figure 6A). We selected a multiplicity of infection (MOI) 
of 0.1 plaque forming units (pfu, titrated on Vero E6 cells)/cell to ensure that a large proportion 
of cells would be infected. We performed scRNA-Seq using Seq-Well at 4 hours or 24 hours 
post-infection (HPI), corresponding to very early (start of viral transcription) and middle-to-late 
stages (viral genome replication, virion assembly) of the viral life cycle. Inoculation with 
gamma-irradiated EBOV allowed us to characterize the host response in the absence of 
effective viral transcription and translation.  
 
We obtained single-cell transcriptomes from 50,646 PBMCs inoculated ex vivo, and observed 
similar cell-type representation, clustering by treatment condition, and distribution of 
EBOV-infected cells as with the in vivo collections (Figures S9A–S9C), with a few notable 
exceptions. First, we observed that cells from NHP1 and NHP2 separated in UMAP embeddings 
(Figure S9D ) and that this separation was associated with higher expression of ISGs such as 
MX1 in cells derived from NHP1 compared to NHP2 (Figures S9E and S9F). The ISG signal 
was most predominant in cells from NHP1 at 24 HPI treated with either irradiated or live virus 
(Figure S9G ). We therefore analyzed cells from each animal both separately and jointly to avoid 
potential artifacts. A second difference is that while we did not observe infected DCs in vivo, we 
found that 16% of DCs (16.0% in NHP1, 15.7% in NHP2) inoculated with live virus ex vivo were 
infected by 24 HPI (Figure S9H). This difference could be due to increased density of cells in 
culture, the higher effective MOI we used in the ex vivo experiment, or even changes to the 
expression states of DCs associated with culture conditions. 
 
Consistent with the in vivo data, monocytes were the predominant infected cell type, with over 
65% infected by 24 HPI after inoculation with live virus (76% in NHP1, 61% in NHP2) (Figures 
S9H and S9I). 11.8% of the monocytes treated with irradiated virus also contained a statistically 
significant number of viral reads by 24 HPI, despite the fact that gamma irradiation induces 
damage to the viral genome that eliminates productive viral replication (Feldmann et al., 2019). 
As expected, cells treated with irradiated virus had a significantly lower fraction of EBOV reads 
per cell than those treated with live virus (Figure S10A). Moreover, viral RNAs from the cells 
treated with irradiated virus were substantially less likely to be coding-sense mRNA transcripts 
than anti-sense viral genomic RNA. For live-virus treated cells, 78% and 92% of detected RNAs 
were mRNA at 4 and 24 HPI, compared to only 37% and 44% in cells treated with irradiated 
virus (Figure S10B). This suggests that our method can detect fragments of viral genomic RNA 
from irradiated virus that have entered cells, but as expected, these do not reflect productive 
infections and do not generate significant quantities of poly-adenylated mRNAs. 
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Exploiting the increased resolution of the ex vivo dataset, we characterized the heterogeneity in 
viral transcript abundance per cell (i.e., the intracellular viral load). We observed that the 
intracellular viral load varies over several orders of magnitude in infected cells, both in vivo and 
ex vivo (Figures 6B and 6C ). While most cells harbored viral loads below 0.1%, a substantial 
minority had loads of >10%, with maximum detected loads of 57.5% and 52.3% for cells in vivo 
and ex vivo respectively. The observed heterogeneity in viral load was not due to different 
numbers of transcripts detected per cell, because cells with low and high viral load had a similar 
range of total transcripts detected (Figures S10C and S10D). 
 
We next analyzed the dynamics of EBOV gene expression to determine if it matched the 
predicted pattern based on established models of EBOV transcription. Transcription of EBOV's 
7 genes by the viral RNA-directed RNA polymerase L follows the canonical stop-start 
mechanism described for filoviruses and other non-segmented negative-strand RNA viruses 
(Brauburger et al., 2014, 2016). L initiates transcription de novo (Deflubé et al., 2019) at the 3’ 
end of the genome, and processes from 5’ to 3’; at each gene transcription termination signal, L 
pauses and either falls off the genomic RNA template or reinitiates transcription of a new mRNA 
for the subsequent gene (Figure 6D, (Mühlberger, 2007)). As a consequence, NP is the first 
gene to be transcribed and is transcribed at the highest level, proceeding down the genome to 
the polymerase gene L being transcribed last and at the lowest level. 
 
When we quantified the relative expression levels of EBOV genes as a function of viral load, we 
observed an unexpected accumulation of GP mRNA (Figures 6E and 6F ) that was consistent 
between NHP1 and NHP2 (Figures S10E and S10F). At low viral loads, both in vivo and ex 
vivo, the gene expression distribution roughly matched the expected pattern, with most of the 
transcripts derived from the 3’ end of the genome, in particular NP, and the fewest transcripts 
derived from the 5’ genes VP30, VP24 , and L. In agreement with this pattern, cells inoculated 
with irradiated virus, which has impaired transcription due to RNA cleavage or crosslinking 
(Feng et al., 2011; Ginoza, 1967; Ward, 1980), were highly enriched in NP mRNA (Figure 
S10B), suggestive of RNA fragment transcription. However, as viral load increased in cells 
infected with live EBOV, GP was the most highly expressed viral transcript. This finding is 
unexpected based on the start-stop mechanism where NP should be transcribed at a strictly 
higher rate than GP. This observation suggests a life-cycle dependent regulation of viral gene 
expression that has not previously been observed for EBOV (see Discussion). 
 
EBOV infection down-regulates host antiviral genes and up-regulates putative 
pro-viral genes 
 
Next, we exploited natural variability in viral load across infected cells to identify host gene 
expression changes correlated with viral replication, which may therefore represent pathways 
directly regulated by infection. Instead of testing for differential expression between infected and 
bystander cells as we did previously to define tropism-associated genes, we looked for 
continuous association between viral abundance and host transcript levels in infected 
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monocytes (Materials and Methods). This identified 264 genes that were negatively correlated 
and 211 genes that were positively correlated with viral load ex vivo with q < 0.05, of which 34 
changed by more than 30% per 10-fold increase in viral load (Figure 7A, Table S6 ). 
 
Consistent with our previous observation that ISG score decreased with viral load within a cell, 
ISGs decreased dramatically with EBOV levels, both in vivo and ex vivo (e.g., MX1 , q  = 
1.5x10 -24 ex vivo, q  = 7.4x10 -9 in vivo, Figures 7A and 7B , Table S6 ). Ex vivo , the most 
negatively associated gene was STAT1, the master transcriptional regulator of the IFN 
response (q = 4.9x10 -41 ex vivo, p = 0.0072 in vivo but not significant by FDR). Previous 
experiments have shown that the EBOV protein VP24 inhibits STAT1 activity by blocking its 
translocation to the nucleus (Leung et al., 2006) through direct binding (Zhang et al., 2012). 
However, this is the first observation that STAT1 mRNA levels decrease with viral replication 
within infected cells in vivo. 
 
We visualized the expression of STAT1 and several other negatively regulated ISGs over the 
course of infection within a cell (Figure 7C). The expression of these genes remained relatively 
constant as EBOV levels rose to 1% of cellular transcripts; however as EBOV levels continued 
to rise beyond 1%, the expression of STAT1 and many of its target genes declined 
precipitously. This suggests that there is a delay before EBOV can transcriptionally 
down-regulate host antiviral genes since it must transcribe and translate VP24 and other 
immunomodulatory proteins before they can act. The trajectories of these host antiviral genes 
were consistent between donor animals ex vivo (Figure S10G ) despite the fact that more cells 
from NHP1 mounted an IFN response than NHP2. 
 
Only a handful of host genes increased in expression level alongside viral load, but their 
trajectories were consistent between the two animals (Figure S10H). The most dramatically 
up-regulated gene was DYNLL1 (q  = 2.5x10 -27 ex vivo, q  = 1.5x10 -5 in vivo, Table S6 ), which 
increased significantly both in vivo and ex vivo (Figures 7A and 7B ). DYNLL1 is a 
multi-functional protein involved in intracellular transport (Barbar, 2008). Intriguingly, DYNLL1 
was previously shown to increase EBOV replication in a minigenome reporter assay (Luthra et 
al., 2015). Our data show that DYNLL1 mRNA is up-regulated in vivo and ex vivo, starting when 
EBOV RNA constitutes between 0.1–1% of the transcripts in a cell, before ISGs begin 
decreasing (Figure 7D). 
 
Several other genes that we identified as up-regulated alongside viral replication have known or 
speculative pro-viral functions in protein folding and synthesis. For example, HSPA5 (q  = 
4.5x10 -22 ex vivo, p  = 0.04 in vivo but not significant by FDR) encodes a chaperone protein that 
was previously shown to be an essential host factor for EBOV (Reid et al., 2014). However, this 
is the first observation that HSPA5 mRNA is up-regulated in EBOV infection. Other hits such 
as DDIT3 and  NFE2L1 (q  = 1.3x10 -10 and q = 1.8x10 -8 respectively, ex vivo) are sensors of ER 
and oxidative stress (Kim et al., 2016) and have been implicated in cell lines infected with 
Marburg virus (Hölzer et al., 2016) and in monocytes in EBOV-infected NHPs (Menicucci et al., 
2017). We observe a corresponding enrichment of gene sets associated with ER stress 
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response among genes up-regulated alongside intracellular viral load such as 
BUYTAERT_PHOTODYNAMIC_THERAPY_STRESS_UP, 
PODAR_RESPONSE_TO_ADAPHOSTIN_UP, and 
HALLMARK_UNFOLDED_PROTEIN_RESPONSE (q = 4.7x10 -14, q  = 5.3 x 10 -5, q  = 0.004 
respectively, Fisher’s exact test, Table S6). This suggests that oxidative and/or ER stress may 
play an important role in the pathophysiology of infected cells, particularly at a late stage of viral 
replication. 
 
Increased translation can also deplete tRNAs and free amino acids (Albers and Czech, 2016). 
We observed statistically significant up-regulation of IARS - isoleucine tRNA synthetase (q = 
8.4x10 -9 ex vivo) - which may reflect the cellular response to increased translational demand 
due to overwhelming production of viral proteins. In addition to IARS, several gene sets 
associated with depletion of amino acids were significantly up-regulated such as 
KRIGE_RESPONSE_TO_TOSEDOSTAT_24HR_UP (Tosedostat is an aminopeptidase 
inhibitor), KRIGE_AMINO_ACID_DEPRIVATION and PENG_LEUCINE_DEPRIVATION_UP (q 
= 2.3x10 -6, q  = 0.0030, q = 0.0040, respectively, Fisher’s exact test, Table S6 ), suggesting that 
viral replication exhausts cellular amino acid stores. This hypothesis is consistent with prior 
observations of depleted amino acids in the plasma of fatal human EVD cases (Eisfeld et al., 
2017). 

Discussion 
 
Despite recurrent outbreaks, the molecular basis of EVD pathogenesis in humans remains 
understudied due to the biosafety and logistical challenges associated with performing clinical 
research during outbreaks in resource-poor settings, and experimentally investigating EBOV in 
maximum containment facilities. By adapting CyTOF and scRNA-Seq approaches for use in 
BSL-4 containment, we comprehensively surveyed the molecular correlates of disease 
progression and viral replication in circulating immune cells in a nonhuman primate model of 
EVD. This study, which is the first high-parameter, single-cell investigation of a RG-4 agent, 
shed new light on changes in cell-type abundance throughout lethal EVD, defined the preferred 
targets of EBOV amongst circulating cells, and identified genes regulated by the cytokine milieu 
or by direct EBOV infection. 
 
