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Abstract: A few animals have been suspected to be intermediate hosts of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scale 

single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is 

missing. Here, we constructed the single-cell atlas for 11 representative species in pets, 

livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cells in 

cat was found considerably higher than other species we investigated and 

SARS-CoV-2 target cells were detected in multiple cell types of domestic pig, 

implying the necessity to carefully evaluate the risk of cats during the current 

COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming 

intermediate hosts in future coronavirus outbreak. Furthermore, we screened the 

expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of 

virus target cells. Taken together, our work provides a novel and fundamental strategy 

to screen virus target cells and susceptible species, based on single-cell transcriptomes 

we generated for domesticated animals and wildlife, which could function as a 

valuable resource for controlling current pandemics and serve as an early warning 

system for coping with future infectious disease threats. 

 

Introduction 

In the past two decades, the world has witnessed the outbreak and spread of SARS, 

Middle East respiratory syndrome (MERS)1, ZIKA2, avian influenza and swine 

influenza3, which have been posing an urgent challenge to our infectious disease 

prevention and control system. Recently, SARS-CoV-2 has caused a highly 

contagious pandemic disease named coronavirus disease 2019 (COVID-19), which is 

rapidly spreading all over the world and has triggered a severe public health 

emergency. As of 3rd June 2020, globally the total number of confirmed COVID-19 

cases and deaths has uncontrollably reached 6,287,771 and 379,941, respectively4. 

The bat has been proposed to be the original host of SARS-CoV-25, however, the 

transmission from bats to humans requires some intermediate hosts. Several studies 

have linked pangolins, cats, dogs and hamsters with SARS-CoV-2 infection and 

transmission6–12, indicating the potential widespread prevalence across animals, which 
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would post potential threats to humans. The identification of the origin of this virus 

and its path to becoming a deadly human pathogen is needed to understand how such 

processes occur in nature and identify ways we can prevent the onset of these types of 

global crises in the future. 

 

Evaluating host susceptibility is critical for controlling the infectious disease. The 

screening of virus putative host is usually performed using in vivo assay or 

inoculation experiments, which helps to reveal the host susceptibility, however, there 

are several limitations: 1) Experiments for some dangerous and infectious viruses 

need to be performed in a biosafety level 3 or level 4 laboratories, meaning limited 

number of researchers or groups can participate in the host screening work. 2) Only 

limited types of viruses and limited number of animals can be evaluated each time, 

thus the screening throughput is relatively low. Host range of a virus is closely 

associated with the availability of virus receptors, thus understanding the expression 

patterns of virus entry factors is of fundamental importance, and could play pivotal 

role in controlling the virus spread in current and future pandemics. Determining the 

target cells of SARS-CoV-2 based on the relative expression of virus entry factors 

provides potential clues to narrow down the putative intermediate hosts. The entry of 

SARS-CoV-2 into host cell is initiated by the binding of virus spike glycoprotein (S) 

to cell receptor angiotensin-converting enzyme 2 (ACE2)13 and the cleavage of S 

protein by transmembrane serine protease 2 (TMPRSS2)14. Although SARS-CoV-2 

like corona virus has been isolated from pangolins and bats, their susceptible cell 

types for SARS-CoV-2 is not clear. Given that the species barrier of SARS-CoV-2 

was estimated to be relatively low13 and livestock, poultry and pets have very close 

contact with humans, it is crucial to evaluate animal susceptibility to SARS-CoV-2. 

Previous studies have proposed that animal tissues show high heterogeneity in terms 

of cellular composition and gene expression profiles15, and ACE2 is only expressed in 

a small proportion of specific cell populations16, making single cell analysis of 

SARS-CoV-2 target cells an attracting field to investigate. Here, we constructed the 

single cell atlas for livestock, poultry, pets and wildlife, then screened putative 
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SARS-CoV-2 target cells (indicated by the co-expression patterns of SARS-CoV-2 

entry receptor ACE2 and SARS-CoV-2 entry activator TMPRSS2) and systematically 

evaluated their susceptibility, with the aim to understand the virus transmission routes 

and provide clues to fight against COVID-19.  

 

Results: 

Construction of the single-cell atlas for different tissues of pangolin, cat and pig 

Both pangolin and cat are suspected to be SRAS-CoV-2 intermediate hosts. 

