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Summary 

 

Cell migration is a force-dependent adaptive process mediated by integrin-dependent 

adhesion as well as other yet poorly defined interactions to the extracellular matrix. 

Using enzymatic multi-targeted digestion of sugar moieties on the surface of 

mesenchymal cells and leukocytes after interference with integrin function, we 

demonstrate that the surface glycocalyx represents an independent adhesion system. 

The glycocalyx mediates cell attachment to ECM ligand in the 100-500 pN force range 

and amoeboid migration in 3D environments in vitro and in vivo. Glycan-based 

adhesions consist of actin-rich membrane deformations and appositions associated 

with bleb-like and other protrusions forming complex-shaped sub-micron contact sites 

to ECM fibrils. These data implicate the glycocalyx in mediating generic stickiness to 

support nanoscale interactions (nanogrips) between the cell surface and ECM, 

mechano-coupling, and migration.  

 

Introduction 

 

Cell shape, polarity and anchorage, as well as migration across surfaces depend 

upon the function of integrin adhesion receptors, which form transient focalized actin-

containing adhesion complexes that control cytoskeletal organization, mechano- 

transduction and intracellular signaling1,2. In cancer metastasis, integrins mediate cell 

invasion and represent candidate targets for pharmacological interference3-5. In 

contrast to 2D migration models, interference with β1 integrin function in 3D 

environments, where cells migrate through substrate of complex geometry and along 

confining interfaces, provides only incomplete or no inhibition of migration6-9. The 

mechanisms mediating cell-substrate coupling and migration when integrin availability 

is low or absent, mediated by “friction”9,10, physical intercalation11, or alternative 

adhesion systems12 remains elusive. Our aim was therefore to identify the cellular and 

molecular mechanisms of integrin-independent cell-matrix interaction, force 

generation, and migration within collagen-rich interstitial tissue in vitro and in vivo when 

integrin-mediated adhesion is marginalized or absent. 
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Results 

Mesenchymal-to-amoeboid transition after interference with integrins 

Fibrillar collagen is the predominant extracellular matrix (ECM) structure in 

mammalian tissues and recognized with high affinity by integrins a1β1, a2β1, and 

a11β1, and weakly by aVβ313. Invasive MV3 melanoma cells, which express β1 and 

β3, but lack all other integrin β-chains (Extended Data Fig. 1a), utilize a2β1 integrins 

for efficient migration within in vitro reconstituted 3D collagen matrix14 and collagen 

remodeling15. During migration through 3D fibrillar collagen, up to 90% of MV3 cells 

adopted an elongated, spindle-shaped morphology and migrated at speeds similar to 

the movement of mesenchymal cells in situ16 (Fig. 1a). Graded interference with β1 

integrins was induced either by adhesion-perturbing mAb 4B4 at concentrations 

saturating the epitope up to 90% (Extended Data Fig. 1a and 1c) or by stable shRNA-

based β1/β3 integrin downregulation (Extended Data Fig. 1d) combined with additional 

anti- β1 antibody based interference which achieved >99% epitope reduction for β1 

without detectable β3 integrin at the cell surface (Extended Data Fig. 1e, f). Individual- 

and dual-integrin interference strategies reduced migration speed by >80% but failed 

to achieve immobilization with residual slow migration speed of 0.02-0.15 µm/min (Fig. 

1a). As consequence of interference with integrins, the spindle-shaped, elongated 

morphology converted to an ellipsoid cell shape with multiple dynamic blebs and 

occasional filopodia in contact with collagen fibrils and focalizations of β1 integrin and 

filamentous actin at contact sites to collagen fibers converted to diffuse distribution 

(Fig. 1b, arrowheads). These data show for metastatic melanoma cells a transition 

from mesenchymal to amoeboid migration when integrin availability is limited.  

To test whether β1 integrins are dispensable for cell migration in non-cancer cells, 

β1-deficient murine embryonic fibroblasts (MEFs) were tested (Extended Data Fig. 2a-

c). β1-/- MEFs employed a rounded amoeboid migration type with increased speed 

compared to β1+/+(fl/fl) MEFs (Fig. 1c, d) reaching 0.16-0.28 µm/min. With reduced 

cell elongation (Exdended Data Fig. 2d), directional persistence was not compromized 

compared to β1+/+(fl/fl) MEFs (Extended Data Fig. 2e, Supplementary Video 1) but, 

given the increased speed, integrin deficiency did not compromise effective migration 

from multicellular spheroids (Extended Data Fig. 2f). 
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Together, these findings support the concept that in mammalian mesenchymal 

cells the availability of integrins determines the motility programs17. Mesenchymal-like 

migration of fibroblasts and some cancer cell types results from elongated spindle-

shaped morphology, focalized adhesion sites, and high traction force towards the ECM 

whereas low integrin availability generates weak mechanotransduction by means of 

poorly focalized adhesion sites and actin cytoskeleton, similar to leukocytes and 

otherwise adhesive cells moving in non-adhesive 3D environments9,10. 

As confirmatory model, integrin-expressing (Extended Data Fig. 3a, b) but 

integrin-independent migrating Molt-4 human T lymphoma cells developed amoeboid, 

rounded shape with an elongated uropod, migration speed between 2 to 4 µm/min and 

directional persistence in both untreated control conditions or in the presence of mAb 

4B4 and cRGD interfering with β1 and aVβ3 integrins, respectively (Fig. 1e, f, 

Extended Data Fig. 3c, d). These results confirm for a 3D ECM model that moving cells 

possess integrin-independent interaction mechanisms with fibrillar collagen to maintain 

migration.  

We explored alternative collagen receptors12 that might compensate the loss of 

integrin-mediated adhesion and migration in MV3 cells, including syndecan-1, 

discoidin domain receptors (DDR) 1 and 2, and proteoglycan CD44. DDR-1 and -2 or 

syndecan-1 were not expressed by MV3 cells after culture in 3D collagen matrix and 

interference with integrins (Extended Data Fig. 3e, f). CD44 was expressed, however 

CD44 perturbing antibody Hermes-1 did not affect the migration of MV3 cells after β1/ 

β3 integrin knockdown in 3D fibrillar collagen (Extended Data Fig. 3g, h). These data 

argue against an important role of these receptors in mediating amoeboid movement 

in MV3 cells. 

Multi-enzyme removal of surface glycans 

Besides cell surface receptors, the surface glycocalyx can interact with proteins 

and other materials, through carbohydrate-binding domains18 or unclassified ionic and 

non-ionic bonds providing generic stickiness19. We therefore hypothesized that non-

specific low-affinity interaction of mammalian cells with collagen fibers could be 

mediated by the glycocalyx20-22 and/or even non-adhesive 3D cell intercalation11,23.  
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In mammalian cells, the glycocalyx forms a thick, polar layer, which is composed 

of various classes of glycoconjugates, that are directly or indirectly coupled to the cell 

membrane24. These molecules include glycosaminoglycans (GAGs) chains of cell 

surface proteoglycans including heparan sulfate and chondroitin sulfate and 

glycoproteins and glycolipids containing N- and O- linked glycoconjugates (Extended 

Data Fig. 4a)25. Highly sulfated GAG side chains of proteoglycans are known to interact 

with most ECM components, including fibrillar collagen and fibronectin26. Depending 

on the cell type, the glycocalyx may project hundreds of nanometers to several 

micrometers4,27, and transmission electron microscopy analysis of MV3 cells 

demonstrated that these cells expressed a thick glycan layer at the cell surface of 

approximately 200 nm in thickness (Fig. 2a, b, Extended Data Fig. 4b). 