We characterized transcriptional- and protein-level changes in monocytes during EVD in NHPs, 
some of which reflect disruption of their physiological antiviral function. Monocytes had over 
twice as many differentially expressed genes as other cell types, including genes involved in 
IFN response, cytokine production, myeloid differentiation, and antigen presentation (Figures 3 
and 4 ). Monocytes became activated by IFN during EVD, which normally triggers an increase in 
expression of multiple MHC-II genes for antigen presentation (Steimle et al., 1994). Surprisingly, 
almost all of the MHC-II genes and other genes in the antigen presentation pathway were 
strikingly down-regulated in monocytes, with modest changes in B cells, and no significant 
changes in cDCs. Moreover, MHC-II genes decreased in both infected and uninfected 
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monocytes, suggesting that the cytokine milieu led to decreased MHC-II expression (Figure 4). 
These findings suggest a failure of monocytes to present antigens, which might explain why a 
failed or delayed adaptive immune response is a hallmark of fatal EVD in humans (Baize et al., 
1999; Lüdtke et al., 2016). 
 
As EVD progressed, conventional CD14+ and CD16+ monocyte subsets disappeared and were 
replaced by two unusual populations: CD14+ CD16+ (DP) monocytes, which are known to 
increase in other infections (Fingerle et al., 1993; Michlmayr et al., 2018; Nockher and 
Scherberich, 1998; Zanini et al., 2018a), and an unexpected CD14- CD16- (DN) population, 
that, to our knowledge, has not been previously described in viral infections (Figures 5C–5F). 
The DN monocytes were highly proliferative and their transcriptomes were more similar to bone 
marrow resident monocyte precursors than circulating monocytes. This suggests that they may 
be the product of emergency myelopoiesis, a process whereby cytokines stimulate the bone 
marrow to release immature myeloid lineage cells that are sometimes referred to as 
immunosuppressive myeloid cells (Chiba et al., 2018; Hérault et al., 2017; Sayed et al., 2019). 
DNs had high expression of neutrophil granule genes such as MPO and AZU1, suggesting that 
they may represent immature cells prior to the branching of neutrophil and monocyte lineages 
(i.e., common myeloid progenitors). We identified the emergence of an analogous DN 
population in human acute EVD cases as well, which later disappeared as the patients 
recovered, confirming that this population becomes the dominant circulating monocyte 
population in human disease as well. This finding highlights the power of high-parameter 
methods such as scRNA-Seq and CyTOF over previous approaches like FACS; despite 
little-to-no detection of CD14 or CD16, the conventional markers for phenotyping monocytes, 
there were enough other RNA and protein markers to reliably detect these DN cells as 
monocyte-lineage cells. 
 
Our data refines the picture of EBOV’s tropism in NHPs, demonstrating that the predominant 
EBOV infected population in circulation are the DP monocytes which expand during the 
infection, and monocytes expressing markers of macrophage differentiation (Figures 5C, 5G, 
and 5H). Existing literature has already demonstrated that myeloid cells are major targets of 
EBOV (Geisbert et al., 2003b, 2003c; Greenberg et al., 2020), including DCs ex vivo and in 
lymph nodes in vivo (Geisbert et al., 2003c). While we observe infected monocytes and DCs ex 
vivo, only monocytes were infected more often than expected due to chance among circulating 
immune cells in vivo. This might reflect relevant biological phenomena required for DC infection, 
such as cell density, cell-to-cell contact, or MOI. Among monocytes, EBOV-infected cells were 
significantly enriched in CD14+ CD16+ DP monocytes, which were the most macrophage-like 
and expressed increased differentiation genes, including known EBOV entry factors like 
cathepsin B (Chandran et al., 2005; Martinez et al., 2013; Schornberg et al., 2006). It has been 
shown that cultured monocytes are only susceptible to EBOV infection upon differentiation 
(Martinez et al., 2013), and our data further shows that infectivity in vivo strongly correlates with 
physiological variability of monocyte differentiation state in the context of an active immune 
system. Furthermore, our data support the hypothesis that the relative abundance of DP 
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monocytes, the preferred circulating cell targets of EBOV, increases over the course of 
infection, perhaps driven by the cytokine milieu of EVD. 
 
Among infected monocytes, we observed substantial heterogeneity in intracellular viral load, 
which we exploited as a proxy for staging EBOV’s progression through its life cycle. We 
confidently identified infected cells with as low as 0.01% EBOV RNA out of total RNA 
(intracellular viral load), while some cells had up to 57.5% EBOV RNA (Figures 6B and 6C). 
Similar heterogeneity has been observed for the segmented -ssRNA virus influenza (Russell et 
al., 2018), the +ssRNA virus dengue (Zanini et al., 2018a, 2018b), and the dsDNA virus HCMV 
(Hein and Weissman, 2019), but this is the first demonstration for a non-segmented 
negative-sense (NNS) virus.  
 
By analyzing patterns of gene expression among cells at different stages of the viral infection, 
we identified an unexpected over-representation of GP mRNA accumulating late in the viral life 
cycle . NNS viruses, including EBOV, have strict transcriptional gene regulation based on the 
viral genome organization (Figure 6D) (Brauburger et al., 2014, 2016). In our data, cells with 
low viral load (reflecting early stages of the viral life cycle) had relative EBOV transcript 
abundances that mirrored the genome organization as expected -- i.e., they had the highest 
expression of NP and the lowest expression of L. But cells with high viral load (later during the 
viral life cycle) had higher abundance of GP mRNA than NP mRNA (Figures 6E and 6F) . Given 
the NNS virus dogma that NP is transcribed more frequently than GP mRNA, our data suggest 
that alternate transcription or post-transcriptional regulatory mechanisms, such as increased 
stability of GP mRNA, may account for accumulation of GP mRNA late during the viral life cycle. 
Many viruses increase structural protein production late in the viral life cycle (Honess and 
Roizman, 1974; Irigoyen et al., 2016; King et al., 2018; Shin et al., 2015); increased EBOV GP 
late in the viral life cycle likely increases the formation of infectious virions. 
 
Many host ISGs negatively correlated with intracellular viral load, suggesting that viral infection 
down-regulates ISG expression in vivo and ex vivo (Figures 7A–C). These findings strongly 
suggest that EBOV is specifically down-regulating ISGs rather than preferentially infecting cells 
with low ISG levels. First, there are multiple well-established mechanisms by which EBOV 
down-regulates transcription of ISGs, such as by preventing the master antiviral transcription 
factor, STAT1, from translocating to the nucleus (Harcourt et al., 1999; Kash et al., 2006; Leung 
et al., 2006; Reid et al., 2008). Second, the percentage of EBOV-infected cells increases 
gradually from DPI 4 onward (Figure 2I) despite the fact that monocytes are mounting a strong 
ISG response by then, which suggests that EBOV is able to overcome the inhibitory activities of 
ISGs and continue replicating. Third, when EBOV infects a cell, viral load must start at a low 
level before increasing with replication and transcription. If the causal direction was reversed -- 
i.e., low ISG levels supported EBOV progression and high ISG levels inhibited EBOV 
progression -- we would expect to see some cells with low ISG and low viral load, but we do not 
observe any cells with low (0.01–0.1%) viral load and low ISG levels (Figure 5J). Thus our data 
suggests that EBOV is able to infect monocytes that are mounting a full IFN response, 
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overcome the inhibitory activities of ISGs, and transcribe viral mRNA to high levels during 
disease, in vivo. 
 
On the other hand, several putative pro-viral host genes were positively correlated with 
intracellular viral load, suggesting that they are directly responding to, or are regulated by, the 
presence of virus in infected cells (Figures 7A, 7B, and 7D). DYNLL1 was the top associated 
gene with viral load, both in vivo and ex vivo. Previous work identified an interaction between 
DYNLL1 and EBOV VP35 (Kubota et al., 2009) that increased EBOV RNA synthesis in a 
minigenome assay (Luthra et al., 2015). DYNLL1 associates with proteins of many viruses 
(Merino-Gracia et al., 2011), and increases replication of rabies virus (Tan et al., 2007) an NNS 
virus similar to EBOV. Here, we showed that DYNLL1 expression is up-regulated within infected 
cells in vivo, suggesting that EBOV manipulates cellular pathways to encourage a pro-viral 
cellular environment. Nuclear DYNLL1 typically represses its own transcription factor ATMIN 
(Jurado et al., 2012); we hypothesize that EBOV VP35 may sequester DYNLL1 protein in the 
cytoplasm, relieving repression of ATMIN, thus up-regulating DYNLL1 mRNA. 
 
Additional intriguing genes that are positively correlated with intracellular viral load include 
HSPA5, NFE2L1, DDIT3 , GTF2A1 , and IARS, though their effect sizes are larger ex vivo than in 
vivo. Many of these genes are involved in the cellular stress response, which can be triggered 
when infection overwhelms host translation. As a chaperone protein, HSPA5 in particular is 
essential for EBOV replication (Reid et al., 2014); NFE2L1 and DDIT3 sense ER and oxidative 
stress (Kim et al., 2016) and are upregulated upon filovirus infection (Hölzer et al., 2016; 
Menicucci et al., 2017), and our data suggest that these genes are up-regulated throughout the 
viral life cycle. Viral transcription and translation can also deplete tRNAs and free amino acids; 
as a result, viruses have evolved mechanisms to maintain translational capacity (Albers and 
Czech, 2016). The tRNA synthetase IARS could be up-regulated in response to this depleted 
host environment, also reflected in fatal EVD cases (Eisfeld et al., 2017). By computationally 
staging cells by their phase in the infection cycle, we nominated several putative pro-viral genes 
for further study, highlighting the utility of single-cell profiling to study host-virus interactions. 
 
The accumulation of additional host-pathogen single-cell datasets promises to greatly enhance 
our understanding of infection by allowing us to determine which features of pathogenesis are 
shared between, or specific to, individual pathogens. For example, our scRNA-Seq and CyTOF 
data identified several molecular commonalities between EVD and immunosuppressive septic 
shock (Bray and Mahanty, 2003), which is also characterized by loss of MHC-II expression in 
monocytes (Monneret and Venet, 2014; Reyes et al., 2020), increased DP monocytes (Fingerle 
et al., 1993), and emergency myelopoiesis (Bomans et al., 2018; Cuenca et al., 2015; Reyes et 
al., 2020). Soluble mediators, including cytokines and glucocorticoids, could be key drivers of 
both EVD and sepsis pathophysiology. TNFα  signaling has been extensively implicated as a 
driver of systemic loss of vascular resistance and shock during EVD. Glucocorticoids have been 
less well studied in EVD, but decrease MHC-II ex vivo (Hawrylowicz et al., 1994) and in vivo 
during sepsis (Tulzo et al., 2004) and reduce CD14 expression (Nockher and Scherberich, 
1997) while increasing the abundance of DP monocytes (Liu et al., 2015). Indeed, the 
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connection between EVD and sepsis may be direct: studies have found bacterial invasion 
during EVD in NHPs (Reisler et al., 2018) and in humans (Carroll et al., 2017), with immune 
signatures that resemble sepsis (Eisfeld et al., 2017).  
 
In summary, this work expands our understanding of EVD, and provides a general paradigm for 
exploring molecular features of host-pathogen interactions, such as tropism and dysregulation 
of cell circuitry in infected cells, that can be applied to other emerging pathogens. 

Materials and Methods 
 
Resource Availability 
 
Lead Contact. Further information and requests for resources and reagents should be directed 
to Aaron Lin (alin@broadinstitute.org). 
 
Materials Availability. This study did not generate new unique reagents. 
 
Data and Code Availability 
 
The analysis scripts used in this study are available at https://github.com/dylkot/SC-Ebola . 
 
