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Abstract: A few animals have been suspected to be intermediate hosts of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scae
single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is
missing. Here, we constructed the single-cell atlas for 11 representative speciesin pets,
livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cellsin
ca was found considerably higher than other species we investigated and
SARS-CoV-2 target cells were detected in multiple cell types of domestic pig,
implying the necessity to carefully evaluate the risk of cats during the current
COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming
intermediate hosts in future coronavirus outbreak. Furthermore, we screened the
expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of
virus target cells. Taken together, our work provides anovel and fundamental strategy
to screen virus target cells and susceptible species, based on single-cell transcriptomes
we generated for domesticated animals and wildlife, which could function as a
valuable resource for controlling current pandemics and serve as an early warning

system for coping with future infectious disease threats.

I ntroduction

In the past two decades, the world has witnessed the outbreak and spread of SARS,
Middle East respiratory syndrome (MERS)', ZIKA? avian influenza and swine
influenza®, which have been posing an urgent challenge to our infectious disease
prevention and control system. Recently, SARS-CoV-2 has caused a highly
contagious pandemic disease named coronavirus disease 2019 (COVID-19), which is
rapidly spreading all over the world and has triggered a severe public health
emergency. As of 3rd June 2020, globally the total number of confirmed COVID-19
cases and deaths has uncontrollably reached 6,287,771 and 379,941, respectively”.
The bat has been proposed to be the original host of SARS-CoV-2°, however, the
transmission from bats to humans requires some intermediate hosts. Severa studies
have linked pangolins, cats, dogs and hamsters with SARS-CoV-2 infection and

transmission® ™, indicating the potential widespread prevalence across animals, which
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would post potential threats to humans. The identification of the origin of this virus
and its path to becoming a deadly human pathogen is needed to understand how such
processes occur in nature and identify ways we can prevent the onset of these types of

global crisesin the future.

Evaluating host susceptibility is critical for controlling the infectious disease. The
screening of virus putative host is usually performed using in vivo assay or
inoculation experiments, which helps to revea the host susceptibility, however, there
are severa limitations: 1) Experiments for some dangerous and infectious viruses
need to be performed in a biosafety level 3 or level 4 laboratories, meaning limited
number of researchers or groups can participate in the host screening work. 2) Only
limited types of viruses and limited number of animals can be evaluated each time,
thus the screening throughput is relatively low. Host range of a virus is closely
associated with the availability of virus receptors, thus understanding the expression
patterns of virus entry factors is of fundamental importance, and could play pivotal
role in controlling the virus spread in current and future pandemics. Determining the
target cells of SARS-CoV-2 based on the relative expression of virus entry factors
provides potentia clues to narrow down the putative intermediate hosts. The entry of
SARS-CoV-2 into host cell is initiated by the binding of virus spike glycoprotein (S)
to cell receptor angiotensin-converting enzyme 2 (ACE2)" and the cleavage of S
protein by transmembrane serine protease 2 (TMPRSS2)™. Although SARS-CoV-2
like corona virus has been isolated from pangolins and bats, their susceptible cell
types for SARS-CoV-2 is not clear. Given that the species barrier of SARS-CoV-2
was estimated to be relatively low™® and livestock, poultry and pets have very close
contact with humans, it is crucial to evaluate animal susceptibility to SARS-CoV-2.
Previous studies have proposed that animal tissues show high heterogeneity in terms
of cellular composition and gene expression profiles', and ACE2 is only expressed in
a small proportion of specific cell populations'®, making single cell analysis of
SARS-CoV-2 target cells an attracting field to investigate. Here, we constructed the

single cell atlas for livestock, poultry, pets and wildlife, then screened putative
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SARS-CoV-2 target cells (indicated by the co-expression patterns of SARS-CoV-2
entry receptor ACE2 and SARS-CoV-2 entry activator TMPRSS2) and systematically
evaluated their susceptibility, with the aim to understand the virus transmission routes

and provide clues to fight against COVID-19.