SRAS-CoV-2 like coronavirus has been isolated from pangolin, and SARS-CoV-2 

was proposed to origin from the recombination of a pangolin coronavirus with a bat 

coronavirus6,7. Cat is also a suspected intermediate host, as human-to-cat and 

cat-to-cat transmission of SARS-CoV-2 have been reported9,10. Domestic pig is an 

animal in close contact with human and have been reported to be susceptible to SARS 

coronavirus17. Although those animals have been linked with coronavirus, yet a 

comprehensive single-cell atlas for those species is missing. In this study, we 

generated the single nuclei libraries for various tissues of pangolin (heart, liver, spleen, 

lung, kidney, large intestine, duodenum, stomach and esophagus) , cat (heart, liver, 

lung, kidney, eyelid, esophagus, duodenum, colon and rectum), and pig (heart, liver, 

spleen, lung, kidney, hypothalamus, area postrema, vascular organ of lamina 

terminalis, subfomical organ and cerebellum) (Fig. 1a, Supplementary Table 1). In 

total, 99740, 35345 and 92863 single cell transcriptomes passing quality control (see 

methods) were obtained for cat, pangolin and pig respectively (Fig. 1b-j, 

Supplementary Table 1). Cell clustering were performed using Seurat18,19 and cell 

type annotation were conducted according to cluster differentially expressed genes 

(DEGs) and the expression of canonical cell type markers (Extended Data Fig. 1-3, 

Supplementary Table 2). Overall, the high quality and comprehensive single cell atlas 

for distinct organs of three coronavirus susceptible animals were generated in this 

study, which provides valuable resources for further studies of their cellular taxonomy 

and makes it possible to identify virus target cells and screen host susceptibility at 

single cell level. 
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Construction of the single-cell atlas for lungs of livestock, poultry, pets and 

wildlife 

Lung is one of the main target organ of SARS-CoV-220 and pneumonia is the typical 

symptom of COVID-1921. To evaluate the detailed expression patterns of ACE2 and 

TMPRSS2 in lung cells for various species, we generated single nuclei libraries for 

livestock (pig, goat), poultry (chicken, pigeon, goose, duck), pets (cat, dog, hamster, 

lizard) and wildlife (pangolin), resulting in a total of 123,445 cells passing quality 

control (Supplementary Table 1). In total, eleven cell types (ATI, ATII, ciliated cells, 

secretory cells, endothelial cells, fibroblasts, mesothelial cells, pericytes, T cells, B 

cells and macrophages) were identified in comparative lung atlas (Extended Data Fig. 

4, Supplementary Table 2). 

 

Screening of SARS-CoV-2 target cells in different organs of cat, pangolin and pig 

In cat, ACE2 and TMPRSS2 co-expressing cells were detected in lung (ATI, ATII, 

secretory cells, mesothelial cells, ciliated cells, endothelial cells, fibroblasts, 

macrophages), kidney (endothelial cells, non-proximal tubule cells, proximal tubule 

cells, stromal cells); eyelid (endothelial cells, epithelium cells and immune cells), 

esophagus (immune cells) and rectum (enterocytes). Notably, we observed over 40% 

co-expression of ACE2 and TMPRSS2 in proximal tubule cells of cat kidney, and 

around 30% in epithelium cells of cat eyelid (Fig. 1d, Supplementary Table 3).  

 

In pangolin, SARS-CoV-2 target cells were found in lung endothelial cells, kidney 

(endothelial cells, podocytes and proximal tubule cells), liver (hepatocytes) and spleen 

(immune cells) (Fig. 1g, Supplementary Table 3).  

 

In pig, ACE2 and TMPRSS2 were mainly co-expressed in lung (ATI, ATII, ciliated 

cells, secretory cells, endothelial cells, fibroblasts, macrophages) and kidney 

(non-proximal tubule cells, proximal tubule cells, endothelial cells, podocytes) (Fig. 
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1j, Supplementary Table 3). Overall, the proportions of SARS-CoV-2 target cells in 

cat are much higher than the proportions in corresponding cell types of all other 

species studied here. 