Datasets generated during this study will be available on GEO and raw sequence data will be 
available on SRA. 
 
CyTOF .fcs files will be made available via FlowRepository. 
 
Experimental Model and Subject Details 
 
This study included a subset (21 of 27) outbred rhesus monkeys (Macaca mulatta) of Chinese 
origin described recently (Bennett et al. in submission) (Greenberg et al., 2020). These 27 
nonhuman primates (NHPs) were randomized into cohorts (Figure S1B, (Bennett et al. in 
submission)), balancing age, weight, and sex across 7 groups. All work was approved and 
performed in accordance with the Guide for the Care and Use of Laboratory Animals of the 
National Institute of Health, the Office of Animal Welfare, and the US Department of Agriculture 
(Bennett et al. in submission). 
 
Method Details 
 
Serial sampling study 
 
This study utilized the Ebola virus/H. sapiens-tc/COD/1995/Kikwit-9510621 (EBOV/Kikwit; 
GenBank accession MG572235.1; Filoviridae: Zaire ebolavirus) isolate for the in vivo and ex 
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vivo challenges, obtained from the Biodefense and Emerging Infections Research Resources 
Repository (BEI Resources, Manassas, VA, USA). It is the standard challenge stock defined by 
the filovirus animal non-clinical group (FANG) for testing product efficacy for FDA approval and 
is well characterized. 
 
For all 21 outbred rhesus monkeys, two baseline blood samples were collected between 0–14 
and 14–30 days prior to infection (Figure S1B). 18 NHPs were exposed to the EBOV/Kikwit 
isolate diluted to a target concentration of 1,000 plaque forming units (PFU) in a volume of 1 
mL/dose. All NHPs were inoculated within a 5 month period. This same cohort has already been 
described recently (Bennett et al. in submission) (Greenberg et al., 2020). 
 
Clinical observations and scoring 
 
Beginning on day post-infection (DPI) 0, NHPs were observed 1–3 times daily and given a 
clinical score based on five criteria: overall clinical appearance and signs of hemorrhage; 
respiratory rate, mucous membrane color, and dyspnea; recumbency; non-responsiveness; and 
core temperature (Bennett et al. in submission). Each criterium was assigned a score between 1 
and 10, and all scores were added together. Once an NHP reached a combined score of >10, 
the animal was humanely euthanized. 
 
Whole blood collection 
 
Blood was drawn from anesthetized animals into BD vacutainer plastic serum separator tubes 
(SST) for serum viral load quantification, or in BD vacutainer plastic blood collection tubes with 
K3EDTA for hematology and peripheral blood mononuclear cell (PBMC) purification (Becton 
Dickinson, Franklin Lakes, NJ, USA) (Bennett et al. in submission). SST tubes were centrifuged 
at room temperature for 10 minutes (min) at 1800 x g to isolate serum. K3EDTA tubes were 
mixed by gentle inversion prior to hematology and PBMC purification. 
 
Hematology and complete blood counts (CBC) 
 
250 μL of each whole blood sample was analyzed on a Sysmex 2000i XT (Sysmex Corporation, 
Kobe, Hyogo Prefecture, Japan) (Bennett et al. in submission). Parameters analyzed by this 
instrument were: counts of basophils, eosinophils, lymphocytes, monocytes, neutrophils, white 
blood cell count; percentages of each cell type; and mean platelet volume. 
 
To estimate the abundance of lymphocyte cell types, we multiplied the CBC lymphocyte count 
by the proportion of lymphocytes of each cell type (CD8 T cells, CD4 T cells, NK cells, and B 
cells) which was calculated from the unsupervised clustering of the CyTOF data (see 'CyTOF' 
below). 
 
EBOV serum viral load by RT-qPCR 
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70 μL of sample inactivated by TRIzol LS was added to 280 μL of Buffer AVL (Qiagen, Hilden, 
Germany) with carrier RNA (Bennett et al. in submission). Samples were then extracted using 
the QIAamp Viral RNA Mini Kit (Qiagen) in accordance with the manufacturer’s instructions, 
eluted in 70 μL of Buffer AVE, aliquoted, and frozen. Viral load was determined using the BEI 
Resources Critical Reagents Program experimental EZ1 RT-qPCR kit assay in accordance with 
the manufacturer’s instructions. 
 
PBMC purification 
 
We centrifuged whole blood in K3EDTA tubes at 1800 x g for 10 min at room temperature, 
removed EDTA plasma, and added phosphate buffered saline (PBS, Thermo Fisher Scientific, 
Waltham, MA, USA) to the pelleted cells to double the original whole blood volume. We gently 
poured the PBS-blood cell mixture into an Accuspin tube containing Histopaque (Sigma-Aldrich, 
St. Louis, MO, USA) and centrifuged at 1000 x g for 10 min at room temperature with the brake 
set to 1. Following centrifugation, we removed the top, clear supernatant layer to within 0.5 cm 
of the cloudy white layer containing PBMCs.  
 
We transferred the cloudy PBMC layer to a clean 15 mL conical tube and increased the volume 
to 10 mL using PBS supplemented with 2% heat-inactivated fetal bovine serum 
(PBS/2%HI-FBS) and mixed by inversion. We then centrifuged at 300 x g for 10 min at 4 °C with 
the brake set to 1. Following centrifugation, we removed the supernatant, resuspended the cell 
pellet with PBS/2%HI-FBS to a final volume of 10 mL, and mixed using gentle raking to wash 
the cells. We repeated the wash step 2 more times with the centrifuge set to 200 x g for 10 min 
at 4 °C with the brake set to 1. We then resuspended the cell pellet in 9.5mL PBS/2%HI-FBS for 
counting using the Countess Cell Counting system (Thermo Fisher Scientific). We aliquoted 0.5 
mL for Seq-Well, and used the remaining 9 mL volume for CyTOF. 
 
Seq-Well 
 
We performed Seq-Well as described previously (Gierahn et al., 2017), with the S3 protocol 
(Hughes et al., 2019) and some controls and modifications to adhere to the BSL-4 environment. 
 
As an experimental negative control to test our statistical model, we spiked Madin-Darby canine 
kidney (MDCK) cells, constituting ~5% of the total sample, into a subset of PBMC samples 
(Table S1 ) from EVD NHPs immediately before scRNA-Seq. As MDCKs were not exposed to 
EBOV, viral reads in these transcriptomes should be due to ambient RNA contamination 
(Russell et al., 2019). 
 
After loading and sealing beads and cells in Seq-Well arrays, we placed them in a -80 °C 
freezer until further processing – this step was required due to time constraints in the BSL-4. 
Later, we removed sealed Seq-Well arrays from the -80 °C freezer, placed them in 4-well 
dishes, and allowed them to equilibrate to room temperature for at least 30 min. We then 
covered arrays in 5 mL Seq-Well Lysis Buffer per protocol. 
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We performed RNA hybridization and RT as specified in the protocol (Hughes et al., 2019). 
After RT, we collected beads by centrifugation at 1000 x g for 1 min at room temperature. We 
resuspended beads with GeneXpert Lysis Buffer (Cepheid, Sunnyvale, CA, USA) for 
inactivation, which was required prior to removal from the BSL-4 laboratory according to 
standard operating procedures. After removal, we washed beads thrice with TE buffer 
containing 0.01% Tween 20 and shipped at 4 °C for further library construction and sequencing, 
which was performed with the S3 protocol (Hughes et al., 2019). We sequenced all libraries on 
either NextSeq 550 High Output or NovaSeq 6000 S2 flowcells (Illumina, San Diego, CA, USA), 
with 20 cycles for Read 1 (cell barcode and unique molecular index [UMI]) and 88 cycles for 
Read 2 (cDNA of interest). In some cases, we merged fastq files from multiple sequencing runs 
for increased coverage. 
 
Depletion of abundant sequences by hybridization (DASH) of select Seq-Well libraries 
 
We observed long concatemers of the common scRNA-Seq adaptor sequence (SeqB, 
5'-AAGCAGTGGTATCAACGCAGAGTAC-3') at high frequency in some Seq-Well libraries, 
likely owing to low RNA input and the challenging environment of processing samples in the 
BSL-4 suite. These concatemers disrupted Illumina sequencing runs because the Read 1 
sequencing primer annealed to multiple SeqB sequences on a single template, allowing multiple 
sequencing-by-synthesis reactions simultaneously. We therefore devised a strategy to remove 
SeqB concatemers using depletion of abundant sequences by hybridization (DASH) (Gu et al., 
2016), a CRISPR-based method to degrade target DNA sequences prior to sequencing. SeqB 
lacked a 'NGG' protospacer adjacent motif (PAM) for the common S. pyogenes Cas9 (SpyCas9) 
for which DASH was originally described; therefore, we modified DASH to use S. aureus Cas9 
(SauCas9) (Ran et al., 2015). Moreover, in contrast to SpyCas9, SauCas9 is a multi-turnover 
enzyme (Yourik et al., 2019), suggesting that SauCas9 would have higher cleavage efficiency, 
which was important since SeqB was present in multiple copies within a concatemer. 
 
First, we designed a guide RNA (gRNA) to target SeqB. Based on the position of the SauCas9 
PAM and the length of SeqB, only 17 nucleotides of the gRNA protospacer could anneal to 
SeqB. Because gRNA length is critical to SauCas9 cleavage efficiency (Friedland et al., 2015; 
Ran et al., 2015), we prepended 4 random bases as a 5' overhang (Key Resources Table). We 
in vitro transcribed this gRNA using the MEGAshortscript T7 Transcription Kit (Thermo Fisher 
Scientific), purified it using the RNA Clean & Concentrate Kit (Zymo Research, Irvine, CA, USA), 
and verified the correct RNA length on a 15% TBE-urea gel (Bio-Rad Laboratories, Hercules, 
CA, USA). 
 
We performed SauCas9 DASH according to reaction conditions laid out for in vitro SauCas9 
cleavage assays (Yourik et al., 2019). We incubated 10 pmol gRNA with 5 pmol SauCas9 (New 
England Biolabs [NEB], Ipswich, MA, USA) at 25 °C for 10 min, and then added up to 5 fmol 
DNA (2000:1000:1 RNA:protein:DNA ratio) and NEBuffer 3.1 (NEB) to 1X. We incubated this 
reaction at 37 °C for 2 hours (h), and quenched by adding EDTA to 50 µM, SDS to 1%, and 4 
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total U of Proteinase K (NEB) at room temp for 10 min. We removed degraded concatemers 
with two consecutive 0.8X SPRI purifications using Ampure XP beads (Beckman Coulter, Brea, 
CA, USA), eluted, and performed 6–9 cycles of PCR with the NEBNext Ultra II Q5 Master Mix 
(NEB) using Illumina P7 and the Seq-Well P5-TSO hybrid primer (Gierahn et al., 2017). 
 
CyTOF 
 
We added 1 mL of 16% paraformaldehyde (PFA, Electron Microscopy Sciences, Hatfield, PA, 
USA) to 9 mL PBMCs to fix the cells. We incubated samples at room temperature for 10 min 
followed by a final centrifugation at 600 x g for 5 min at 4 °C with the brake set to 9. We 
removed the supernatant, added 1 mL of PBS/5%HI-FBS for every 3 x 10 6 cells (e.g., 2 mL for a 
sample containing 6 x 10 6 cells), aliquoted into 1 mL aliquots in cryovials, and stored in a -80 °C 
freezer. 
 