Results:

Construction of thesingle-cell atlasfor different tissues of pangolin, cat and pig
Both pangolin and cat are suspected to be SRAS-CoV-2 intermediate hosts.
SRAS-CoV-2 like coronavirus has been isolated from pangolin, and SARS-CoV-2
was proposed to origin from the recombination of a pangolin coronavirus with a bat
coronavirus®’. Cat is also a suspected intermediate host, as human-to-cat and
cat-to-cat transmission of SARS-CoV-2 have been reported®'®. Domestic pig is an
animal in close contact with human and have been reported to be susceptible to SARS
coronavirus'’. Although those animals have been linked with coronavirus, yet a
comprehensive single-cell atlas for those speciesis missing. In this study, we
generated the single nuclei libraries for various tissues of pangolin (heart, liver, spleen,
lung, kidney, large intestine, duodenum, stomach and esophagus) , cat (heart, liver,
lung, kidney, eyelid, esophagus, duodenum, colon and rectum), and pig (heart, liver,
spleen, lung, kidney, hypothalamus, area postrema, vascular organ of lamina
terminalis, subfomical organ and cerebellum) (Fig. 1a, Supplementary Table 1). In
total, 99740, 35345 and 92863 single cell transcriptomes passing quality control (see
methods) were obtained for cat, pangolin and pig respectively (Fig. 1b-j,
Supplementary Table 1). Cell clustering were performed using Seura™*® and cell
type annotation were conducted according to cluster differentially expressed genes
(DEGS) and the expression of canonical cell type markers (Extended Data Fig. 1-3,
Supplementary Table 2). Overall, the high quality and comprehensive single cell atlas
for distinct organs of three coronavirus susceptible animals were generated in this
study, which provides valuable resources for further studies of their cellular taxonomy
and makes it possible to identify virustarget cells and screen host susceptibility at

singlecell level.
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Construction of thesingle-cel atlasfor lungs of livestock, poultry, petsand
wildlife

Lung is one of the main target organ of SARS-CoV-2%° and pneumoniais the typical
symptom of COVID-19%. To evaluate the detailed expression patterns of ACE2 and
TMPRSS2 in lung cells for various species, we generated single nuclei libraries for
livestock (pig, goat), poultry (chicken, pigeon, goose, duck), pets (cat, dog, hamster,
lizard) and wildlife (pangolin), resulting in atotal of 123,445 cells passing quality
control (Supplementary Table 1). In total, eleven cell types (ATI, ATII, ciliated cells,
secretory cells, endothelial cells, fibroblasts, mesothelial cells, pericytes, T cells, B
cells and macrophages) were identified in comparative lung atlas (Extended Data Fig.
4, Supplementary Table 2).

Screening of SARS-CoV-2 target cellsin different or gans of cat, pangolin and pig
In cat, ACE2 and TMPRSS2 co-expressing cells were detected in lung (ATI, ATII,
secretory cells, mesothelial cells, ciliated cells, endothelial cells, fibroblasts,
macrophages), kidney (endothelial cells, non-proximal tubule cells, proximal tubule
cells, stromal cells); eyelid (endothelial cells, epithelium cells and immune cells),

esophagus (immune cells) and rectum (enterocytes). Notably, we observed over 40%

co-expression of ACE2 and TMPRSS2 in proximal tubule cells of cat kidney, and
around 30% in epithelium cells of cat eyelid (Fig. 1d, Supplementary Table 3).

In pangolin, SARS-CoV-2 target cells were found in lung endothelial cells, kidney
(endothelial cells, podocytes and proximal tubule cells), liver (hepatocytes) and spleen
(immune cells) (Fig. 1g, Supplementary Table 3).

In pig, ACE2 and TMPRSS2 were mainly co-expressed in lung (ATI, ATII, ciliated
cells, secretory cells, endothelial cells, fibroblasts, macrophages) and kidney
(non-proximal tubule cells, proximal tubule cells, endothelial cells, podocytes) (Fig.
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1j, Supplementary Table 3). Overal, the proportions of SARS-CoV-2 target cellsin
cat are much higher than the proportions in corresponding cell types of all other

species studied here.

