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Abstract. Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) are comorbid neurodevelop-
mental disorders with complex genetic architectures. Despite large-scale sequencing studies only a fraction
of the risk genes were identified for both. Here, we present a novel network-based gene risk prioritization
algorithm named DeepND that performs cross-disorder analysis to improve prediction power by exploiting
the comorbidity of ASD and ID via multitask learning. Our model leverages information from gene co-
expression networks that model human brain development using graph convolutional neural networks and
learns which spatio-temporal neurovelopmental windows are important for disorder etiologies. We show
that our approach substantially improves the state-of-the-art prediction power in both single-disorder and
cross-disorder settings. DeepND identifies mediodorsal thalamus and cerebral cortex brain region and in-
fancy to childhood period as the highest neurodevelopmental risk window for both ASD and ID. We observe
that both disorders are enriched in transcription regulators. Despite tight regulatory links in between ASD
risk genes, such is lacking across ASD and ID risk genes or within ID risk genes. Finally, we investigate fre-
quent ASD and ID associated copy number variation regions and confident false findings to suggest several
novel susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid
disorders and is released at http://github.com/ciceklab/deepnd.
# Equal contribution.*Correspondance: cicek@cs.bilkent.edu.tr

1 Introduction

Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder with a complex genetic
architecture in which around a thousand risk genes have a role [35]. Large consortia efforts have
been paving the way for understanding the genetic, functional and cellular aspects of this complex
disorder via large scale exome [18, 41, 80, 71, 70, 66, 40] and genome [31, 22, 20, 58, 1, 4] sequencing
studies. Latest and also the most comprehensive study to date analyzed ∼ 36k samples (6,430 trios)
to pinpoint 102 risk genes (FDR ≤ 0.1) [81]. Overwhelming evidence suggests that genetic architec-
tures of neuropsychiatric disorders overlap [63, 78, 54]. For instance, out of the twenty five SFARI
Cat I ASD risk genes (i.e., highest risk), only five are solely associated with ASD. Genes like CHD2,
SCN2A and ARID1B are associated with six neurodevelopmental disorders. Intellectual Disability
(ID) is one of such comorbid disorders which manifests itself with impaired mental capabilities. Rem-
iniscent of ASD, ID also has a complex genetic background with hundreds of risk genes involved and
identified by rare de novo disruptive mutations observed in whole exome and genome sequencing
studies [17, 23, 25, 76, 83, 89, 100]. ASD and ID are frequently observed together [64]. In 20, CDC
reported that 31% of children with ASD were also diagnosed with ID and 25% were borderline [6].
They also share a large number of risk genes [55]. Despite these similarities, Robinson et al. also
point to differences in genetic architectures and report that intelligence quotient (IQ) positively cor-
relates with family history of psychiatric disease and negatively correlates with de novo disruptive
mutations [77]. Yet, the shared functional circuitry behind is mostly unknown.

The current lack of understanding on how comorbid neuropsychiatric disorders relate mostly
stems from the incomplete profiling of individual genetic architectures. Statistical methods have
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been used to assess gene risk using excess genetic burden from case-control and family studies [35]
which are recently extended to work with multiple traits [68]. Yet, these tools work with genes with
observed disruptive mutations (mainly de novo). It is often of interest to use these as prior risk and
obtain a posterior gene interaction network-adjusted risk which can also assess risk for genes with no
prior signal. Network-based computational gene risk prediction methods come handy for (i) imputing
the insufficient statistical signal and providing a genome-wide risk ranking, and (ii) finding out the
affected cellular circuitries such as pathways and networks of genes [35, 29, 24, 37, 69, 27, 26, 67, 10].
While these methods have helped unraveling the underlying mechanisms, they have several limita-
tions. First, by design, they are limited to work with a single disorder. In order to compare and con-
trast comorbid disorders such as ASD and ID using these tools, one approach is to bag the mutational
burden observed for each disorder assuming two are the same. However, disorder specific features
are lost as a consequence [29]. The more common approach is to perform independent analyses per
disorder and intersect the results. Unfortunately, this approach ignores valuable source of informa-
tion coming from the shared genetic architecture and lose prediction power as per-disorder analyses
have less input (i.e., samples, mutation counts) and less statistical power [81, 12, 37]. Second, cur-
rent network-based gene discovery methods can work with one or two integrated gene interaction
networks [27, 57, 37, 49]. This means numerous functional interaction networks (e.g., co-expression,
protein interaction etc.) are disregarded which limits and biases the predictions. Gene co-expression
networks that model brain development are a promising source of diverse information regarding
gene risk, but currently cannot be fully utilized, as the signal coming from different networks cannot
be deconvoluted. Usually, investigating such risky neurodevelopmental windows is an independent
downstream analysis [95, 49]. Should this process be integrated within the risk assessment frame-
work, it has potential to provide valuable biological insights and also to improve the performance of
the genome-wide risk assessment task.

Here, we address these challenges with a novel cross-disorder gene discovery algorithm (Deep
Neurodevelopmental Disorders algorithm - DeepND.) For the first time, DeepND analyzes comor-
bid neurodevelopmental disorders simultaneously over multiple gene co-expression networks and
explicitly learns the shared and disorder-specific genetic features using multitask learning. Thus,
the predictions for the disorders depend on each other’s genetic architecture. The proposed DeepND
architecture uses graph convolution to extract associations between genes from gene co-expression
networks. This information is processed by a mixture-of-experts model that can self-learn critical
neurodevelopmental time windows and brain regions for each disorder etiology which makes the
model interpretable. We provide a genome-wide risk ranking for each disorder and show that the
prediction power is improved in both singletask (single disorder) and multitask settings. DeepND
identifies mediodorsal thalamus and cerebral cortex brain region and infancy to childhood period as
the highest neurodevelopmental risk window for both disorders. We observe that top percentile risk
genes for both disorders are enriched in transcription regulators. Despite tight regulatory links in
between ASD risk genes, we observe loose connectivity across ASD and ID risk genes or within ID
risk genes. Finally, we investigate frequent ASD and ID associated copy number variation regions
and confident false findings to suggest several novel risk gene candidates. The software is released at
http://github.com/ciceklab/deepnd. This neural network architecture can easily be generalized
to other disorders with a shared genetic component and can be used to prioritize focused functional
studies and possible drug targets.
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Fig. 1: System model of the proposed deep learning architecture for genome-wide cross-disorder risk assessment
(DeepND). The algorithm takes the following information as input: (i) disorder specific features for every gene (e.g., de
novo/transmitted loss of function/missense mutation counts from family etc.) as well as non-disorder related features (e.g.,
pLI); (ii) disorder specific ground truth genes that are labeled as positive with varying level of evidence based on a litera-
ture search; and (iii) non-psychiatric genes which are labeled as negative. The features are passed through fully-connected
multitask layers that learn shared weights for both disorders and produces a new feature representation. This new rep-
resentation is then input to singletask graph convolutional neural networks (GCNs), each processing one of fifty-two gene
co-expression networks that represent different brain regions and neurodevelopmental time windows. The output of GCNs
are then weighted by the Gating Network to learn which networks are informative for the gene risk assessment (shade of
the network indicates importance). Thus, DeepND learns which neurodevelopmental windows confer more risk for each
disorder’s etiology. The final output is a genome-wide risk probability ranking per disorder, which are then used for various
downstream analyses to understand the underlying functional mechanisms and to compare/contrast both disorders. The
singletask layers are exclusively trained with the ground truth genes of the disorder they belong. Thus, they learn only
disorder specific parameters and disorder-specific networks that implicate risk.
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2 Results

Using a deep learning framework which combines graph convolutional neural networks with a mix-
ture of experts model, we perform a genome-wide risk assessment for ASD and ID simultaneously in
a multitask learning setting and detect neurodevelopmental windows that are informative for risk
assessment for each disorder. Our results point to the shared disrupted functionalities and novel risk
genes which provides a road map to researchers who would like to understand the ties between these
two comorbid disorders.