We equilibrated fixed PBMCs to come to room temperature before transferring approximately 2 
x 10 6 cells per sample into 1.2 mL cluster tubes in a 96-tube rack. We barcoded samples and 
multiplexed them into 6 batches of 16 samples using a previously described 16-plex 
palladium-based mass-tag cell barcoding scheme (Zunder et al., 2015). We aspirated pelleted 
barcoded cells to a volume of 50 µL and incubated them with 15 µL of Human TruStain FcX 
(Biolegend, San Diego, CA) for 10 minutes. We stained cells for 30 min with 175 µL of a 
reconstituted lyophilized cocktail of metal-tagged cell-surface antibodies described previously 
(Bjornson-Hooper et al., 2019a, 2019b) supplemented with two additional antibody channels 
(Table S7 ). We washed and permeabilized surface-stained cells with methanol before 
aspirating down to 50 µL and staining for 60 min with 190 µL of reconstituted lyophilized 
intracellular staining antibody cocktail (Bjornson-Hooper et al., 2019a, 2019b) (Table S7). We 
washed and resuspended fully-stained cells in a volume of 750 µL. 
 
Following staining, we inactivated samples by adding 250 μL of 16% PFA to 750 μL of each 
sample, for a final concentration of 4% PFA, and incubated at 4 °C overnight. The next day, we 
centrifuged samples 600 x g for 5 min at 4°C and aspirated down to 100 μL. We resuspended 
samples in 1 mL 4% PFA in PBS and transferred to a clean 2 mL cryovial. We then removed 
samples from the BSL-4 using a dunk tank and froze at -80 °C within 30 min of PFA addition. 
 
Following inactivation, we thawed and processed inactivated samples within a BSL-2 lab for 
iridium intercalation, then mixed with 1xEQ beads (Fluidigm, South San Francisco, CA, USA) 
and run on a CyTOF Helios (Fluidigm) instrument using a Super-Sampler introduction system 
(Victorian Airship & Scientific Apparatus LLC, Alamo, CA, USA). 
 
FCS data files were normalized across all runs using the data normalization software (Finck et 
al., 2013) and debarcoded using the single-cell debarcoder tool (Zunder et al., 2015) as 
previously described. Data were uploaded and analyzed using CellEngine software 
(https://cellengine.com, Primity Bio, Fremont, CA, US), and a gating strategy was applied to 
identify cell populations using canonical markers. Frequencies for each population were 
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determined as a function of total CD66-CD45+ cell events and reported marker intensities are 
expressed as medians. Also see ‘CyTOF data preprocessing, clustering, and dimensionality 
reduction’ section below for details of unsupervised analysis of CyTOF data. 
 
Ex vivo inoculation of PBMCs 
 
PBMCs were isolated from healthy NHPs as previously described. We diluted cells to 3.3 x 10 6 
cells/mL RPMI/10%HI-FBS and transferred 900 µL each to 2 mL external thread cryogenic vials 
(Corning, Corning, NY) for each experimental condition. We inoculated cells with 100 µL live 
virus (EBOV/Kikwit, the same stock used for in vivo NHP inoculation) for a final MOI of 0.1 
PFU/cell, an equivalent dose of irradiated virus (EBOV/Kikwit treated with 5 mRads gamma 
irradiation), or media only, and incubated for 4 or 24 hours with slow rocking prior to Seq-Well 
processing. 
 
Single-cell RNA-Seq raw data processing 
 
Raw sequencing files were demultiplexed and converted to fastq using bcl2fastq version 2.20. 
Reads were then trimmed, aligned to a reference transcriptome, and parsed into a digital gene 
expression matrix using the previously published Dropseq-tools pipeline (Macosko et al., 2015) 
version 2.0. We used a Snakemake wrapper around Dropseq-tools that is available in the open 
source Github repository https://github.com/Hoohm/dropSeqPipe . In brief, we trimmed adapter 
sequences using Cutadapt (Martin, 2011) version 1.16, performed spliced alignment of trimmed 
reads using STAR aligner (Dobin et al., 2013) version 2.6.1b, identified core barcodes using the 
whitelist function in umi_tools (Smith et al.) version 0.5.5, and used Dropseq-tools to correct 
barcodes and extract digital count matrices. A frozen version of the pipeline used to process the 
Seq-Well data is available at the Github repository https://github.com/dylkot/dropSeqPipe-dak. 
 
Sequencing reads were aligned to a hybrid genome/genebuild of Macaca mulatta (genome 
assembly Mmul_8.01, Ensembl gene build 92) and EBOV/Kikwit (Genbank accession 
KU182905.1).  
 
Single-cell RNA-Seq data preprocessing, clustering, dimensionality reduction, and 
smoothing 
 
The scRNA-Seq data was preprocessed, clustered, and visualized using Scanpy (Wolf et al., 
2018). We removed cells with <300 genes detected, >10% of their UMIs derived from 
mitochondrial genes, or >95% of UMIs mapped to non-genic regions. We excluded ribosomal 
genes, genes correlated with the percentage of UMIs assigned to mitochondrial genes (Pearson 
R > 0.1), and HBB as these were largely driven by the technical covariate of whether cells had 
loaded into Seq-Well arrays fresh or had undergone a freeze-thaw cycle with cryoprotectant. 
We also excluded EBOV genes and cell-cycle genes (defined by correlation with TOP2A, 
Pearson R > 0.1) prior to clustering so that these signals would not influence identification of cell 
types. 
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We performed multiple iterations of clustering to detect and exclude doublets and to identify 
distinct cell populations at multiple levels of granularity. In each iteration, we filtered genes 
detected in <10 of the cells being clustered. We then transformed raw UMI counts by 
normalizing the sum of counts of each cell to 10,000 (TP10K), adding 1 to each expression 
value, and taking the natural logarithm. In each clustering iteration, we identified and subsetted 
the data to highly variable genes using the highly_variable_genes function in Scanpy (Satija et 
al., 2015) with the default parameters. We Z-normalized each gene and set transformed values 
exceeding 10 to 10. Z-normalized data was used as input to principal component analysis. We 
determined the number of principal components to use for downstream analysis by identifying 
an elbow on the Skree plot of the eigenvalues associated with each principal component. For 
the in vivo Seq-Well data, we used the Harmony algorithm (Korsunsky et al., 2019) to remove 
variation due to whether a PBMC sample had been processed fresh, or following a freeze-thaw. 
No Harmony adjustment was used for the ex vivo EBOV dataset. The Harmony-adjusted or raw 
principal components were then used to construct a nearest neighbor graph with the number of 
neighbors set to the maximum of 30 or 0.001 x the number of cells. Lastly, we clustered cells 
using the Leiden community detection algorithm (Traag et al., 2019). 
 
We annotated broad PBMC clusters in the in vivo and ex vivo EBOV datasets based on the 
following marker genes: CD8+ T-cells (CD3D, GZMB , GNLY ), CD4+ T-cells (CD3D, IL7R ), 
B-cells (MS4A1, IGHM ), Monocytes (CFD, LYZ ), cDCs (FLT3 , IRF8 ), pDCs (IRF8 , GZMB ), 
Neutrophils (CD177, LCN2), Platelets (PF4 , CAVIN2 ), Plasmablasts (MZB1, IGHM , IGHA ), and 
spike-in control MDCK cells (COL5A2, SLC20A1). 
 
For the in vivo EBOV dataset, the first clustering iteration was used to identify and filter a cluster 
of multiplets (expressing high levels of B-cell, T-cell, Neutrophil, and Monocyte genes) and 
MDCK control cells. A second clustering iteration was run on the filtered data to identify broad 
cell type clusters of T/NK-cells, B-cells, and myeloid cells (Monocytes, cDCs, pDCs, and 
neutrophils). Sub-clustering was performed on each broad cell type in two iterations, the first to 
identify remaining doublets to exclude, and the second to cluster cells into final cell-types and 
sub-types based on annotation of marker genes (Figure S4). 
 
An analogous sequence of clustering iterations was used for the ex vivo EBOV dataset. 
However, as there were no MDCK cells spiked in, we proceeded straight to sub-clustering of the 
T/NK, B, Monocyte/DC, and multiplet populations from the initial clustering iteration. 
 
Doublets and multiplets identified during any clustering iteration were excluded. Then 
visualization in 2 dimensions was accomplished by computing the nearest neighbor graph with 
0.001 x the number of cells as nearest neighbors, followed by Uniform Manifold Approximation 
and Projection (Becht et al., 2018). 
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Gene expression values were smoothed to facilitate direct visualization of CD14, FCGR3  (which 
codes for CD16), and MKI67 (which codes for Ki67) by running MAGIC (van Dijk et al., 2018) on 
log TP10K expression values with the ‘cosine’ distance metric and 3 diffusion steps. 
 
Differential expression testing 
 
We performed all differential expression tests using MAST (Finak et al., 2015) on log(TP10K + 
1) normalized data. For all differential expression tests, we included (1) the percentage of 
mitochondrial reads and (2) the number of genes detected in a cell as covariates. For tests in 
the in vivo dataset, we additionally included a binary indicator covariate of whether the cell was 
derived from a sample that had been processed fresh, or had undergone freeze-thaw. For tests 
in the ex vivo dataset, we additionally included a binary indicator covariate of which NHP donor 
the sample was derived from.  
 
For viral load comparisons, we used the log10 viral load as a continuous exogenous variable 
and only considered cells with ≥1 viral read. For all other comparisons, we used a binary 
exogenous variable indicating the reference and the query group. “Viral load” and “bystander vs. 
EBOV infected cells” in the in vivo dataset were conducted only considering cells from DPI 5–8. 
“Viral load” comparisons in the ex vivo dataset only considered cells from the 24 HPI timepoint. 
 
Differential expression p-values were corrected for multiple hypothesis testing using the method 
of Benjamini and Hochberg (Benjamini and Hochberg, 1995). 
 
Identifying differential gene expression modules 
 
We clustered the log fold-change profiles of 1,437 differentially expressed genes (rows of 
Figure 3A ) considering B, CD4+ T, CD8+ T, NK, and monocyte populations at the three EVD 
stages. Prior to clustering, insignificant values (p > 0.2) were first set to 0 and genes were 
normalized to unit L2 norm. We performed KMeans clustering with K=11 and the default 
parameters in Scikit-learn (Pedregosa et al., 2011) version 0.22.2.post1. Varying K above and 
below 11 led to highly consistent results with splitting or merging individual clusters at the 
margin, and we picked K=11 as the lowest value that yielded the “B down” module. 
 
Detection of EBOV infected cells 
 
Our infection detection model assumes that EBOV reads assigned to a cell are either due to 
true viral RNAs inside that cell, or due to 'ambient' extracellular EBOV RNA in the sample that, 
by chance, are captured in a well of the Seq-Well array along with the cell. Our null model for 
how many EBOV reads would be expected in a cell by chance therefore depends on two main 
parameters which we estimate from the data: (1) what proportion of ambient RNAs in a sample 
are due to EBOV, and (2) what proportion of a cell’s expression profile is due to ambient RNA. 
Our method therefore precedes through the following steps which we describe below: 

1. Estimate an ambient RNA profile for each Seq-Well array 
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2. Estimate the proportion of each cell’s transcripts that are due to ambient RNA 
3. Determine if there are more EBOV transcripts in each cell than would be expected based 

on the proportion of EBOV in the ambient RNA and the cell’s estimated level of ambient 
RNA contamination. 

 
1. Estimate an ambient RNA profile for each Seq-Well array 
 
We assume that cell barcodes with few transcripts detected correspond to wells in the Seq-Well 
array that lack a cell, and therefore, that any transcripts assigned to those cell barcodes derive 
from ambient RNA. We consider all cell barcodes with fewer than 50 transcripts detected to be 
empty wells and compute an ambient RNA profile of the proportion of transcripts from these 
barcodes assigned to each gene. This is analogous to the approach used in several ambient 
RNA correction approaches such as (Fleming et al., 2019). 
 
