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Abstract

Spatial organization of catalytic particles is ubiquitous in biological systems across di↵erent

length scales, from enzyme complexes to metabolically coupled cells. Despite the di↵erent scales,

these systems share common features of localized reactions with partially hindered di↵usive trans-

port, determined by the collective arrangement of the catalysts. Yet it remains largely unexplored

how di↵erent arrangements a↵ect the interplay between the reaction and transport dynamics, which

ultimately determines the flux through the reaction pathway. Here we show that two fundamental

trade-o↵s arise, the first between e�cient inter-catalyst transport and depletion of substrate, and

the second between steric confinement of intermediate products and accessibility of catalysts to

substrate. We use a model reaction pathway to characterize the general design principles for the ar-

rangement of catalysts that emerge from the interplay of these trade-o↵s. We find that the question

of optimal catalyst arrangements generalizes the famous Thomson problem of electrostatics.
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The physics underlying the spatial organization of particles in dense systems has a long

history and displays intriguing behaviors [1]. Traditionally, physics has dealt only with

inert particles, while catalytic particles are key to the complexity of chemical and biological

systems. The physics of spatially arranged catalytic particles remains largely unexplored.

Biology provides many examples of systems where particles that catalyze sequential reactions

exhibit a striking degree of spatial organization across all length-scales of living systems [2],

from individual molecules to collections of cells.

At the molecular scale, enzymes that catalyze consecutive reactions in a biochemical

pathway are often organized into multi-enzyme complexes, micro-compartments, or other

assemblages [3–6]. Well known examples include cellulosomes [7], purinosomes [8], and

carboxysomes [9].

Such arrangements are thought to enable increased e�ciencies and reaction yields by

keeping metabolic intermediates between enzymatic steps out of equilibrium with the bulk

solution, a concept referred to as ‘substrate channeling’ [10]. Recently, a variety of sca↵olding

and confinement approaches were leveraged in e↵orts to design e�cient spatially-organized

multi-enzyme reactions in vitro [11–13]. Similar ideas of e�ciently arranging consecutive

catalysts are pursued in the realm of concurrent tandem catalysis to improve the yield and

specificity of sequential chemical reactions [14–16]. Understanding the underlying physical

principles is crucial for engineering such e�cient multi-catalyst systems. For instance, it

remains controversial whether proximity of consecutive enzymes alone is su�cient to allow

channeling of di↵using intermediates [17–20], or whether additional confinement of interme-

diates or active mechanisms are required [10].

At a higher level of organization, enzyme compartments and complexes themselves can

be seen as catalytic particles. These superstructures also function synergistically and some

have been found to spatially colocalize [21–23]. For example, purinosomes in HeLa cells

were found to localize to mitochondria [23]. Their spatial proximity appears to ensure that

mitochondrial-derived metabolic intermediates are e�ciently captured by purinosomes to

enhance nucleotide production [23, 24].

On an even larger scale, whole cells can be considered as catalytic particles. By taking up,

processing, and secreting biochemical molecules, cells e↵ectively function as catalysts that

alter the chemical composition of their environment. Notably, on this multicellular scale,

di↵erent cells also work together to sequentially process metabolites [25–28]. For example,
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biological nitrification, the conversion of ammonia to nitrate via the intermediate nitrite,

is performed by two specialized microbes [29]. The first step, the oxidation of ammonia to

nitrite, is catalyzed by ammonia-oxidizing microbes, while the second step, the conversion

of nitrite to nitrate, is performed by nitrite-oxidizing bacteria. These synergistic microbes

grow together in spatially structured biofilms [30].
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FIG. 1: Schematic illustration of the model. (a) A model two-step reaction pathway involving the

catalysts A and B, the substrate S, the intermediate product I, and the product P. The metabo-

lites S, I di↵use and react when they come into contact with the catalysts A and B, respectively

(contact distance rc). (b) For a given spatial arrangement of the catalysts (blue and orange disks),

the reaction-di↵usion dynamics of the metabolites S, I is described in terms of continuous con-

centration profiles (the steady-state profiles, cS(r) and cI(r), are shown as grayscale gradients).

This description ignores steric exclusion between metabolites, but incorporates steric exclusion of

metabolites by catalysts via the e↵ective radius rc of the spheres that represent the catalysts. (c)

Examples of catalyst arrangements analyzed here: Random delocalized arrangements, A-B pairs,

high-density clusters of randomly arranged catalysts, and complexes with a fixed stoichiometry

and geometry.

Despite the di↵erences in length scale, the behavior of these systems is often governed

by common underlying physics. The metabolites are typically small molecules that move

freely by di↵usion, while the catalysts are typically much larger and are spatially localized

or constrained in their motion relative to each other. The reaction fluxes are determined

by a kinetic interplay between di↵usive transport of metabolites and the reaction kinetics

at the specific locations of the catalysts. Previously, the reaction-di↵usion dynamics of spa-
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tially arranged catalysts were studied with continuum models, which do not account for the

discrete nature of catalysts but describe their arrangement by density profiles on mesoscopic

length scales [31–33]. This prior work analyzed the impact of the large-scale catalyst ar-

rangement on the overall reaction e�ciency. It is currently unclear how the discrete nature

of the catalysts a↵ects this e�ciency. If multiple catalysts are placed in close proximity,

as in enzyme clusters or microbial biofilms, the resulting “crowded” geometries lead to a

complex spatial network of di↵usive fluxes that exchange the participating metabolites be-

tween the catalysts and with the environment. Previous studies characterized the e↵ects of

“random crowding” on the di↵usion and reaction dynamics of molecules [34–38]. In con-

trast, the possibility for “designed crowding”, in which arrangements of objects are chosen

such as to selectively block or direct the di↵usion of molecules, and simultaneously to cat-

alyze their biochemical conversion, remains largely unexplored. When and how should the

arrangement of individual catalysts be tuned such as to promote reactions along a reaction

pathway? Which trade-o↵s and design principles emerge from the interplay of the physical

processes described above?

Here we compare di↵erent strategies for arranging catalysts, using a model of discrete

catalysts together with continuous reaction-di↵usion dynamics for metabolites. Our model

is not designed to describe the detailed properties of specific catalysts, but to identify general

physical principles that apply to all systems of this type. We identify spatial organization

strategies that are advantageous in di↵erent parameter regimes of catalyst reactivity and

metabolite di↵usion. We find that in the reaction-limited regime, where the catalytic re-

action is slow compared to di↵usion, the best strategy is to colocalize the catalysts into

large clusters. In contrast, in the di↵usion-limited regime it is beneficial to form pairs or

small complexes of catalysts. The enhancement of the reaction flux compared to unordered,

delocalized catalyst arrangements is highest when the catalyst concentrations are low. The

change of the optimal localization strategy arises from two trade-o↵s: First, a compromise

between e�cient transfer of intermediates and competition for substrates. Second, a trade-

o↵ between steric shielding and confinement of metabolites. The interplay of these e↵ects

gives rise to non-trivial symmetries of the optimal configurations of model multi-catalyst

complexes.
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MODEL

We consider a model two-step catalytic reaction performed by two catalysts (Fig. 1a). The

first catalyst A converts a substrate S to an intermediate product I, which is subsequently

converted to the product P by the second catalyst B,

S A�! I B�! P . (1)

Between catalysts, metabolites move by di↵usion. In general, the catalysts can be syntrophic

microbes, metabolically linked organelles in eukaryotic cells or consecutive enzymes of the

same biochemical pathways, while metabolites are typically small molecules. We model

the catalysts as spatially-extended spherical particles with an e↵ective interaction radius

rc = rcat+ rmet, while treating the metabolites S and I as point like particles and describing

their distributions as continuous concentration profiles, cS(r) and cI(r) (see Fig. 1b and

‘Methods’). This description is adequate as long as metabolites do not cause significant

steric hindrance to one another over the length scale of catalysts, such as when metabolites

are significantly smaller than catalysts. This is typically the case. For example, the sizes of

the commonly-studied sequential enzymes glucose oxidase (GOx) and horseradish peroxidase

(HRP) can be approximated by their hydrodynamic radii of ⇠43 Å [39] and ⇠30 Å [40], re-

spectively, while the sizes of their substrate metabolites glucose and H2O2 are approximately

⇠4 Å [41] and ⇠3 Å [42]. For molecular-scale metabolites moving between micrometer-sized

organelles or cells, the separation of sizes is even larger.

The reaction pathway is supplied with substrate S from the surrounding environment,

where we assume a fixed level of S. Intermediates I can escape the reaction to the envi-

ronment where their concentration is negligible. The behavior of this model depends on

two dimensionless parameters ↵A, ↵B, which capture the relative timescales of reactions and

di↵usion for each catalyst. Both can be expressed in the form

↵ =
k rc
DA

, (2)

where D is the respective metabolite di↵usion coe�cient, k is the intrinsic catalytic e�-

ciency of the catalyst, A is the surface area of the catalyst, and rc the interaction radius (see

‘Methods’). The intrinsic catalytic e�ciency k di↵ers from the macroscopic catalytic e�-

ciency, kcat/KM, since the latter incorporates the e↵ective timescale of metabolite-catalyst
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encounters due to di↵usion, whereas we describe di↵usion explicitly. Hence k is an e↵ective

catalytic e�ciency for metabolites “at contact” with the catalyst, which captures molecular-

scale details of the metabolite-catalyst interaction.

Experimentally relevant values of the reaction-di↵usion parameter ↵ span a wide range.

For substrates with di↵usion coe�cient D ⇡ 100 µm2 s�1, a reaction-limited enzyme with

catalytic e�ciency k ⇠ 106 M�1 s�1 and rc ⇡ 2 nm has ↵ ⇠ 10�3. For fast, di↵usion-limited

enzymes, the observed macroscopic catalytic e�ciency kcat/KM is around 109M�1 s�1, while

the intrinsic catalytic e�ciency k can be 1-2 orders of magnitude higher (see ‘Methods’),

implying that ↵ reaches values of up to 100. When the catalysts are synergistic microor-

ganisms, we also expect the ↵ values to fall within this range, e.g. for the uptake of am-

monia by N. maritimus, which functions as an ammonia oxidizer in two-step nitrification

(kcat/KM ' 6.6⇥ 1011 M�1 s�1 [43], rc = 0.4 µm, D = 1000 µm2 s�1), we obtain ↵ ⇠ 0.2.

Given these estimates, and our aim to broadly explore the physical principles of spatially

organized catalytic particles, we characterize the behavior of our model over the entire range

of ↵ values.