To address the role of surface glycans in cell migration, protein- and lipid-linked 

glycoconjugates were enzymatically removed from the surface of live cells by a two-

step glycosidase treatment. The enzymatic digestion combined hyaluronidase, 

heparitinase, chondroitinase and neuraminidase with galactosidase, the latter 

hydrolyzing β-1,4 coupled galactose residues in N- and O-linked glycans and 

glycolipids, lowered cell surface heparan- and chondroitin sulfate by ~98% and 

dermatan sulfate by ~95% (Extended Data Fig. 4 c). When combined with sialic acid 

removal by neuraminidase, this treatment resulted in reduction of sialic acid residues 

by ~80% in MV3 control and β1/β3KD cells, by ~95% in Molt-4 cells (Extended Data 

Fig. 4c) and an exposure of subjacent β-1,4 coupled galactose residues (Fig. 2c, 

Extended Data Fig. 4d; step 1 “P/N”). Additional treatment with β1-4 galactosidase 

strongly reduced the glycocalyx thickness compared to untreated control cells (Fig. 2b) 

and removed β-1,4 coupled surface galactose by >90% in MV3 control and β1/β3KD 

cells, >98% in MEF β1-/- and >94% in Molt-4 cells (Extended Data Fig. 4d; step 2 

“P/N/G”) without negatively impacting cell viability (Extended Data Fig. 4e). The loss 

of cell surface β-1,4 galactose was maintained for at least 6-9h (MV3), 24-92 h (MEF 

β1-/-) and 5-6 h (Molt-4) followed by a stepwise recovery (Extended Data Fig. 4f, g). 

Likewise, during the recovery, the cells showed consistent viability (Extended Data Fig. 

4h). 

To verify that the digestion procedure was non-toxic and further did not 

compromise the basic migration ability through integrins, MV3 control cells expressing 
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β1/β3 integrin after enzymatic digestion (P/N/G) together with non-inhibitory cRAD 

showed normal baseline migration and mesenchymal phenotype (Fig. 3a-c). Likewise, 

β1-/- but β3 integrin-expressing MEFs developed similar morphological phenotypes 

and unperturbed migration speeds after enzymatic digestion compared with β1+/+(fl/fl) 

MEFs (Fig. 3d versus 1c). These data indicate unperturbed migration and, hence, cell 

viability and cytoskeletal activity after glycosidase treatment.  

Surface-glycan dependent cell migration 

While mesenchymal migration of integrin-competent control cells was unaffected, 

combining glycan removal and interference with integrin expression severely 

compromised cell migration and persistence in 3D collagen lattices across cell models. 

Glycan removal immobilized all cells, despite ongoing cytoskeletal activity (“running on 

the spot”), irrespective of whether integrin-independent baseline migration was slow in 

MV3 (Fig. 3a-c, Supplementary Video 2, 3), intermediate in β1-/- MEFs (Fig. 3d, 

Supplementary Video 4) or fast in Molt-4 cells (Fig. 3e, Supplementary Video 5). 

Glycan removal was further accompanied by compromised directional persistence 

(Extended Data Fig. 5b-d) and cell elongation (Extended Data Fig. 5e, f). Cells 

remained immobile for time periods of 6h (MV3), 24h (MEF) or 5h in Molt-4 cells, after 

which they gradually regained migration ability (Extended Data Fig. 5a) and β-1,4 

galactose on the cell surface (Extended Data Fig. 4f, g). Notably, the enzymatic 

removal of GAGs and neuraminic acids alone (P/N) did not influence migration of MV3 

β1/β3KD cells and β1-/- MEFs (Fig. 3c), whereas the migration of Molt-4 cells was 

partly compromised (Fig. 3e, P/N). This indicates cell-type specific use of glycan 

subtypes for maintaining migration28. 

We next sought to address whether the glycan-dependence of cell migration is 

relevant in collagen-rich interstitial tissue in vivo. MV3 β1/β3KD cells were additionally 

pretreated with integrin-blocking mAbs 4B4 and 17E6, injected into the deep dermis of 

nude mice and monitored by intravital microscopy for up to 6h (Fig. 3f). Whereas MV3 

vector control cells developed spindle-shaped morphology (Fig. 3g, Extended Data 

Fig. 5g, A, B), integrin targeting caused rounded morphology (Fig. 3g, Extended Data 

Fig. 5g, C, D) and blebbing movement in vivo (Fig. 3h, Supplementray Movie 6). These 

data indicate that lowering integrin availability in mesenchymal cells results in 

amoeboid movement irrespective of 3D environments in vitro, including microfluidic 
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channels29, fibrillar collagen8 as well as interstitial tissue in vivo. However, when 

surface glycans were removed before injection into the mouse dermis, MV3 β1/β3KD 

cells underwent near-complete migration arrest (Fig. 3g, h), but maintained oscillatory 

shape change as an indication for unperturbed viability (Extended Data Fig. 5g, E, F, 

Supplementary Video 6). Thus, an intact surface glycocalyx is required to maintain 

amoeboid migration in collagen-rich tissue in vitro and in vivo when integrin functions 

are perturbed.  

Glycan-mediated attachment forces in the pN range 

 
To address directly whether the glycocalyx functions as adhesion system, atomic 

force spectroscopy (AFS) was used to probe the binding of synthesized glycan 

polymers and live cells to fibrillar collagen. The tip of the cantilever was functionalized 

with simple-structured amylose and cellulose that lack modifications such as sulfation 

or acetylation and the forces to disrupt the bonds upon cantilever retraction were 

recorded (Extended Data Fig. 6a). With increasing amylose density on the cantilever, 

the binding to collagen was dose-dependently strengthened (Fig. 4a, Extended Data 

Fig. 6b; upper graph). Besides background-level attachments (40-120 pN), amylose or 

cellulose also enabled stronger bonds with unbinding forces reaching 300-800 pN (Fig. 

4a, b, Extended Data Fig. 6b). Effective interaction of amylose with immobilized 

collagen was confirmed by surface plasmon resonance detection (Extended Data Fig. 

6c). After engagement, bonds between amylose and monomeric collagen were stable 

for >15 min, irrespective of the applied amylose concentration (Fig. 4c, Extended Data 

Fig. 6d). A wash-out was applied to release amylose from the interaction (Extended 

Data Fig. 6d), demonstrating reversibility of binding. Thus, multivalent polysaccharides 

which lack charged side chains effectively adhere to monomeric and fibrillar collagen. 

To determine binding forces between the glycocalyx and fibrillar collagen by a live-cell 

strategy, single-cell AFS was applied. Individual MV3 or Molt-4 cells were mounted to 

the tip of the cantilever and binding forces between cell and substrate were recorded 

upon cantilever retraction (Fig. 4d, Extended Data Fig. 6e). To probe both fast and 

slow bond formation with collagen fibrils independently, interaction durations ranging 

from 0.5 to 60 s (MV3 cells) and 0.5 to 20 s (Molt-4 cells) were applied. Sub-second 

contacts with defined interaction pressure typically enable rapid adhesion mediated by 

the cell surface, whereas longer interaction times are expected to additionally engage 
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more complex cytoskeletal remodeling and secondary receptor aggregation30,31. In 

MV3 control cells expressing integrins, short interaction times (0.5 s) enabled variable 

interaction forces ranging from 600 pN up to 2.8 nN for individually probed cells (Fig. 