2.1 Genome-wide Risk Prediction for ASD and ID

To have a model of evolving gene-interactions throughout brain development, we extracted 52 gene
co-expression networks from the BrainSpan dataset [85, 45] using hierarchical clustering of brain
regions and a sliding window approach [95]. These networks are used to assess the network-adjusted
posterior risk for each gene given the prior risk features. As for prior risk features, we used various (i)
gene specific features (e.g., pLI), and (ii) ASD and ID mutation burden indicators (e.g., number of de
novo loss-of-function mutations) obtained from large-scale WES studies for each disorder (Methods).

The deep neural network architecture (DeepND) performs a semi-supervised learning task, which
means a set of positively and negatively labeled genes are required as ground truth per disorder. As
also done in [49], we obtained 594 ASD-positive genes (Supplementary Table 1) from public databases
which are categorized into 4 evidence levels based on the strength of evidence in the literature (e.g.,
SFARI Gene - http://gene.sfari.org - categorization providing the highest level of evidence, whereas
text mining based evidence from Gene2Mesh - http://gene2mesh.ncibi.org - has the lowest confi-
dence). For ID, we curated a ground truth ID risk gene set of 237 genes using landmark review stud-
ies on ID gene risk [25, 32, 88, 39, 14] (Supplementary Table 2). We generated two evidence level sets
similar to the ASD counterpart: E1 and E2 sets where each set includes genes which are recurrently
indicated in multiple studies. As for the negatively labeled genes, we use 1074 non-mental-health
related genes for both disorders which is curated by Krishnan et al., (2016) (Supplementary Table 1).

DeepND uses the multitask learning paradigm where multiple tasks are solved concurrently (i.e.,
genome wide risk assessment for ASD and ID). Thus, the network learns a shared set of weights for
both disorders and also disorder-specific set of weights (Figure 1). First, the model inputs the prior
risk features of a gene for both disorders (i.e., concatenated) and using fully-connected layers pro-
duces a transformed feature set per gene. The set of weights learnt in these layers are affected by
the ground truth labels for both disorders, and thus, are shared. Then, the architecture branches
out to 2 single task layers, one per disorder (blue for ASD and yellow for ID in Figure 1). For each
single task branch, these transformed features are input to 52 graph-convolutional neural networks
(GCNs). Each GCN processes a co-expression network that represents a neurodevelopmental win-
dow and and extracts network-adjusted gene risk signatures (i.e., embeddings) [81, 67] (Methods).
Finally, these embeddings are fed into a fully-connected gating network along with the prior risk
features. The gating network assigns a weight to each GCN which is proportional to the informative-
ness of the embedding coming from each neurodevelopmental window. Thus, the model also learns
which windows are important for prediction of and ASD/ID risk genes. This also means they are
important in the etiology of the disorder. In the end, each disorder-specific subnetwork produces a
genome-wide ranking of genes being associated with that disorder along with risk probabilities . To
quantify the contribution of the co-analyzing comorbid disorders (i.e., multitask) as opposed to indi-
vidual analysis (i.e., singletask), we also present our results of DeepND when it is run on a single
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task mode (DeepND-ST). In this mode, the fully connected layers that transform feature sets are
removed and feature sets are directly fed into the GCNs (Methods). We show that the genome-wide
risk assessment of DeepND is robust, precise and sensitive and substantially improves the state of
the art both in terms of performance and interpretability of the predictions.

We benchmark the performances of DeepND and other gene discovery algorithms for neurode-
velopmental disorders. First, we compare DeepND and the state of the art algorithm by Krishnan
et al. using their experimental settings. Evaluating performances of the algorithms using E1 genes
through 5-fold cross shows that DeepND achieves a median AUC of 92% (Wilcoxon rank-sum test,
P = 1×10−6) and a median AUPR of 66% (Wilcoxon rank-sum test, P = 1×10−6) for ASD, which
correspond to 2% and 30% improvements over the evidence weighted SVM algorithm of Krishnan et
al., respectively (Figures 2a and 2b). Similarly for ID, DeepND achieves a median AUC of 81% and a
median AUPR of 35%, which improves the state of the art by 9% and 18%, respectively. We observe
that even the singletask mode DeepND-ST performs better than Krishnan et al.’s algorithm (up to
7%) in all settings. As expected, the multitask setting of DeepND performs better than DeepND-ST
and leads to improved AUC (up to 1.4%) and AUPR (up to 5%) for both disorders.

We also compare DeepND and Krishnan et al.’s approach gene-by-gene for both disorders. Figure
2c shows the probabilities assigned to each gene (red: E1 genes; black: non-mental health genes; and
grey: all other genes). The better performing algorithm would have the E1 genes on its own side of
the diagonal (i.e., relatively higher risk probability assigned) and have the black genes on the other
side (i.e., relatively lower risk probability assigned). We observe that DeepND consistently assigns
higher probabilities to E1 genes and lower probabilities to non-mental health relate genes and thus,
provides a better risk assessment (Wilcoxon Rank Sum test, DeepND ASD P = 3.35×10−22, DeepND
ID P = 5.07×10−19, Krishnan et al. ASD P = 5.07×10−20 and Krishnan et al. ID P = 7.12×10−9).

Finally, we compare DeepND, DeepND-ST and Krishnan et al. with other neurodevelopmental
disorder gene discovery algorithms from the literature that had output a genome-wide risk ranking:
DAWN [57] and DAMAGES [98] (Methods). We compare them using precision-recall (PR) curves over
the final genome-wide predictions of all methods. We consider 2 scenarios, where in the first one E1
genes are considered as true risk genes and in the second both E1 and E2 genes are considered as
the ground truth. (Figure 2d). For both disorders, DeepND consistently performs better than others
and the singletask version provides the second best result.

2.2 Critical neurodevelopmental windows for ASD and ID Risk
We observe that the top percentile genes in the DeepND ASD and ID rankings have a significantly
high overlap with a Jaccard index of 15% (Chi-Square test, P = 1.6×10−15). The overlap declines
sharply for the rest of the ranking. Unsurprisingly, top 3 deciles also have relatively high overlap
with Jaccard indices 0.2,0.24, and 0.2, respectively (Supplementary Figure 1).

To further investigate the shared genetic component, we focus on the spatio-temporal neurode-
velopmental windows that are deemed important by DeepND for accurate ranking of risk genes for
both disorders. The neural network analyzes co-expression networks that represent 13 neurodevel-
opmental time windows (from embryonic period to late adulthood; Figure 3a) and 4 brain region
clusters (PFC-MSC: Prefrontal and motor-somatosensory cortex; MDCBC: Mediodorsal nucleus of
the thalamus and cerebellar cortex; V1C-STC: Primary visual and superior temporal cortex; SHA:
Striatum, Hippocampus, Amygdala) generated using Brainspan RNA-Seq dataset [45] in accordance
with Willsey et al. [95] (Methods; Figure 3b).