All steady-state properties of our model systems depend only on the reaction-di↵usion

parameters ↵A, ↵B, the number of catalysts, NA, NB of each type, and their spatial ar-

rangement. We investigate how di↵erent strategies for arranging the catalysts a↵ect the

steady-state pathway flux

jP = ↵B

Z

@B
cI(r)dr , (3)

where cI(r) is the steady-state concentration profile of intermediates, the integral is taken

over the surfaces of all B catalysts, and the timescale has been rescaled by r2c/D (see ‘Meth-

ods’).

It is important to note that without an alternative mechanism by which intermediates

can be lost from the system, the steady-state rate of product formation must equal the rate

of substrate consumption, irrespective of the spatial organization of the catalysts. Interme-

diates can be lost through various mechanisms such as leakage through a permeable system

boundary, consumption in competing reactions, or spontaneous decay if the intermediate is

intrinsically unstable. We consider all of these possibilities, but use the case where inter-

mediates escape upon reaching the system boundary to illustrate the system behavior in

the main text. To obtain a comprehensive understanding that applies to di↵erent biological

scenarios like bacterial biofilms on a surface or clusters of enzymes in the cellular cytoplasm,
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we study systems in both two and three dimensions (“2D” vs. “3D”).

RESULTS

Randomly positioned catalysts

We first analyze ensembles of random catalyst arrangements, as a reference to compare

against specific localization strategies. These random ensembles also allow us to identify

characteristics of the catalyst arrangements that correlate with the pathway flux (3). We

considered a range of di↵erent values for the reaction-di↵usion parameters and catalyst abun-

dances, which for simplicity we chose symmetrically (↵A=↵B=↵ and NA=NB=N). For each

parameter set we computed the pathway fluxes jP for 3000 random catalyst arrangements

(see ‘Methods’). We limited these arrangements to a 2D geometry, where the smaller con-

figuration space allows for a more thorough sampling of catalyst arrangements. We study

the behavior of 3D systems further below, when we analyze specific localization strategies.

Figure 2a (top) shows the behavior of the mean pathway flux hjPi, i.e. the ensemble

average over all catalyst configurations. For small reaction-di↵usion parameters, the mean

flux increases quadratically with ↵, while it saturates for ↵ � 10. This behavior reflects

the transition of the system from a reaction-limited regime, in which each reaction rate is

limited by the probability p ⇠ ↵ ⌧ 1 that a metabolite-catalyst encounter results in a

reaction (with the quadratic increase coming from the fact that the pathway consists of two

reactions that each scale with ↵), to a di↵usion-limited regime at large ↵, in which most

encounters are reactive, p ⇡ 1, and the rate of reactions is instead set by the frequency of

such encounters due to di↵usion.

Correlations between catalyst arrangements and pathway fluxes

To examine how sensitive the pathway flux is to the catalyst arrangement, we inspected

the distribution of all flux values jP (at given ↵ and N). Fig. 2b shows that the dis-

tribution is significantly narrower around ↵ ⇡ 10 than at smaller or larger ↵ values (at

fixed N = 30). The variability of the flux, as measured by the coe�cient of variation,

CV = h(jP � hjPi)2i
1/2

/hjPi, indeed displays a non-monotonic dependence on the reaction-

di↵usion parameter ↵, with a minimum within the crossover region from the reaction-limited
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FIG. 2: Properties of the pathway flux jP for randomly positioned catalysts (two-dimensional sys-

tem with absorbing boundary for intermediates, parameters chosen symmetrically withNA=NB=N

and ↵A=↵B=↵). (a) The mean flux hjPi (top) and coe�cient of variation CV (bottom) as ↵ is var-

ied for di↵erent values of N . (b) Histogram of reaction fluxes for N = 30 at three di↵erent values of

↵. (c) Coe�cient of determination R2 of the linear regression of jP against dAB = h|ri � rj |ii2A,j2B

(crosses) and mAB = hminj2B|ri � rj |ii2A (diamonds), and regression plots against dAB at low and

high values of ↵.

to the di↵usion-limited regime (Fig. 2a, bottom). At this point, the configuration of the cat-

alysts has the least impact on the pathway flux. On the other hand, at small or large ↵

the variation is larger, implying that the reaction flux is more sensitive to the particular

arrangement of catalysts.

We next sought properties of the catalyst arrangements that correlate with changes in

jP in di↵erent ↵ regimes. For small ↵ (reaction-limited regime), the pathway flux of a

given configuration is strongly anti-correlated with the mean distance between As and Bs,

dAB = h|ri � rj|ii2A,j2B (R2 > 0.95, Fig. 2c). For large ↵ (di↵usion-limited regime), there is

a weaker (R2 ⇡ 0.4) but positive correlation between these quantities. However, in the tran-
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sition region, the correlation is insignificant (R2 ⇡ 0.01). Similar trends, albeit with weaker

correlations, are also observed for the distances dAA, dBB, and the mean radial coordinates

rA = h|ri|ii2A and rB = h|ri|ii2B (Fig. S1). While these properties all displayed negligible

correlations with the flux in the transition region, we observed a significant positive corre-

lation (R2 ⇡ 0.27) between the flux and the minimal distance between A and B catalysts,

mAB = hminj2B|ri � rj|ii2A in this region (Fig. 2c).

Together these data indicate that for small ↵ the highest flux is generated by configu-

rations in which the catalysts are generally placed closer together, and closer to the center

of the system. In contrast, for large ↵ the highest flux comes from configurations where

the reaction centers are further apart, and closer to the periphery of the system. At the

point where the variability in the flux is smallest, both the best- and worst-performing con-

figurations have similar mean separations. However there remains an advantage to placing

catalysts such that each is in close proximity to at least one reaction center of the other

type.

Comparison of di↵erent localization strategies

Having seen that the pathway flux depends on such quantities as the average and minimal

distance between catalysts, we investigated in more detail two extreme localization strate-

gies that emphasize these properties (Fig. 1c): (i) a single dense but disordered cluster of

catalysts, and (ii) pairs of catalysts consisting of one A and one B at a separation of rc.

We again consider mean fluxes hjPi, averaged over an ensemble of configurations where the

catalysts are either paired or clustered (see ‘Methods’). Figures 3a and 3b show hjPi as a

function of ↵ in two and three dimensions, respectively, for pairs, clusters, as well as our

reference case of random arrangements (‘delocalized’).

We observe that the mean flux for pair arrangements is always larger than for delocalized

arrangements. This reflects the fact that placing A and B in close proximity increases

the probability that a produced I molecule will encounter at least one B and react before

di↵using to the boundary of the system. The flux enhancement is largest at low catalyst

concentrations (small N) and in three dimensions (Fig. 3c and d), reaching almost 7-fold for

N = 20, which for an enzymatic system corresponds to a catalyst concentration of ⇠1 µM.

This lies within the range of typical intracellular enzyme concentrations spanning from high
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FIG. 3: Comparison of di↵erent localization strategies. Mean pathway fluxes of clustered ar-

rangements, A-B-pair arrangements, and completely random arrangements (‘delocalized’) in (a)

two-dimensional and (b) three-dimensional systems (parameter values as indicated). Intermediates

can be lost via the absorbing system boundary. The corresponding enhancement of the mean flux in

pair arrangements relative to delocalized arrangements as the catalyst number is varied is shown in

(c) and (d), respectively. (e) Phase diagram of optimal stoichiometries and spatial organization of

catalysts in 2D, as ↵A and ↵B are varied given a constant total number of catalysts, NA+NB = 60.

The solid line separates the regime where clustering is the optimal strategy from that in which

small complexes produce a higher flux; dashed lines denote changes in the optimal ratio NA:NB.

The color scale represents the enhancement of the mean flux relative to delocalized arrangements.

nanomolar to micromolar concentrations [44]. The observed dependence of the enhancement

on the catalyst concentration is in line with the di↵usive capture probability: In random

arrangements, a low concentration implies a large mean separation between consecutive

catalysts, such that I molecules are unlikely to encounter a B before di↵using out of the

system. At higher concentrations, catalysts are already closeby when randomly arranged,

such that A-B-pair formation barely increases the capture probability.

The e↵ect of the localization strategy on the pathway flux could also depend on the

mechanism of intermediate loss and the associated loss rate. To characterize this dependence,

we considered modified models where intermediates either leak out through the system

boundary at a reduced rate (Figs. S2 and S3), or are consumed within the system by an

alternative mechanism (Fig. S4). The flux enhancement due to A-B-pair formation (Fig. 3c)
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is reduced if intermediates leak out of the system at a limited rate, such that the boundary is

only partially absorbing (Fig. S3). This is because for small leakage rates, intermediates can

explore a larger fraction of the system and thereby come in contact with more B catalysts.

This e↵ect attenuates the beneficial e↵ect of catalyst proximity, which relies on the rapid

transfer of intermediates from one catalyst to the next. The behavior for intermediate loss

within the system, either via a competing pathway or a decay reaction, is qualitatively

similar (Fig. S4).

The flux enhancement obtained by the pair strategy can also be described by an approx-

imate analytical expression (Fig. S5), which shows how the enhancement depends on the

concentration of catalyst pairs, the distance between the paired catalysts, and the average

distance an intermediate di↵uses before it is lost (Fig. S6). Notably, the enhancement is

independent of the catalytic e�ciencies of the catalysts. This description rationalizes why

no measurable enhancement could be detected in the experiment of Ref. [20], see Fig. S7.

Turning now to the clustering strategy, we found that for small ↵ the clustered configu-

rations achieve a significantly higher mean flux than the delocalized and pair arrangements.

This enhancement is approximately ten-fold in 2D and hundred-fold in 3D for similar num-

bers of catalysts (Fig. 3a and b). However, as ↵ is increased, a transition occurs into a

regime where the pair arrangements produce a higher mean flux than the clusters. When ↵

is further increased, even the delocalized arrangements outperform the cluster. The quan-

titative characteristics of this behavior also depend on the loss mechanism and loss rate

(Figs. S2 and S4). Furthermore, nonlinear reaction kinetics due to catalyst saturation can

a↵ect the relative performance of the di↵erent spatial strategies (Figs. S8 and S9). However,

the behavior is robust in its qualitative features. In particular, the transition between the

clustering and the pairing strategies exists as long as the catalysts are not fully saturated.

To generalize these observations we considered asymmetric systems where the A- and

B-catalysts have di↵erent reaction-di↵usion parameters ↵A, ↵B and copy numbers, NA, NB.

Figure 3e summarizes the results in the form of a phase diagram showing the 2D configuration

that produces the highest mean pathway flux with a given total catalyst number, NA +

NB = 60, but di↵erent ↵A, ↵B. In the region defined approximately by ↵A↵B  10 (solid

line), the highest flux was produced by a single large cluster. In contrast, for larger ↵A↵B,

small complexes produced a higher flux. In both regimes, the relative values of ↵A and

↵B determined the optimal catalyst stoichiometry, favoring a larger number of B than A
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in regions with ↵A � ↵B, but more A than B when ↵A ⌧ ↵B. Interestingly, despite

the di↵erence in boundary conditions for S and I, the phase diagram is approximately

symmetrical about the line ↵A = ↵B.