We denote the number of genes in the dataset as G and define the ambient RNA profile for a 

given Seq-Well array, a, as a G -dimensional vector . denotes the estimated 
proportion of ambient RNAs that are assigned to gene g based on transcripts from all cell 

barcodes with fewer than 50 UMIs. Since is a proportion, the following constraints hold: 

 
 
2. Estimate the proportion of each cell’s transcripts that are due to ambient RNA 
 
We adapt the previously published Consensus Non-negative Matrix Factorization (cNMF) 
method (Kotliar et al., 2019) to estimate the ambient RNA contamination level of each cell. In 
brief, cNMF learns a user-specified number of gene expression programs (GEPs), each a 
non-negative G-dimensional vector representing the average expression profile of an individual 
cell type or cellular activity (e.g. cell-cycle or interferon response) that are present in the data. In 
addition, it learns a “Usage” matrix reflecting the % contribution of each GEP in each cell (i.e., 
the % of each cell’s transcripts derived from each GEP). For the following notation, matrices are 
indicated in bold. Denoting the number of cells in the dataset as C and the user-specified 

number of GEPs as K, cNMF is given an input CxG matrix of transcript counts  and returns 

 a non-negative KxG matrix of GEPs reflecting the relative contribution of gene g in GEP k , 
as well as a non-negative CxK matrix  reflecting the percentage of transcripts in cell c that 
are due to GEP k. 
 
We adapt this approach to return an updated, Cx(K+1) dimensional usage matrix that includes 
an additional column reflecting the usage of the ambient RNA profile. We run cNMF as 

published to obtain the  GEP matrix. We then append the ambient RNA profile for a given 

array as an additional row to  and normalize each row to sum to 1 like so: 
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where  denotes the L1 norm, a tilde is used to denote an L1 normalized vector, and  

denotes the ith row of . We then run a final iteration of NMF with the GEP matrix fixed to 
. This jointly estimates a usage of the ambient RNA profile and the other GEPS using 

non-negative least squares. For a given cell c from an array a, this amounts to solving the 
following non-negative least squares optimization: 
 

 
 
We combine these coefficients for all cells and programs into a single matrix and L1 normalize 
the usages to sum to 1: 
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where denotes the number of cells derived from array a. The “K+1”th column of 
reflects the estimated proportion of transcripts due to ambient RNA in all of the cells from array 
a. We repeat this calculation for each array separately and denote the estimated contribution of 
ambient RNA for a cell c as . 
 
3. Determine if there are more EBOV transcripts in each cell than would be expected by chance 
 
For each cell, we determine a threshold,  , for the number of EBOV transcripts required to 
call that cell infected while keeping the false positive rate below f, a user specified threshold (f = 
0.01 in all of our analyses). We first calculate , the proportion of ambient RNA transcripts 
in array a that are due to EBOV as follows: 
 

 
 
Then, for a cell with  transcripts total; a given proportion,  , of its reads derived from 
ambient RNA; , the proportion of ambient RNA contaminating reads expected to map to 
EBOV, we compute  using binomial statistics as follows : 
 

  
 
Where F is the inverse survival function of the Binomial distribution with event probability p and 
N trials. We identify cells with  reads as infected. 
 
Estimation of the infection receiver operator characteristic 
 
We estimate sensitivity to call an infected cell with either 1% or 0.1% of its reads due to EBOV 
across a range of 60 false positive rate thresholds (f). We first randomly sampled 2,000 cells 
from the live EBOV treatment samples in the ex vivo data, or the non-baseline samples from the 
in vivo data, to serve as an empirical distribution for  and . For each cell and specificity 
threshold f, we then calculate the probability of correctly calling a true positive cell as positive. 
We model the distribution of the number of EBOV reads in a cell as the convolution of 2 

binomial distributions: is the binomially distributed number of true cell-derived 

reads mapping to EBOV and is the analogous distribution for ambient 
RNA-derived reads mapping to EBOV.  is 0.01 or 0.001 by assumption, and  is 

estimated empirically for each cell as . We calculate the expected values for  and 
 and round  up to the nearest integer, as follows: 
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We then directly calculate the convolution of the two binomial distributions for each cell: 
 

 
 
 
We then calculate the sensitivity for each cell as the probability that the convolution distribution 
is greater than the empirical threshold: 
 

 
 
We plot the average sensitivity across the 2000 randomly sampled cells as a function of f for 

 equal to either 0.01 or 0.001. 
 
Gene set enrichment testing 
 
We downloaded gene sets from the Molecular Signatures Database (Liberzon et al., 2011) 
version 6.2 for gene set enrichment testing. We considered all Hallmark or C2 gene sets 
containing greater than 10 genes that were present in our expression data. We tested 
expression modules for enrichment using Fisher’s exact test and corrected for multiple 
hypothesis testing using the method of Benjamini and Hochberg (Benjamini and Hochberg, 
1995). 
 
To test continuous expression profiles for gene set enrichment (Figure S6B), we used the 
rank-sum test comparing genes in the gene set to all genes not in the set. 
 
Scoring cells for interferon response and macrophage differentiation 
 
We identified 58 genes in the “Global up” module that were also included in one or more of the 
following gene sets from the molecular signatures database: HECKER_IFNB1_TARGETS, 
BROWNE_INTERFERON_RESPONSIVE_GENES, MOSERLE_IFNA_RESPONSE, 
HALLMARK_INTERFERON_ALPHA_RESPONSE, 
HALLMARK_INTERFERON_GAMMA_RESPONSE (Table S3). We then scored cells for the 
average expression of these genes using the score_genes function in Scanpy (Satija et al., 
2015) with 58 control genes, as this was the number of genes in the ISG set, and otherwise 
default parameters. 
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We computed a macrophage score based on the set of 618 genes annotated as significantly up 
or down-regulated during in vitro monocyte-to-macrophage differentiation (Dong et al., 2013) 
(Table S4) . We computed each cell’s macrophage score as the dot-product of its expression 
profile for the 618 genes (in log TP10K) with the log fold-change reported for each gene in 
(Dong et al., 2013). This effectively weights genes by both the direction and magnitude of their 
change during in vitro macrophage differentiation. 
 
Comparison of EVD monocyte subsets with human bone marrow and PBMC data 
 
We obtained all of the human PBMC datasets produced using v3 or v3.1 chemistry from the 
10X website (Key Resources Table), aggregated them together, and processed the resulting 
dataset using the same pipeline as the NHP Seq-Well data. Briefly, we first filtered out genes 
detected in fewer than 10 cells before converting to log TP10K and performed PCA as 
described above. Then, we used Harmony (Korsunsky et al., 2019) to integrate out variation 
due to the different samples of origin and used 30 nearest neighbors for Leiden community 
detection (Traag et al., 2019) and UMAP dimensionality reduction (McInnes et al., 2018) (Figure 
S7E). We did not perform any sub-clustering on this dataset. 
 
We obtained Human Cell Atlas bone marrow data from the Human Cell Atlas data portal (Hay et 
al., 2018) and processed it according to the same pipeline as the NHP data with a few 
modifications. We filtered doublets prior to clustering by running Scrublet (Wolock et al., 2019) 
separately within each of 8 donor batches with an expected doublet rate parameter of 6%. We 
identified and excluded cell-cycle associated genes, as those with a Pearson correlation > 0.3 
with TOP2A. We integrated data from the different donor batches using Harmony and used 30 
nearest neighbors for Leiden community detection and UMAP dimensionality reduction. We 
performed 3 rounds of sub-clustering: First we clustered all of the cells to identify monocyte and 
dendritic lineage cells (Figure S7F). Second, we clustered just hematopoietic stem cells (HSCs) 
and monocyte/dendritic progenitor cells to identify doublets (as those falling into a cluster 
characterized by T-cell marker genes such as CD3D and CD3E). Finally, we re-clustered this 
set with the doublets excluded to identify monocyte lineage cells, plasmacytoid dendritic cells, 
and conventional dendritic cells (Figure S7G). 
 
We confirmed our marker gene-based annotations of the myeloid cell populations by comparing 
these cells to the circulating human PBMC dataset. We identified the nearest neighbor of each 
bone marrow myeloid progenitor cell in the PBMC dataset based on Euclidean distance of 
TP10K-normalized cells, considering overdispersed genes identified in the PBMC dataset based 
on the V-score (baseline-corrected Fano factor) (Klein et al., 2015). We then visualized the 
nearest-PBMC assignment of the bone marrow myeloid cells on a UMAP embedding (Figure 
S7H). 
 
Finally, we combined the monocytes and monocyte precursor cells from the human PBMC and 
bone marrow datasets into a single reference. We again normalized the data to log TP10K and 
computed UMAP embeddings following the same procedure as for the individual datasets 

35 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.148957doi: bioRxiv preprint 

https://paperpile.com/c/R4Bbga/ud5kG
https://paperpile.com/c/R4Bbga/ud5kG
https://paperpile.com/c/R4Bbga/XUPOO
https://paperpile.com/c/R4Bbga/000Tc
https://paperpile.com/c/R4Bbga/b9DXX
https://paperpile.com/c/R4Bbga/XGyu7
https://paperpile.com/c/R4Bbga/XGyu7
https://paperpile.com/c/R4Bbga/valSx
https://paperpile.com/c/R4Bbga/YEmjo
https://doi.org/10.1101/2020.06.12.148957
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(Figure S7I ), using Harmony to remove variation due to donor sample. We then down-sampled 
this data so that there would be equivalent numbers of cells of each of the bone marrow and 
PBMC clusters (i.e., 982 cells per cluster as that was the number of cells in the smallest cluster). 
We identified the nearest neighbor of each NHP monocyte in the down-sampled reference 
dataset, as described above and computed the percentage of NHP monocytes assigned to 
CD14+ or CD16+ clusters from either human bone marrow or PBMC (Figure 5F).  
 
Logistic regression prediction of EBOV infection in vivo 
 
We used Statsmodels (Seabold and Perktold, 2010) version 0.11.1 to fit a logistic regression 
predicting EBOV infection status among all monocytes from late EVD, based on the following 
features: macrophage score, MAGIC smoothed values of CD14, and CD16 (FCGR3 ), and an 
interaction term for the product of the MAGIC smoothed values for CD14 and CD16. 
 
CyTOF data preprocessing, clustering, and dimensionality reduction 
 
Our clustering and dimensionality analysis of the NHP CyTOF data was analogous to the 
Seq-Well pipeline with a few adaptations. We down-sampled a total of 1.1 million cells, 
consisting of 300,000 baseline cells and 100,000 cells from each DPI, selecting a uniform 
number of cells from each sample at a given DPI. We used the Arcsinh transformation of 
CyTOF raw intensity values divided by 5, which is standard in the field. We set a ceiling of 
transformed intensity values for each gene at the 99.999th percentile to reduce the effect of very 
rare outliers. We mean-centered the data but did not variance normalize prior to PCA. We then 
performed multiple clustering iterations of the data using the Leiden algorithm with the number 
of nearest neighbors set to the maximum of 30 or 0.01% of the number of cells in the dataset. 
 
We annotated broad PBMC clusters in the CyTOF datasets based on the following marker 
proteins: CD8+ T-cells (CD3, CD8), CD4+ T-cells (CD3, CD4), NK cells (CD16, CD161), B-cells 
(CD19, IgM), Monocytes (CD11b, BDCA3, CD14, CD16, HLA-DR), cDCs (HLA-DR, CD11c, 
CD1c), pDCs (HLA-DR, CD4, CD123), Neutrophils (CD11b, CD66), Platelets (CD61, BDCA3), 
Plasmablasts (IgM high, but little or no CD19), Basophils (CD11b, CD123, low HLA-DR). There 
was also a cluster of cells characterized by high HLA-DR, Ki67, and CD38 which we annotate 
as “Unassigned APC”. 
 