 

Screening of SARS-CoV-2 target cells in lung cells of livestock, poultry, pets and 

wild animals  

In consistent with previous report that SRAS-CoV-2 replicates poorly in chicken and 

duck8, no SARS-CoV-2 target cells were found in lung cells of poultry (chicken, duck, 

goose and pigeon) (Fig. 2a, b). In cat, SARS-CoV-2 target cells were detected in eight 

out of eleven cell types investigated, with the top two cell types being ciliated cells 

and secretory cells. In pig, co-expression of ACE2 and TMPRSS2 was observed in 

seven out of eleven cell types. In pangolin, a small proportion of endothelial cells 

were found to co-express ACE2 and TMPRSS2. In hamster, ciliated cells were the cell 

type with most abundant SARS-CoV-2 target cells. In goat, we detected the 

co-expression of ACE2 and TMPRSS2 in ATI, fibroblasts, endothelial cells, ciliated 

cells and T cells. Goat share highly similar ACE2 amino acids sequence with pig and 

human22, implying that goat ACE2 might have similar capability for mediating virus 

entering into host cells. In lizard, we detected the co-expression of ACE2 and 

TMPRSS2, mainly in B cells. In dog, less than 0.5% ACE2 and TMPRSS2 

co-expressing cells were detected in ciliated cells and ATII (Fig. 2a, b). 

 

The infection with SARS-CoV-2 could lead to a severe pneumonia, and respiratory 

diseases caused by other respiratory viruses is also noteworthy. To reveal the putative 

target lung cells of other respiratory viruses, we screened the expression patterns of 32 

virus receptors for a total of 29 virus species derived from 12 virus families 

(coronavirida, orthomyxoviridae, adenoviridae, hantaviridae, matonaviridae, 

paramyxoviridae, parvoviridae, phenuiviridae, picornaviridae, pneumoviridae, 

reoviridae and rhabdoviridae) (Fig. 2c, Supplementary Table 4), which have been 

shown to be able to transmit via the respiratory system22. Generally, poultry lung cells 

express less types of virus receptors than mammalians and reptiles. For example, 
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coronavirus receptors were generally not expressed in poultry lung cells, except that 

human coronavirus 229E receptor ANPEP was expressed in chicken and duck lung 

cells but not in goose and pigeon lung cells. MERS coronavirus receptor DPP4 was 

expressed in chicken and goose lung cells but was barely detected in corresponding 

cell types in duck and pigeon. Coronavirus SARS receptor CLEC4G was expressed in 

goat lung cells (ciliated cells, endothelial cells, fibroblasts and macrophages) but was 

found absent in lung cells of other species. Influenza A virus receptors UVRAG and 

EGFR was present in lung cells of every species we investigated, but was absent or 

exhibited meagre expression in pangolin and pigeon. Adenoviridae virus receptors 

showed a preferential expression in mammals, except adenovirus type C receptors 

which was also present in poultry lung cells. Rhinovirus C receptor displayed 

preferential expression in ciliated cells of human, cat, dog, hamster, pig, goat and 

goose while respiratory syncytial virus receptor CD209 was only present in human 

macrophage cells. Taken together, our work, for the first time, revealed the putative 

target cells for respiratory viruses in an important organ of respiratory system (lung), 

which lays the foundation for dissecting the infection and transmission of respiratory 

system viruses at the single-cell level. 

 

Systematic evaluation of SARS-CoV-2 infection risks in livestock, poultry, pets 

and wildlife  

While comparing the frequencies of SARS-CoV-2 target lung cells across different 

species, we noticed that cat clearly outweigh other species, with 13.19% in ciliated 

cells, compared to pig (3.35%) and hamster (3.87%) (Supplementary Table 3). 

Moreover, when taking the proportions of SARS-CoV-2 target cells in distinct organs 

among cat, pangolin and pig into consideration, it further indicated that the proportion 

of ACE2 and TMPRSS2 target cells were much higher in cat. For example, the 

proportion of ACE2 and TMPRSS2 co-expressing cell was as high as 40% in cat 

kidney proximal tubular cells while the proportions were only around 3% and 2% in 

corresponding cell type in pangolin and pig, respectively (Supplementary Table 3). 

We also noticed that SARS-CoV-2 target cells were widely distributed among organs 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.13.149690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.13.149690


within the digestive system (esophagus, rectum), respiratory system (lung) and 

urinatory system (kidney) of cat (Fig. 3a), implying that cats could be infected by 

SARS-CoV-2 via multiple routes such as dietary infections of the digestive tract or 

airborne transmission through respiratory system. To highlight SARS-CoV-2 

susceptible cell types, we summarized all cell types with proportion of ACE2 and 

TMPRSS2 co-expressing cells higher than 1%, which clears shows that cat, as well as 

pig, have more susceptible cell types than other species we investigated (Fig. 3a). 