The transition in the optimal arrangement, from a cluster at small ↵ to a more disperse

arrangement at large ↵ is reminiscent of a previously reported transition in the optimal

density profile of enzymes around a localized source [31, 32]. However, those studies did not

incorporate several physical e↵ects considered here, in particular the impact of the catalyst

arrangement on the first reaction flux, as well as steric e↵ects due to the discreteness of

catalysts. How does the interplay between the di↵erent e↵ects result in the behavior observed

in Fig. 3?

Trade-o↵ between substrate depletion and e�cient intermediate transfer

To disentangle the di↵erent e↵ects contributing to the performance of spatially organized

catalysts, we eliminated all e↵ects caused by steric exclusion, by allowing metabolites to

di↵use through the space occupied by catalysts, and reactions to occur throughout their

volume rather than on their surface (see Supplementary Information). This modified model

displays the same qualitative behavior as our full model with respect to the comparison of

di↵erent localization strategies (Fig. S10), implying that the transition in Figs. 3a,b results

from a trade-o↵ between substrate depletion and e�cient intermediate transfer: For small

↵, intermediates are likely to escape without reacting even if the catalysts are arranged in

pairs, since the reaction probability at each I-B encounter is low. This loss is attenuated

by clustering several copies of A and B. An I molecule produced in such a cluster has a

higher probability to be processed by a proximal B, even if the probability of reaction with

each individual B is low [33]. As ↵ becomes larger the reaction probability at each I-B

encounter increases, reducing the benefit of clustering. Furthermore, since each A consumes

more of the incoming S, steeper concentration gradients develop around the cluster. This

substrate depletion reduces the productivity of A’s in the cluster as they e↵ectively compete

for substrate. It then becomes increasingly unfavorable to position A’s into close proximity

of one another [45–47]. Instead, a more disperse arrangement, with larger distances between

catalysts of the same type, becomes preferable.

A quantitative comparison between the full model and the modified model reveals the
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FIG. 4: Trade-o↵ between substrate shielding and confinement of intermediates. (a,b) Steric

exclusion e↵ects for clustered catalyst arrangements, characterized by the ratios (impermeable to

permeable) of the mean fluxes hjPi, hjIi, and the mean e�ciency h✏i for (a) 2D systems with packing

density �=0.6 and (b) 3D systems with �=0.5 (lines are guides to the eye). (c,d) Dependence of

the steric exclusion e↵ect in hjPi on the packing density in (c) 2D and (d) 3D. (e) Illustration

of substrate shielding in a catalyst arrangement of a central A surrounded by a ring of ten B.

Di↵usion of substrate S to A is hindered, causing a reduced concentration cS inside the ring. (f)

Conversely, intermediates I produced by A do not easily di↵use out, increasing cI within the ring

(confinement). (g,h) The e↵ect of substrate shielding is reflected in (g) the dependence of the flux

jI on the ring radius r0, while the confinement e↵ect is reflected in (h) the conversion e�ciency

✏. (i) Together, these e↵ects produce a non-monotonic pathway flux, with an optimal r0 where

jP is maximal, demonstrating the trade-o↵ between S shielding and I confinement. All fluxes are

plotted relative to j0, the value of jI in the absence of a B ring.
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steric exclusion e↵ects on the relative performance of di↵erent localization strategies. In the

case of delocalized catalysts, we found little di↵erence in the flux between the model with

permeable catalysts and the full model with impermeable catalysts (Fig. S11). However, for

clustered catalyst configurations the pathway fluxes of the two models di↵er significantly

(Fig. 4a,b). Especially in the reaction-limited regime (small ↵) the impermeability of re-

action centers significantly enhances the pathway flux. This enhancement increases with

the packing density � of catalysts in the cluster and weakly with the number of catalysts,

reaching almost five-fold in 2D for � = 0.8 and 1.7-fold in 3D for � = 0.6 (Fig. 4c,d top). In

the di↵usion-limited regime (large ↵), on the other hand, we find that the impermeability

of catalysts leads to a reduction of the pathway flux, which is strongest for high packing

densities and large numbers of catalysts (Fig. 4c,d bottom). This shows that steric exclusion

reinforces the trade-o↵ between substrate depletion and intermediate exchange, by decreas-

ing the flux in the reaction-limited regime and increasing the flux in the di↵usion-limited

regime.

Trade-o↵ between metabolite shielding and confinement

For a more comprehensive understanding of trade-o↵s in the spatial organization of se-

quential catalysts, we analyze the pathway flux jP together with the flux jI of the first

reaction (defined in Eq. 10, analogously to jP ). The e�ciency ✏ = jP/jI of the second

reaction correponds to the fraction of produced I converted to P . Figures 4a,b show that

the mean flux hjIi is reduced across the full ↵ range when catalysts obstruct di↵usion in

the clusters, but this reduction is strongest at intermediate ↵ values. In contrast, the mean

e�ciency h✏i = hjP/jIi displays the same qualitative behavior as hjPi but with larger ampli-

tude. These behaviors arise from the interplay of two steric exclusion e↵ects within clusters,

the “shielding” of catalysts from metabolites, and the “confinement” (di↵usive trapping) of

intermediates.

To illustrate these e↵ects, we consider the special arrangement of several B on a ring of

radius r0 around a central A. Such an arrangement could approximate the environment

around a single A in a cluster, and allows us to monitor how the flux of each reaction varies

as a function of ↵A, ↵B, and the clustering density, which we set via r0. As r0 is decreased,

the B ring progressively blocks the di↵usion of S into the vicinity of the A catalyst, leading

14

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.14.146076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.146076
http://creativecommons.org/licenses/by-nd/4.0/


to a marked reduction in cS (Fig. 4e). This shielding of A from its substrate decreases the

intermediate flux jI (Fig. 4g). The magnitude of the jI reduction, and the radius at which

jI starts to decrease, both increase with ↵A. For the second reaction, the presence of the

B ring restricts the di↵usion of I out of the ring, increasing the local concentration of I

within the ring (Fig. 4f) and therefore the conversion e�ciency of I into P (Fig. 4h). This

confinement e↵ect is largest at small ↵B, when the probability of reaction in each I � B

encounter is lowest. The trade-o↵ between shielding of substrate and confinement of I

leads to the emergence of an optimal ring radius at the point where the decline of jI due

to shielding is exactly balanced by the increased e�ciency of I-processing achieved by the

confinement (Fig. 4i).

Returning now to the scenario of a dense cluster containing both A and B, we conclude

from Figs. 4a,b that shielding tends to reduce hjIi most significantly at intermediate values

of ↵. When ↵ is small, reactions are slow and S molecules nevertheless have su�cient time

to di↵use throughout the cluster. At the opposite extreme of large ↵ and fast reactions,

A catalysts on the periphery of the cluster are e↵ectively able to consume most of the

available S, such that little substrate reaches the center of the cluster even when di↵usion

is unimpeded.

For the second reaction, the confinement of I that is produced within the cluster in-

creases the conversion e�ciency ✏ predominantly at small ↵. In the large-↵ regime, however,

shielding also dominates and reduces the e�ciency of the second reaction. Here, since I is

produced primarily at the periphery of the cluster, it is e↵ectively shielded from Bs within

the cluster, increasing the chance of it di↵using out of the system rather than reacting.

Geometries of optimal complexes

When catalysts are not randomly clustered, but arranged into complexes with fixed sto-

ichiometry and geometry (Fig. 1c), the question arises: which arrangement is optimal?

Experimentally, this question is raised by synthetic biology e↵orts that use various scaf-

folding strategies to construct e�cient multi-enzyme complexes [48–50], inspired by natural

complexes consisting of multiple enzymes in intricate arrangements [51]. Here, we explore

this question from a theoretical perspective, starting with the idealized scenario of spherical

catalysts that can be freely arranged into complexes with any geometry: how should the
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catalysts be arranged to globally maximize the pathway flux jP? As we found above for ring

arrangements, we expect that the optimal geometry will arise as a compromise between the

advantageous e↵ects of proximity and confinement and the detrimental e↵ects of shielding

and intermediate depletion. Since the relative magnitudes of these e↵ects depend on the

reaction-di↵usion parameters ↵A and ↵B, the optimal complex geometry should also depend

on these parameters.

For complexes of a single A catalyst surrounded by several B catalysts, the numerically

determined optimal geometries (see ‘Methods’) are shown in Fig. 5, for di↵erent ↵B values

with ↵A fixed. Surprisingly, the symmetries of the optimal configurations change not only

with NB, but also as a function of ↵B. In 2D with NB  6 it is always optimal to arrange

the B at equidistant positions on a ring around A (point symmetry group DNB); ring radius

increases with ↵B as described above). In contrast, for NB > 6, the optimal complexes

take on more intricate geometries. At small ↵B values, the complexes leave tight channels

open for substrate to enter, but intermediates unlikely to escape without making multiple

contacts with B catalysts. For larger ↵B, the B are typically divided between an inner ring

and an outer population arranged at angular positions corresponding to the gaps in the inner

ring. For even NB, these arrangements are concentric rings that are rotated by 2⇡/NB with

respect to one another (point group DNB/2). For odd NB, it is not possible to form two full

rings and thus the arrangement shows only a single reflection symmetry axis. Interestingly,

in the limit of extremely large ↵B, the optimal arrangement changes from these star-like

arrangements back to a single ring (point group DNB), provided NB < 12.

We also sought to identify optimal 3D geometries. The increased configurational search

space made the optimization slow and computationally challenging due to local optima. The

best-performing geometries that we identified consisted of Bs arranged on the surface of a

sphere around A, with radius that increases with NB (see Fig. 5). In contrast to the 2D case,

we never observed the separation of a second outer B population in 3D, although we cannot

rule out that this still occurs at higher NB. Except in special cases (NB = 2, 3, 4, 6, 8, 12) it

is not possible to arrange points on the sphere such that all edges are of equal length; thus

the B are not all equidistant from their neighbors. Interestingly, the optimal configurations

generated by our numerical approach were similar to solutions of the well-known Thomson

problem from classical electrostatics [52], where the objective is to minimize the electrostatic

interaction energy of identical point charges on the surface of a sphere. Here, however,
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FIG. 5: Optimal geometries of complexes with a single A catalyst (blue) surrounded by di↵erent

numbers NB of B catalysts (orange), in 2D and 3D. For the 2D case, it is shown how the optimal

geometry changes as the reaction-di↵usion parameter ↵B is varied. Below each complex, the

flux enhancement achieved by the complex relative to delocalized catalysts is indicated, together

with the average distance dAB between A and B catalysts (in units of rc). For the 3D case, the

conjectured optimal geometries matching the polyhedral solutions of the Thomson problem are

shown (see main text).

instead of interactions being defined by an identical local potential around each charge, the

catalysts in our model e↵ectively interact via the metabolite concentration fields, which

depend on the positions of all catalysts. When we calculated the reaction flux for the

exactly known configurations of the Thomson problem, we found that these always achieved a

slightly higher reaction flux than any configuration found during our numerical optimization.
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Additionally, when we initialized the random search optimization with the solution of the

Thomson problem, the algorithm was not able to identify any better configuration. We

therefore conjecture that the Thomson problem configurations also optimize the reaction

flux for the 3D model described here, provided that the radius of the sphere on which the

B are arranged is chosen optimally.