We investigate using which neurodevelopmental windows more confidently distinguish disorder
risk genes. Figure 3c shows normalized average probabilities assigned to top percentile risk genes
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Fig. 2: Evaluation of DeepND genome-wide risk assessment for ASD and ID. (a) The area under ROC curve distributions
of Krishnan et al., DeepND and DeepND-ST for ASD and ID genome-wide risk assessments. Every point corresponds to the
performance on a test fold in the repeated cross validation setting (b) The area under precision-recall curve distributions
for the same methods as in (a). Center line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile
range; points: outliers. (c) ASD and ID risk probabilities assigned to each gene (dots) by the DeepND and Krishnan et al.
methods. Red: E1 genes; Black: Non-mental-health disease genes; and Grey: all other genes. A better assessment method
would have the E1 genes towards its side of the diagonal and have the black genes on the other side of the diagonal.
(d) Precision - Recall curves to compare DeepND, DeepND - ST, Evidence weighted SVM of Krishnan et al., DAWN, and
DAMAGES score of Zhang and Shen. Results for ASD and ID shown when (i) E1 genes are used as the true risk genes and
(ii) E1+E2 genes are considered as the true risk genes.
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Fig. 3: The BrainSpan dataset which models the spatiotemporal gene expression of human neurodevelopment [45] is
used to obtain gene co-expression networks. This dataset contains samples from 12 brain regions and spans 15 time
points from early fetal period to late adulthood. (a) We generate 13 neurodevelopmental time-windows using a sliding
window of length 3 which provides sufficient data in each window as also done by Willsey et al. [95]. (b) We obtain
4 brain region clusters based on transcriptional similarity during fetal development which also reflects topographical
closeness and functional segregation. The brain regions considered are as follows. HIP: Hippocampal anlage (for (1)–(2)),
Hippocampus (for (3)–(15)); OFC: Orbital prefrontal cortex; DFC: Dorsal prefrontal cortex; VFC: Ventral prefrontal cortex;
MFC: Medial prefrontal cortex; M1C: Primary motor cortex; S1C: Primary somatosensory cortex; IPC: Posterior inferior
parietal cortex; A1C: Primary auditory cortex; STC: Superior temporal cortex; ITC: Inferior temporal cortex; V1C: Primary
visual cortex; AMY: Amygdala; STR: Striatum; MD: Mediodorsal nucleus of the thalamus; CBC: cerebellar cortex. (c)
Heatmaps show which spatio-temporal windows lead to assignment of higher risk probabilities to top percentile genes
for respective disorders. The numbers in boxes are softmaxed outputs of each respective GCN, averaged for top percentile
genes and then normalized. The weights assigned to each co-expression network by the MoE lets each GCN learn to make
a better prediction. Top panels are the results for the DeepND-ST model for ASD (left) and ID (right). Bottom panels are
are the results for the DeepND model for ASD (left) and ID (right). Results show that for both disorders, in all settings,
MD-CBC early infancy to mid-late childhood is consistently the most informative network and could be the point where
the etiologies of the disorders converge.
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(Methods). First, we focus on DeepND-ST. We observe that the networks of the MDCBC brain region,
spanning several time windows from late/late-mid fetal to young adulthood periods consistently are
better predictors for ASD and ID risk. This is inline with the fact that ID or ASD linked genes are
highly expressed during prenatal and early postnatal time windows in development [62, 51]. For both
disorders these neurodevelopmental windows confer the highest risk due to the cross-talk between
their corresponding risk genes. The shared most informative period is 9-11. The period 8-10 was
also previously indicated as one of the highest risk regions and was subject to network analyses for
ASD gene discovery [95, 57]. Prefrontal cortex mid-fetal (PFC-MSC 3-5) window was another region
deemed important in the same study for ASD, but no such significant signal is picked up by DeepND-
ST. Overall, we observe that earlier time windows are relatively more important for ID compared to
ASD.

Next, we use DeepND which co-analyzes ASD and ID in the multitask setting. We observe that
in this setting, the change in the informativeness of networks for ASD is subtle compared to the
singletask setting. For ID, we see a more scattered picture and a more diverse set of networks are
more informative when cross-talk among ID and ASD genes are considered. This is also evident in
the higher prediction performance gain in ID compared to ASD (Figure 2). We see that later periods
become more informative, yet keeping the MDCBC infancy - childhood region as one of the most
important. Investigating the probabilities for the E1 genes for both disorders yields a similar picture
(Supplementary Figure 2).

DeepND architecture associates a weight with each network which is proportional to its infor-
mativeness for the ranking task at hand. We observe that MDCBC late/late-mid fetal to late child-
hood/adolescence periods are consistently attended the most by the algorithm (Supplementary Figure
3), indicating these regions are the most informative. MDCBC 9-11 window is the top in 3 out of 4
analyses indicating that this region and this time period is critical for the etiology of both disorders.
The weakest source of information is MDCBC 2-4 network. We observe roughly 12.5k links between
top percentile ASD and ID genes. The network contains close to 37.5m links. On the other hand, MD-
CBC 9-11 contains close to 13m edges. Yet, there exists close to 30k links between top percentile ASD
and ID genes which is the reason behind DeepND focusing on this window as its top predictor. These
two networks are visualized side by side in Supplementary Figure 4. Visualization of the top 30
genes for each disorder in MDCBC 9-11 network with only very high co-expression links (r2 > 0.95)
is provided in Figure 5a.

2.3 Enrichment Analysis of the Predicted Risk Genes

In addition to the prediction performance benchmark above, we also evaluate the enrichment of our
ASD and ID gene risk rankings in gene lists which are shown to be related to these disorders. That
is, while these gene sets are not ground truth sets, they have been implicated as being associated
with the etiology of either disorder. Thus, enrichment of members of these sets in the higher deciles
of the genome-wide risk ranking of DeepND is an indication of the wellness of the ranking and also
provides a means of comparing and contrasting the disrupted circuitries affected by ASD and ID.
These lists are (i) targets of transcription regulators like CHD8 [15], FMRP [16, 5, 18], RBFOX [90,
94, 18] and TOP1 [46]; (ii) Susceptibility pathways like WNT signaling [44] and MAPK signaling [75];
and (iii) affected biological processes and molecular functions like, post-synaptic density complex [8,
101], histone modification [18, 42]).

The first decile of ASD-risk genes has the highest enrichment in all categories. All enrichments
are significant with respect to Binomial test (Figure 4; Methods). We observe the same trend for ID
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Fig. 4: The enrichment of our ASD and ID gene risk rankings in various disease-related gene lists (i.e., each panel) are
shown: (i) ASD and/or ID-related transcription regulators, (ii) ASD and/or ID-related pathways, and (iii) ASD and/or ID-
related biological functions or protein complexes. While these do not fully contain ground truth genes, they have been
indicated in the literature as being enriched with risk genes for either disorder. Percentage of genes in the corresponding
gene set (x axis) that occurred within each decile of the genome-wide risk ranking per ASD (blue) and ID (yellow) are
shown. The gene sets used are as follows: (i) Targets of RBFOX (splice), (ii) Targets of RBFOX (splice target), (iii) Targets
of FMRP (all peak), (iv) Targets of CHD8, (v) Targets of TOP1, (vi) WNT Pathway, (vii) MAPK Signaling Pathway, (viii)
GTPase regulator activity, (x) Postsynaptic density complex genes, (xi) Synaptic genes (xii) Histone modifier genes.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.13.150201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.13.150201
http://creativecommons.org/licenses/by-nc-nd/4.0/


that the top decile of the genome-wide risk ranking is the most enriched in most categories but the
P values are more subtle. For the CHD8 targets, the fifth decile of the ID risk ranking is the most
enriched set and the distribution into deciles is not significant (Binomial test, P = 5.9×10−2). CHD8
(Chromodomain Helicase DNA Binding Protein 8) is the highest ASD-risk gene known to date with
the highest mutation burden in large ASD cohorts [18, 81] and with downstream functional analysis
[15]. Accordingly, DeepND ranks CHD8 as the third top risk gene whereas Krishnan et al. ranks
it 1943th genome-wide. While it has a solid association to ASD etiology, the ties to ID is not well-
established. Bernier et al. reports that 9 out of 15 ASD probands with mutations in CHD8 also has
ID. While it is a comorbid condition to ASD, CHD8 is not a well-established susceptibility gene for
ID. Lower enrichment of ID genes in CHD8 targets is in line with this hypothesis. In accordance,
DeepND places CHD8 as the 150th highest risk gene for ID.