Taken together, our data explains the observation that cats are highly permissive to 

SARS-CoV-28 and raise the necessity to carefully monitor and evaluate the possible 

roles of cat as intermediate hosts in current pandemic. 

 

SARS-CoV-2 replicate poorly in dog, chicken and duck8. Our data suggests that the 

co-expression of ACE2 and TMPRSS2 is very rare in dog lung cells and absent in 

poultry lung cells (chicken, duck, goose and pigeon). Besides, it has been predicted 

that dog and poultry ACE2 cannot be utilized efficiently by SARS-CoV-2 spike 

glycoprotein because of mutations in critical amino acids of dog ACE25. Therefore, 

our data, to some extent, explains why dogs and poultry are not as permissive for 

SARS-CoV-2 infection as cat. 

 

In addition to cats, pangolins6,7 and hamsters12 have been reported to be permissive 

for SARS-CoV-2 infection, however, the target cells for virus infection and putative 

transmission routes are largely unknown. Our study identified the SARS-CoV-2 target 

cells in distinct tissues of cat, pangolin and hamster, indicated by the simultaneous 

expression of SARS-CoV-2 entry factors: ACE2 and TMPRSS2. A detailed 

comparative analysis among cat, pangolin and hamster deciphered that proportion of 

SARS-CoV-2 target cells in cat was much higher than pangolin and hamster, implying 

that cats are more susceptible to SARS-CoV-2. Besides, as a companion animal, cats 

interact with humans more frequently than pangolins, thus we proposed that cats 

should be closely monitored in the current COVID pandemic. In addition, we also 

detected the co-expression of ACE2 and TMPRSS2 in lung cells of goat and lizard. 
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Considering the lack of clear evidence showing weather they can be infected by 

SARS-CoV-2, it is noteworthy to evaluate their possibility to be the SARS-CoV-2 

intermediate hosts. 

 

Zhou et al. proved that pig ACE2 is capable of assisting SARS-CoV-2 entering into 

HeLa cells23, and we found that SARS-CoV-2 target cells were distributed in a variety 

of cells in the kidney and lung of domestic pig. Combining our analysis with the result 

from Zhou et al., it seems to be plausible to question if domestic pigs have the 

potential to function as intermediate hosts for SARS-CoV-2. However, in the 

experiments performed by Shi et al., pigs were found to be negative for viral RNA 

and antibody tests on day 2, day 4 and day 6 after inoculating intranasally with 

SARS-CoV-28. The reason why pigs could not support SARS-CoV-2 replication8 

seems to be an intriguing scientific question and definitely invites further 

investigations. Albeit, according to the current experimental evidence, pig does not 

seem to be permissive for SARS-CoV-2 infection and transmission, we need to be 

cautious about the putative roles of pig in future coronavirus outbreak, considering 

that pig expresses both SARS-CoV-2 entry factor (ACE2) and activator factor 

(TMPRSS2) in a variety of cell types and there was reported case of SARS-associated 

coronavirus transmission from human to pig17. Given that COVID-19 pandemic is 

still progressing and SARS-CoV-2 strains are constantly evolving24, we need to keep 

monitoring and evaluating the possibility of pigs to become intermediate hosts of 

future pandemic. 

 

Systematically screening of target cells for 144 viruses  

To investigate the susceptibility of host cells to different kinds of viruses, we screened 

the expression patterns of 114 receptors of 144 viruses (representing 26 virus families) 

in distinct organs of cat, pangolin and pig and the lung of pets, livestock, poultry and 

wildlife in an unbiased manner, resulting in a comprehensive atlas of virus target cells 

(Extended Data Fig. 5-7, Supplementary Data Table 5). Intriguingly, we found Rabies 

lyssavirus receptor NCAM1 was widely expressed in cell types of pig neural system 
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but rarely expressed in non-neural tissues. Besides, we found that vesicular stomatitis 

virus receptor UVRAG was preferentially expressed in pig lung cells (Extended Data 

Fig. 6). To demonstrate the proportions of virus receptor expressing cells in an 

intuitive manner, we proposed a system named “traffic light system for virus entry” to 

assign each cell type to one of the following three status: red light, green light and 

yellow light. Briefly, if the receptor is expressed in less than 1% of that cell types, a 