Fig. 5 represents a minimal model, which illustrates basic physical principles governing

optimal arrangements of catalytic particles. This model does not include an additional

feature exhibited by many experimental systems: an intrinsic anisotropy of the catalysts.

For instance, enzymes are reactive only at specific active sites rather than over their entire

surface. With active sites, the relative orientations become additional degrees of freedom

in catalyst arrangements. To explore the behavior of anisotropic catalysts, we introduced

model catalysts with a reactive patch covering 1/6 of their surface (see Supplementary Infor-

mation). We repeated the analysis of Fig. 3a for this model, to probe the e↵ect of catalyst

anisotropy on the average pathway flux obtained with di↵erent localization strategies. While

we observed quantitative di↵erences, the anisotropy did not qualitatively alter the relative

performance of the localization strategies (Fig. S12). However, it did alter the symmetries

of optimal catalyst complexes (Fig. S13). Despite the altered symmetries, the underlying

design principle appears to be the same: balancing the advantageous e↵ects of proximity

and confinement against the detrimental e↵ects of shielding and intermediate depletion.

DISCUSSION

Trade-o↵s. Our analysis of minimal models for spatially organized catalytic particles

illustrated physical principles that are more general than the model assumptions: We found

that two generic trade-o↵s govern the total reaction flux achieved by a given spatial ar-

rangement. The first is fundamentally a trade-o↵ between conversion e�ciency and local

depletion: Placing consecutive catalysts closely together, e.g. in larger clusters, increases

the e�ciency at which intermediate products are converted into final product, but excessive

accumulation of catalysts depletes the primary substrate locally (Figs. 3a,b and S10). The

second trade-o↵ is between substrate shielding and intermediate confinement: Clustering of

catalysts leads to shielding of interior catalysts (Fig. 4e), limiting their access to substrate

(Fig. 4g). On the other hand, confinement of intermediates produced within the cluster
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FIG. 6: Analysis of the string and sheet localization strategies studied experimentally in [53].

(a) Illustration of the string and sheet configurations with alternating A and B catalysts. (b) The

pathway flux achieved by catalysts arranged into strings and sheets (solid lines) in comparison to

paired, randomly clustered, and delocalized catalysts (dashed lines) for NA = NB = 100.

(Fig. 4f) increases the number of potential interactions with downstream catalysts, and

hence the apparent e�ciency (Fig. 4h). The interplay between these trade-o↵s produces

the phase diagram of optimal stoichiometries and spatial organization in Fig. 3e and the

intricate optimal geometries of catalyst complexes in Fig. 5. While the latter depend also

on the structure of the cataysts (Fig. S13), our qualitative findings are insensitive to these

microscopic properties (Fig. S12). For the two fundamental trade-o↵s and all of our results

the loss of intermediates is essential, but the precise loss mechanism does not qualitatively

a↵ect the behavior (Fig. S4).

Design principles. The relative timescales of metabolite di↵usion and catalytic reac-

tions determine which side of each of the trade-o↵s should be favored in order to maximize

the pathway flux, and therefore which type of localization strategy is preferable. In the re-

action limited regime (slow reactions or fast di↵usion), it is beneficial to form large clusters

of catalysts, thereby favoring e�cient transfer of intermediates between catalysts over access

to substrate of the first catalyst in the pathway. This regime is probed by an in vivo experi-

ment [53], in which three di↵erent types of RNA sca↵olds were used to arrange the enzymes

acyl-ACP reductase and aldehyde deformylating oxygenase into pairs, 1D strings, and 2D

sheets. While the enzyme pairs only negligibly increased the production of the product pen-

tadecane, the enzyme strings and sheets achieved an enhancement of ⇠80%. We simulated

these experiments within our model (Fig. 6), finding a similar behavior of the reaction fluxes

for the di↵erent arrangements in the reaction-limited regime. This also revealed that the

sheet arrangement already behaves qualitatively similarly to the cluster strategy considered
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in Fig 3b, exhibiting the same signatures of the trade-o↵ between substrate depletion and

e�cient intermediate transfer.

In the di↵usion limited regime (fast reactions or slow di↵usion), clustering is detrimental.

This regime applies to the experiment of Grotzky et al. [54], who found a decreased reaction

flux when the di↵usion-limited enzyme superoxide dismutase (SOD) was coclustered with

HRP. Our model suggests that these catalysts should be arranged in pairs or small com-

plexes, to ensure that the first catalyst receives a su�cient supply of substrate, while still

achieving relatively e�cient conversion of intermediate.

Several in vitro studies reported increases in the rate of product formation after position-

ing consecutive enzymes in close proximity [18, 19, 55, 56]. However, in such experiments

the intermediate products are typically not subject to any loss to the surrounding envi-

ronment or to competing reactions. In this setting, any enhancement e↵ect will only be

transient, whereas steady-state fluxes will not be a↵ected by the spatial organization. In-

deed, no enhancement was observed when the sequential enzymes GOx and HRP were fused

together using a small molecular linker [20]. The authors attributed the earlier reports of

flux enhancement [19] to local changes in pH around DNA-based sca↵olds that increase the

enzymatic activities of GOx and HRP. Furthermore, no enhancement was observed when

catalase was included as a scavenging enzyme that consumes the intermediate H2O2. For

realistic parameters and concentrations of GOx, HRP, and the scavenging enzyme as used

in [20], our theoretical framework also predicts a negligible enhancement in reaction flux

(Fig. S7), consistent with these observations. To achieve a significant flux enhancement

via proximity alone would require either a strongly reduced concentration of the GOx-HRP

enzyme pairs, or a significantly increased concentration of the scavenging enzyme (see Sup-

plementary Information).

Steric e↵ects. The second trade-o↵ is the result of steric e↵ects arising from the discrete

nature of catalysts. Our model illustrates that these steric e↵ects can have a strong impact,

altering reaction fluxes up to 4-fold. With our sperical catalysts, the steric e↵ects are smaller

in 3D than in 2D, largely due to the smaller maximal packing density in 3D. The e↵ect of

catalytically inert crowding agents on the reaction fluxes can be predicted based on our

results for reactive catalysts: The e↵ect of crowding agents on the first reaction flux is

similar to that of the second catalysts, since both shield the substrates from accessing the

first catalysts. In contrast, the e↵ect of crowding agents on the second reaction should to
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be weaker, since the confinement of intermediates is only advantageous if the number of

collisions between intermediates and the second catalyst is increased. With inert particles

as crowding agents instead of the second catalysts, this collision number is increased less

significantly.

Furthermore, in enzymatic systems the catalysts are reactive only at a specific active site

rather than over their entire surface. Introducing such an active site adds the orientation of

the catalysts as additional degrees of freedom to localization strategies. However, we found

that orientation e↵ects were less important than proximity in determining the flux generated

by di↵erent strategies (Fig. S12). We also found that anisotropic catalyst reactivity breaks

the symmetry of optimal arrangements within a model cluster (Fig. S13). However, the

e↵ects of substrate shielding and intermediate confinement still appear to play a vital role

in shaping the optimal configurations leading to qualitatively similar arrangements in which

one fraction of the B catalysts are placed close to a central A with the other fraction further

away. Thus the organization principles outlined here are largely robust to the microscopic

details of catalysts.

Generalized Thomson problem. We saw that the interplay of two fundamental trade-

o↵s leads to complicated and varied optimal geometries for model multi-catalyst complexes

with a single catalyst of the first type surrounded by several catalysts of the second type.

Notably, the resulting optimal configurations show striking similarities to the well known

Thomson problem of classical electrostatics. However, in contrast to the Thomson problem,

where electrons interact via the Coulomb potential and the total energy function is deter-

mined as a sum of the individual pair interactions, for our model of multi-catalyst complexes

the metabolite concentration fields mediate e↵ective many-body interactions between cata-

lysts. Consequently, the total reaction flux cannot be expressed simply as a superposition of

the individual contributions of the catalysts. Therefore, the problem of finding the optimal

catalyst complex arrangements adds an additional level of complexity to the class of general-

ized Thomson problems. Although these problems are very easy to pose they are notoriously

di�cult to solve rigorously. For the standard Thomson problem the symmetries have only

be rigorously identified for a few electron numbers [57–59] and solving the general case has

been included in the list of eighteen unsolved mathematical problems for the 21st century by

Steven Smale [60]. Besides the interesting mathematical nature of the stated problem and

the symmetries that emerge, the optimal structure of the model complex may also provide
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valuable insights into the design principles of such complexes. Indeed, similar optimization

problems, yet with very di↵erent objectives, were previously identified as useful minimal

models for understanding the structure and geometry of biological materials ranging from

proteins and viral capsids to plant phyllotaxis and honeycombs in beehives [1, 61–66].

METHODS

Reaction-di↵usion model

We modeled the metabolites S and I as small molecules that move by di↵usion. Their

concentrations, CS(r, t) and CI(r, t) respectively, follow

@CS,I(r, t)

@t
= Dr2CS,I(r, t), (4)

where D is the di↵usion coe�cient, which we assumed to be the same for both metabolites.

Since the catalysts are mesoscopic objects (macromolecules, organelles, or cells), we describe

them as discrete spatially-extended reaction centers (see Fig 1a). We implemented the

reactions of Eq. 1 through boundary conditions imposed on the metabolite concentrations

at the surface of the respective catalyst, @A or @B,

DrCS(r, t) · n� kA
AA

CS(r, t) = 0

DrCI(r, t) · n+ kA
AA

CS(r, t) = 0

)
8r 2 @A, (5)

DrCS(r, t) · n = 0

DrCI(r, t) · n� kB
AB

CI(r, t) = 0

)
8r 2 @B, (6)

where kA and kB are the intrinsic catalytic e�ciencies of A and B respectively, AA and AB

the catalyst surface areas, and n is a unit vector normal to the surface. Eq. 5 represents the

conversion of S to I catalyzed by A. Eq. 6 describes the consumption of I by B, as well as

a no flux condition for S at the surface of B, since there is no reactive interaction between

S and B. In Eqs. 5, 6 we have neglected saturation of the catalysts, assuming we are in

the low metabolite concentration regime. We study the relaxation of this assumption in the

Supplementary Information.