We also perform an untargeted enrichment analysis of the top percentile predictions using the
Enrichr system [13, 52]. We find that for both disorders regulation of transcription from RNA poly-
merase II promoter is the top enriched Biological Process GO term (Fisher’s exact test, P = 6.4×10−19

for ASD and P = 6.1×10−13 for ID) which indicates that transcriptional regulation is a shared func-
tion that is disrupted in the etiology of both disorders (Supplementary Table 3). As for the GO Molec-
ular Function enrichment, two disorders diverge in the mechanism: the top function affected for
ASD is RNA polymerase II transcription co-factor activity whereas for ID the top affected function is
histone-lysine N-methyltransferase activity. As the top predicted genes are responsible for regulating
gene activity, we further investigate if there are any master transcription regulators upstream that
regulate the high risk genes for ASD and ID in the ChEA Database [53]. We find that DMRT1 is the
top transcription factor with 77 of its targets coincide with 258 the top percentile DeepND predicted
ASD risk genes (Chi-Square test, P = 2.84×10−18). It is the top third regulator for ID by regulat-
ing 46 of 258 top percentile ID risk genes (Chi-Square test, P = 1.74×10−4), 22 targets are shared
among ASD and ID. Note that only 69 genes overlap in top percentile ASD and ID risk genes. This
means 30% of the shared set of genes among two disorders are targeted by DMRT1 (Supplementary
Table 3). When the union set of the top percentile genes for ASD and ID are considered (447 genes),
we find that the top transcription factor targeting these is again DMRT1 (105 out of 2071 targets;
Chi-Square test, P = 2.33×10−15).

While DMRT1 is not ranked as a high risk gene, Pinto et al. report a rare experimentally-
validated de novo CNV (deletion) in an ASD proband which encompasses 9p24.34-p24.2 and DMRT1
[75]. DMRT1 is in the 9p region with the following genes: DOCK8,DMRT2,DMRT3,V LDLR, and
ANKRD15 and several works indicate that mutations affecting these these genes might be related
to neurodevelopmental disorders [72, 87, 86, 96]. DMRT1 is a transcriptional regulator and plays role
in male sex determination. This finding suggests an interesting link between DMRT1 and the strong
male bias in ASD [93] and ID [43, 84] prevalence.

2.4 Regulatory Interactions between ASD and ID Genes

After observing that top percentile genes for both ASD and ID are enriched in gene expression reg-
ulators, and that there is a common upstream regulator, we further investigate the regulatory re-
lationships among the risk genes of the two disorders. The union of the top percentile risk genes
contain 447 genes and 25 of them are found in the ChEA Database as transcription factors (TF) with
experimental target information (permutation test, P < 1×10−3). Out of this set of 25 TFs, 9 are
ASD-only risk genes, 9 are ID-only risk genes, and 7 of them are ASD & ID risk genes. We generate
a transcription factor regulation subnetwork between only genes in these three groups and investi-
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Fig. 5: Network Analyses of the risk genes. (a) The co-expression relationships between top 30 ASD and ID risk genes
in MDCBC 9-11 region. This is found as the most informative co-expression network for DeepND. Only links for at least
0.95 absolute correlation and genes with at least one connection are shown. (b) The protein-protein interactions between
the top percentile risk genes are shown. The PPIs are obtained from the tissue specific PPI network of frontal cortex
in DifferentialNet database [7] Only interactions between the top percentile risk genes are shown. (c) The regulatory
relationships between the top percentile ASD-only and ID-only risk genes in the ChEA transcription factor regulation
database are shown. 69 genes are ranked in the top percentile for both disorders. Only the risk genes with at least one
connection are shown (180 ASD-only, 114 ID-only and 66 ASD & ID). DMRT1 is found to be an upstream regulator which
significantly regulates both groups. ASD risk genes and ID risk genes contain 9 TFs each and the shared risk genes
contain 7 TFs. Using a permutation test, we check the connectivity between pairs of these groups. Red arrows indicate
that the TFs in the source has more targets than expected by chance in the target group. Cobalt blue arrows indicate that
the TFs in the source has less targets than expected by chance in the target group. Finally, aegean blue arrows indicate
expected connectivity. The figure shows that the connectivity within and between ASD-only and ASD&ID risk genes are
significantly high. On the contrary, TFs in these two groups have significantly less connections to ID-only than expected.
Also, the connections within the ID-only group is also significantly scarce.11
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gate whether they interact more than expected by chance. Using a stringent matched randomization
technique which is based on mutation rate, pLI and gene length, we generate 1000 random ASD-
only, ID-only and ASD & ID gene sets such that the sizes of each set is preserved and these sets
contain the same TFs in the original risk gene sets, respectively (Methods). We observe that the
most strongest connection is in between ASD-only and ASD & ID risk gene sets both ways. TFs in
both groups regulate each other significantly (permutation test - 1000 draws, P < 1×10−3; Figure 5).
While TFs in ASD-only set regulate the genes in its group more frequently than expected by change,
the significance is lower (permutation test - 1000 draws, P = 3.1×10−2). The same is true for TFs in
ASD & ID set (permutation test, P = 3.8×10−2). This is in striking contrast with the relationships
between ASD-only/ASD & ID TFs and ID-only risk genes. The strength of the connectivity is signif-
icantly less than expected (permutation test, P < 1×10−3). Similarly, TFs in the ID-only risk set do
not significantly interact with other groups.

We further investigate the protein-protein interactions (PPI) between the top percentile risk
genes in tissue specific PPI network for frontal cortex obtained from DifferentialNet database [7]
using the NetworkAnalyst system [99]. This analysis reveals several hub proteins such as HECW2,
EP300, CUL3, and CTTNB1 as shown in Figure 5. In this list, HECW2 gene stands out as it has
the highest degree in this network and has very low prior risk for both ASD (TADA P = 0.95) and ID
(extTADA Q = 0.97). Yet, it is the top 4th ID risk gene identified by DeepND and in the top percentile
for ASD risk. Note that DeepND did not use any PPI network information in its reasoning, and yet,
was able to identify this hub protein which has been linked with ASD [41] and ID [33] via de novo
disruptive mutations in simplex families.

2.5 Identification of Novel Candidates within ASD and ID Associated CNV Regions

Recurrent copy number variations in several regions of the genome are associated with ASD and
ID etiology. However, these are large regions and it is not clear which genes in particular are driver
genes. We investigate the DeepND risk ranking of genes within (i) six regions which frequently har-
bor ASD-related CNVs (16p11.2, 15q11-13, 15q13.3, 1q21.1 and 22q11) [49], and (ii) six regions which
were reported to harbor mental retardation related CNVs (16p11.2, 1q21.1, 22q11.21, 22q11.22,
16p13 and 17p11.2) [60]. Note that these CNVs in these regions might confer risk for both disor-
ders (Supplementary Table 4).

DeepND highly ranks several novel genes for ASD and ID, which (i) are within these CNV re-
gions, (ii) have low prior risk (e.g., E2 or lower, low TADA P value etc.), and (iii) low posterior risk
assigned by other algorithms (Supplementary Table 4).

For ASD, while GABRG3 is ranked as the 250th genome-wide by DeepND despite very slim prior
risk indicators. It is an E3-E4 level risk gene. It does not participate in any of the relevant gene
sets (e.g., risk pathways) and it has a low TADA P = 0.75. This is also a novel finding as none of
the other algorithms rank it in the top thousand (Krishnan et al., 1297th, DAWN 3257th, DAMAGES
score 1472nd). (Supplementary Table 1). Yet, we find that this gene is assigned a SFARI Gene Score 2
which means it is in top 400 risk genes in SFARI Gene Database (accessed on May 2020). Moreover,
links between variants in this gene and ASD were found in Caucasian [61] and Chinese cohorts [91].

MICAL3, a gene related to actin and Rab GTPase binding, ranked in as the 352nd for ASD risk
despite having TADA Q = 0.77 and not being in relevant risk gene groups. Krishnan et al. rank it
3165th and DAMAGES score ranks it 1916th. DAWN provides no ranking as it is not co-expressed
with other is networks of interest for DAWN. While disruption in Rab GTPase cycle gene could lead
intellectual disability [82], there are no established ties between MICAL3 and ASD or ID. However,
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MICAL family genes are related to cytoskeletal organization which recently has been deemed an
important molecular function in ASD etiology [81, 69]. MICAL2 is an ASD-risk gene and also ranked
in the top percentile by DeepND. Unlike others, DeepND utilizes multiple co-expression networks
concurrently and is able to capture the link between MICAL2 and MICAL3 in 7 networks spanning
late fetal to adolescence in SHA and V1C-STC regions. This enables DeepND to predict it as a risk
gene in a relevant CNV region (22q11).

