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Abstract

In mammalian embryogenesis differential gene expression gradually builds the identity and com-
plexity of each tissue and organ system. We systematically quantified mouse polyA-RNA from
embryo day E10.5 to birth, sampling 17 whole tissues, enhanced with single-cell measurements
for the developing limb. The resulting developmental transcriptome is globally structured by
dynamic cytodifferentiation, body-axis and cell-proliferation gene sets, characterized by their
promoters’ transcription factor (TF) motif codes. We decomposed the tissue-level transcrip-
tome using scRNA-seq and found that neurogenesis and haematopoiesis dominate at both the
gene and cellular levels, jointly accounting for 1/3 of differential gene expression and over 40%
of identified cell types. Integrating promoter sequence motifs with companion ENCODE epige-
nomic profiles identified a promoter de-repression mechanism unique to neuronal expression
clusters and attributable to known and novel repressors. Focusing on the developing limb,
scRNA-seq identified 25 known and candidate novel cell types, including progenitor and differ-
entiating states with computationally inferred lineage relationships. We extracted cell type TF
networks and complementary sets of candidate enhancer elements by de-convolving whole-tissue
IDEAS epigenome chromatin state models. These ENCODE reference data, computed net-
work components and IDEAS chromatin segmentations, are companion resources to the match-
ing epigenomic developmental matrix, available for researchers to further mine and integrate..

Introduction

Hierarchical transcription programs regulate mammalian
histogenesis, a spatiotemporally coordinated process of
changing cell identities, numbers and locations1. Contem-
porary RNA-seq time-courses can quantify expression tra-
jectories comprehensively, including those of genes encoding

the transcriptional regulators that drive patterning, cell-
type specification and differentiation. Here we report a sys-
tematic mapping of the mouse polyadenylated RNA tran-
scriptome, tracking 12 major tissues from E10.5 to birth
(P0) (Fig. 1a, b and Extended Data Fig. 1l) and cov-
ering much of organogenesis and histogenesis. Crucial for
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regulatory genomics analysis and modeling, these data are
part of the ENCODE Consortium mouse embryo project,
which provides companion microRNA-seq, DNA methyla-
tion, histone mark ChIP-seq, and chromatin accessibility
datasets for the same sample matrix2. To better inter-
pret the core sample set, we added 5 additional organs
at P0, sampling 17 tissues in all. As these whole-tissue
data are intended for community use, including integration
with high resolution single-cell transcriptomes, we applied a
widely used RNA-seq method (SMART-seq) that is robust
at both bulk sample and single-cell scales3 and has been
used for other single-cell RNA-seq (scRNA-seq) experi-
ments in ENCODE4 (https://www.encodeproject.org/)
and elsewhere (e.g. Tabula Muris)5.

Single-cell RNA-seq data are increasingly the means for
discovering and defining constituent cell-types and states
that comprise complex tissues such as those in our bulk
mRNA seq matrix6–9. For embryogenesis and regenerat-
ing systems in particular, scRNA-seq further promises to
address longstanding questions about the nature and num-
ber of intermediate cell types in a developmental lineage
and the regulatory mechanisms that govern transitions be-
tween them. Finally, scRNA-seq data offer an important
input for gene network modeling by unambiguously assign-
ing to an individual cell (or cell group) its transcription
factor repertoire. Different contemporary scRNA-seq meth-
ods have complementary strengths, with some (e.g. Flu-
idigm SMART-seq) assaying relatively modest numbers of
cells with high transcript detection efficiency and RNA iso-
form discriminating coverage while others (e.g. 10x Ge-
nomics) capture larger cell numbers at lower transcript de-
tection efficiency and without isoform or promoter use in-
formation5,10–12. We present here an ENCODE scRNA-
seq resource containing both data-types for the develop-
ing forelimb, a tissue series not represented in the Tabula
Muris project5. We then identify limb cell lineages and
stages within them, and extract their corresponding cell-
type marker gene sets, TF networks, and promoter and
distal candidate regulatory elements with their TF bind-
ing motifs. The higher sensitivity Fluidigm data-type ad-
ditionally uncovered developmentally precocious low-level
transcription of lineage specific regulators that further sup-
port computed lineage inference models.