“red light” status will be assigned. If the proportion is between 1% and 10%, “yellow 

light” status will be assigned. If the proportion is over 10%, then a “green light” status 

would be assigned (see methods). Based on this system, we assigned status to all the 

cell populations of all the investigated species (Supplementary Data Table 5). To 

demonstrate the potential usefulness of this system, we employed this analysis and 

visualized the status of several representative viruses in distinct organs of pig (Fig. 3b 

and Extended Data Fig. 7), cat (Supplementary Data Fig. 5) and pangolin (Extended 

Data Fig. 6) respectively. Overall, our project provides a model framework for future 

research about the screening of host susceptibility, and effectively demonstrates the 

applicability of single cell atlas resources in exploring the expression patterns of virus 

receptors and led to the identification of putative virus target cells. 

 

Host susceptibility has been evaluated using in vitro assay or in vivo inoculation 

experiments under laboratory circumstance, which cannot fully recapitulate or 

simulate the real process where virus co-evolve with hosts. Besides, it only reflects 

the susceptibility of a host to a specific virus under current situation and fail to 

consider the dynamic interaction process between viruses and hosts. Considering the 

substantial mutation rates and adaptation abilities of viruses25, it is important to 

evaluate virus infection and transmission capability in a more fundamental manner. 

Viruses and hosts have been constantly co-evolving for millions of years, which 

collectively shaped the immune landscape of animals and the host range of viruses25. 

Virus receptors are the key determining factors for virus entry, thus dissecting virus 

receptor expression pattern is fundamental for understanding the intra-species and 

inter-species transmission of viruses, both in current and future infectious diseases. 
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Our project provides a novel strategy to find out putative susceptible hosts, based on 

the distribution of virus target cells among distinct cell populations, which makes it 

possible to screen the susceptibility of all existing viruses (using the available virus 

receptor information) on all existing species (using the available scRNAseq data) in 

an unbiased manner. With the development of single cell sequencing techniques and 

the progress of international single cell atlas collaborative projects, the atlas for more 

species could be generated at an accelerated speed. We anticipate that the information 

gained from the present study will certainly augment future research work, and 

provide some novel insights about the prevention and control strategies against 

SARS-CoV-2 along with many other harmful viruses. 

 

Materials and methods: 

Ethics statement 

Sample collection and research were performed with the approval of Institutional 

Review Board on Ethics Committee of BGI (Approval letter reference number BGI- 

NO. BGI-IRB A20008). All procedures were conducted according to the guidelines of 

Institutional Review Board on Ethics Committee of BGI. 

 

Sample collection 

A total of 11 samples were collected in this study, including four pets: Felis catus 

(cat), Canis lupus familiaris (dog), Mesocricetus auratus (hamster), Anolis 

carolinensis (lizard), two livestock: Sus scrofa domesticus (pig), Capra aegagrus 

hircus (goat), four poultry: Gallus gallus domesticus (chicken), Anser cygnoides 

domesticus (goose), Anas platyrhynchos domesticus (duck), Columba livia domestica 

(pigeon), and one wild animal: Manis javanica (pangolin). The pets were bought from 

a pet market, and the livestock and poultry were purchased from an agricultural 

market. The Manis javanica sample was collected from a pangolin which died of 

natural causes in Guangdong Provincial Wildlife Rescue Center and immediately 

stored in -80°C freezer after dissection. 
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After the execution of animals in accordance with the ethics of animal experiment, 

dissection was carried out quickly to separate each organ. The collected tissues were 

rinsed by 1X PBS, then quick-frozen and stored in liquid nitrogen. The single cell 

nucleus of each tissue was separated by mechanical extraction method26. Briefly, the 

tissues were first thawed, infiltrated by 1X homogenization buffer (containing 30mM 

CaCl2, 18mM Mg(Ac)2, 60mM Tris-HCl (pH 7.8), 320mM sucrose, 0.1% NP-40, 

0.1mM EDTA and 0.2U/µl RNase inhibitor), then cut into smaller pieces, and the 

single nucleus was isolated by 2ml Dounce homogenizer set. After filtration with 

30µm strainer, the nuclei extraction was resuspended by 1%BSA containing 0.2U/µl 

RNase inhibitor and span down at the speed of 500g for 10 min at 4 degrees (to 

carefully discard the cellular impurities within the supernatant). This step was 

repeated twice, and finally the nucleus was recollected with 0.1% BSA containing 

0.2U/µl RNase inhibitor. Subsequently, DAPI was used to stain the nucleus, and the 

nucleus density was calculated under a fluorescence microscope to prepare for the 

subsequent library construction. 