FOXO3B is located in 17p11.2 which is one of the ID related CNV regions. While this gene does
not even have a prior TADA score in Nguyen et al. [67], DeepND marks it as the 57th risk gene. Dele-
tion of FOXO transcription factors is shown to cause axonal degeneration and elevated mTORC1
activity [38] which was previously associated with several neurological and neurodevelopmental dis-
orders including autism and epilepsy. Krishnan et al. ranks this gene in the fifth decile and DAWN
cannot capture it due to lack of correlation in prefrontal cortex during mid-fetal period. Interestingly,
all discussed genes, GABRG3, MICAL3 and FOXO3B have similar RNA expression patterns in brain
as they are either most expressed or second most expressed in cerebral cortex [2] (Supplementary
Figure 5).

2.6 Evaluation of Novel Predictions

Here, we focus on the most confident predictions of DeepND which are clashing with the current con-
sensus; such as ground truth risk genes classified as non-risk genes and vice versa (Supplementary
Table 1). While it is always interesting to discover new disorder risk genes, it maybe is as important
to pinpoint non-ASD/non-ID genes. This is because many neurodevelopmental disorders overlap and
specificity is import.

SLC9A9 is a sodium/hydrogen exchange protein with a record of rare variants in an ASD cohort
[65, 3]. While, it was listed as an E1 risk gene [49], DeepND consistently ranks it in the last decile
with 0.175 probability of being an ASD risk gene. Other algorithms rank it in the fifth decile at the
lowest. The protein and RNA expressions of SLC9A9 are enriched in the spinal cord which makes it
an unlikely ASD risk candidate [2] which is a testament to the ability of DeepND to distinguish true
risk genes from noise despite a potentially incorrect ground truth label (Supplementary Figure 6).

CACNA1H is another ASD E1 risk gene [49] ranked in the 9th decile (22,102nd) by DeepND with
0.246 probability of being an ASD-risk gene. DAWN ranks it as the 300th risk gene while others put
it into the 3rd decile as the lowest. This gene shows higher protein and RNA expression levels in
basal ganglia and pituitary gland with respect to other brain regions [2] which lowers the chances of
CACNA1H to be an ASD risk gene when combined with its low prior probability.

Finally, DeepND assigns TAT (an ID E1 gene) a very low risk probability (0.074) and ranks it
in the last decile. Although it is listed as an ID risk gene in multiple studies [14, 25, 32, 39, 88], TAT
encodes a tyrosine aminotransferase and is mainly expressed in liver which makes it a questionable
candidate as an ID risk gene.

There are also examples where genes in the negative ground truth set are listed in the top quar-
tile by DeepND. GIGYF2 encodes a protein with stretches of polyglutamine residues and is located
in 2q37.1, which is linked to Parkinson disease type 11 [73]. GIGYF2 is argued to play a role in regu-
lation of tyrosine kinase receptor signaling and it has been placed in top percentile by DeepND with
an ASD risk probability of 0.906. Likely gene disrupting mutations in GIGYF2 has linked it to ASD
in a Chinese cohort [92].
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3 Discussion

Neurodevelopmental disorders have been challenging geneticist and neuroscientists for decades with
complex genetic architectures harboring hundreds of risk genes. Tracing inherited rare and de novo
variation burden has been the main driver of risk gene discovery. However, overlapping genetic com-
ponents and confounding clinical phenotypes make it hard to pinpoint disorder-specific susceptible
genes and to understand differences. For instance, Satterstrom et al. pinpoint 102 ASD risk genes
with FDR < 10% with the largest ASD cohort to date covering nearly 6.5k trios [81]. Yet, they still
need to manually segregate these risk genes into two groups as (i) 53 ASD predominant risk genes
which are distributed across a spectrum of ASD phenotypes, and (ii) 49 neurodevelopmental delay
risk genes causing impaired cognitive, social, and motor skills. Thus, comorbidity is a further obstacle
to be reckoned with in addition to identifying individual susceptible genes. Nevertheless, the shared
risk genes and biological pathways offer opportunities for computational risk assessment methods
which were not explored before. So far, only disorder specific analyses were possible by design of
the network-based gene discovery algorithms. These are limited in power due to distinct datasets
which lead to limited cohort sizes. Here, we proposed a novel approach which can co-analyze co-
morbid neurodevelopmental disorders for gene risk assessment. The method is able to leverage the
shared information using multitask learning paradigm for the first time for this task. DeepND learns
both a shared and a disorder-specific set of weights to calculate the genome-wide risk for each dis-
order. DeepND is a multitask deep learner which uses state-of-the-art techniques underneath such
as graph convolution and mixture of experts to learn non-linear relationships of genes on 52 brain
co-expression networks. The model is also interpretable as it is able to learn which neurodevelop-
mental windows (i.e., networks) provide more information for distinguishing high risk genes, and
thus, are important for understanding disease etiology. Our benchmarks show these techniques en-
able DeepND to outperform existing gene discovery methods even when working in singletask mode.
Multitask mode has the best performance overall.

We focus on ASD and ID in this study and identify similarities such as shared affected pathways
and neurodevelopmental windows, and differences such as regulatory relationships and novel risk
genes. We think the findings in this paper will help guiding neuroscientists researching ASD and
ID in prioritizing downstream functional studies and identifying drug targets. DeepND is not an
algorithm specific to these disorders though. It can easily be extended to consider other comorbid
disorders such as schizophrenia and epilepsy by adding similar singletask layers for each disorder.
It can also be used for other comorbid disorders that are not related to neurodevelopment at all.

We demonstrated the advantage of being able to employ multiple co-expression networks and
pointed to cases where, for instance, DAWN was not able to capture relationships between genes
as they are limited with a single co-expression network. For the clarity of discussion and inter-
pretability, we focused on only networks produced from BrainSpan dataset. However, DeepND can
also employ any combination of other types of gene interaction networks such as protein interaction
networks.

4 Methods

4.1 Ground Truth Risk Gene Sets

Our genome-wide gene-risk prediction algorithm is based on a semi-supervised learning framework
in which some of the samples (i.e., genes) are labeled (as ASD/ID risk gene or not) and they are used
to learn a ranking for the unlabeled samples.
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We obtain the labels for ASD as also done in Krishnan et al. (2016) for a fair comparison. The
ASD related genes are collected from from various sources: SFARI [3], OMIM [34], HUGE [97],
Gene2Mesh (http://gene2mesh.ncbi.org/), GAD [9] and DGA [74]. These genes are classified into four
evidence levels indicating the quality of the evidence (E1 - E4, E1 indicating the highest risk). The
list contains 46 E1 genes (from SFARI Cat I/II and OMIM), 67 E2 genes (from SFARI Cat III), 525
E3 (from HUGE and GAD databases) and E4 genes (from text mining studies Gene2Mesh/DGA and
SFARI Cat IV) as positively labeled ASD-risk genes. We also obtain 1,185 non-mental health re-
lated genes from OMIM and Krishnan et al. as negatively labeled genes. The list and corresponding
evidence levels are listed in Supplementary Table 1. In the loss calculations during training of the
model, genes in these categories are assigned the following weights: E1 genes (1.0), E2 genes (0.50),
E3/E4 genes (0.25) and negative genes (1.0). The performance is evaluated only on E1 genes for the
sake of compatibility with other methods.