The intrinsic catalytic e�ciencies kA,B in Eqs. 5, 6 are e↵ective parameters that describe

reactions for metabolites in contact with a catalyst. For systems of collaborative microor-

ganisms or organelles, these parameters will depend on the metabolite uptake rate through

22

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.14.146076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.146076
http://creativecommons.org/licenses/by-nd/4.0/


transporter protein concentrations and activities and the membrane permeability, as well

as the turnover rate of metabolites within the cell or organelle. For enzymatic reactions

the k’s will instead be determined by microscopic details such as the interaction potential

between metabolite and catalyst, and the transition path between the substrate-catalyst

to product-catalyst complexes. Importantly, these parameters di↵er from the macroscopic

catalytic e�ciencies that would be measured in solution, which take into account not only

the activities of the catalysts, but also the timescale of metabolite-catalyst encounters via

di↵usion. The correspondence between the macroscopic catalytic e�ciency, , and the in-

trinsic e�ciency, k, is usually modeled as �1 = k�1 + k�1
D [67, 68], where kD is the rate

at which substrates arrive at a catalyst via di↵usion. Reactions can broadly be classified

as reaction-limited when k < kD, in which case the macroscopic e�ciency is  ' k; or

di↵usion-limited when k > kD, in which case  ' kD. The macroscopic catalytic e�ciency

therefore has an upper bound determined by the di↵usive arrival rate, which for enzymatic

reactions is  . kD ⇡ 109M�1 s�1. It has been shown that the intrinsic association rate of

the enzyme-substrate complex, which determines the intrinsic catalytic e�ciency in the fast

reaction regime, can reach k ⇠ 10kD [69], although this value may be exceeded depending

on the specific interaction potential and e↵ective interaction radius.

The reaction cascade is supplied with substrate from the surrounding environment. We

assume the environment to provide a homeostatic level C0 of S, whereas the environmental

concentration of intermediates remains negligible, corresponding to the conditions

CS(r, t) = C0

CI(r, t) = 0

)
8r 2 @⌦ . (7)

at the system boundary, @⌦. As a measure of the collective performance of the catalysts we

focused on the steady-state production rate of P ,

JP =
kB
AB

Z

@B
CI(r)dr , (8)

where the integral is taken over the surface of all B catalysts. Analogously, we define the

rate of I production as,

JI =
kA
AA

Z

@A
CS(r)dr . (9)

In this work we are primarily interested in how the spatial organization of sequential

catalysts influences the pathway flux JP . In general, however, JP will also depend on the
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shape and size of the catalysts and the system geometry �⌦, in addition to all the model

parameters. For simplicity we assumed that A and B have the same size and a spherical

shape, such that AA = AB = Sdrd�1
c in a model of dimension d with Sd the surface area

of a d-dimensional unit sphere. We also assumed a spherical system geometry with a fixed

radius 100 rc for the system boundary. Note that taking rc = 2nm on the typical scale of a

single enzyme molecule results in an e↵ective enzyme concentration in the higher nanomolar

range for the small values of NA and NB considered here, which is within the range expected

under intracelullar conditions. Rescaling all lengths with the interaction radius, rc, we

identify from Eqs. 5, 6 two dimensionless reaction-di↵usion parameters, ↵A = kA/
�
SdDrd�2

c

�

and ↵B = kB/
�
SdDrd�2

c

�
, that together with the dimensionless system radius determine

the metabolite concentration profiles. Finally, since Eqs. 4-6 are linear in the metabolite

concentrations, these can be normalized by C0: cS,I(r) = CS,I(r)/C0. Rewriting JI,P in

terms of these dimensionless variables, we identify the dimensionless reaction fluxes

jI =
JI
JD

= ↵A

Z

@A
cS(r)dr , (10)

where JD = Drd�2
c C0, and jP = JP/JD as given by Eq. 3.

Fluxes for di↵erent catalyst arrangements were calculated by numerically solving the

steady-state nondimensionalized versions of Eqs. 4-7 using COMSOL Multiphysics (COM-

SOL AB).

Catalyst arrangement ensembles

The distributions of pathway fluxes for di↵erent model parameters and localization strate-

gies were determined in each case by sampling an ensemble of 3000 random catalyst config-

urations and computing for each configuration the steady-state flux.

For the delocalized scenario, these configurations were generated by distributing the cat-

alysts uniformly over the system. For a two dimensional spherical symmetric system a

uniform distribution is achieved by picking for the center of each catalyst a radial position

r =
p
z, where z is uniformly distributed over the interval 0  z < (R� rc)

2, and an angular

position ✓ from the interval 0  ✓ < 2⇡. Similarly, in three dimensions the radial position is

r = z1/3, and the angular coordinates 0  ✓ < 2⇡ and � = arccos(2v � 1) where 0  v  1.

After distributing all catalysts in this way, we tested whether any two catalysts overlapped.
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If any pair had a distance smaller than 2rc between their centers, we moved this pair away

from each other, along the line connecting the centers, until their separation was larger than

2rc. After all overlapping pairs were relocated, the procedure was repeated to avoid overlaps

created by the repositioning.

For the di↵erent studied catalyst organizations, we also considered ensembles of con-

figurations generated by a similar procedure. In the case of A-B pairs and the complex

configurations in Fig. 3e, their centers were distributed randomly over the system as de-

scribed above. The center-center distance between catalysts within a pair or complex was

fixed at 3rc, while their orientation was chosen randomly. In the case of clustered catalysts,

a center position for the cluster within the system was chosen randomly. The catalysts were

then randomly positioned within a circular (in 2d) or spherical (in 3d) region so as to achieve

a packing density of � = 60% in 2D or � = 50% in 3D. In all cases, cycles of rearrangements

were made in order to avoid catalyst overlaps.

Cluster arrangement optimization

To determine the optimal B configuration around a single A localized at the system

center, we used a Monte Carlo optimization algorithm to iteratively explore the catalyst

configuration space.

The optimization algorithm was initialized with a random configuration of Bs. From

this configuration a new trial configuration was sampled by selecting one B at random and

moving it a distance l in a random direction to a new position. If this trial configuration

led to an increase in reaction flux jP it was accepted and used as the starting configuration

for the next trial step, otherwise it was rejected and a new trial was generated from the

previous best configuration. This procedure was repeated until a termination criterion of

either a defined total number of iterations (set to 104), or a number of successive non-

improving iterations (300–400), was reached. We made two further modifications to this

basic algorithm that were found to speed up convergence of the optimization. First, after a

trial step was accepted the subsequent trial step was taken in the same direction. Second,

the step length was decreased during the course of the optimization process.

In general, this procedure does not guarantee a convergence to the global optimum.

We therefore performed 30 realizations of the optimization procedure, with di↵erent initial
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configurations, for each set of model parameters. Most realizations resulted in the same final

configuration, which we are confident to be the global optimum.

Acknowledgments

The authors thank Erwin Frey, David Nelson, and Aleksandra Walczak for useful discus-

sions, and Bernhard Altaner and Giovanni Giunta for comments on the manuscript. This

work was supported by the German Excellence Initiative via the program “Nanosystems

Initiative Munich” and the German Research Foundation via SFB1032 “Nanoagents for

Spatiotemporal Control of Molecular and Cellular Reactions”. F.H. was supported by a

DFG Fellowship through the Graduate School of Quantitative Biosciences Munich (QBM).

Author contributions

All authors designed the research. F.H. performed the research. F.H., F.T. and U.G.

analyzed the results and wrote the paper.

[1] Torquato, S. & Stillinger, F. H. Jammed hard-particle packings: From Kepler to Bernal and

beyond. Rev. Mod. Phys. 82, 2633 (2010).

[2] Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization

of metabolism in synthetic biology. Nat. Chem. Biol. 8, 527–535 (2012).

[3] Srere, P. A. Complexes of sequential metabolic enzymes. Ann. Rev. Biochem. 56, 89–124

(1987).

[4] Jørgensen, K. et al. Metabolon formation and metabolic channeling in the biosynthesis of

plant natural products. Curr. Opin. Plant Biol. 8, 280–291 (2005).

[5] Schmitt, D. L. & An, S. Spatial organization of metabolic enzyme complexes in cells. Bio-

chemistry 56, 3184–3196 (2017).

[6] Kerfeld, C. A., Heinhorst, S. & Cannon, G. C. Bacterial microcompartments. Ann. Rev.

Microbiol. 64, 391–408 (2010).

[7] Fontes, C. M. & Gilbert, H. J. Cellulosomes: highly e�cient nanomachines designed to

deconstruct plant cell wall complex carbohydrates. Ann. Rev. Biochem. 79, 655–681 (2010).

26

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.14.146076doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.146076
http://creativecommons.org/licenses/by-nd/4.0/


[8] An, S., Kumar, R., Sheets, E. D. & Benkovic, S. J. Reversible compartmentalization of de

novo purine biosynthetic complexes in living cells. Science 320, 103–106 (2008).

[9] Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based

organelles in bacteria: carboxysomes and related microcompartments. Nat. Rev. Microbiol.

6, 681–691 (2008).

[10] Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8,

299–309 (2016).

[11] Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic

engineering. Metab. Eng. 14, 242–251 (2012).
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I. CORRELATIONS OF THE REACTION FLUX WITH DIFFERENT PROPERTIES OF

THE CATALYST ARRANGEMENTS

In Fig. 2 of the main text we saw that the reaction flux jP is correlated with the mean distance

dAB between the catalysts A and B in random delocalized arrangements. For small values of the

reaction-di↵usion parameter ↵, the reaction flux jP is strongly anti-correlated with the distance

dAB, while we found a somewhat weaker but positive correlation in the large ↵ regime. Figure S1

shows that similar correlations exist between jP and the mean distance between catalysts of the

same type (dAA and dBB) and between jP and the mean radial coordinates of catalysts (rA and

rB).