Screening of SARS-CoV-2 target cellsin lung cells of livestock, poultry, pets and
wild animals

In consistent with previous report that SRAS-CoV-2 replicates poorly in chicken and
duck®, no SARS-CoV-2 target cells were found in lung cells of poultry (chicken, duck,
goose and pigeon) (Fig. 2a, b). In cat, SARS-CoV-2 target cells were detected in eight
out of eleven cell types investigated, with the top two cell types being ciliated cells
and secretory cells. In pig, co-expression of ACE2 and TMPRSS2 was observed in
seven out of eleven cell types. In pangolin, a small proportion of endothelial cells
were found to co-express ACE2 and TMPRSS2. In hamster, ciliated cells were the cell
type with most abundant SARS-CoV-2 target cells. In goat, we detected the
co-expression of ACE2 and TMPRSS2 in ATI, fibroblasts, endothelial cells, ciliated
cellsand T cells. Goat share highly similar ACE2 amino acids sequence with pig and
human?, implying that goat ACE2 might have similar capability for mediating virus
entering into host cells. In lizard, we detected the co-expression of ACE2 and
TMPRSS2, mainly in B cdlls. In dog, less than 0.5% ACE2 and TMPRSS2
co-expressing cells were detected in ciliated cells and ATII (Fig. 2a, b).

The infection with SARS-CoV-2 could lead to a severe pneumonia, and respiratory
diseases caused by other respiratory viruses is also noteworthy. To reveal the putative
target lung cells of other respiratory viruses, we screened the expression patterns of 32
virus receptors for a total of 29 virus species derived from 12 virus families
(coronavirida, orthomyxoviridae, adenoviridae, hantaviridae, matonaviridae,
paramyxoviridae, parvoviridae, phenuiviridae, picornaviridae, pneumoviridae,
reoviridae and rhabdoviridae) (Fig. 2c, Supplementary Table 4), which have been
shown to be able to transmit via the respiratory system®. Generally, poultry lung cells

express less types of virus receptors than mammalians and reptiles. For example,
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coronavirus receptors were generally not expressed in poultry lung cells, except that
human coronavirus 229E receptor ANPEP was expressed in chicken and duck lung
cells but not in goose and pigeon lung cells. MERS coronavirus receptor DPP4 was
expressed in chicken and goose lung cells but was barely detected in corresponding
cell typesin duck and pigeon. Coronavirus SARS receptor CLECA4G was expressed in
goat lung cells (ciliated cells, endothelial cells, fibroblasts and macrophages) but was
found absent in lung cells of other species. Influenza A virus receptors UVRAG and
EGFR was present in lung cells of every species we investigated, but was absent or
exhibited meagre expression in pangolin and pigeon. Adenoviridae virus receptors
showed a preferential expression in mammals, except adenovirus type C receptors
which was also present in poultry lung cells. Rhinovirus C receptor displayed
preferential expression in ciliated cells of human, cat, dog, hamster, pig, goat and
goose while respiratory syncytial virus receptor CD209 was only present in human
macrophage cells. Taken together, our work, for the first time, revealed the putative
target cells for respiratory viruses in an important organ of respiratory system (lung),
which lays the foundation for dissecting the infection and transmission of respiratory

system viruses at the single-cell level.

Systematic evaluation of SARS-CoV-2 infection risksin livestock, poultry, pets
and wildlife

While comparing the frequencies of SARS-CoV-2 target lung cells across different
species, we noticed that cat clearly outweigh other species, with 13.19% in ciliated
cells, compared to pig (3.35%) and hamster (3.87%) (Supplementary Table 3).
Moreover, when taking the proportions of SARS-CoV-2 target cellsin distinct organs
among cat, pangolin and pig into consideration, it further indicated that the proportion
of ACE2 and TMPRS2 target cells were much higher in cat. For example, the
proportion of ACE2 and TMPRSS2 co-expressing cell was as high as 40% in cat
kidney proximal tubular cells while the proportions were only around 3% and 2% in
corresponding cell type in pangolin and pig, respectively (Supplementary Table 3).
We also noticed that SARS-CoV-2 target cells were widely distributed among organs
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within the digestive system (esophagus, rectum), respiratory system (lung) and
urinatory system (kidney) of cat (Fig. 3a), implying that cats could be infected by
SARS-CoV-2 via multiple routes such as dietary infections of the digestive tract or
airborne transmission through respiratory system. To highlight SARS-CoV-2
susceptible cell types, we summarized all cell types with proportion of ACE2 and
TMPRSS2 co-expressing cells higher than 1%, which clears shows that cat, as well as
pig, have more susceptible cell types than other species we investigated (Fig. 3a).
Taken together, our data explains the observation that cats are highly permissive to
SARS-CoV-2® and raise the necessity to carefully monitor and evaluate the possible

roles of cat asintermediate hosts in current pandemic.