For ID, we rely on review studies from the literature which provide in depth analyses and lists
of ID risk genes. We considered the known gene lists from 2 landmark review studies as our base
ground truth ID risk gene list [25, 32]. We divide this set into 2 parts (i.e., E1 and E2) with respect
to evidence obtained from 3 other studies [88, 39, 14]. The genes which are indicated by all 5 studies
are assigned to the highest risk class, E1. Remaining genes which are indicated by 4 studies are
assigned to the second highest risk class, E2. See Supplementary Table 2 for a detailed breakdown of
evidence for each gene. We use the same set of negative genes as ASD which are non-mental health
related genes. Overlapping genes within the E1 and E2 lists are removed from the negative list.
Consequently, we have 56 E1 and 131 E2 genes and 1,074 negative genes for ID. See Supplementary
Table 1 for a complete list of ground truth genes for both disorders. The weights we use per gene class
are as follows: E1 genes (1.0), E2 genes (0.50), and negative genes (1.0). For the sake of consistency,
we also report the performance of the model on E1 genes for ID.

4.2 Gene Risk Features

The disorder specific features we use are as follows. First, for ASD we obtain the mutation burden
information from the latest and largest whole exome study to date [81]. For every gene, we use the
following information as features related to ASD-risk: (i) the number of de novo loss of function mu-
tations, (ii) the number of damaging missense loss of function mutations, (iii) the number of protein
protein truncating variants (PTVs) for ASD case and control groups, (iv) the number of transmitted
loss of function mutations, (v) the number of de novo protein truncating variants (PTVs) and mis-
sense mutations in published ASD probands, (vi) frequency of de novo variants in ASD individuals.
For ID, a similar set of features are obtained from [67]. For every gene, DeepND learns the ID-risk
from the following features: (i) the number of de novo loss of function mutations, (ii) the number of
damaging missense loss of function mutations, (iii) extTADA Bayes factor which is calculated using
an extension of TADA, (iv) the number of de novo PTVs and missense mutations in published ID/DD
(developmental delay) probands, (v) frequency of de novo variants in ID/DD individuals. We use the
gene pLI and mutation rate for both disorders. See Supplementary Table 5 for the complete list of
features and values used for each gene.

4.3 Gene Co-expression Networks

We used the BrainSpan dataset of the Allen Brain Atlas [85, 45] in order to model gene interactions
through neurodevelopment and generated a spatio-temporal system of gene co-expression networks.
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This dataset contains 57 postmortem brains (16 regions) that span 15 consecutive neurodevelopmen-
tal periods from 8 postconception weeks to 40 years. To partition the dataset into developmental pe-
riods and clusters of brain regions, we follow the practice in Willsey et al. (2013) [95]. Brain regions
were hierarchically clustered according to their transcriptional similarity and four clusters were
obtained (Figure 3b): (i) V1C-STC (primary visual cortex and superior temporal cortex), (ii) PFC-
MSC (prefrontal cortex and primary motor-somatosensory cortex), (iii) SHA (striatum, hippocampal
anlage/hippocampus, and amygladia), and (iv) MDCBC (mediodorsal nucleus of the thalamus and
cerebellar cortex). In the temporal dimension, 13 neurodevelopmental windows (Figure 3a) were ob-
tained using a sliding window approach (i.e., [1–3], [3–5], · · ·, [13–15]). A spatio-temporal window
of neurodevelopment and its corresponding co-expression network is denoted by the abbreviation
for its brain region cluster followed by the time window of interest, e.g. “PFC-MSC(1-3)” represents
interactions among genes in the region PFC-MSC during the time interval [1–3].

Using the above-mentioned partitioning, we obtained 52 spatio-temporal gene co-expression net-
works, each of which contain 25,825 nodes representing genes. An undirected edge between two
nodes is created if their absolute Pearson correlation coefficient |r| is greater than or equal to 0.8 in
the related partition of BrainSpan data.

4.4 DeepND Model

Problem Formulation Each 52 co-expression network j described in Section 4.3 is represented
as a graph G j = (V ,E j), where the vertex set V = (v1, · · · ,vn) contains genes in the human genome
and E j ∈ {0,1}n×n denotes the binary adjacency matrix. Note that n = 25,825. Let XD ∈Rn×d be the
feature matrix for disorder D where each row XD[i] is a list of d features associated with gene (and
node) i,∀i ∈ [1,n]. Let yASD be an l dimensional vector, where yASD[i] = 1 if the the node i is a
risk gene for ASD, and yASD[i] = 0 if the gene is non-mental health related, ∀i ∈ [1, l], l < n. Note
that, in this semi-supervised learning task, only first l genes out of n have labels. yID is defined
similarly for ID, using its ground truth risk and non-risk gene sets. The goal of the algorithm is to
learn a function f (XASD , X ID , yASD , yID ,G1, · · · ,G52) → P ∈Rn×2. P[i][ASD] denotes p(yASD[i]= 1),
and P[i][ID] denotes p(yID[i]= 1),∀i ∈ [1,n].

Graph Convolutional Network Model Convolutional Neural Networks (CNNs) have revolution-
ized the computer vision field by significantly improving the state-of-the art by extracting local pat-
terns on grid-structured data [50]. Applying the same principle on arbitrarily structured graph data
have also enjoyed success [11, 21, 36]. While all these spectral approaches have proven useful, they
are computationally expensive. Kipf and Welling have proposed an approach (graph convolutional
network - GCN) to approximate the filters as a Chebyshev expansion of the graph Laplacian [19]
and let them operate on the 1-hop neighborhood of each node [48]. This fast and scalable approach
extracts a network-adjusted feature vector for each node (i.e. ,embedding) which incorporates high-
dimensional information about each node’s neighborhood in the network. The convolution operation
of DeepND is based on this method. Given a gene co-expression network G j, GCN inputs the nor-
malized adjacency matrix Ê j with self loops (i.e., Ê j[i, i]= 1,∀i ∈ [1,n]) and the feature vector XD[i],
for gene i and for disorder D. Then, the first layer embedding H1[i] ∈ Rd1 produced by GCN is
computed using the following propagation rule H1[i] = ReLU(D̂−0.5ÊD̂−0.5XD[i]W0) where W0 is the
weight matrix at the input layer to be learnt, ReLU is the rectified linear unit function and D̂ is
the normalized version of a diagonal matrix where D̂ ii = ∑

j Ê i j. We pick d1 = 4 in this application.
Each subsequent layer k is defined similarly as follows: Hk[i] = ReLU(D̂−0.5ÊD̂−0.5Hk−1[i]Wk−1).
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Thus, the output of a k-layered GCN, for gene i on co-expression network j is denoted as follows:
GCN(G j, XD[i]) = Hk[i] ∈Rdk . In this application, we use 2 GCN layers and d2 = 1. The final layer
is softmax to produce probabilities for the positive class. That is, the output of a GCN model j, for a
gene i is GCN(G j, XD[i]) = sof tmax(H2[i])= v j

i ∈R.

Mixture of Experts Model Mixture of experts model (MoE) is an ensemble machine learning
approach which aims to find out informative models (experts) among a collection [59]. Specifically,
MoE inputs the features and assigns weights to the outputs of the experts. In DeepND architecture,
individual experts are the 52 GCNs which operate on 52 gene co-expression networks as explained
above (G1, · · · ,G52). For every gene i, MoE inputs XD[i] and produces a weight #»w of length 52 which
is passed through a softwax layer (i.e.,

∑52
h=1

# »wi[h]= 1). The output of the GCNs are weighted by this
network and the weighted sum is used to produce a risk probability for every gene i using softmax.
That is, the MoE(XD[i])= #»w i ∈R52. The GCNs produce 52 v j

i values (one per co-expression network)
which are concatenated to produce #»v i ∈R52. Finally, the following dot product is used to produce the
risk probability of gene i for disorder D: #»w i · #»v i = P[i][D].