In the first clustering iteration, we identified and excluded clusters of doublets as those 
expressing markers of two or more broad cell-types. We also excluded a cluster characterized 
by high expression of CD3 but low expression of both CD4 and CD8 that we speculated was a 
technical artifact as it was nearly exclusive to a single CyTOF batch. 
 
Next, to address batch effects between the different CyTOF runs, we grouped cells into the 
broad categories of Monocytes and DCs, CD4+ T, CD8+ T, NK, Neutrophils, B, Plasmablasts, 
and Platelets, and used COMBAT (Johnson et al., 2007) to adjust for batch effect separately 
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within each broad category, using the default COMBAT parameters in the Scanpy 
implementation. 
 
We then ran cNMF (Kotliar et al., 2019) to identify and regress out artifact signals in the data. 
We ran cNMF using all 42 markers as inputs and adapted the method to not perform any 
variance scaling prior to NMF; this is because CyTOF intensities of different markers are already 
expressed on a comparable scale, unlike genes in single-cell RNA-Seq data which can vary 
over different orders of magnitude. We also set a floor on the input data to be non-negative 
(because after COMBAT, a small percentage of the values were slightly below 0). We selected 
K=7 as the cNMF dimensionality as the solution stability fell off dramatically at higher values. 
One gene expression program (GEP) was characterized by high levels of the platelet markers 
CD61 and BDCA3. It was mostly enriched in the platelet cluster but was also elevated in a 
subset of cells of all major cell types, which suggests that it reflects an artifact of platelets 
sticking to cells. A second GEP was characterized by high levels of all of the intracellular 
markers and it was also distributed throughout cells of multiple clusters. We interpreted this 
GEP as a cell permeabilization artifact reflecting the relative accessibility of a cell’s intracellular 
proteins to CyTOF antibody staining. We regressed these 2 GEPs out of the data by subtracting 
the matrix (outer) product of the Usage and GEP matrices. We denote the number of cells as C, 
the number of genes as G (42 in our data), and the number of programs selected as K (7 in our 
data). The CxG input data matrix is denoted as , the KxG GEP matrix returned by cNMF as 
and the CxK usage matrix as . Then the correction is as follows: 
 

 
 

Where  and are the Cx1 dimensional matrices representing the usage of the 
platelet and permeabilization GEPs and  and are the 1xG dimensional matrices 
representing the spectra of the platelet and permeabilization GEPs, and multiplication is the 
outer product. We also filtered cells assigned to the platelet cluster in the initial clustering, since 
their predominant signal had been regressed out. 
 
We then repeated clustering of the corrected data to identify broad cell types (Neutrophils, 
Monocytes, and DCs), followed by sub-clustering within each broad cluster to generate the 
sub-clusterings in Figure S4. The data was visualized using the UMAP algorithm as described 
for the scRNA-Seq data. 
 
The human PBMC CyTOF data was processed with the same pipeline as the NHP data with a 
few modifications. The data were down-sampled to 280,000 cells total (20,000 per sample), 
batch correction was performed using Harmony, and 0.001 x the number of cells was used for K 
nearest neighbor graph construction. No cNMF or COMBAT adjustment steps were performed. 
 
Quantification and Statistical Analysis 
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Details of statistical testing, sample size, center, and dispersion can be found in the figure 
legends, the main text, and Materials and Methods. 
 
Additional Resources 
 
This study did not generate new additional resources (website, forum, clinical trial). 
 
Key resources table 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

See Table S7 (Bjornson-Hooper et al., 
2019a, 2019b) 

 

Bacterial and Virus Strains 

Ebola virus/H. 
sapiens-tc/COD/1995/Kikwit-
9510621 (EBOV/Kikwit; 
GenBank accession 
MG572235.1; Filoviridae: 
Zaire ebolavirus) 

BEI Resources Cat#NR-50306 

Biological Samples 

None   

Chemicals, Peptides, and Recombinant Proteins 

Xpert Ebola Lysis Reagent Cepheid Cat#GXEBOLA-CE-50 

EnGen SauCas9, 20 µM (Yourik et al., 2019); NEB Cat#M0654T 

16% paraformaldehyde Electron Microscopy 
Sciences 

Cat#15710 

Critical Commercial Assays 

None   

Deposited Data 
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EBOV NHP infection 
single-cell RNA-Seq  

This paper  

EBOV NHP infection CyTOF This paper  

Human cell atlas bone 
marrow scRNA-Seq 

(Hay et al., 2018) https://data.humancellatlas.or
g/ 

Human healthy PBMC 
scRNA-Seq 

10X https://support.10xgenomics.
com/single-cell-gene-expressi
on/datasets 
 
 “Aggregate of 8 Chromium 
Connect channels and 8 
manual channels”, “5k 
Peripheral blood 
mononuclear cells (PBMCs) 
from a healthy donor (v3 
chemistry)”, “5k Peripheral 
blood mononuclear cells 
(PBMCs) from a healthy 
donor (Next GEM)”, “5k 
Peripheral blood 
mononuclear cells (PBMCs) 
from a healthy donor with cell 
surface proteins (v3 
chemistry)”, “5k Peripheral 
blood mononuclear cells 
(PBMCs) from a healthy 
donor with cell surface 
proteins (Next GEM)”, “10k 
PBMCs from a Healthy Donor 
- Gene Expression and Cell 
Surface Protein”, “10k 
PBMCs from a Healthy Donor 
(v3 chemistry)” 

EBOV human infection 
CyTOF 

(McElroy et al., 2020) Author correspondence 

Experimental Models: Cell Lines 

   

Experimental Models: Organisms/Strains 

None   
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Oligonucleotides 

Primer: dN-SMRT: 
AAGCAGTGGTATCAACGC
AGAGTGANNNGGNNNB 

(Hughes et al., 2019); IDT N/A 

gRNA sequence: 
DASH_SeqB: 
GGGNNNNAAGCAGUGGUA
UCAACGGUUAUAGUACUC
UGGAAACAGAAUCUACUA
AAACAAGGCAAAAUGCCG
UGUUUAUCUCGUCAACUU
GUUGGCGAGAU 

This paper N/A 

Recombinant DNA 

None   

Software and Algorithms 

DropSeqPipe (Macosko et al., 2015) https://github.com/Hoohm/dro
pSeqPipe 

Scanpy (Wolf et al., 2018) https://github.com/theislab/sc
anpy 

MAST (Finak et al., 2015) https://github.com/RGLab/MA
ST 

HARMONY (Korsunsky et al., 2019) https://pypi.org/project/harmo
ny-pytorch/, 
https://github.com/immunoge
nomics/harmony 

MAGIC (van Dijk et al., 2018) https://github.com/Krishnasw
amyLab/MAGIC 

cNMF (Kotliar et al., 2019) https://github.com/dylkot/cNM
F 

Scrublet (Wolock et al., 2019) https://github.com/AllonKleinL
ab/scrublet 

Other   

None   
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Figures 
 
Figure 1. 

 
Figure 1. Studying lethal Ebola virus disease in rhesus monkeys using single-cell 
profiling of RNA and protein expression in peripheral immune cells 
Serial sampling study design for investigating the host response to Ebola virus (EBOV) infection 
in rhesus monkeys. Under biosafety level 4 (BSL-4) containment, we collected blood samples 
from a total of 21 animals at multiple days post inoculation, extracted peripheral blood 
mononuclear cells (PBMCs), and profiled single-cell transcriptomes and 42 protein markers 
using Seq-Well and CyTOF. Seq-Well quantifies both host (black) and viral (red) RNA 
expression, allowing comparisons between infected and bystander cells. We also assessed 
daily clinical parameters for each animal, including body temperature, clinical signs, and body 
weight, and obtained complete blood counts for each blood draw. 
See also Figure S1 and Table S1  for a complete listing of CyTOF and Seq-Well samples.  
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Figure 2. 

 
Figure 2. Single-cell profiling reveals changing cell-type abundance, proliferation 
rate, and infection status throughout EVD 
(A) Time course of viral load (red, left y-axis, log 10 scale) and clinical score (blue, right y-axis). 
Markers denote the mean and error bars denote the minimum and maximum values. LOD, limit 
of detection of viral load by RT-qPCR assay. See also Figure S1. 
(B and C ) Uniform Manifold Approximation and Projection (UMAP) embedding of Seq-Well (B) 
and CyTOF (C) data, colored by annotated cluster assignment. See also Figures S2 and S4. 
(D) Fold change (log 2 scale) in the absolute abundance (cells / µL of whole blood) of each cell 
type relative to baseline based on clustering of CyTOF data. Error bars denote the mean ± 1 
standard error. See also Figures S5A and S5B. 
(E and F ) UMAP embedding of Seq-Well (E) and CyTOF (F) data, colored by the day post 
infection (DPI) on which each cell was sampled. 
(G) Percentage of Ki67-positive cells (CyTOF intensity > 1.8, arbitrary units) of each cell type. 
Error bars denote the mean ± 1 standard error. See also Figures S5C and S5D. 
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(H) UMAP embedding of Seq-Well data, colored by the percentage of cellular transcripts 
mapping to EBOV. 
(I) Percentage of infected cells by cell type based on Seq-Well expression profiles. Dashed line 
denotes the 1% false positive rate threshold used for calling infected cells. See also Figure 
S2G. 
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Figure 3. 
 

 
 
Figure 3. Patterns of differential expression across disease stages and cell types 
in EVD 
(A) Fold changes (natural log scale) of 1,430 differentially expressed genes (rows) in each cell 
type at early (E), middle (M), and late (L) stages of disease, relative to baseline levels, with 
insignificant values (p > 0.2) set to 0. Genes were grouped into modules through unsupervised 
k-means clustering. See also Tables S2 and S3. 
(B) Same as A but displaying the average log fold-change of each module. 
(C) Distribution of interferon stimulated gene (ISG) scores for each cell type at baseline (blue), 
early (yellow), mid (orange), or late (red) EVD. White markers denote the median and bars 
denote the interquartile range. See also Figures S6A and S6B. 
(D) Volcano plot of differential expression between monocytes in late EVD compared to 
baseline. Genes are colored by membership in the "Global down" or "Global late down" modules 
(blue), "Global up" module (red), “Mono early up” or “Mono late up” modules (green), “Mono 
early down” or “Mono late down” modules (brown), or if they are annotated as an MHC class II 
gene (purple). 
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Figure 4. 
 