SARS-CoV-2 replicate poorly in dog, chicken and duck®. Our data suggests that the
co-expression of ACE2 and TMPRS is very rare in dog lung cells and absent in
poultry lung cells (chicken, duck, goose and pigeon). Besides, it has been predicted
that dog and poultry ACE2 cannot be utilized efficiently by SARS-CoV-2 spike
glycoprotein because of mutations in critical amino acids of dog ACE2®. Therefore,
our data, to some extent, explains why dogs and poultry are not as permissive for

SARS-CoV-2 infection as cat.

In addition to cats, pangolins®’ and hamsters'® have been reported to be permissive
for SARS-CoV-2 infection, however, the target cells for virus infection and putative
transmission routes are largely unknown. Our study identified the SARS-CoV-2 target
cellsin distinct tissues of cat, pangolin and hamster, indicated by the simultaneous
expression of SARS-CoV-2 entry factors: ACE2 and TMPRSS2. A detailed
comparative analysis among cat, pangolin and hamster deciphered that proportion of
SARS-CoV-2 target cellsin cat was much higher than pangolin and hamster, implying
that cats are more susceptible to SARS-CoV-2. Besides, as a companion animal, cats
interact with humans more frequently than pangolins, thus we proposed that cats
should be closely monitored in the current COVID pandemic. In addition, we also
detected the co-expression of ACE2 and TMPRSS2 in lung cells of goat and lizard.
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Considering the lack of clear evidence showing weather they can be infected by
SARS-CoV-2, it is noteworthy to evaluate their possibility to be the SARS-CoV-2
intermediate hosts.

Zhou et al. proved that pig ACE2 is capable of assisting SARS-CoV-2 entering into
HelLa cells®, and we found that SARS-CoV-2 target cells were distributed in a variety
of cellsin the kidney and lung of domestic pig. Combining our analysis with the result
from Zhou et al., it seemsto be plausible to question if domestic pigs have the
potential to function as intermediate hosts for SARS-CoV-2. However, in the
experiments performed by Shi et al., pigs were found to be negative for viral RNA
and antibody tests on day 2, day 4 and day 6 after inoculating intranasally with
SARS-CoV-28. The reason why pigs could not support SARS-CoV-2 replication®
seems to be an intriguing scientific question and definitely invites further
investigations. Albeit, according to the current experimental evidence, pig does not
seem to be permissive for SARS-CoV-2 infection and transmission, we need to be
cautious about the putative roles of pig in future coronavirus outbreak, considering
that pig expresses both SARS-CoV-2 entry factor (ACE2) and activator factor
(TMPRSS?) in avariety of cell types and there was reported case of SARS-associated
coronavirus transmission from human to pig*’. Given that COVID-19 pandemic is
still progressing and SARS-CoV-2 strains are constantly evolving™, we need to keep
monitoring and evaluating the possibility of pigs to become intermediate hosts of

future pandemic.

Systematically screening of target cellsfor 144 viruses

To investigate the susceptibility of host cells to different kinds of viruses, we screened
the expression patterns of 114 receptors of 144 viruses (representing 26 virus families)
in distinct organs of cat, pangolin and pig and the lung of pets, livestock, poultry and
wildlife in an unbiased manner, resulting in a comprehensive atlas of virus target cells
(Extended Data Fig. 5-7, Supplementary Data Table 5). Intriguingly, we found Rabies