Multitask Learning Model Above-mentioned GCN and MoE cascade inputs XD[i] and co-expression
networks G1, ..,G52 along with labels for a single disorder to predict the risk probability for every
gene. Thus, it corresponds to the single-task version of DeepND (i.e., DeepND-ST.) On the other
hand, DeepND is designed to work concurrently with multiple disorders (i.e., ASD and ID.) DeepND
employs one DeepND-ST cascade per disorder and puts a multi-layer perceptron (MLP) as a pre-
cursor to two DeepND-ST subnetworks. The weights learnt on these subnetworks are only affected
by the back-propagated loss of the corresponding disorder, and hence, these are single task parts
of the architecture. On the contrary, the weights learnt on the MLP part are affected by the loss
back-propagated from both subnetworks. Thus, this part corresponds to the multitask component of
the DeepND architecture. The MLP layer inputs the union of XASD and X ID and passes it through
a fully connected layer followed by Leaky ReLU activation (negative slope = −1.5) to learn a weight
matrix WMLP and output a d′ dimensional embedding to be input DeepND-ST instead of XASD[i]
and X ID[i]. That is, MLP(XASD[i]∪ X ID[i])= LRELU(Wᵀ

MLP · (XASD[i]∪ X ID[i])+ #»

b MLP ).

Learning and the Cross Validation Setting of DeepND To evaluate both DeepND-ST and
DeepND approaches, we use a five-fold cross-validation scheme. All labeled genes are uniformly
and randomly distributed to the folds. At each training iteration, we leave one fold for validation and
one fold for testing. We train the model on the remaining three folds of the labeled genes. For all
the genes in the left-out fold, their feature vectors are nullified when input to training in order to
prevent information leakage.

The model is trained up to 1000 epochs with early stop which is determined with respect to the
loss calculated on the validation fold using only E1 genes as the positives and all negative genes.
Once the model converges, the test performance is reported on the test fold in the same manner as in
the validation fold. The model uses cross entropy loss (evidence weighted) and ADAM optimizer [47]
for updating the weights which are initialized using Xavier initialization [28]. DeepND-ST uses a
fixed learning rate of 7×10−4 for both disorders. DeepND uses the learning rates of 7×10−4, 7×10−4

and 7× 10−3, for the shared layer, ASD single task layer, and ID single task layer, respectively.
To ensure proper convergence of DeepND, should one of the singletask subnetworks converge, the
learning rate of that subnetwork and the shared layer are cut down twenty folds. This lets the yet
underfit subnetwork to keep learning till early stop or the epoch limit.
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Above-mentioned procedure produces 20 results as for every left-out test fold, all remaining 4
folds are used as validation. We repeat this process 10 times with random initialization to obtain a
total of 200 results for performance comparison (Figure 2). For ASD, positively labeled genes’ weights
equal to 1.00 (E1), 0.50 (E2), 0.25 (E3) and 0.25 (E4). For ID, positively labeled genes’ weights equal
to 1.00 (E1) and 0.50 (E2). For both disorders, negatively labeled genes have weight 1.00. Note that
this procedure is in line with the setting of Krishnan et al. for fairness of comparison.

4.5 Genome-wide risk prediction for ASD and ID and Comparison with Other Methods

We compare the performance of DeepND-ST and DeepND with other state-of-the-art network based
neurodevelopmental disorder gene risk assessment methods from the literature which output a
genome-wide risk ranking: Krishnan et al. [49], DAWN [56], and DAMAGES score [98].

We run Krishnan et al.’s approach as described in their manuscript [49]. This is an evidence-
weighted Support Vector Machine (SVM) classifier which identifies risk genes based on similarity
of network features. They use a human brain-specific functional interaction network to generate
features as input [30]. Note that, the ground truth gene set is the same as ours as well as the
evidence weights for ASD. We perform a 5-fold cross validation. That is, for each iteration, we train
their SVM model on 80% of the labeled genes and evaluate the model on E1 genes and all negative
genes in the left-out 20% of the labeled genes as suggested. We repeat this procedure 10 times. We
post-process SVM outputs to produce risk probabilities using isotonic regression which ensures that
the gene ranking is preserved. We use the pLI value of each gene as the dependent variable. In a 10-
fold cross validation setting, we detect knots on the left-out fold, and fit another isotonic regression
line to interpolate the knots. We use SVM output for all genes to produce a gene risk probability
values for the corresponding disorder and produce the genome-wide risk ranking. We compare this
method and DeepND-ST/DeepND with respect to (i) the area under receiver operating curve (AUC)
and area under precision recall curve (AUPR) distributions calculated on the left-out fold at each
cross validation iteration (Figure 2a-b) and (ii) probabilities assigned to the ground truth genes with
respect to the final rankings (Figure 2c).

DAWN is a hidden Markov random field based approach that assigns a posterior, network-
adjusted disorder risk score to every gene based on guilt by association principle. It inputs TADA
p-values as prior features along with a partial co-expression network to assess connectivity. We in-
put the TADA p-values to DAWN which are also used by DeepND as one of the features [81, 67]. The
method also uses partial co-expression networks. We use two networks which the authors suggest
as the most useful for this task in their manuscript [56]. These represent prefrontal cortex/mid-fetal
period (i.e., PFC-MSC 3-5 and PFC-MSC 4-6). We generate these networks using the RNA-Seq data
in the BrainSpan dataset. Note that DeepND utilizes the same dataset and uses these networks
and 50 others. Instead of partial co-expression networks, DeepND uses co-expression networks. The
DAMAGES score is a principal component analysis based technique that assess the risk of genes
based on (i) the similarity of their expression profiles in 24 specific mouse central nervous system
cell types, (ii) the enrichment of mutations in cases as opposed to controls, and (iii) the pLI score of
the gene. We directly obtain the risk ranking from Shen and Zhang, 2017 [98]. We compare all above
mentioned methods with DeepND-ST/DeepND with respect to precision-recall curves in Figure 2d.

All algorithms are trained and tested on a SuperMicro SuperServer 4029GP-TRT with 2 Intel
Xeon Gold 6140 Processors (2.3GHz, 24.75M cache), 251GB RAM, 6 NVIDIA GeForce RTX 2080
Ti (11GB, 352Bit) and 2 NVIDIA TITAN RTX GPUs (24GB, 384Bit). For DeepND-ST, we used 3
2080 RTX and 1 TITAN RTX cards and the cross validation setup took approximately 5 hours. For
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DeepND, we used 5 RTX 2080 and 1 TITAN RTX cards and the cross validation setup took approxi-
mately 16 hours.

4.6 Enrichment Analyses

We evaluate the enrichment of DeepND’s ASD and ID gene risk rankings in gene lists which are
known to be enriched in disorder-risk genes in the literature. These lists are (i) targets of transcrip-
tion regulators like CHD8 [15], FMRP [16, 79], RBFOX1 [90, 94] and TOP1 [46]; (ii) Susceptibility
pathways like WNT signaling [44] and MAPK signaling [75]; and (iii) affected biological processes
and molecular functions like, post-synaptic density complex [8, 101], histone modification [18, 42]).
We use the binomial test to determine whether the top decile in the corresponding ranking signifi-
cantly deviate from uniform enrichment (Figure 4).

We perform a Gene Ontology term enrichment analysis of the top percentile predictions using
the Enrichr system [13, 52] with respect to Biological Process terms and Molecular Function terms.
As both analyses point to transcription factor regulation, we investigate the connectivity of the high
risk genes in the ChEA Database [53] which is a large repository that lists experimentally validated
transcriptional regulation relationships in various organisms. Again using the Enrichr system, we
find that DMRT1 is a significant upstream regulator with respect to Chi-Square test.