 

Single nuclei library construction and sequencing 

The mRNA within the single nucleus samples of different organs of pig (heart, liver, 

spleen, lung, kidney, hypothalamus, area postrema, vascular organ of lamina 

terminalis, subfomical organ and cerebellum) were captured and the libraries were 

constructed using inhouse DNBelab C4 kit and sequenced using DNBSEQ-T1. The 

separated single nucleus of different organs (including the lungs for pig, dog, cat, goat, 

pangolin, chicken, pigeon, goose, duck, lizard, and hamster; pangolin organs: heart, 

liver, spleen, lung, kidney, large intestine, duodenum, stomach and esophagus; cat 

organs: heart, liver, lung, kidney, eyelid, esophagus, duodenum, colon and rectum) 

were constructed using Chromium Single Cell 3� GEM, Library & Gel Bead Kit v3 

(PN-1000075) following the standard user guide provided by manufacturer. After 

performing the library conversions using the MGIEasy Universal DNA Library 

Preparation Reagent Kit, the libraries were sequenced by compatible BGISEQ-500 

sequencing platform. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 14, 2020. ; https://doi.org/10.1101/2020.06.13.149690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.13.149690


 

Cross-species homolog conversion 

To facilitate the integration of cross-species lung single cell data set, we converted 

genes from other species to mouse homologs. We downloaded homolog gene lists 

using BioMart27. Then, if a 1:1 match existed between a non-mouse gene and a mouse 

gene, the non-mouse gene name was converted. As for pangolin, goose and pigeon, 

which lack homologs records on Ensemble, single-copy orthologs were identified 

from two species genomes by cluster analysis of gene families using OrthoFinder28 

(OrthoFinder version 2.3.3) with the default parameters.  

 

Single-cell RNAseq data processing 

Sequencing data filtered using custom script and gene expression matrix were 

obtained using Cell Ranger 3.0.2 (10X Genomics). The genomes using for reads 

alignment were downloaded from NCBI Assembly (Supplementary Table 6). Single 

cell analysis was conducted using Seurat19,29. Briefly, quality control was performed 

based on the following criteria: cells with mapped number of genes less than 200 or 

with mitochondrial percentage higher than 10% were removed. Variable genes were 

determined using Seurat’s FindVariableGenes function with default parameters. 

Clusters were identified using Seurat’s FindClusters function and visualized using 

Seurat’s RunTSNE. All the DEGs for each Seurat Objects were identified using 

Seurat’s FindAllMarkers function. Cell types were annotated according to the 

expression of canonical cell type markers.  

 

Integration of lung data sets from different species 

The human lung single cell RNAseq data was obtained from literature30. Data sets of 

lungs from different species were integrated using Seurat’s FindIntegrationAnchors 

and IntegrateData function with features after homolog conversion.  

 

Virus receptor list collection 
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Virus receptor list were downloaded from a virus–host receptor interaction database31 

and manually collected from published literatures (Supplementary Table 7).  

 

Domestic pig brain data set collection 

Single nuclei RNAseq data sets for frontal lobe, occipital lobe, parietal lobe, temporal 

lobe and hypothalamus of domestic pig were obtained from literature26. 

 

Traffic light status assignment 

The proportions of virus receptor were calculated and “red, yellow, green” status was 

assigned to each cell type based on receptor proportions (less than 1%, red light; 

greater than or equals to 1% & less than 10%, yellow light; greater than or equals to 

10%, green light). In case of viruses with multiple receptors, the receptor with the 

highest proportion was considered for status assignment. 

 

Data availability 

The single cell atlas of all the investigated species in this study are available via 

http://120.79.46.200:81/SARS-CoV-2. The raw data supporting the findings of this study 

will be made available upon request. Raw transcriptome sequencing data has been 

deposited to the CNSA (CNGB Nucleotide Sequence Archive) with the accession 

number CNP0001085 (https://db.cngb.org/cnsa/) and will be released to the public 

after the manuscript is accepted for publication. 
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Extended Data Fig.6
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