lyssavirus receptor NCAM1 was widely expressed in cell types of pig neural system
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but rarely expressed in non-neural tissues. Besides, we found that vesicular stomatitis
virus receptor UVRAG was preferentially expressed in pig lung cells (Extended Data
Fig. 6). To demonstrate the proportions of virus receptor expressing cells in an
intuitive manner, we proposed a system named “traffic light system for virus entry” to
assign each cell type to one of the following three status: red light, green light and
yellow light. Briefly, if the receptor is expressed in less than 1% of that cell types, a
“red light” status will be assigned. If the proportion is between 1% and 10%, “yellow
light” status will be assigned. If the proportion is over 10%, then a “green light” status
would be assigned (see methods). Based on this system, we assigned status to all the
cell populations of all the investigated species (Supplementary Data Table 5). To
demonstrate the potential usefulness of this system, we employed this analysis and
visualized the status of several representative viruses in distinct organs of pig (Fig. 3b
and Extended Data Fig. 7), cat (Supplementary Data Fig. 5) and pangolin (Extended
Data Fig. 6) respectively. Overall, our project provides a model framework for future
research about the screening of host susceptibility, and effectively demonstrates the
applicability of single cell atlas resources in exploring the expression patterns of virus

receptors and led to the identification of putative virus target cells.

Host susceptibility has been evaluated using in vitro assay or in vivo inoculation
experiments under |aboratory circumstance, which cannot fully recapitul ate or
simulate the real process where virus co-evolve with hosts. Besides, it only reflects
the susceptibility of a host to a specific virus under current situation and fail to
consider the dynamic interaction process between viruses and hosts. Considering the
substantial mutation rates and adaptation abilities of viruses®, it is important to
evaluate virus infection and transmission capability in a more fundamental manner.
Viruses and hosts have been constantly co-evolving for millions of years, which
collectively shaped the immune landscape of animals and the host range of viruses®.
Virus receptors are the key determining factors for virus entry, thus dissecting virus
receptor expression pattern is fundamental for understanding the intra-species and

inter-speci es transmission of viruses, both in current and future infectious diseases.
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Our project provides anovel strategy to find out putative susceptible hosts, based on
the distribution of virus target cells among distinct cell populations, which makes it
possible to screen the susceptibility of all existing viruses (using the available virus
receptor information) on all existing species (using the available sScRNAseq data) in
an unbiased manner. With the development of single cell sequencing techniques and
the progress of international single cell atlas collaborative projects, the atlas for more
species could be generated at an accelerated speed. We anticipate that the information
gained from the present study will certainly augment future research work, and
provide some novel insights about the prevention and control strategies against

SARS-CoV-2 along with many other harmful viruses.

Materials and methods:

Ethics statement

Sample collection and research were performed with the approval of Institutional
Review Board on Ethics Committee of BGI (Approval letter reference number BGI-
NO. BGI-IRB A20008). All procedures were conducted according to the guidelines of

Institutional Review Board on Ethics Committee of BGI.

Sample collection

A total of 11 samples were collected in this study, including four pets: Felis catus
(cat), Canislupus familiaris (dog), Mesocricetus auratus (hamster), Anolis
carolinensis (lizard), two livestock: Qus scrofa domesticus (pig), Capra aegagrus
hircus (goat), four poultry: Gallus gallus domesticus (chicken), Anser cygnoides
domesticus (goose), Anas platyrhynchos domesticus (duck), Columba livia domestica
(pigeon), and one wild animal: Manis javanica (pangolin). The pets were bought from
a pet market, and the livestock and poultry were purchased from an agricultural
market. The Manis javanica sample was collected from a pangolin which died of
natural causes in Guangdong Provincial Wildlife Rescue Center and immediately

stored in -80°C freezer after dissection.
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After the execution of animals in accordance with the ethics of animal experiment,
dissection was carried out quickly to separate each organ. The collected tissues were
rinsed by 1X PBS, then quick-frozen and stored in liquid nitrogen. The single cell
nucleus of each tissue was separated by mechanical extraction method®. Briefly, the
tissues were first thawed, infiltrated by 1X homogenization buffer (containing 30mM
CaCly, 18mM Mg(Ac)z, 60mM TrissHCI (pH 7.8), 320mM sucrose, 0.1% NP-40,
0.1mM EDTA and 0.2U/ul RNase inhibitor), then cut into smaller pieces, and the
single nucleus was isolated by 2ml Dounce homogenizer set. After filtration with
30um strainer, the nuclei extraction was resuspended by 1%BSA containing 0.2U/ul
RNase inhibitor and span down at the speed of 500g for 10 min at 4 degrees (to
carefully discard the cellular impurities within the supernatant). This step was
repeated twice, and finally the nucleus was recollected with 0.1% BSA containing
0.2U/ul RNase inhibitor. Subsequently, DAPI was used to stain the nucleus, and the
nucleus density was calculated under a fluorescence microscope to prepare for the

subsequent library construction.