We investigate the regulatory relationships among 258 top-percentile risk genes for each disorder.
First, we obtain three risk gene groups: ASD-only (9 genes; 9 are TFs), ID-only (9 genes; 9 are TFs),
and ASD&ID (69 genes, 7 are TFs) (Supplementary Table 1). Then, we use a permutation test to
assess various enrichment categories. First, we draw random risk gene sets. That is, we generate
1000 random gene sets with size 9 to mimic ASD-only set; 1000 random gene sets with size 9 to mimic
ID-only set; and 1000 random gene sets with size 69 to mimic ASD&ID gene set. We ensure that the
original TFs are in each respective set are preserved in the random sets. For instance, if a TF is in
the ASD-only set, it is also in all of the 1000 random sets generated for to mimic the ASD-only set.
We use a matched randomization strategy to randomly pick the remaining genes other than the TFs.
The genes are matched with respect to (i) pLI, (ii) gene length, (iii) protein truncating variant (PTV)
rate, and (iv) brain expression. First, the genes are partitioned into 3 pLI groups: [0, .5), [.5, .9), and
[.9,1.0]. These bins contain 12152, 4227, and 62 genes, respectively. Second, 15 gene length groups
for each kb range are formed. For instance, genes that are [1000, 1999] bp-long are assigned to bin
1. All genes that are longer than 14kb are put in a single group. These bins contain 64, 6962, 2622,
1111, 451, 269, 132, 93, 55, 34, 17, 13, 14, 20, and 30 genes, respectively. Finally, 3 PTV rate groups
are formed: [0,1.6×10−6), [1.6×10−6,3.8×10−6), and [3.8×10−6,1]. These bins contain 6994, 6994,
and 3496 genes, respectively. For a gene X to be randomly matched, a random brain expressed gene
that shares all corresponding partitions with X is selected without replacement. These features for
genes are listed in Supplementary Table 6. Then the permutation test checks if the TFs in one group
(e.g., ASD-only) are significantly connected to the genes in another group (e.g., ID-only) as follows: (i)
We count the number of connections between the actual sets; (ii) we count the number of connections
in between each of the corresponding 1000 random sets; and finally, (iii) we assign an empirical p-
value to the connectivity using the ranking of the actual number of connections among 1000 random
draws (Figure 5).

4.7 Spatio-Temporal Network Analyses

We investigate which GCNs (i.e., neurodevelopmental windows) are better predictors of gene risk for
each disorder. For each gene i, the average risk probability assigned by the corresponding GCN is
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calculated over all iterations such that i is in the test fold. The average values for (i) top percentile
genes for each disorder are shown in Figure 3; and (ii) E1 genes for each disorder are shown in
Supplementary Figure 2. Both DeepND-ST and DeepND results are provided. We also investigate
which GCNs are attended by the MoE model the most. That is, we calculate the mean of the weights
assigned to GCN j for each gene i (i.e., W j

i ) by the MoE. Again, only the iterations in which gene i is
in the test fold is used. Results are shown in Supplementary Figure 3.

Code Availability. DeepND is implemented and released at http://github.com/ciceklab/deepnd. We
provide the environment which contains all dependencies for an easy setup. We give a small example
to train and test both DeepND-ST/ DeepND models. Finally, we provide the code and links to the full
set of datasets to reproduce the results (genomewide risk rankings and data for heatmaps) presented
in this manuscript for ASD and ID.
Data Availability. All datasets used in this study are publicly available, which are referenced in
the relevant methods subsections. The Genotype-Tissue Expression (GTEx) Project was supported
by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI,
NHGRI, NHLBI, NIDA, NIMH, and NINDS. The GTEx data used for the analyses described in this
manuscript were obtained from the GTEx Portal on Feb 2020. All data supporting the key findings
such as gene risk evidence levels and gene risk predictions are available within the article and cor-
responding supplementary tables.
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Supplementary Figure and Table Legends.

Supplementary Figure 1. (a) The percentage overlap between corresponding deciles of the ASD
and ID genome-wide risk rankings are shown. (b) The percentage overlap between corresponding
percentiles of the ASD and ID genome-wide risk rankings are shown.

Supplementary Figure 2. Heatmaps show which spatio-temporal windows lead to assignment of
higher risk probabilities to E1 genes for respective disorders. The numbers in boxes are softmaxed
outputs of each respective GCN, averaged for E1 genes and then normalized. Top panels are the
results for the DeepND-ST model for ASD (left) and ID (right). Bottom panels are are the results
for the DeepND model for ASD (left) and ID (right). The categorization of brain regions and time
windows are provided in Figure 3.
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Supplementary Figure 3. Heatmaps show which spatio-temporal windows are focused by the Mix-
ture of Experts model to have better predictions for the top percentile genes for respective disorders.
The numbers in boxes are the weights assigned to each GCN, averaged for top percentile genes. Top
panels are the results for the DeepND-ST model for ASD (left) and ID (right). Bottom panels are are
the results for the DeepND model for ASD (left) and ID (right). The categorization of brain regions
and time windows are provided in Figure 3.

Supplementary Figure 4. (a) The co-expression relationships between top percentile genes in each
disorder on (a) MDCBC 2-4 network and (b) MDCBC 9-11 network. MDCBC 2-4 is the weakest
source of information for DeepND and MDCBC 9-11 is the strongest source of information. In panel
(a) there are roughly 12.5k links as opposed to approximately 30k links in panel (b). Note that the
full MDCBC 2-4 network contains close to 37.5m links compared to 13m links in MDCBC 9-11, indi-
cating the importance of MDCBC 9-11 for the etiologies of these disorders.

Supplementary Figure 5. Median RNA expression patterns for GABRG3 (top), MICAL3 (down-left)
and FOXO3B (down-right) across various tissues in the GTEx dataset [2] (transcripts per million).
These genes are either most expressed or second most expressed in the cerebral cortex.

Supplementary Figure 6. Median RNA expression patterns for confident novel predictions of DeepND
across various tissues in the GTEx dataset [2] (transcripts per million): SLC9A9 (top-left), CACNA1H
(top-right), TAT (bottom-left) and GIGYF2 (bottom-right).

Supplementary Table 1. Genome-wide risk probability predictions and rankings of DeepND for
ASD and ID. The table marks the gold standard genes: 594 positively and 1185 negatively labeled
genes for ASD; and 237 positively and 1074 negatively labeled genes for ID are given along with their
evidence levels (E1 - E4, E1 indicating the highest risk). The table also provides the rankings from
other gene discovery algorithms from the literature. Finally, for each gene, participation in disorder-
related gene sets are provided (e.g., WNT pathway, CHD8 targets etc.).

Supplementary Table 2. The table provides information about the studies used to generate the
ground truth labels for ID. For each gene, the base studies which indicates it as a risk gene are pro-
vided.

Supplementary Table 3. The table lists (i) the GO enrichment analysis for the top percentile risk
genes for both disorders (Biological Process and Molecular Function). It also provides lists of top
transcription factor (TF) regulators whose targets are enriched with the top percentile ASD and/or
ID risk genes, respectively. The TF enrichment results are based on the experimentally validated
TF-gene relationships in ChEA 2016 database. All results are obtained using the EnrichR system.

Supplementary Table 4. DeepND risk rankings for the genes within 6 ASD related (16p11.2,
15q11-13, 15q13.3, 1q21.1 and 22q11) (Krishnan et al., 2016) and 6 mental retardation related CNV
regions (16p11.2, 1q21.1, 22q11.21, 22q11.22, 16p13 and 17p11.2). Frequency of these CNV regions
within ASD and ID individuals are provided when available.

Supplementary Table 5. The input feature data used to train DeepND-ST and DeepND models
are provided for each gene for replication purposes. The sources in the literature which are used to
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compile the data are stated. The complete list of 29 features listed are used to train the multitask
model. Subsets of this list are used to train singletask models respectively for each disorder and the
columns are marked accordingly.

Supplementary Table 6. The information for gene-gene interaction plots in Figure 5 are provided
for (a) the co-expression subnetwork for the top 30 risk genes in the MDCBC 9-11 network with a
correlation coefficient of at least .95, (b) the top percentile risk genes with a connection in the Differ-
entialNet frontal-cortex PPI network, and (c) top percentile risk genes which are regulated by a TF
gene in the same list or by DMRT1. The list of nodes and edges are listed in the corresponding tabs.
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