4e, f, Extended Data Fig. 6f; 0.5 s contact time). In contrast, Molt-4 cells expressing 

integrins showed a narrow range of interaction forces, from 350 pN up to 1 nN for 

individually probed cells (Extended Data Fig. 7a; 0.5 s contact time). In MV3 cells 

stepwise increase in contact time caused elevated peak forces of collagen binding, 

which was less pronounced in Molt-4 cells (Fig. 4f, Extended Data Fig. 6f, 7a; 20 s 

contact time). After interference with integrins MV3 β1/β3KD cells were unable to 

mount very high (>1 nN) but retained moderate peak forces that reached 500-800 pN 

(Fig. 4e, f, Extended Data Fig. 6f; 0.5 s contact time) and underwent weak adhesion 

strengthening after 60 s contact time (Extended Data Fig. 6g). In Molt-4 cells peak 

forces remained constant even after blockage of integrins (Extended Data Fig. 7a). 

Additional glycosidase treatment in MV3 β1/β3KD cells resulted in a substantial further 

reduction of peak force, which was even more pronounced in Molt-4 cells (Fig. 4e, f, 

Extended Data Fig. 6f, 7a; 0.5 s contact time). Diminished adhesion after glycosidase 

treatment was time-dependent for MV3 β1/β3KD and Molt-4 cells and reverted after 

20 s contact time in MV3 β1/β3KD cells (Fig. 4f, Extended Data Fig. 6f, 7a). The time 

dependence of peak force suggests slow adhesion strengthening, such as by glycan 

residues very near the plasma membrane which persisted after enzymatic treatment 

(compare Fig. 2a, b). These data indicate that the glycocalyx supports fast binding 

(MV3 cells) and slightly prolonged binding (Molt-4 cells) to collagen in the pN range 

independent of integrin-collagen interactions. 

To test, whether the glycocalyx engages with substrate other than collagen BSA was 

used as non-specific ligand. Whereas integrins did not favor cell binding to BSA, 

glycans supported interaction of MV3 control, MV3 β1/β3KD and Molt-4 cells to BSA 

with forces similar to collagen binding (Fig. 4g, Extended Data Fig. 6h, 7b). This 

implicates the glycocalyx as an adhesion system to ECM and other substrates.  

Glycan-mediated interactions to collagen fibrils 

 
We finally aimed to identify the cell contact structures mediated by surface 

glycans towards collagen fibers and first classified the protrusion types in control cells 

and cells after limiting integrin and glycan availability. Cells with polarized elongated or 
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rounded morphology developed either (i) pointed actin-rich pseudopod- and filopod-

like extensions or (ii) bleb-shaped, rounded protrusions in a cell-type dependent 

manner (Fig. 5a). After targeting integrins and converting from elongated to rounded 

morphology MV3 cells preferentially developed bleb-like protrusions (Fig. 5a, b, 

Supplementary Video 7), and this was similar to the bleb-rich morphologies of 

untreated migrating Molt-4 cells (Fig. 5b, Supplementary Video 8). By contrast, 

migrating β1-/- MEFs predominantly formed filopod- and bleb-like protrusions (Fig. 5a, 

b). Notably, both well-developed blebs (MV3, Molt-4) and filopod-like protrusions 

(MEFs) were diminished after additional glycan removal (Fig. 5a, b, Supplementary 

Video 7, 8), indicating that both protrusion types depend on an intact glycocalyx.  

To identify the topologies and molecular organization of glycocalyx-mediated 

interactions to collagen fibers, we performed 3D confocal microscopy in fixed cells after 

integrin targeting and detected the distribution of surface glycans by extracellular 

applied lectins (ConA or MAA), together with the underlying actin cytoskeleton and the 

position of collagen fibers identified by reflectance. Filopod-like protrusions formed a 

linear glycan-rich interface along collagen fibers (Fig. 5c, d, left panels). Likewise, cell 

blebs were covered by a non-focalized glycan layer and formed complex surface 

topologies in contact with collagen fibers (Fig. 5c, d, right panels). Unexpectedly, at 

confocal microscopic resolution, the lectin signal surrounding bleb-like protrusions 

locally overlapped with cross-sectioned fibers in MV3 (Fig. 6a, upper and middle panel; 

solid arrows) and Molt-4 cells (Extended Data Fig. 8a, upper and middle panel; solid 

arrows). We applied quantitative image analysis of the position of collagen fibers 

relative to the outer rim of the glycocalyx and identified an overlap range of 50 to >200 

nm in depth (Fig. 6b, c, Extended Data Fig. 8b), and this overlap was ablated after 

glycan removal (Fig. 6c, Extended Data Fig. 8b). As outcome, small blebs resided 

adjacent to collagen fibrils without colocalization (Fig. 6a, lower panel; Extended Data 

Fig. 8a, lower panel; dashed arrows). This indicates that the glycocalyx provides very 

tight apposition or even superimpose with the ECM structures.  

To detect the 3D topologies of glycan-mediated contacts at high resolution, beyond the 

diffraction limit of light microscopy, we used scanning electron microscopy to visualize 

the surface of cells located inside the collagen matrix, by mechanically separating the 

matrix at mid-level (Fig. 7a). Blebs in direct contact with a collagen fiber formed 
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complex-shaped indentations (Fig. 7b, left panel; arrowheads in regions 1-5), whereas 

contact-free blebs remained spherical and without indentation (Fig. 7b, left panel; 

arrows in region 6). The “grip-like” tight interphase between cell surface and collagen 

fibrils corresponded to a contact area ranging from 0.18 up to 0.29 µm2, calculated 

from the bleb diameter, fiber caliber and indentation depth, and the length of the 

interactions (Fig. 7c, d). Notably, these interactions withstood mechanical processing 

of the collagen lattice during sample preparation in most cells (Fig. 7e; yellow colored 

area). However occasional disruptions of the interaction uncovered a half-cylindrical 

grove matching the orientation and calibre of the displaced fibril (Fig. 7e, left panel; 

arrowheads), thus confirming the curved shape and otherwise tight submicron scaled 

apposition of the cell surface to the fibril ("nanogrips"). After enzymatic glycan removal, 

the nanogrips were perturbed in shape and lacked tight folding but instead showed a 

flattened, weakly concave area adjacent to the fiber (Fig. 7b, right panel; arrowheads 

in regions 1-6 and 7e, right panel; yellow colored area). This data indicates a previously 

unappreciated scaffold function of the glycocalyx, mediating grip-like membrane 

topologies towards irregular-shaped extracellular structures (Fig. 7f).  

Discussion 

These results identify the glycocalyx in mediating low-to-moderately adhesive 

mechano-coupling in the pN force range and cell migration in 3D ECM, and neither of 

these functions depends on integrins. Glycan-mediated substrate interactions consist 

of linear membrane appositions to collagen fibrils of finger-like protrusions or curved 

membrane indentations across or adjacent to blebs (Fig. 7g). The graded transition 

between migration modes after interference with integrins and surface glycans 

indicates that integrin-mediated high- and glycan-mediated low-adhesive interactions 

coexist substitute for each other during migration and support migration plasticity3. 