Single nucle library construction and sequencing

The mRNA within the single nucleus samples of different organs of pig (heart, liver,
spleen, lung, kidney, hypothalamus, area postrema, vascular organ of lamina
terminalis, subfomical organ and cerebellum) were captured and the libraries were
constructed using inhouse DNBelab C4 kit and sequenced using DNBSEQ-T1. The
separated single nucleus of different organs (including the lungs for pig, dog, cat, goat,
pangolin, chicken, pigeon, goose, duck, lizard, and hamster; pangolin organs. heart,
liver, spleen, lung, kidney, large intestine, duodenum, stomach and esophagus; cat
organs. heart, liver, lung, kidney, eyelid, esophagus, duodenum, colon and rectum)
were constructed using Chromium Single Cell 3L) GEM, Library & Gel Bead Kit v3
(PN-1000075) following the standard user guide provided by manufacturer. After
performing the library conversions using the MGIEasy Universal DNA Library
Preparation Reagent Kit, the libraries were sequenced by compatible BGISEQ-500

sequencing platform.
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Cross-species homolog conversion

To facilitate the integration of cross-species lung single cell data set, we converted
genes from other species to mouse homologs. We downloaded homolog gene lists
using BioMart?’. Then, if a 1:1 match existed between a non-mouse gene and a mouse
gene, the non-mouse gene name was converted. As for pangolin, goose and pigeon,
which lack homologs records on Ensemble, single-copy orthologs were identified
from two species genomes by cluster analysis of gene families using OrthoFinder®

(OrthoFinder version 2.3.3) with the default parameters.

Single-cell RNAseq data processing

Sequencing data filtered using custom script and gene expression matrix were
obtained using Cell Ranger 3.0.2 (10X Genomics). The genomes using for reads
alignment were downloaded from NCBI Assembly (Supplementary Table 6). Single
cell analysis was conducted using Seurat'*®. Briefly, quality control was performed
based on the following criteria: cells with mapped number of genes less than 200 or
with mitochondrial percentage higher than 10% were removed. Variable genes were
determined using Seurat’s FindVariableGenes function with default parameters.
Clusters were identified using Seurat’s FindClusters function and visualized using
Seurat’s RUnTSNE. All the DEGs for each Seurat Objects were identified using
Seurat’s FindAllMarkers function. Cell types were annotated according to the

expression of canonical cell type markers.

Integration of lung data sets from different species
The human lung single cell RNAseq data was obtained from literature®. Data sets of
lungs from different species were integrated using Seurat’s FindIntegrationAnchors

and IntegrateData function with features after homolog conversion.

Virus receptor list collection
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Virus receptor list were downloaded from a virus—host receptor interaction database™

and manually collected from published literatures (Supplementary Table 7).

Domestic pig brain data set collection
Single nuclei RNAseq data sets for frontal lobe, occipital |obe, parietal 1obe, temporal

lobe and hypothalamus of domestic pig were obtained from literature?®.

Traffic light status assignment

The proportions of virus receptor were calculated and “red, yellow, green” status was
assigned to each cell type based on receptor proportions (less than 1%, red light;
greater than or equals to 1% & less than 10%, yellow light; greater than or equals to
10%, green light). In case of viruses with multiple receptors, the receptor with the

highest proportion was considered for status assignment.

Data availability
The single cell atlas of al the investigated species in this study are available via

http://120.79.46.200:81/SARS-CoV-2. The raw data supporting the findings of this study

will be made available upon request. Raw transcriptome sequencing data has been
deposited to the CNSA (CNGB Nucleotide Sequence Archive) with the accession
number CNP0001085 (https://db.cngb.org/cnsal) and will be released to the public

after the manuscript is accepted for publication.
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