0

R2
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0.4
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α

N=60

FIG. S1: Coe�cient of determination (R2) of the linear regression of the reaction flux jP against di↵er-

ent geometrical characteristics of random delocalized catalyst arrangements: the mean distance dAA =

h|ri � rj |ii,j2A between A catalysts, the mean distance dBB = h|ri � rj |ii,j2B between B catalysts, the mean

distance rA = h|ri|ii2A of A catalysts from the center, and the mean distance rB = h|ri|ii2B of B cata-

lysts from the center. In each case the degree of the correlation (R2) displays a similar dependence on the

reaction-di↵usion parameter ↵ as observed in Fig. 2c of the main text for the mean distance dAB between

the catalysts A and B.
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II. SLOW LEAKAGE OF INTERMEDIATES

For the examples shown in the main text figures, we assumed that the intermediates are lost

as soon as they reach the system boundary (absorbing boundary condition, CI(R) = 0). This

assumption of fast leakage can be relaxed by introducing a boundary condition that is partially

absorbing and partially reflecting,

D @rCI(r)|r=R = �vCI(R) . (S1)

Here, v quantifies the permeability of the boundary to intermediates. By dividing Eq. S1 by D

and rescaling all lengths by rc we obtain the non-dimensional leakage parameter

� =
vrc

D

. (S2)

For very slow leakage (� ⌧ 1), almost all intermediates are converted into product and the overall

pathway flux is essentially equal to the production rate of intermediates, jI . The latter still

depends on the catalyst arrangement, because the net flux of S into the system varies with the

rate of the first reaction, which depends on the extent of substrate depletion. Thus catalyst pairs

and delocalized catalysts perform almost identically, since depletion is negligible in these cases

(Fig. S2a). Clusters lead to stronger depletion and therefore still display a reduced flux. For larger

�, on the other hand, it is vital that intermediates are rapidly transferred between the catalysts

to prevent their loss. For instance, at � = 0.1, the system behavior (Fig. S2c) is already similar to

the absorbing boundary limit (Fig. 3a of the main text).

We observe that the crossover between the pathway fluxes of clusters and pairs shifts towards

smaller ↵ values as � is decreased (Fig. S2). This behavior can be understood as follows: For small

leakage rates, intermediates can explore a larger fraction of the system and thus come in contact

with a larger number of B catalysts before leaking out. This reduces the beneficial e↵ect of catalyst

proximity and since the detrimental e↵ect of substrate depletion remains unchanged, the cluster

strategy starts to be outperformed by the pair strategy already at smaller ↵ values.

In the main text we saw that the enhancement of the catalyst pair strategy compared to delo-

calized catalysts increases as the number of such pairs in the system is reduced (Fig. 3c and d).

This trend persists for di↵erent leakage rates, but overall, the enhancement decreases when the

leakage rate is decreased (Fig. S3). As discussed in the previous section, for small leakage rates

intermediates that are not rapidly converted by the closest B catalyst have a higher probability to

react with any other B catalyst in the system, which reduces the beneficial e↵ect of proximity, and

hence the flux enhancement.
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FIG. S2: Influence of intermediate leakage on the pathway flux. Comparison of the fluxes for delocalized,

paired, and clustered catalysts for three di↵erent leakage parameters, (a) � = 0.001, (b) � = 0.01, and (c)

� = 0.1. Besides the leakage parameter, all other aspects of the model are chosen as for Fig. 3a of the main

text.
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FIG. S3: Flux enhancement achieved by catalyst pairs relative to delocalized catalysts. The enhancement

is plotted as a function of the number of catalysts, NA = NB = N , for three di↵erent values of the leakage

parameter �. All other aspects of the model are chosen as for Fig. 3c of the main text.
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III. SUBSTRATE PRODUCTION AND INTERMEDIATE LOSS WITHIN THE

SYSTEM

For the examples shown in the main text figures (and the previous sections of this Supplementary

Information), we assumed that the influx of substrates and the loss of intermediates takes place

at the system boundary. In this scenario, the reaction pathway is supplied with substrate S from

the surrounding environment, in which a constant concentration C0 of S is maintained. The

intermediates I, in turn, are lost to the surrounding environment where their concentration is

negligible. As an alternative we will consider here a scenario in which these processes take place

within the system: S is maintained at a homeostatic level inside the system, while I is lost either

due to an intrinsic instability of the molecule or due to competing reactions. In this section, we

study how the fluxes achieved by the di↵erent localization strategies behave for the alternative

scenario and whether the choice of scenario a↵ects the qualitative behavior of the model.

To determine the fluxes for the alternative scenario, we include reaction terms for the production

of S and the decay of I into the di↵usion equations (Eq. 4) of the main text. This leads to the

steady state conditions

0 = Dr2
CS(r) + µ0(C0 � CS(r)), (S3)

0 = Dr2
CI(r)� µCI(r), (S4)

where µ0 is the rate at which S relaxes to the homeostatic level C0, and µ is the rate at which

spontaneous decay or competing reactions consume I. At the system boundary we now impose

no-flux boundary conditions for both S and I. By dividing Eq. S4 by D, and by rescaling all

lengths by rc, we obtain the loss parameter

� = r

2
cµ/D,

which measures the strength of the loss mechanism. This dimensionless parameter corresponds to

the square of the ratio of the catalyst radius, rc, to the distance � =
p
D/µ that an intermediate

typically di↵uses before it is lost. Equivalently, it can be interpreted as the ratio of two timescales,

a typical di↵usion time over a distance ⇠ rc and a typical decay time, 1/µ, for the loss mechanism.

Note that this parameter di↵ers from the leakage parameter � defined in the previous section,

which measures the leakage of intermediates at the system boundary. Similarly, we obtain from

Eq. S3 a second dimensionless parameter,

�0 = r

2
cµ0/D,
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associated with the mechanism that supplies S, with analogous interpretations as the parameter

�. For experimental systems, �0 will typically take on small values, since the di↵usion timescale is

much shorter than the timescale for the production of S (which determines the value of µ0). For

our analysis, we therefore set the parameter �0 to a constant small value of 0.001 and consider

di↵erent loss parameters � that are either smaller than, equal to, or larger than �0. Furthermore,

we normalize the pathway flux by V µ0C0, such that it becomes independent of the concentration

C0.

Fig. S4 shows the pathway fluxes of the di↵erent localization strategies (delocalized, clustered,

and pairs) as a function of the reaction-di↵usion parameter ↵ for di↵erent loss parameter values

�, in both two and three dimensions. We find that the behavior of the fluxes is similar to the case

of slow leakage of intermediates examined in the previous section. In particular, as � is decreased,

the point at which the crossover between the cluster and pair strategies occurs is shifted to smaller

↵ values, and the enhancement achieved by the pair strategy over the delocalized arrangement is

diminished. This demonstrates that the fluxes behave qualitatively in the same way, irrespective

of whether the processes of S supply and I loss occur within the bulk or at the boundary of the

system.
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FIG. S4: Comparison of the pathway fluxes for delocalized, paired, and clustered catalysts for the scenario

where substrate production and intermediate leakage occur inside the system. The five panels show the

mean pathway fluxes as a function of the reaction-di↵usion parameter ↵, for several di↵erent values of the

loss parameter � and in both two and three dimensions, as indicated. Panels (a), (b), and (c) are analogous

to Fig. 3a in the main text, while panels (d) and (e) are analogous to Fig. 3b.
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IV. ANALYTIC APPROXIMATION OF THE ENHANCEMENT ACHIEVED BY THE

PAIR STRATEGY

Following the theoretical approach of Fu et al [1], Wheeldon et al. [2] predicted that catalyst

proximity has an advantageous e↵ect on the reaction flux only when the production rate of in-

termediates by the first catalyst, kcat, is fast compared to the di↵usivity, D, of the intermediate.

This analysis is based on the fundamental solution of the di↵usion equation that assumes di↵usion

over an infinite domain with an initial influx pulse of intermediates at time and position zero,

CI(r = 0, t = 0) = �(r, t), corresponding to a local intermediate production event by the first

catalyst. Since the first catalyst constantly produces intermediates at discrete time points with a

mean rate kcat = 1/⌧ , the intermediate concentration profile was assumed to be the sum over the

fundamental solution with the production time points shifted by ⌧ ,

CI(r, t) =

i=t/⌧�1X

i=0

1

4⇡D(t� i⌧)3/2
exp


� r

2

4D(t� i⌧)

�
(S5)

In steady-state, this results in a Gaussian concentration profile around the position of the first

catalyst where the intermediates are produced. The ratio between kcat and D determines how

pronounced the maximum of the intermediate profile is around the first catalyst. This suggests

that placing the second catalyst close to the first catalyst only has an e↵ect on the reaction flux

when the concentration peak around the first catalyst is significant, which is only the case for

D/kcat <1 µm2. However, this argument is based on assumptions that limit its applicability.

The assumption of a single source of intermediates in an infinite space is not applicable for

systems with many catalysts in a finite space. The intermediates produced by one of the A

catalysts can react with any of the other B catalysts in the system, rather than just the closest

B. Furthermore, in a finite domain without any loss mechanism, intermediates will accumulate in

the system to a level where the rate of product formation by the second catalyst equals the rate of

intermediate formation by the first catalyst. Hence, formation of catalyst pairs will not enhance

the steady state flux. The pathway flux can then only be transiently enhanced, in the time window

before steady state is reached, during which intermediates have not yet accumulated to a constant

level. Thus, it is essential to also explicitly include mechanisms for the loss of intermediates in the

model scenario. It is worth noting that this applies also to experimental scenarios: In experimental

studies where no loss mechanism is present, any observed localization-induced enhancement in the

flux must either be transient, due to there being no intermediate products in the system initially,

or be the result of altered catalyst activity caused by the localization procedure.
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To obtain a theoretical understanding of the enhancement achieved by the pair strategy, we

therefore derived an analytical expression for the enhancement of a catalyst pair in the presence

of loss. To this end we considered a spherical domain of radius R containing a single catalyst

pair, representative for one of the many catalyst pairs and the surrounding space within a larger

system. The size of the domain is determined by the concentration ⇢ of catalyst pairs in the system

via ⇢ = (43⇡R
3)�1. Inside the domain, the catalyst pair is positioned such that the B catalyst is

localized at the center and the A catalyst a distance d away from the center. The B catalyst is

treated as a spherical reaction center with radius rc, which is reactive over the entire surface. For

the A catalyst we exploit the spherical symmetry and assume that the production of intermediates

occurs uniformly on a spherical shell of radius d around B. At the domain boundary at radius R we

apply a reflective boundary condition on the intermediate concentration profile, which represents

the exchange of intermediate with equivalent domains around other catalyst pairs. In the previous

section we found that the qualitatve behavior of the model does not depend on the mechanism of

intermediate loss. For analytic simplicity, we assume here that intermediates are lost everywhere in

the system with a rate µ, rather than at the system boundary. The corresponding reaction-di↵usion

equation governing the dynamics of the intermediate is then

@CI(r, t)

@t

= Dr2
CI(r, t) + jI �(r � d)� µCI(r, t) , (S6)

with the boundary conditions

4⇡r2cD
@CI(r, t)

@r

����
r=rc

= kB CI(rc, t) , (S7)

@CI(r, t)

@r

����
r=R

= 0. (S8)

Here, CI is the density profile of the intermediate I, � is the Dirac delta function, kB is the intrinsic

reaction rate at the surface of B, and D is the di↵usion coe�cient of I. In steady-state we can

solve this reaction-di↵usion system analytically and determine the reaction flux of a single catalyst

pair,

j

pair
P = kB CI(rc) (S9)

=
jIkB�rc

d

e

(2rc�d)/�
⇥
e

2R/�(R� �) + e

2d/�(R+ �)
⇤

e

2R/�(R� �) [4⇡(�+ rc)rc + kB�] + e

2rc/�(R+ �) [4⇡(�� rc)rc + kB�]
,

where � = (D/µ)1/2 is the leakage length scale, which measures the distance a metabolite typically

di↵uses before it is lost.