To detect the adhesion forces provided by surface glycans and simultaneously 

minimize overlapping integrin-mediated attachment, we antagonized integrin functions 

in adhesion and migration by combining downregulation, antibody and small molecule 

targeting, or genetic deletion. The obtained force spectra indicate that glycan- and 

integrin-mediated mechanocoupling in mesenchymal cells is additive and occurs in 

parallel, with ~50% of adhesion to collagen mediated by β1 and β3 integrins, ~30% by 

the glycocalyx, and residual attachment by yet unidentified bonds.  
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Integrin-mediated adhesions transmit strong mechanotransduction which 

underlie long-range ECM deformation and stiffening, and both are hallmarks of 

mesenchymal migration32,33. Strong adhesion in the nN range and spindle-shaped cell 

elongation were lost after inhibiting integrin functions but filopod- and bleb-like 

protrusions persisted and maintained polarization and movement in rounded cells, 

similar to leukocytes and mesenchymal cells moving within engineered non-adhesive 

environments without engaging integrins9,29. Thus, glycan-based adhesions towards 

collagen fibrils become apparent as a secondary actin-rich adhesion system when 

integrins are downregulated or disabled. Surface glycans provide a very tight interface 

between the cell membrane and hydrophilic surfaces, here collagen fibrils which is 

mechanically sufficient to mediate cell migration, and diverse physicochemical 

interaction may be at work, including electrostatic bonds, hydrogen bonds, Van der 

Waals forces19,34 and, possibly, Casimir forces35.  

The resulting lattice-like bonds were associated with at least two distinct 

protrusion types and topologies including filopod-like linear-shaped appositions or 

curvature-based nanogrips. Both interaction types maintain a glycan-rich lattice 

between the cortical actin and collagen fibrils and both types were lost after enzymatic 

removal of the glycocalyx. In adhesive cells of mesenchymal differentiation, membrane 

folds of similar topology were shown to provide 3D shape alignment, intense integrin 

clustering to fibrillar collagen and strong force transmission36, whereas the here 

described glycocalyx-mediated membrane folds are developed by cells after integrin 

interference and lack focalized adhesion and cytoskeletal organization. Thus, both 

integrins and the surface glycocalyx can induce membrane folds to engage with 

collagen fibrils36. Integrin- and glycocalyx-dependent membrane folds likely represent 

complementary molecular principles to provide an adaptive range of adhesive 

membrane topologies that vary in shape, strength, lifetime and ECM contexts. Whether 

adhesions mediated by glycans also contribute to friction, by mediating bonds between 

flat surfaces and the cortical actin cytoskeleton and which maintains migration in other 

systems9,10,23, remains to be determined. Similarly, the link between glycan-mediated 

membrane apposition to collagen fibrils and other cell-surface dependent physical 

interactions with ECM discontinuities, such as elbowing, intercalation and propulsive 

shape change11, remain to be clarified. Since integrin- and glycan-mediated 

mechanotransduction likely occur in parallel, modulation of each adhesion system may 
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adjust cell-matrix interaction and migration programs, including the mesenchymal-to-

amoeboid transition.  

Materials and Methods 

Cells. Metastatic human MV3 melanoma cells stem from a spontaneous lung 

metastasis after subcutaneous implantation in nude mice37. For generation of β1/β3 

integrin double knockdown cells shRNA sequences targeting ITGB1 (β1 integrin; 

AGCCACAGACATTTACATTAAA) and ITGB3 (β3 integrin; 

AAGTCACTTTCTTCTTCTTAAA) for gene silencing by RNA interference were 

cloned into the lentiviral vector pLBM either containing a puromycin (p-puro) and a 

neomycin (p-neo) cassette. Lentiviral particles were produced and concentrated by 

ultracentrifugation, as described38. MV3 parental cells were infected with p-puro and 

p-neo viruses (vector controls), or with ITGB1 (on p-puro) and additionally ITGB3-

targeting (on p-neo) pLBM viruses. Stable MV3 β1/β3KD cells were maintained in 

medium supplemented with puromycin (5 µg/mL) and G418 sulfate (400 mg/mL). 

β1KD efficiency determined by Western blot using detection Ab EP1041Y (10 µg/mL) 

from whole cell lysates or flow cytometric analysis of β1 integrin surface levels. For 

interference with integrin-mediated adhesion for migration and force spectroscopy of 

collagen, anti- β1 integrin mAb 4B4 (10 µg/mL) and cRGD peptide (2 or 10 µM) in 

addition to stable β1/β3 integrin knockdown were used. 

Stable Lifeact-eYFP expressing MV3 melanoma cells were obtained as follows. A 

fragment spanning the pMSCV-hygro (Addgene, 634401) Hygromycin B resistance 

cassette was amplified by PCR (primer sequences available upon request) and 

inserted into KpnI-digested pLenti6.2/V5-DEST (Invitrogen, V36820), replacing the 

Blasticidin resistance cassette (pLenti6.2_Hygro/V5-DEST). A BglII-NotI fragment, 

containing the Lifeact-eYFP open reading frame, was then isolated from plasmid 
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pEYFP-N1-ΔATG-Lifeact39 and cloned into BamHI/NotI-digested pENTR4 

(Addgene). Using Gateway recombinase-mediated transfer the pENTR4-Lifeact-

eYFP insert was subsequently introduced into pLenti6.2_Hygro/V5-DEST. Stable 

Lifeact-eYFP expressing MV3 cells were obtained following lipofectamine 2000 

transfection of the resulting plasmid, subsequent hygromycin B (Invitrogen) selection 

(200 μg/mL) and final fluorescence-activated cell sorting.  

Immortalized floxed β1 (β1(fl/fl)), β1-/- and stably full-length β1/GFP fusion protein 

expressing murine embryonic fibroblasts (MEFs) were obtained as described40 and 

maintained in culture at 33 °C. Expression levels of β1 integrins in floxed β1 (β1(fl/fl)) 

cells and the loss of β1 expression in β1-/- cells were monitored by flow cytometry 

with mAb KMI6 (Extended Data Fig. 2a). For β1 integrin rescue experiments, MEFs 

stably expressing full-length β1/GFP fusion protein41 (Extended Data Fig. 2b) were 

analyzed. 

The human T lymphoma cell line Molt-4 was kindly provided by Blanca Scheijen, 

Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, 

Nijmegen, The Netherlands. Unless stated otherwise, MV3 and Molt-4 cells were 

maintained in RMPI 1640 (Gibco, 21875-034) or DMEM (Gibco, 11965-092) (MEF) 

containing 10 % fetal bovine serum (FBS, PAA Laboratories, A15-101), 

penicillin/streptomycin 100 U/mL penicillin and 100 μg/mL streptomycin (Gibco, 

15140-122), L-glutamine (4mM, PAN Biotech, P04-80100), sodium pyruvate (1 mM, 

Invitrogen, 11360) and detached from the culture plate by EDTA (2 mM, PAN 

Biotech, P10-026500) in 1X PBS (Gibco, 14040-117). Cell lines were tested routinely 

for mycoplasma contamination. 

Animals. Balb/c nu/nu mice (CAnN.Cg-Foxn1nu/Crl) were purchased from 

Charles River, Germany. 
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Glycan removal. Adherent cells from subconfluent cultures (MV3, MEF) were 

detached using 2 mM PBS/EDTA. Molt-4 suspension cells were harvested directly. 

