Abstract
Sequence variation is used to quantify population structure and identify genetic determinants of phenotypes that vary within species. In the human microbiome and other environments, single nucleotide polymorphisms (SNPs) are frequently detected by aligning metagenomic sequencing reads to catalogs of genes or genomes. But this requires high-performance computing and enough read coverage to distinguish SNPs from sequencing errors. We solved these problems by developing the GenoTyper for Prokaytotes (GT-Pro), a suite of novel methods to catalog SNPs from genomes and use exact k-mer matches to perform ultra-fast reference-based SNP calling from metagenomes. Compared to read alignment, GT-Pro is more accurate and two orders of magnitude faster. We discovered 104 million SNPs in 909 human gut species, characterized their global population structure, and tracked pathogenic strains. GT-Pro democratizes strain-level microbiome analysis by making it possible to genotype hundreds of metagenomes on a personal computer.
Software availability GT-Pro is available at https://github.com/zjshi/gt-pro.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* e-mail: snayfach{at}lbl.gov; katherine.pollard{at}gladstone.ucsf.edu
Adding supplementary text, figures and tables.