To compute the enhancement achieved by the pair strategy, we have to relate the reaction

flux of a catalyst pair in proximity, jpairP , to the reaction flux of a delocalized catalyst pair, jdelP .
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FIG. S5: Comparison between the analytical approximation of the flux enhancement for the pair strat-

egy (leakage length � = 0.1 µm, distance between enzymes d = 2nm) and the corresponding numerical

computation based on the full model with the corresponding parameters (rc = 2nm).

The latter flux can be approximated by assuming that the distance d between the two catalysts

in the pair corresponds to the typical distance, R, between catalysts in the delocalized scenario,

j

del
P ⇡ j

pair
P (d = R). With this we obtain the enhancement factor

j

pair
P (d)

j

del
P

=
R

d

cosh


R� d

�

�
� �

d

sinh


R� d

�

�
. (S10)

Fig. S5 shows that this analytical approximation agrees well with the numerically computed en-

hancement factor of the full model with intermediate loss within the system. The enhancement

(S10) depends only on the distance d between paired catalysts, the concentration of catalyst pairs

via ⇢ = (43⇡R
3)�1, and the leakage length scale �, but is independent of the reaction rate kB.

To understand why this enhancement is independent of kB, consider that the reaction probability,

jP/jI , is composed of two factors. The first is the probability that an I molecule produced by

A reaches B by di↵usion, which will depend on the positioning of the catalysts relative to one

another. The second is the probability that an I molecule is processed to P given it reached B.

Only the latter probability depends on the reaction rate of B, and since this probability is the same

for delocalized catalysts and catalyst pairs, the enhancement becomes largely independent of the

reaction rate.

We can see from Eq. S10 that the largest enhancement can be achieved for small inter-catalyst

distances d, small catalyst pair concentrations ⇢ and small leakage length scales � (see Fig. S6). The

analytical expression (S10) is also useful for the interpretation of the results of experimental studies.

To illustrate this, we discuss the experimental findings of Zhang et al. [3] who conjugated the

consecutive enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP). The conjugation
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FIG. S6: Analytic approximation of the flux enhancement achieved by the pair strategy. The enhancement

is plotted as a function of the catalyst pair concentration, ⇢, and the distance between the catalysts, d, for

three di↵erent leakage lengths �.

was performed with a molecular linker that was shown not to alter the intrinsic activity of the

enzymes. The enzyme catalase was used as a scavenging enzyme that competes for the intermediate

H2O2 of the GOx-HRP pathway. The concentration of catalase, [CAT ], then determines the

leakage length via � = [DH2O2/([CAT ]kcat/KM )]1/2, where kcat/KM is the catalytic e�ciency of

catalase, and DH2O2 is the di↵usion coe�cient of H2O2. In the experiment by Zhang et al., no

enhancement could be detected for an enzyme pair concentration of ⇢ ⇠1 nM, an interenzyme

distance of d ⇠2 nm, and three di↵erent catalase concentrations (380 nM, 190 nM, and 19 nM).

Eq. S10 predicts enhancements of 16% for 380 nM catalase, 8% for 190 nM catalase, and 0.8% for

19 nM catalase (see Fig. S7), which are indeed rather small and hardly detectable experimentally.

To achieve a significant enhancement (e.g., larger than two fold) one would need to either reduce the

concentration of the enzyme pair or increase the concentration of the competing enzyme (catalase),

as indicated in Fig. S7.
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FIG. S7: The experimental conditions of Zhang et al. [3] marked in a color map plot of the analytically

predicted flux enhancement as a function of the leakage length � and the enzyme pair concentration ⇢,

with a fixed interenzyme distance of d =2nm. The three markers show the conditions corresponding to the

three di↵erent catalase concentrations used in [3], [CAT ] =19 nM (green square), [CAT ] =190 nM (black

circle), and [CAT ] =380 nM (red diamond). Together with the catalytic e�ciency of catalase, kcat/KM

= 6.4⇥ 106 M�1 s�1, and the di↵usion coe�cient of H2O2, D = 1000 µm2 s�1, we determined the leakage

length via � = [D/([CAT ]kcat/KM )]1/2.
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V. NONLINEAR REACTION KINETICS: SATURATION EFFECTS

Nonlinear model. In the main text we assumed that the catalytic reactions are linear in the

metabolite concentrations CS(r) and CI(r). However, in general such reactions follow a nonlinear

Michaelis-Menten-like scheme, in which the reaction becomes saturated for high metabolite con-

centrations. To study the impact of catalyst saturation, we extended our model by replacing the

reaction boundary conditions, Eqs. (4) and (5) in the main text, with

DrCS(r, t) · n� kA
AA

CS(r, t) [1 + CS(r, t)/KA]
�1 = 0

DrCI(r, t) · n+ kA
AA

CS(r, t) [1 + CS(r, t)/KA]
�1 = 0

)
8r 2 @A, (S11)

DrCS(r, t) · n = 0

DrCI(r, t) · n� kB
AB

CI(r, t) [1 + CI(r, t)/KB]
�1 = 0

)
8r 2 @B . (S12)

After rescaling all metabolite concentrations by the substrate concentration C0 in the environment,

we obtain two additional non-dimensional parameters, measuring the degree of saturation of the

two catalytic reactions, �A = KA/C0 and �B = KB/C0. When both �A and �B are large, we

recover the limit of linear reactions studied in the main text.

Behavior for symmetric saturation. We first consider the case where both reactions have

the same value for the saturation parameter, � := �A = �B, and analyze the behavior of the model

as � is decreased, corresponding to more saturated catalysts. For � = 1, where saturation e↵ects are

expected to set in, Fig. S8a shows the mean reaction flux hjPi as a function of the reaction-di↵usion

parameter ↵. As in Fig. 3a of the main text, Fig. S8 compares the clustered arrangements with the

A-B-pair arrangements and the delocalized arrangements. Note that Fig. S8 and Fig. 3a di↵er only

in the boundary conditions used to compute the respective data, i.e. Eqs. (S11) and (S12) instead

of Eqs. (4) and (5) of the main text. With � = 1, the behavior remains almost indistinguishable

from that in Fig. 3a. However, with a tenfold lower saturation parameter (� = 0.1), the crossover

between the cluster and pair strategy is noticeably shifted towards larger ↵ values (Fig. S8b).

Nevertheless, the qualitative behavior remains the same as for the linear reactions in Fig. 3a of the

main text.

This behavior can be understood by analyzing the impact of catalyst saturation on the com-

peting e↵ects of substrate depletion and e�cient intermediate transfer. The nonlinear kinetics

mitigates the e↵ect of substrate depletion in two ways. First, when catalysts are saturated the

fraction of substrate molecules in their vicinity that are consumed is reduced, which reduces the

local depletion around the A catalysts. Second, even when the substrate is locally depleted, this
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FIG. S8: E↵ect of catalyst saturation on reaction fluxes for di↵erent catalyst arrangements. As in Fig. 3a

of the main text, we compare the mean reaction fluxes hjPi produced by three di↵erent spatial strategies

of arranging catalysts: clustered (orange), A-B-pairs (black), and delocalized (green), in each case with the

catalyst copy numbers set to NA = NB = N = 30. The fluxes are plotted as a function of the reaction-

di↵usion parameter ↵ = ↵A = ↵B. (a) �A = �B = � = 1, (b) � = 0.1, (c) �A = 0.1 and �B = 0.001.

produces significant changes in the reaction flux only if the concentration is reduced below the sat-

uration threshold of the catalysts. Thus, as �A is decreased, the point at which substrate depletion

has a significant e↵ect on the flux is shifted to larger ↵ values.

In contrast, for the second reaction, intermediates leak out of the system, which prevents them

from accumulating to a level where the B catalysts become saturated. Hence, the reaction kinetics

of B catalysts stays approximately linear, such that the B catalysts are able to exploit the increased

local intermediate concentration that is conferred by proximity. All these e↵ects tend to reduce

the downsides and amplify the benefits of clustering catalysts, thereby extending the regime where

clustering is beneficial to larger ↵ values. For small �B, however, where the B catalysts are com-

pletely saturated, the catalyst arrangement has essentially no e↵ect on the pathway flux (Fig. S8c).

In this case all localization strategies achieve the same flux, except for small ↵, where clustering is

still advantageous.

The above picture applies in the regime where the loss of intermediates is relatively rapid. If

intermediate leakage is reduced, the beneficial e↵ect of placing A and B catalysts closely together

is diminished, as analyzed in sections II and III above. Additionally, the intermediates may ac-

cumulate above the saturation threshold of the B catalysts, at which point the e�ciency of the

second reaction becomes independent of the catalyst positions. To explore the combined e↵ect

of saturation and reduced intermediate leakage in our model, we adopt the partially absorbing

boundary condition of Eq. S1 and adjust the leakage parameter � of Eq. S2. As seen in Fig. S9,

this shifts the crossover point between the cluster and pair strategies back to smaller ↵ values and

decreases the enhancement achieved by both the clustering and the pair strategy.
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FIG. S9: Catalyst saturation at reduced intermediate leakage. Comparison of the fluxes for delocalized,

paired, and clustered catalysts for �A = �B = 0.1 and � = 0.01.

In summary, this analysis shows that catalyst saturation does not strongly alter the qualitative

behavior of the reaction fluxes of the di↵erent localization strategies. In large parts of the parameter

space, we still find a crossover between the fluxes of the cluster and pair strategy as the reaction is

changed from reaction-limited to di↵usion-limited. However, the nonlinear reaction kinetics shifts

the transition point to larger ↵ values, due to the reduced impact of substrate depletion on the

flux when the A catalysts are saturated.
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VI. IMPACT OF STERIC EXCLUSION

To quantify steric exclusion e↵ects, we calculated how the reaction flux is altered when the

catalysts are made permeable to metabolites (Fig. 4 of the main text). For such a system, the

steady-state concentration profiles of the substrate, CS(r), and the intermediate product, CI(r),

satisfy the reaction-di↵usion balance equations

Dr2
CS(r)� k

0
ACS(r) = 0

Dr2
CI(r) + k

0
ACS(r) = 0

)
8r 2 A, (S13)

Dr2
CS(r) = 0

Dr2
CI(r)� k

0
BCI(r) = 0

)
8r 2 B, (S14)

inside the volumes of the catalysts A and B, respectively. Outside of the catalyst volumes, CS(r)

and CI(r) are stationary di↵usion profiles satisfying

Dr2
CS(r) = 0

Dr2
CI(r) = 0

)
elsewhere . (S15)

The catalytic activities k0A and k

0
B in Eqs. (S13) and (S14) are determined below as a function of

the catalytic activities kA and kB of the impermeable catalysts. Eqs. (S13-S15) are coupled via

boundary conditions that require the concentration profiles to be continuous and smooth at the

surfaces of all catalysts.