After washing, cells in RPMI1640 with 1% v/v FBS medium were incubated with 

glycosidase cocktail (P/N), containing hyaluronidase at 275-500 U/mL (Sigma 

Aldrich, H3506), heparitinase I at 10 mU/mL (Seikagaku, 100704), chondroitinase 

ABC at 100 mU/mL (Sigma Aldrich, C3667) and neuraminidase type V at 100 mU/mL 

(Sigma Aldrich, N2875) (37 °C, 5 % CO2, pH 7.0-7.4, 6 h). P/N targets distal 

glycosaminoglycan chains of proteoglycans (P) and terminal sialic acids / neuraminic 

acids (N) of glycoproteins and glycolipids. Alternatively, P/N was supplemented with 

β1,4 galactosidase at 150 mU/mL (QA-Bio, E-BG07), cleaving non-reduced terminal 

β1-4 galactose (G) of glycoproteins and glycolipids. Cells were used for functional 

studies without washing steps to prevent the loss of dead cells by centrifugation.  

Because latent cytotoxicity may negatively impact cell adhesion and migration, cell 

viability was routinely monitored. After glycan removal cells were collected without 

centrifugation, stained by propidium iodide (2.5 µg/mL), and analyzed by flow 

cytometry. Viability was further derived from intact nuclear morphology after fixation 

in situ and DAPI staining. Strategies to delay glycan recovery, including inhibition of 

protein export by brefeldin A and prevention of protein glycosylation by tunicamycin, 

directly impacted migration efficiency and mode (data not shown), which precluded 

their use.  

Flow cytometry.  Flow cytometry was performed to detect integrins and 

glycans at the cell surface. Cells were isolated from liquid culture using detachment 

by PBS/EDTA, washed in 1X PBS and transferred into 96 well plates, spinned down 

by centrifugation at 220 g, 5 min and washed three times in 1X PBS. Washing steps 

were excluded for cells used in glycosidase treatment experiments to prevent the 
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loss of dead cells by centrifugation. For labelling of glycosaminoglycans (GAG), cells 

were incubated with anti-GAG single-chain antibodies from periplasmic fractions 

(HS4C3, 5 µg/mL in PBS; LKN1 and I03H10, 20 µg/mL in 1X PBS) for 45 min at 20 

°C. Following three washing steps in PBS, 4 °C, cells were incubated with secondary 

antibody (P5D4, 10 µg/mL in PBS) from hybridoma culture supernatant for 30 min at 

4 °C on ice, washed and incubated with the third antibody, goat-anti-mouse IgG 

Alexa Fluor 488 (10 µg/mL) for 30 min at 4 °C on ice. For lectin labelling, cells were 

incubated with MAA-biotin (100 µg/mL) in 1X PBS for 20 min at 4 °C on ice. 

Following the three washing steps in PBS, 4 °C, cells were incubated with 

Streptavidin-Alexa Fluor 488 (Invitrogen, S32354, 10 µg/mL) and incubated for 30 

min at 4 °C on ice. Bioorthogonal metabolic labeling was used to detect cell surface 

sialic acids / neuraminic acids as described42. Cells were cultured for 6 days in the 

absence or presence of 50 µM peracetylated N-azidoacetylmannosamine 

(Ac4ManNAz). Medium and compound were changed after 3 days. Adherent cells 

were detached using 2 mM PBS/EDTA, washed in 1X PBS three times at 220 g for 5 

min, resuspended in 1X PBS and incubated in 60 µM biotin-conjugated Bicyclo 

[6.1.0] nonyne (BCN-biotin) or buffer for 1h at 20 °C, washed three times, 

resuspended in ice-cold PBS containing Streptavidin-Alexa Fluor 488 (Invitrogen, 

S32354, 10 μg/mL) and incubated for 30 min at 4 °C. Cells were washed by 

centrifugation, resuspended in ice-cold PBS and transferred into conical FACS tubes 

(Micronic, M32,000). For harvesting cells from 3D collagen lattices, the collagen 

matrix was dissolved using 1000 U/mL collagenase I (Sigma Aldrich, C0130) for 30 

min, 37 °C and cells were obtained without washing steps to prevent the loss of dead 

cells by centrifugation. Cell-associated fluorescence was measured by flow cytometry 

(FACSCalibur, BD Biosciences) and data were analyzed using FCS Express 

(Version 5 and 6 Research Edition; De Novo Software, Los Angeles, CA). Per 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.12.149096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.12.149096
http://creativecommons.org/licenses/by/4.0/


 
 

16 

sample, 10,000 morphologically intact and alive cells were gated (blue boxes) based 

on forward and sideward scatter (FSC/SSC plot) and propidium iodide negativity 

(FSC/Propidium iodide plot) was used to exclude unspecific fluorescence from the 

final signal intensities (Extended Data Fig. 1g). The same gating strategy was used 

to quantify the fraction of viable cells, after glycosidase treatment. 

Transmission electron microscopy (TEM). Detection of the surface 

glycocalyx using TEM was performed largely as described43. MV3 cells were 

detached from the culture plate (EDTA), pelleted and fixed with 0.0075 % w/v 

Ruthenium Red (Sigma Aldrich, R2751) containing 3% v/v glutaraldehyde (Roth, UN-

32658 III) for 1h at RT and 1% v/v osmium tetroxide (Roth, UN-24716.1 I) for 2h at 

RT in 0.1 M PHEM buffer (PIPES, HEPES, EGTA, MgCl2). Cells were washed with 

0.1 M PHEM buffer, resuspended in 0.1 M PB and centrifuged (15,871g, 30 sec). 

The supernatant was discarded and pre-warmed 4 % w/v agar was applied to the cell 

pellet followed by an incubation (2-5 min, 45 °C). After centrifugation cell pellets were 

chopped up into slices and incubated in 2 % v/v paraformaldehyde / 0,1 M PB (2 h, 

RT). Samples were rinsed in 0.1 M PB, dehydrated through a graded ethanol series 

(50 %, 70 %, 80 %, and 96 % respectively for 5 min each and 2x 15 min in ethanol 

100 % p.a.) and embedded in an epoxy resin. Samples were sectioned (50-80 nm), 

stained with 4% v/v uranyl acetate (20 min, RT), washed with Mill-Q, stained with 

lead citrate solution (2.66% w/v lead nitrate and 3.52 % v/v sodium citrate, 10 min, 

RT) again washed with Mill-Q, dried and examined by TEM (Jeol 1010, Jeol USA 

Inc., Peabody, USA). Statistical analysis was obtained using the non-paired t-test, 2 

tailed. 

Scanning electron microscopy (SEM) of 3D cell-ECM contacts. MV3 cells 

in 3D bovine fibrillar collagen after 90 min culture (37 °C, 5% CO2) were fixed in 2% 
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glutaraldehyde in 0.1M Cacodylate buffer for 1h at 37 °C, washed, post-fixed for 1h in 

1 % OsO4 in 0.1M Cacodylate buffer, dehydrated by a graded ethanol series and 

critical point dried. Samples were mounted on stubs, upper part of collagen was 

mechanically pulled off with a tweezer, samples were coated with 5nm Chromium 

(Quorum Q150TS, Quorum Technologies Ltd, East Sussex, UK) and analyzed by 

SEM (Sigma 300, Carl Zeiss AG) operating at 3 kV. 

The type and geometry of the interactions between cell surface and collagen fibers 

was quantified by digital image segmentation using Fiji. To determine the contact 

area, the lateral surface area of the fiber was calculated, and the bleb-free fiber area 

subtracted. Statistical analysis was obtained by the non-parametric, non-paired, 

Mann-Whitney t-test, 2 tailed. 