 
Figure 4. Monocytes dramatically reduce expression of MHC class II proteins 
independent of infection status 
(A) Expression profiles of major histocompatibility (MHC) or MHC-associated genes (rows) in 
key cell types at baseline (B), early (E), middle (M), or late (L) stages of disease (columns). 
Circle size represents the percentage of cells in that group in which the gene was detected, and 
color denotes the average expression level, in Z-score normalized, natural log transcripts per 
10,000 (TP10K). The “MAMU-” prefix, which designates major histocompatibility genes in 
rhesus monkeys, was removed from all MHC I and II gene symbols. Gene symbols that initially 
contained an “HLA-” prefix are indicated with an “(H)”. 
(B) CyTOF intensity (arbitrary units) of HLA-DR protein in antigen-presenting cells at different 
stages of EVD. Boxes denote the median and interquartile range, and whiskers denote the 2.5th 
and 97.5th percentiles. Colored stars indicate EVD stages that decreased significantly from 
baseline (rank-sum test p < 0.05) with color corresponding to stage. 
(C and D) Fold change (log 2 scale) in average CD38 (C) and HLA-DR (D) CyTOF intensity on 
monocytes at each DPI relative to baseline for each PBMC sample. Colored lines connect serial 
samples from the same NHP. See also Figure S6C. 
(E) Average gene expression (natural log TP10K) for four MHC class II genes in monocytes at 
different disease stages, stratified by cell infection status. Error bars denote 95% confidence 
intervals for the mean based on 200 bootstraps. 
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Figure 5. 
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Figure 5. ISG suppression, co-expression of CD14 and CD16, and expression of 
macrophage genes, are associated with monocyte infectivity 
(A) Volcano plot of differential expression between infected and bystander monocytes from DPI 
5–8. Genes are colored by membership in sets of genes up- (Mac. Up, blue) or down-regulated 
(Mac. Down, orange) during in vitro differentiation of monocytes into macrophages, interferon 
stimulated genes (ISG, red), or the marker genes CD14 and CD16 (Marker, pink). See also 
Table S4 . 
(B) UMAP embedding of monocyte gene expression data, colored by (left-to-right): Day post 
infection, CD16 expression (log TP10K), CD14 expression (log TP10K), and percentage of 
cellular transcripts mapping to EBOV. 
(C) Scatter plot of smoothed expression (log TP10K) of CD14 and CD16 for monocytes in 
baseline, early, mid, and late disease. Cells are colored by infection status. Boxes define the 
CD14+, CD16+, DN, and DP subsets described in the text, and numbers denote the percentage 
of cells in each subset at that disease stage. See also Figures S7A and S7B. 
(D) CD14 and CD16 protein (CyTOF intensity) expression on monocytes at each DPI. The 
distribution is displayed as a bivariate kernel density plot with 200 randomly sampled cells 
overlaid as a scatter plot. See also Figure S7C. 
(E) CD14 and CD16 protein (CyTOF intensity) expression on monocytes in a case of human 
EVD, colored by Ki67 protein expression (CyTOF intensity) for multiple days post symptom 
onset. See also Figure S7D. 
(F) Percent assignment of NHP CD14/CD16 subsets at each EVD stage (B - baseline, E - early, 
M - mid, L - Late) to human myeloid populations in the reference dataset (BM-MP - bone 
marrow monocyte progenitors, PBMC-CD16+ - circulating CD16+ monocytes, PBMC-CD14+ - 
circulating CD14+ monocytes). See also Figures S7E–S7K. 
(G) Percentage of infected monocytes in each CD14/CD16 subset in late infection. Error bars 
denote 95% confidence intervals for the mean based on 1,000 bootstraps. 
(H) Association between macrophage score (x-axis) and percentage of infected cells (left y-axis, 
red), and expression of NR1H3 (natural log TP10K), a marker of macrophage differentiation 
(right y-axis, blue). Monocytes from late disease are ordered by macrophage score, and we 
averaged percent of infected cells and NR1H3 expression within a 400-cell sliding window. See 
also Figures S8A–S8C. 
(I) MX1  expression (natural log TP10K) in monocytes at baseline, and uninfected bystanders or 
infected cells in late infection. Boxes denote the median and interquartile range, and whiskers 
denote the 2.5th and 97.5th percentiles. See also Figure S8D. 
(J) Scatter plot of ISG score (y -axis) versus percentage of cellular transcripts mapping to EBOV 
(x-axis) for infected monocytes in late EVD (DPI 6–8).  
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Figure 6. 

 
Figure 6. Viral transcriptional dynamics of infected monocytes in vivo and ex vivo 
(A) Schematic of EBOV challenge of PBMCs ex vivo. See also Figure S9 . 
(B and C ) Histogram of the percentage of cellular transcripts derived from EBOV (intracellular 
viral load) in monocytes from PBMCs inoculated with live virus ex vivo (B) or from PBMCs of 
NHPs infected in vivo (C). See also Figures S10A–S10D. 
(D) Schematic of EBOV transcription. The viral RNA-directed RNA-polymerase transcribes each 
gene sequentially from the 19 kb genome, but occasionally releases the genomic RNA template 
thereby ending transcription. As a result, NP is transcribed most frequently, and L least 
frequently. 
(E and F ) Relative proportion of each EBOV gene versus viral load (log 10 scale), ex vivo (E) or 
in vivo (F). All infected monocytes were ordered by viral load and the percentage of each viral 
gene was averaged over a 50-cell sliding window. Bands denote the mean ± 1 SD. See also 
Figures S10E and S10F . 
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Figure 7. 

 
Figure 7. EBOV infection down-regulates host antiviral genes and up-regulates 
putative pro-viral genes 
(A and B ) Volcano plot of association between host genes expression and viral load, within 
infected monocytes from PBMCs 24 HPI treated with live virus ex vivo (A) or from PBMCs of 
NHPs infected in vivo on DPI 5-8 (B). See also Table S6 . 
(C and D ) Association between host gene expression and viral load for selected positively (C) 
and negatively (D) associated genes in monocytes from ex vivo infections. Infected cells are 
ordered by viral load (log 10 scale), and we depict gene expression (natural log TP10K) averaged 
over a 100-cell sliding window. Genes that are significantly associated with viral load are shown 
in color while unassociated negative control genes are shown in gray. Spearman correlation 
coefficients (ρ) for the association between viral load and gene expression are listed in the 
legend. Box plots represent gene expression in uninfected cells (boxes denote the median and 
interquartile range, and whiskers denote the 2.5th and 97.5th percentiles) See also Figures 
S10G and S10H.  
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Supplementary Figures 
 
Figure S1. 
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Figure S1. Blood sampling overview and clinical time course per animal replicate. 
Related to Figure 1. 
(A) Each panel represents the time course of log viral load (left axis, red) and clinical score 
(right axis, blue) for a specific NHP. Panels are organized into rows based on the cohorts. 
(B) Overview of study cohorts and blood draw timelines. Animals were grouped into cohorts with 
pre-scheduled necropsy times (at baseline, or day post infection [DPI] 3, 4, 5, 6 - n = 3 each), or 
allowed to progress until clinical score exceeded 10 (terminal), predetermined euthanasia 
criteria. Dots indicate scheduled blood draws for each cohort with red denoting an intermediate 
(non-necropsy) draw, and gray indicating a draw that coincided with euthanasia and necropsy. 
Necropsy and baseline normal draws were used for Seq-Well and CyTOF, while intermediate 
post-infection draws were available only for CyTOF.  
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Figure S2. 
 

 
 
Figure S2. Cell type markers for Seq-Well and CyTOF clusters. Related to Figure 
2. 
(A) Expression profiles of cell-type marker genes (columns) for cell-type clusters (rows) based 
on the in vivo Seq-Well data. Circle area represents the percentage of cells in each group in 
which the gene was detected, and color denotes the average expression level (natural log 
TP10K).  
(B) Average expression (Z-normalized CyTOF intensity) profiles of cell type marker genes 
(columns), for cell type clusters (rows), based on the CyTOF data. 
(C) Uniform Manifold Approximation and Projection (UMAP) embedding of post-integration 
Seq-Well data, colored by the sample source (NHP, DPI, and whether the sample was loaded 
for Seq-Well without any freezing [.fresh] or was frozen with cryoprotectant and thawed prior to 
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Seq-Well [.FRZ]). A maximum of 500 cells per sample is plotted to increase representation 
across samples. 
(D) UMAP embedding of Seq-Well data, colored by whether cells were processed fresh 
(orange) or after freeze/thaw (blue) prior to Seq-Well. 
(E) UMAP embedding of Seq-Well data, colored by depletion of abundant sequences by 
hybridization (DASH) treatment. We developed a DASH-based method to remove a PCR 
adaptor artifact from some Seq-Well sequencing libraries (see Materials and Methods), and 
performed this 0 times (No DASH, blue), 1 time (DASH, orange), or 2 times sequentially 
(DASHx2, red). For a few samples, we sequenced 'No DASH' and 'DASH' libraries and merged 
the reads (mixed, green). 
(F) UMAP embedding of batch-corrected CyTOF data, colored by the multiplex batch in which it 
was pooled, and analyzed by CyTOF.  
(G) Receiver operating characteristic curves for identifying EBOV-infected cells. Estimates of 
sensitivity to detect an infected cell at various false positive rate thresholds in vivo (left) and  ex 
vivo (right). Curves are estimated separately for a hypothetical viral load of 0.1% (blue line) and 
1% (orange line). 
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Figure S3. 
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Figure S3. Comparison of unsupervised clustering and manual gating of CyTOF 
data. Related to Figure 2. 
(A) Gating strategy used to define cell populations using canonical markers. Axes indicate 
CyTOF ArcSinh-scaled marker intensities. 
(B) Pearson correlation between relative cell-type abundance determined by unsupervised 
clustering (x-axis) and by manual gating (y-axis). Each marker represents a single PBMC 
sample. 
(C) Abundances of indicated manually gated populations, normalized for each animal to 
pre-challenge timepoints. x-axis shows day post infection (DPI), lines denote mean ± 1 standard 
error of the mean (SEM). 
(D) Median CD38 expression on manually gated populations shown in (C), medians are 
normalized to each NHP's average baseline expression. x-axis shows DPI, lines denote mean ± 
1 SEM. 
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Figure S4. 
 

 
Figure S4. Identifying cell subtypes by subclustering. Related to Figure 2. 
(A) UMAP embedding of broad cell-type clusters in the CyTOF data, colored by sub-cluster 
assignment (Neut - neutrophil, Mono - monocyte). 
(B) Average expression (Z-normalized CyTOF intensity) profiles of sub-clusters for marker 
genes based on CyTOF data. 
(C) UMAP embedding of broad cell-type clusters in the Seq-Well data, colored by sub-cluster 
assignment. 
(D) Expression profiles of sub-clusters for marker genes based on Seq-Well data. Circle area 
represents the percentage of cells in which the gene was detected, and color denotes the 
average expression level (Z-normalized natural log TP10K).  
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Figure S5. 
 

 
Figure S5. Estimates of cell-type abundance and proliferation over the time 
course. Related to Figure 2. 
(A) Scatter plot of the percentage of cells of each cell type in a sample, inferred from CyTOF 
(x-axis) or Seq-Well (y-axis), for several cell types (panels). Each dot represents a sample 
colored by DPI. Pearson correlation coefficients (r) and p-value are provided. 
(B) Estimates of the abundance of each cell type (rows) for each NHP (individual markers) in 
units of 1000 cells per µL of whole blood, based on integration of CyTOF and complete blood 
count (CBC) information. The mean value of each DPI is indicated with a black line. Gray lines 
connect serial samples from the same NHP. 
(C) Scatter plots of the percentage of Ki67-positive cells in a sample inferred from Seq-Well 
(x-axis) or CyTOF (y -axis) for several cell types (panels). Each dot represents a sample colored 
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by DPI. Cells with smoothed expression of MKI67 (the gene coding for Ki67) above 0.1 are 
called Ki67 positive by Seq-Well. Cells with CyTOF intensity above 1.8 (arbitrary units) are 
called Ki67 positive by CyTOF. 
(D) Estimates of the percentage of Ki67 positive cells (CyTOF intensity > 1.8) of each cell type 
(rows) for each animal replicate (markers). The mean value of each DPI is indicated with a black 
line. Gray lines connect serial samples from the same NHP. 
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Figure S6. 
 