In Eqs. (S13) and (S14), the catalytic activity of the permeable catalysts A and B is homoge-

neously distributed over their volume, whereas the impermeable catalysts A and B of the main

text are catalytically active on their surface. To make the two models comparable, we have to

choose the volume activities k0A and k

0
B such that they produce the same overall catalytic activities

as the surface activities kA and kB. To this end we consider a system with a single permeable or

impermeable catalyst and demand that the respective reaction fluxes are equivalent. To determine

the reaction flux of a single A catalyst positioned at the system center, we solve the steady state

di↵usion equation, Dr2
CS(r) = 0, with the boundary conditions used in the main text,

DC

0
S(rc) =

kA
AA

CS(rc), (S16)

CS(R) = C0, (S17)

where R = 100 rc is the radius of the outer boundary. By solving this system, we obtain for the
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FIG. S10: As in Figs. 3a and 3b of the main text, mean pathway fluxes of clustered arrangements, A-B-pair

arrangements, and completely random arrangements (‘delocalized’) are shown as a function of the reaction-

di↵usion parameter ↵, but for permeable catalysts rather than impermeable catalysts. (a) Two-dimensional

and (b) three-dimensional systems.

fluxes of an impermeable catalyst in 2 and 3 dimensions,

Jimp =
kAC0

1 + kA
2⇡D log R

rc

(2 dimensions), (S18)

Jimp =
kAC0

1 + kA
4⇡rcD

�
1� rc

R

� (3 dimensions). (S19)

When a single central A catalyst is permeable to substrate, the reaction flux can be computed

by dividing the system into two domains, inside and outside of the catalyst, and solving in each

domain the corresponding reaction-di↵usion equation,

Dr2
CS(r) = 0 if r > rc, (S20)

Dr2
CS(r)� k

0
ACS(r) = 0 if r < rc. (S21)

By requiring that the substrate concentration profile is continuous and di↵erentiable at r = rc,

together with the boundary conditions CS(R) = C0 and C

0
S(0) = 0, we can determine CS(r). With

this we compute the reaction flux by integrating the last term in Eq. (S21) over the domain of the

catalyst. This yields the following expressions for the reaction flux of a permeable catalyst in 2

and 3 dimensions,

Jperm =
2⇡DC0� I1 (�)

I0 (�) + � I1 (�) log
R
rc

(2 dimensions), (S22)

Jperm =
4⇡DC0

R
rc
[� coth(�)� 1]

1 + (Rrc � 1)� coth(�)
(3 dimensions), (S23)

where � = rc

p
k

0
A/D and In(x) is the modified Bessel function of the first kind. We then choose

k

0
A (as a function of kA) such that the fluxes Jperm and Jimp match. Comparing Eqs. (S18-S19)
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FIG. S11: Comparison of hJIi, h✏i, and hJPi for impermeable versus permeable catalysts for delocalized

arrangements in (a) two and (b) three dimensions.

with Eqs. (S22-S23), we find that the fluxes will be equal when

↵A = �I1(�)/I0(�) (2 dimensions), (S24)

↵A = � coth(�)� 1 (3 dimensions), (S25)

where ↵A = kArc/(DA) is the dimensionless reaction-di↵usion parameter used in the main text

(with A the surface area of the catalyst).

We used the mappings (S24-S25) to determine the rate k

0
A as a function of ↵A and the anal-

ogous mappings to determine the k

0
B as a function of ↵B. We then generated data for permeable

catalysts by solving Eqs. (S13) to (S15) for the same catalyst configurations as with the imper-

meable catalysts; see Figs. S10a,b for permeable catalyst analogs of Figs. 3a,b in the main text.

For catalyst configurations where steric exclusion e↵ects are expected to be negligible, for example

in the case of delocalized catalyst arrangements, this calculation led to reaction fluxes which are

approximately the same for impermeable and permeable catalysts (see Fig. S11).
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VII. CATALYSTS WITH ACTIVE SITES

Molecular biocatalysts like enzymes are typically not reactive over their entire surface but rather

have specific active sites at which reactions occur. To study the e↵ect of such an anisotropy, we

introduced model catalysts with a reactive patch covering 1/6 of the catalyst surface. The boundary

conditions, Eqs. 5 and 6 of the main text, then only apply to the reactive fraction of the surface,

while a no-flux boundary condition is applied on the remaining surface. To make these anisotropic

model catalysts comparable to their isotropic counterparts, we compare them at the same total

catalytic e�ciency integrated over the respective surface area.

We first studied the pathway flux of anisotropic catalysts arranged according to the di↵erent

localization strategies considered in the main text. Using ensembles of delocalized, paired, and ran-

domly clustered arrangements, we computed the average pathway fluxes (Fig. S12) and compared

them to the respective fluxes of isotropic catalysts (Fig. 3a). For small ↵ values, the average flux of

delocalized catalysts is not a↵ected by the anisotropy (solid versus dashed green lines in Fig. S12).

The same is true for randomly arranged clusters (solid versus dashed orange lines in Fig. S12).

However, in both cases the average flux of anisotropic catalysts is slightly reduced compared to that

of isotropic catalysts at larger ↵ values (di↵usion-limited regime). This is because the localization

of the catalytic activity to a smaller region creates a stronger local depletion of metabolites around

the reactive site, which in turn reduces the reaction flux. Nevertheless, the relative performance of

the di↵erent strategies remains unchanged. For A-B pair arrangements, we considered two relative

orientations where the reactive patches either face each other (black line in Fig. S12) or point away

from each other (blue line in Fig. S12). Comparing these two orientations, the pairs with facing

sites produce a higher average flux over the entire ↵ range.

We then determined the optimal configurations for complexes consisting of anisotropic catalysts.

As in the main text (Fig. 5), we kept ↵A fixed and varied NB and ↵B to explore the behavior of the

optimal geometries and reactive site orientations. The anisotropy of the catalysts clearly changes

the symmetries of the optimal arrangements (Fig. S13). While new geometries emerge that allow

the reactive sites to be oriented optimally with respect to each other, the optimal configurations still

appear to be determined by the trade-o↵ between substrate shielding and intermediate confinement.

In particular, when NB and ↵B are varied, the optimal configurations display similar general trends

as already observed in Fig. 5. For instance, the complexes are tightly packed at small ↵B and open

up as ↵B is increased. In the latter regime, some of the B catalysts are localized close to A, while

others are positioned further away, at angular positions that cover “gaps” in the inner layer.
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FIG. S12: Comparison of the fluxes of delocalized, paired, and clustered catalysts with a reactive patch.

The black and blue curve represents the reaction fluxes of the pair strategy with the reactive regions facing

each other (black) and facing away from each other (blue). The dashed lines show the fluxes of the clustered

and delocalized arrangements with uniform reactivity on the entire catalyst surface (Fig. 3a).
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FIG. S13: Optimal arrangements of several B catalysts around a single A catalyst with reactive patches

(green) comprising 1/6 of the catalyst surface.
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VIII. ENZYMES ARRANGED ON STRINGS AND SHEETS

An experimental study that is particularly interesting in the context of our theoretical analysis

of di↵erent localization strategies was presented in Ref. [4]. This study arranged the same two

consecutive enzymes in three di↵erent ways with the help of RNA sca↵olds. Importantly, these

experiments also included a loss mechanism for the intermediate product. Specifically, the two con-

secutive enzymes acyl-ACP reductase and aldehyde deformylating oxygenase were assembled with

three di↵erent RNA sca↵olds, and the conversion of hexadecanoyl-ACP to pentadecane was mea-

sured in the presence of competing enzymes that consume the intermediate product hexadecanal.

The first sca↵old colocalized the enzymes into pairs, the second sca↵old arranged the enzymes into

one-dimensional strings, and the third sca↵old positions the enzymes on two-dimensional sheets.

To be able to relate our theoretical analysis to the experiments of Ref. [4], we also implemented

the string and sheet arrangements using our A, B model catalysts, and computed the associated

pathway fluxes. We implemented enzyme strings by placing alternating A and B catalysts along

a line in a 3D system. Similarly, we implemented enzyme sheets by placing A and B catalysts

alternately on a planar square lattice, such that each A had four B as nearest neighbors and vice

versa. In both cases, we chose the center-to-center distance between neighboring catalysts to be

3rc, the same separation as for the pair arrangements analyzed in Fig. 3b of the main text. All

other model assumptions for the enzyme strings and sheets were also the same as for the pairs in

Fig. 3b.

The average pathway fluxes of the three di↵erent types of spatial arrangement are plotted in

Fig. S14 as a function of the reaction di↵usion parameter ↵, together with the reference curve

for random delocalized arrangements. Fig. 6b of the main text additionally displays the average

pathway flux for the clustered arrangements, showing that the catalyst sheets behave qualitatively

similar to the random clusters: Just like the clusters, the sheets achieve a higher flux than the pairs

in the reaction-limited regime (small ↵), whereas the pairs perform better in the di↵usion-limited

regime (large ↵). Steric e↵ects can be expected to have a negligible influence on the flux generated

by the sheet arrangement, because the access to the catalyst is not significantly blocked in such

arrangements. Therefore, the observed behavior must be dominated by the e↵ects of e�cient

intermediate transfer and substrate depletion.

In the di↵usion-limited regime, the highest flux is achieved by the string arrangement. It shows

a qualitatively similar behavior to the pair strategy, but displays a moderate overall enhancement in

the flux. The string arrangement attenuates the detrimental e↵ect of substrate depletion relative to
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FIG. S14: Comparison of the pathway fluxes of catalyst pairs, catalyst strings, and catalyst sheets, with

the average flux of randomly delocalized catalysts shown as a reference. See text for parameters and model

assumptions.

the sheet and random cluster arrangements, while achieving an e�ciency of intermediate processing

that, although less than those of the cluster and sheet, is greater than in the pair arrangement.

The consecutive enzymes used in the experimental study of Ref. [4] both lie in the reaction-

limited regime, where our model displays the largest enhancement for the sheet arrangement,

followed by a considerable enhancement for the string arrangement, and a small enhancement for

the pair arrangement, all relative to delocalized catalysts. The in vivo measurements of pentade-

cane production with the three di↵erent RNA sca↵olds display the same qualitative behavior [4],

suggesting that our coarse-grained catalyst model can indeed capture the most essential features

of engineered enzymatic systems.
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