Atomic force Spectroscopy (AFS). The forces between carbohydrate 

polymers and collagen fibers were determined by atomic force spectroscopy (AFS). 

Flat collagen lattices (1.6 mg/mL, 40 µm thick) mounted on a 1.5 mm thick glass 

cover slip (Plano, L43382) were probed using a NanoWizard AFM (JPK Instruments) 

mounted on an Axiovert 200 inverted microscope (Carl Zeiss AG). 

The cantilevers were functionalized with either bovine serum albumin (BSA, 3%, 2 h, 

20 °C, Sigma-Aldrich, A7906), Bis-NHS-polyethylen glycol (5 % w/w, 200,000 g/mol, 

Nektar), amylose (carboxymethyl amylose, Sigma Aldrich, C4947) or cellulose 

(carboxymethylcellulose, Sigma Aldrich, 419338) at the indicated weight percentage. 

After UV irradiation (10 min), the silicon nitride cantilevers were functionalized with 

(3-glycidyloxypropyl)trimethoxysilane (98%, Sigma Aldrich, 440167) at 80 °C for 30 

min, incubated in sodium-borate buffer for one hour at RT, functionalized with NH2-

PEG(3000)-COOH (50 mM, Rapp Polymers, 133000-20-32) in sodium borate buffer 

for 1h at RT. Then 1 % (w/w) BSA was coupled to the PEG (3000) for 1h at RT with 
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1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 100 mM, Sigma Aldrich, 

39391) and N-hydroxy-succinimide (NHS, 100 mM, Sigma Aldrich, 130672). The 

measurement was performed without BSA in solution. After UV irradiation (10 min), 

silicon nitride cantilevers (MLCT, Veeco Probes) with a spring constant of 60 pN/nm 

were functionalized by N1-(3-trimethoxysilylpropyl)diethylenetriamine (30 min, RT, 

Sigma Aldrich, 06666) followed by heating (30 min, 80  °C), incubation in sodium 

borate buffer (60 min; RT), and either Bis-NHS-PEG solution, amylose, or cellulose 

solution in N-hydroxysuccinimide (NHS; Aldrich; 100 mM) and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC, Sigma; 100 mM, 90 min, RT)44. System 

position and sensitivity were calibrated before each measurement, as described45.  

The spring constants ranged from 50 to 80 (median 60) pN/nm (thermal noise 

method). All interaction measurements were performed in PBS/BSA (0.4%) at RT 

(set point of 200 pN for approach curve; dwell time 0.1 s). For each measurement, 

1,600 to 10,000 force curves were obtained for a retract velocity of 10 µm/s from 

different spots within a 40 x 40 µm collagen surface area. Statistical analysis was 

obtained by the non-paired Mann-Whitney Wilcoxon test, 2 tailed using software 

package R, version 1.22 (R Foundation for Statistical Computing). 

AFM based single cell force spectroscopy (SCFS). The interaction strength 

between cell surface glycans and 3D collagen I fibers was determined by AFM based 

single-cell force spectroscopy (AFM-SCFS), using a combined Catalyst AFM (Bruker) 

and inverted 3-channel Leica TCS SP5 II confocal laser-scanning microscope 

equipped with 10× 0.4 NA, 20× 0.70 NA, and 40× 0.85 NA air objectives and a 

brightfield camera (ORCA-05G, Hamamatsu).  

Bovine collagen I (1.6 mg/mL) and BSA (2% in TSM solution, containing 20 mM Tris-

HCl, 150 mM NaCl, 1 mM CaCl2, 2 mM MgCl2 at pH 8.0; incubated 24h at 4 °C) were 
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used as substrates and prepared in Willco dishes (35 mm, Willco Wells B.V., HBSt-

3522) as described46. Tip-less AFM cantilever (type D, Bruker, NP-O) with a nominal 

spring constant of 0.06 Nm-1 were coated with ConA (Sigma, C7275)52 and applied 

for single cell adhesion as published47. Cells were prepared as described above and 

maintained in medium containing 10 mM HEPES (Thermo Fisher Scientific, 

15630080) to keep the pH constant between 7.4 and 7.5. Cell measurements were 

performed at 37 °C. Adhesion of the cantilever-bound cell to different substrates was 

measured after pushing the cell towards the substrate, applying 2 nN force for 

contact times varying between 0.5 to 60 s. Subsequently, the cell was retracted at 5 

µm/s and allowed to recover for a time period equal to the precedent contact time47.  

The maximum detachment force F [max] was calculated from the peak of the 

retraction curves to background level. Mean values were compared using a non-

paired t-test, 2 tailed. The sequence of contact time measurements was varied and 

performed in different areas of the substrate. To rule out intermittent parameters, 

such as receptor activation, cytoskeletal reinforcement or epitope saturation due to 

receptor shedding, repeated probing conditions on one spot were verified and limited 

to 5 times in a row. AFS analysis was performed described46 using IGOR Pro 6.2 

(Wavemetrics, Portland, USA) and Matlab R2012a and R2018 (MathWorks, 

Massachusetts, USA). 

Intravital multiphoton microscopy and image analysis. All intravital 

imaging experiments were approved by the Ethical Committee on Animal 

Experiments and performed in the Central Animal Laboratory of the Radboud 

University, Nijmegen (RU-DEC 2009-174, 2011-298), in accordance with the Dutch 

Animal Experimentation Act and the European FELASA protocol 

(www.felasa.eu/guidelines.php). Lifeact-eYFP expressing MV3 control and β1/β3KD 
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cells were incubated with glycosidases for 6 h, at 37 °C followed by an incubation 

with adhesion perturbing anti-β1 integrin mAb 4B4 (10 µg/mL) and anti-αV integrin 

mAb 272-17E6 (10 µg/mL). Cells as single cell suspension (2x104 cells in 10 µL) 

were injected into the deep dermis of Balb/c nu/nu mice (Charles River) carrying a 

dorsal skin-fold chamber. To ensure integrin blocking from interstitial fluids, mice 

received i.p. injections of 4B4 (5 µg/g) and 17E6 (5 µg/g) 2 h before cell injection. 

Intravital microscopy was performed 2 h after cell injection on anesthetized mice (1-3 

% isoflurane in oxygen) on a temperature-controlled stage (37 °C). Blood vessels 

were labeled by intravenous injection of AlexaFluor750-labeled 70kD dextran (2 

mg/mouse; Invitrogen). Imaging was performed on a customized near-

infrared/infrared multiphoton microscope (TriMScope-II, LaVision BioTec, Bielefeld, 

Germany), equipped with three tunable Ti:Sa (Coherent Ultra II Titanium:Sapphire) 

lasers and an Optical Parametric Oscillator (OPO). 4D time-lapse recordings were 

acquired by sequential scanning with 960 nm (YFP, 10-20 mW) and 1090 nm (Al750 

and SHG, 30-60 mW) with a sampling rate of 1 frame / 10 min over periods of up to 8 

h. Images were processed using Fiji/ImageJ (http://pacific.mpi-

cbg.de/wiki/index.php/Fiji, ImageJ, U. S. National Institutes of Health, Bethesda, 

USA). Drifts in time-lapse recordings were corrected using the StackReg plugin48. To 

avoid tissue regions perturbed by the injection procedure, migration analysis was 

performed in intact collagen-rich loose connective tissue identified by second 

harmonic generation. Quantitative analysis of tumor cell migration was performed 

using the FIJI manual tracking plugin (Fabrice P. Cordelières, 

rsb.info.nih.gov/ij/plugins/track/track.html). To control for small local tissue drifts, 

particularly important for analyzing the residual migration after glycan removal, 
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movements of 3 tissue structures in close proximity to each analyzed cell were 

recorded and used to correct individual cell migration tracks. 