 
 
Figure S6. Quantification of cytokine expression and enrichment of response 
signatures. Related to Figures 3 and 4. 
(A) Average expression values (natural log TP10K) of literature-annotated cytokines (columns) 
across cell types and stages of acute EVD (rows). Values are plotted as a ratio relative to the 
maximum across cell types and stages. Values that are statistically different from baseline (p < 
.05) are indicated with a blue star.  
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(B) Heatmap of rank-sum test statistics for comparison of differential expression log-fold 
changes of genes in a gene set (rows) compared to genes not in the gene set. The log 
fold-changes were defined from differential expression profiles of each cell type at each EVD 
stage (columns) relative to baseline. Five gene sets were tested -- three from the Hallmark 
database (IFN ALPHA, IFN GAMMA, and TNF ALPHA VIA NFKB) (Liberzon et al., 2015) and 2 
constructed from the hallmark sets, as uniquely IFNα-regulated genes in “IFN ALPHA” but not 
“IFN GAMMA” (“IFN ALPHA - GAMMA”), and vice versa for uniquely IFNγ-regulated (“IFN 
GAMMA - ALPHA”). See also Table S3 . 
(C) Fold change (log 2 scale) in average HLA-DR CyTOF intensity on B cells at each DPI relative 
to baseline for each PBMC sample. Colored lines connect serial samples from the same NHP.  
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Figure S7. 
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Figure S7. Extended characterization of interferon and double-negative (DN) 
CD14- CD16- monocytes. Related to Figure 5. 
(A) Clustermap of pairwise Pearson correlations between cell type clusters at baseline and late 
EVD. Correlations are computed on average log TP10K expression values of overdispersed 
genes. DN and DP monocytes at late EVD are more similar to monocytes (including baseline 
CD14+s) than other cell types. 
(B) Scatter plot of MAGIC-smoothed expression values (log TP10K) of CD14 and CD16 for 
monocytes in baseline, early, mid, and late disease stages. Cells are colored by smoothed 
expression levels of MKI67 (the gene coding for Ki67 protein). Boxes indicate the CD14+, 
CD16+, DN, and DP subsets described in the text, and the numbers denote the percentage of 
cells falling into each subset. 
(C) Scatter plot of protein expression (CyTOF intensity) of CD14 and CD16 for 1000 randomly 
sampled monocytes at each DPI. Cells are colored by Ki67 expression. Boxes indicate the 
CD14+, CD16+, DN, and DP subsets described in the text, and the numbers denote the 
percentage of cells falling into each subset. 
(D) Scatter plot of protein expression (CyTOF intensity) of CD14 and CD16 for monocytes 
during human EVD. Left: monocytes from healthy human controls. Right: monocytes from 3 
EVD cases (S1, S2, and S3) at various days post symptom onset. Cells are colored by Ki67 
marker intensity. Boxes indicate the CD14+, CD16+, DN, and DP subsets described in the text 
and the numbers denote the percentage of cells falling into each subset. 
(E) UMAP embedding of healthy human PBMCs dataset, colored by annotated cluster 
assignment, based on known marker genes. (Plasma. - Plasmablast). 
(F) UMAP embedding of healthy bone marrow cells, colored by cluster assignment, based on 
marker genes. (HSC - hematopoietic stem cell, Plasma. - Plasmablast, Megakar. - 
Megakaryocyte, Mono/DC - monocyte and dendritic cell, BM-Macro - bone marrow resident 
macrophage). 
(G) UMAP embedding of sub-clustered HSC and monocyte/dendritic lineage cells. (BM - bone 
marrow, MP - monocyte progenitor) 
(H) Same UMAP embedding as Figure S7G, but cells are colored by the cluster identity of their 
nearest neighbor in the human PBMC dataset (Figure S7E). 
(I) UMAP embedding of the merged reference dataset of healthy bone marrow HSCs and 
monocyte lineage cells and PBMCs. Left sub-panel is colored by cluster assignment. Right 
sub-panels are colored by marker gene expression (natural log TP10K). 
(J) Expression profiles of selected genes for human bone marrow monocyte progenitors 
(BM-MPs) and human circulating monocytes (PBMC-Monos). Circle area represents the 
percentage of cells in which the gene was detected, and color denotes the average expression 
(Z-normalized natural log TP10K). 
(K) Expression profiles of selected genes for NHP monocyte subsets at baseline or late EVD for 
orthologs of the genes in (J). Circle area represents the percentage of cells in which the gene 
was detected, and color denotes the average expression level (Z-normalized natural log 
TP10K). CD34 is grayed out because it is detected in fewer than 10 cells. 
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Figure S8. 
 

 
Figure S8. Extended characterization of gene expression signals associated with 
EBOV infection status in monocytes. Related to Figure 5. 
(A) Volcano plot of differentially expressed genes between double positive and double negative 
monocyte subsets from DPI 5–8. Genes are colored by membership in cell cycle, macrophage 
up-regulated (Mac. Up), macrophage down-regulated (Mac. Down), or marker (CD14, CD16) 
gene sets. See also Table S5. 
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(B) Macrophage scores for monocytes in late EVD for each subset. Boxes denote the median 
and interquartile range, and whiskers denote the 2.5th and 97.5th percentiles. 
(C) Percentage of infected monocytes in each subset in late disease, stratified by low or high 
macrophage score (below or above the median of monocytes from all subsets). Height of the 
bar denotes the mean, and error bars denote 95% bootstrap confidence intervals for the mean. 
There are no infected monocytes in the CD14+ subset. 
(D) ISG scores of monocytes at baseline, and uninfected bystanders or infected cells in late 
stage EVD (DPI 6–8). Boxes denote the median and interquartile range, and whiskers denote 
the 2.5th and 97.5th percentiles. 
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Figure S9. 

 
Figure S9. Overview of the ex vivo EBOV infection dataset. Related to Figure 6. 
(A–F) Uniform Manifold Approximation and Projection (UMAP) embedding of Seq-Well data 
colored by annotated cluster assignment (A), treatment condition (B), viral load (C), NHP donor 
(D), MX1  gene expression (natural log TP10K) (E), and interferon stimulated gene (ISG) score 
(F). 
(G) Distributions of ISG scores across monocytes from each treatment condition, stratified by 
NHP donor. The central white marker denotes the median and the black bar denotes the 
interquartile range. 
(H) Estimated percentage of infected cells of each cell type in the ex vivo dataset. The dashed 
line denotes the 1% false positive rate threshold used for calling infected cells. 
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(I) Percentage of EBOV-positive monocytes from each ex vivo treatment condition, stratified by 
NHP donor. Height of the bar denotes the mean, and error bars denote 95% bootstrap 
confidence intervals for the mean. 
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Figure S10. 
 

 
Figure S10. EBOV infection dynamics in the ex vivo  dataset. Related to Figures 6 
and 7. 
(A) Distributions of viral loads across monocytes from different treatment conditions. The central 
white marker denotes the median and the black bar represents the interquartile range. 
(B) Estimated percentage of EBOV transcripts derived from the EBOV genome or each EBOV 
gene, out of total viral RNA, stratified by treatment conditions. Prior to averaging, the counts of 
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EBOV genes for each cell was normalized to sum to one, so each cell contributes uniformly to 
the proportion, regardless of its total number of EBOV transcripts. Height of the bar denotes the 
mean, and error bars denote 95% bootstrap confidence intervals for the mean. 
(C and D ) Scatter plot of total transcripts (unique molecular identifiers) detected in a cell (x-axis, 
log 10 scale) against viral load (y-axis, log 10 scale) for cells with one or more viral reads ex vivo 
(C) or in vivo (D). Cells called as infected are colored in red and otherwise colored in blue. 
(E and F ) Relative proportion of each EBOV gene versus viral load (log 10 scale) ex vivo for cells 
from donor NHP1 (E) or NHP2  (F). All monocytes were ordered by viral load and the percentage 
of each viral gene was averaged over a 50-cell sliding window. Color bands denote the mean ± 
1 SD. 
(G and H ) Association between gene expression and viral load for selected negatively (G) and 
positively (G) associated host genes in monocytes, 24 HPI after inoculation with live virus ex 
vivo. In the left sub-plots, distributions of gene expression in uninfected bystander cells are 
shown as a boxplot with boxes denoting the interquartile range, and whiskers denoting the 2.5th 
and 97.5th percentiles. In the right sub-plots, we ordered infected cells by viral load (log 10 scale) 
and averaged gene expression (natural log TP10K) over a 100-cell sliding window. Curves and 
box-plots are shown separately for the 2 donor NHPs. p-values for the Spearman correlation 
between viral load and gene expression are listed for each NHP donor in the legend. 
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Supplementary Tables 
 
Table S1. Overview of samples analyzed by CyTOF and Seq-Well. Related to 
Figure 1. 
 
Description of each NHP PBMC sample profiled in the study for CyTOF (tab 1) and Seq-Well 
(tab 2). Includes the animal ID, day post infection, number of cells passing quality control filters, 
the processing batch, and other technical factors such as whether the sample was processed 
fresh or underwent freeze-thaw, was treated with DASH, or included an MDCK cell spike-in. 
Subsequent tabs for the final counts of each broad cell type cluster for CyTOF (tab 3) and 
Seq-Well (tab 4). 
 
Table S2. Differential expression profiles of cell types at each EVD stage relative 
to baseline. Related to Figure 3. 
 
Log fold-change, p-values, and q-values for MAST differential expression tests comparing gene 
expression levels of cells at each EVD stage relative to baseline, for each cell type. 
 
Table S3. Gene-set enrichment testing of differential expression modules. Related 
to Figure 3. 
 
The “geneset_enrichment” tab includes the rank, gene set name, odds ratio (OR), and 
FDR-corrected q-value for the top 10 gene-sets associated with each differential expression 
module (ranked by q-value) based on Fisher’s exact tests. The “module_membership” tab 
includes the module assignment for all genes tested for differential expression including 
insignificant genes labeled as “Not significant”. The “ISG_set_forScoring” tab includes 
differentially expressed genes in the “global up” module that were annotated as interferon 
stimulated genes (ISGs) and subsequently used for computing the ISG score. The 
Unique_IFN_Alpha_Set species the genes included in the 
HALLMARK_INTERFERON_ALPHA_RESPONSE gene set but not the 
HALLMARK_INTERFERON_GAMMA_RESPONSE gene set, and Unique_IFN_Gamma_Set 
specifies the converse gene set. 
 
Table S4. Differential expression results of infected vs. bystander monocytes, in 
vivo, at DPI 5–8. Related to Figure 5. 
 
Log fold-change, p-values, and q-values for differential expression tests comparing gene 
expression levels between infected and bystander monocytes in late EVD. Also includes 
annotations of whether each gene is associated with macrophage differentiation or interferon 
response. Subsequent tabs specify the published gene lists associated with in vitro macrophage 
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differentiation that were used for gene set enrichment, as well as the contingency tables and 
hypothesis tests associated with each enrichment test. 
 
Table S5. Differential expression between DP and DN monocytes in late EVD. 
Related to Figure S8. 
 
Log fold-change, p-values, and q-values for differential expression tests comparing gene 
expression levels between DP and DN monocytes in late EVD. Also includes annotations of 
whether each gene is associated with macrophage differentiation, interferon response, or cell 
cycle. 
 
Table S6. Association between host gene expression and viral load for infected 
monocytes in vivo  and ex vivo . Related to Figure 7. 
 
Log fold-change, p-values, and q-values for differential expression tests of association between 
log10 viral load and gene expression for cells containing ≥1 viral read. Tab 1 is for in vivo (cells 
in DPI 5-8), and tab 2 is for ex vivo (cells treated with live virus and collected at 24 hours post 
inoculation). Tabs 3 and 4 show the gene set enrichment results for separate Fisher’s exact 
tests of genes that are significantly positively or negatively correlated with intracellular viral load 
(P < .05) including enrichment odds ratios (OR), p-values, and q-values. 
 
Table S7. Antibody panel for cell staining prior to CyTOF. Related to Key 
Resources Table. 
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