Statistical analysis. Statistical analyses were performed with GraphPad 

Prism 8 (GraphPad Software, USA), for AFS analysis additionally with software 

package R, version 1.22 (R Foundation for Statistical Computing), IGOR Pro 6.2 

(Wavemetrics, Portland, USA) and Matlab R2012a and R2018 (MathWorks, 

Massachusetts, USA). Flow cytometry analyses were performed using FCS Express 

5 and 6 (De Novo Software, Pasadena, USA). Computer-assisted cell tracking was 

performed using Autozell 1.0 software (Center for Computing and Communication 

Technologies [TZI], Bremen, Germany), Fiji/ImageJ (http://pacific.mpi-

cbg.de/wiki/index.php/Fiji, ImageJ, U. S. National Institutes of Health, Bethesda, 

USA) and the FIJI manual tracking plugin (Fabrice P. Cordelières, 

rsb.info.nih.gov/ij/plugins/track/track.html). T-test and ANOVA were performed after 

data were confirmed to fulfil the criteria using the Shapiro-Wilk normality test, 

otherwise Kruskal-Wallis tests or Mann-Whitney U-tests were applied, and post-hoc 

correction (Bonferroni, Dunn) was performed when multiple samples were compared. 

The sample numbers and applied statistical analyses for all experiments are shown 

in Extended Data Table S1. 

Data availability. All data are available from the authors on request.  

Code availability. The used custom algorithms are available from the authors on 

request. 
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Fig. 1. Conversion to amoeboid migration in mesenchymal tumor cells, fibroblasts and T 
lymphoma cells after interference with integrins. (a) Speed change in MV3 cells by mAb 4B4 or 
β1/β3 shRNA combined with mAb 4B4 and cRGD. Median population speed (single cell tracking, 

observation period 24 h, left panel and 6h, right panel, 38-117 cells, 3 independent experiments). (b) 

Cell morphology, F-actin and β1 integrin distribution (arrowheads) for control and mAb 4B4 treated cells. 

Arrows, direction of migration, based on retraction fibers from the cell rear (asterisks). Bars, 10 µm. (c) 

Median migration speed (23-67 cells, 3 independent experiments) and (d) morphology of wild-type and 

β1-/- MEFs. F-actin (red; grey in insets), collagen fibers (green; reflection signal), and constriction rings 

(arrowheads). Bars, 100 µm. (e) Morphology and (f) median migration speed (73-75 cells, 3 independent 
experiments) of human Molt-4 cells in the absence or presence of mAb 4B4 and cRGD. F-actin (red; 

grey in insets), collagen fibers (green; reflection signal) and direction of migration (arrows). Bars, 20 µm. 

(a) P values, Kruskal-Wallis with Bonferroni post-test and (c, f) Non-paired Mann-Whitney test, 2 tailed. 

Box and whisker plots show 25-75 percentiles (box), the median (middle line) and 5/95 percentiles 

(whiskers). See also Extended Data Fig. 1-3. 
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Fig. 2. Enzymatic removal of the glycocalyx. (a, b) Ultrastructure of the glycocalyx. Glycocalyx 

thickness analysis by transmission electron microscopy (a) and quantitative image densitometry (b). 

MV3 β1/β3KD cells before and after glycan removal with P/N/G glycosidase cocktail followed by glycan 

detection with Ruthenium red staining. Blue dot in (a), plasma membrane. Dashed lines, cross-sections 

perpendicular to the cell surface used for image analysis in (b). Bars, 1 µm (left), 1 µm (middle), 200 nm 
(right). (b) Representation of the means and SD (10 cells, 3 independent experiments), derived from 

densitometry profiles shown in Fig. S4B. (c) Digestion efficacy of surface glycans on MV3, β1-/- MEF 

and Molt-4 cells. β1-4 galactose was detected with Maackia amurensis agglutinin (MAA) and 

fluorescence intensity was assessed by flow cytometry. Means and SEM from 3 (MV3 vector), 7 (MV3 

β1/β3KD) and 3 (MEF and Molt-4) independent experiments. P values (all graphs), (b) non-paired Mann-

Whitney test, 2 tailed and (c) non-paired t-test, 2 tailed. See also Extended Data Fig. 4. 
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Fig. 3. Surface-glycan dependent cell migration in vitro and in vivo.  (a-e) Effects of enzymatic 

surface-glycan removal on cell migration in 3D collagen lattices. Migration rates in 3D collagen matrices 

of MV3 melanoma cells (a-c), murine β1-/- embryonic fibroblasts (d) and Molt-4 cells (e) after treatment 

with glycosidases P/N or P/N/G. Time-lapse sequences (a; bright-field microscopy), path organization 

(b) and single-cell speed distribution or the indicated conditions (c; 38-117, d; 41-83, e; 60-111 cells, 3 

independent experiments). Red lines, medians. (f-h) Impact of surface glycan removal on MV3 cell 

migration in vivo. (f) Workflow of orthotopic injection into the collagen-rich deep mouse dermis followed 

by intravital time-lapse microscopy of Lifeact-expressing MV3 vector control and MV3 β1/β3KD cells 
without or after glycan removal. Bar, 20 µm. (g) Representative zooms of cell morphology and migration 

paths (white lines) over 8-9h time-lapse period. Arrows, direction of migration. Grey arrowhead, 

microparticle released from the cell rear (Asterisk). Bars, 20 (Vector/Iso) and 10 µm (β1/β3KD). (h) 

Migration speed of MV3 β1/β3KD cells additionally treated with mAb 4B4 and 17E6 without or after 

treatment with P/N/G glycosidases (78 cells/condition, 3 independent mice). (c-e, h) Red lines, medians. 

P values (all graphs), non-paired Mann-Whitney test, 2 tailed. See also Extended Data Fig. 4 and 5. 
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Fig. 4. Probing of glycan-binding to collagen fibers and studying the impact of enzymatic 
digestion of the glycocalyx on glycan-mediated cell binding to collagen. Atomic force 
spectroscopy of glycan-binding to collagen fibers. (a) Representation of ‘high-force’ interactions 

above 250 pN with increased coating concentration of amylose. (b) Force distribution for low- and high-

concentration of cellulose. Means and SEM of 1,600 to 10,000 force curves per sample from 3 

independent experiments. P values, non-paired Mann-Whitney Wilcoxon test, 2 tailed. (c) Glycan-
mediated binding affinities to collagen fibers monitored by surface plasmon resonance (SPR). Overlay 

of amylose-collagen I affinity sensorgrams obtained by measurements of changes in the SPR response 

of increased amylose concentrations. 1 representative sensorgram out of 2 independent experiments 

for each amylose concentration and the PEG control. (d-g) Atomic force-based life cell spectroscopy of 

cell-surface glycan-binding to collagen. (d) Coupling of a single cell to AFM cantilever to probe the force 

required for cell detachment F [max] from a 3D fibrillar collagen surface. (e-g) Live-cell atomic force 
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spectroscopy of untreated MV3 control cells, MV3 β1/β3KD cells and MV3 β1/β3KD cells additionally 

treated with P/N/G glycosidases. (e) Force-distance curve of a single force measurement cycle between 

MV3 cell and collagen surface, including start position (I), retraction (II), and detachment phase (III). The 

maximum detachment force exerted on the cantilever F [max] was calculated from the peak to 

background level. (f, g) Interaction forces of MV3 cells to fibrillar collagen I (f) and BSA-coated surface 

(g) after 0.5 s, 1 s, 5 s or 20 s interaction time. Pooled values of maximum retraction forces to a mean 
value shown as Log F [max] of 5 individual measurements per cell (orange lines show means with SEM). 

P values (all graphs), non-paired t-test, 2 tailed. See also Extended Data Fig. 6 and 7. 
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Fig. 5. Cell morphology and cellular interactions to collagen fibers of MV3, MEF and Molt-4 cells 
and the impact of glycan removal. (a) Phenotypes in migrating and non-migrating cells according to 

shape and polarity after 2 of culture in 3D collagen lattices. (b) Occurrence of MV3, MEF and Molt-4 

phenotypes after interference with integrins and surface glycans from 97 (MV3), 100 (MEF) and 92 

(Molt-4) cells (2 independent experiments). Asterisks, amoeboid-rounded subsets. Bars, 20 µm. (c-g) 

Structure and molecular composition of cellular interactions with collagen fibers. MV3 (c) and β1-/- MEF 
(d) cells were fixed after 2h-culture in 3D collagen lattices. (c, left panel) Spindle-like shape of MV3 cells 

and localization of heparan sulphate (HS) at interaction sites with collagen fibers (black arrowheads) 

during migration. HS is accumulated in anterior ruffles and filopodia (inset of individual channels, white 

arrowheads) and the trailing edge (gray arrowheads). Asterisk, deposited material from the cell rear, 

confirming the migratory state. Bar, 10 μm. (c, right panel) Spherical, slowly migrating MV3 cell after 

interference with integrins (mAb 4B4 and cRGD). In fixed cells, concanavalin A stains both plasma 

membrane and intracellular vesicles. Arrowheads, location of collagen fibers, based on the single-
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channel reflection images. Arrows, direction of migration, based on retraction fibers or small particles 

released from the cell rear (asterisks). 1 representative cell for each condition from more than 10 cells, 

analysed in 2 independent experiments. Bars, 5 μm. (d, left panel) Non-focalized distribution of glycans 

(stained by concanavalin A) and heparan sulphate (HS) at the surface of actin-rich filopodia of β1-/- 

MEF cells extending along collagen fibers. 1 representative cell from 4 cells, analysed in 2 independent 

experiments. (d, right panel) Distribution of glycans and HS on actin-rich cell blebs in contact with 
collagen fibers. Central section showing surface ‘roughness’ and tangential top section detecting 

protruding blebs that intercalate between collagen fibers. 1 representative cell from 10 cells, analysed 

in 2 independent experiments. Bars, 5 μm. (e) Length and calculated area of the interface between 

filopodia of β1-/- MEFs and collagen fibers. 1 representative experiment with 28 data points from 10 

cells, pooled from 2 independent experiments. (f) Number of blebs from central sections in the front and 

rear half of 9 analysed cells from 2 experiments, according to the dashed lines in (d, D). (e-g) Red lines, 

medians. P value, non-paired Mann-Whitney test, 2 tailed. 
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Fig. 6. Organization of glycan-dependent cell-matrix interactions. Diffraction-limited confocal 
microscopy of glycan-dependent interactions with collagen fibers. MV3 β1/β3KD cells were non-
treated (a, upper panel w/o digestion, b) or received P/N/G digestion (a, lower panel), embedded in 3D 
collagen and fixed after 90 min for detection of β-1,4 galactose residues (Maackia amurensis 
agglutinin, MAA), F-actin and collagen fibers (reflection). Images represent the xy and yz projections 
from serial z-scans (positions indicated as dotted lines) with relative positions of cross-sectioned fibers 
(numbered 1-3) and cell surface represented as cartoons. Arrows, collagen fibers (green) located 
colocalized with MAA and F-actin-enriched protrusions (blebs, red). Dashed arrows, collagen fibers 
laterally intercalating with the cell surface. 1 representative cell out of 4 cells per condition analyzed in 
2 independent experiments. Bars, 10 µm (overview images), 2 µm (ROIs). Mean densitometry curves 
with SD of MAA or F-actin (red) and collagen fibril intensity (green) based on 20 curves in cross-
sectioned bleb-like protrusions (4 MV3 β1/β3KD cells, 2 independent experiments). (b) Quantification 
the imprint depth of collagen fibers into cell blebs. YZ projection of a MAA (red) and F-actin (cyan) 
positive membrane bleb. Dashed box, region of interest used for densitometry analysis. White traces 
indicate the measuring lines with a constant length of 8 µm and a width of 5 pixels. Bar, 2 µm. 
Representative overlay of intensities alongside the measuring lines in a cross-sectioned MV3 β1/β3KD 
cell bleb for MAA (red), F-actin (cyan) and collagen I (green) including points of maximal (Max) and 
half-maximal (Max1/2) intensities from 2 independent experiments. (c) Median fiber imprint depth, 
based on MAA and F-actin signal, as detailed in (b), from 16 cross-sectioned blebs (4 cells/ condition, 
2 independent experiments). (c) Black lines, medians. P value, non-paired Mann-Whitney test, 2 
tailed. See also Extended Data Fig. 8. 
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Fig. 7. Morphology of glycan-dependent cell-matrix interactions. Scanning electron 
microscopy of MV3 β1/β3KD cells before and after glycan removal with P/N/G glycosidase 
cocktail. (a) Schematic representation of the sample preparation for SEM analysis. (b) 
Morphology of MV3 β1/β3KD cell surface interactions with collagen fibrils without (left panel; 
zoom 1-5 as representative interactions) or after treatment with P/N/G glycosidases (right 
panel; zoom 1-6) in 3D collagen lattices. Deformed contact region between cell membrane 
(colored yellow, arrowheads) and collagen fiber (colored red). (b, left panel; zoom 6) 
Representative position of contact-free blebs with fully spherical morphology for cells without 
P/N/G glycosidase treatment. Bar, 1 µm (b, overviews), 0.5 µm (b, ROIs). (c) Schematic 
representation of the imprint formation between a membrane bleb and a collagen fiber for 
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cells without glycan removal and its loss after interference with cell surface glycosylation. (d) 
Area of membrane-collagen fiber contacts. Box and whisker plots show 25-75 percentiles 
(box), the median (middle line) and and 5/95 percentiles (whiskers). P value, non-paired 
Mann-Whitney test, 2 tailed. (e) ROIs showing collagen fibers which form deep imprints into 
membrane blebs of MV3 β1/β3KD cells (e, left panel, b, left panel; region 1-6) which are 
absent in cells after P/N/G glycosidase digestion (e, right panel, b, right panel; region 1-6). 
Bars, 0.5 µm. (f) Representative ROI showing coexistence of imprints and intercalations in 
MV3 β1/β3KD cells without glycan removal. Bar, 1 µm. (g) Glycans serve as multivalent and 
universal adhesion scaffold. Schematic representation of the glycocalyx- mediated adhesion 
strategies developed by cells after interference with β1/β3 integrin expression and function. 
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