An emerging goal for developmental genomics is to
comprehensively chart the cis- and trans-acting regula-
tory codes of embryogenesis with single-cell resolution. In
this direction, we use the limb scRNA-seq data to decon-
volve integrative cis-element enhancer state (IDEAS) mod-
els13,14 based on whole-tissue ENCODE epigenomic data.
The resulting collection of candidate active and poised en-
hancer elements, parsed for cell type and stage, comple-
ments matching trans-acting TF networks. All primary
RNA-seq data and processed quantifications for tissue-level
and single-cell datasets are available from the ENCODE
portal (https://www.encodeproject.org).

Results and Discussion

The developmental timespan from mid-gestation (day
E10.5) to birth (P0) encompasses much of histogenesis and
organogenesis in the mouse (Fig. 1a; Ext. Fig.1l). The
timecourse transcriptomes clustered according to their re-
spective tissue identities and, within tissues, by develop-
mental time, as shown by principal component analysis
(PCA) (Fig. 1b; Supplementary Data 2), t-distributed
stochastic neighbor embedding (t-SNE) (Extended Data
Fig. 4a), and hierarchical clusterings (Fig. 1c and Ex-
tended Data Fig. 4b). Overall, this polyA RNA transcrip-
tome encompasses 84% of all protein coding genes and 44%
of lncRNAs, with 15,644 genes differing by ≥10-fold across
the matrix and 9,085 more uniformly expressed genes that
include housekeeping activities and structures (Extended
Data Figs. 1a; 3a). Relative to the FANTOM5 mouse
resource10 (http://fantom.gsc.riken.jp/) which covers
many of the same tissues and stages and is based on CAGE
promoter data, we detected 97% of its 13,999 protein cod-
ing genes, plus 5,035 that are novel in our data (Extended
Data Fig. 1m).

Haematopoiesis and neurogenesis polarize the
developmental transcriptome. Neurogenesis and
haematopoiesis dominate the global data structure, with
transcriptomes from these systems occupying opposite ends
of the first two principal components (PCs) (Fig. 1 b,c).
Nearly 1/5 of the expressed transcriptome (∼5000 genes)
unambiguously defines this differential axis, which was ro-
bust to the choice of quantification units (FPKM or TPM
Extended Data Fig. 4f,g) and to tissue representation (Ex-
tended Data Fig. 4d,e). Because whole-tissue data sum
over all constituent cell types, their transcriptomes obscure
underlying cell identities and relative cell proportions that
are fundamental in histogenesis (Fig. 1a). We therefore
projected cell type marker genes and cell identities from
a recent single-cell mouse whole embryo survey11 into our
transcriptome structure (Fig. 1d). This showed that the
high-complexity CNS and haematopoetic gene profiles cor-
respond to high cellular diversity defined by the single cell
decomposition, with 40% of cell types mapping to CNS and
haematopoetic gene clusters. Focusing in, the single-cell
projection further identifies tissue level expression of nu-
merous gene clusters or sub-clusters attributable to specific
cell type contributions (e.g. ependymal cells; neural pro-
genitor cells, cardiomyocytes) (Fig. 1d, black boxes).

Temporal drivers. Developmental changes were ex-
pected at the tissue level, but we did not know in advance
what genes and functions would most prominently define
the temporal axis, nor how they would distribute in tis-
sue/organ/cell space. Analysis across all tissues found three
classes of temporal drivers:

1) Universal: PC3 captured a strong global time com-
ponent (Fig. 1b, z-axis) explained at the gene level by
widespread diminution in cell proliferation machinery and
early erythroid markers (Extended data Fig. 3c). The
top 100 PC3 positive-loading genes are highly enriched for
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Figure 1: Whole-tissue polyA RNA transcriptome structure with cell type decomposition. (a) Schematic of
E10.5 and E15.5 embryos shows the color key for organ identity and developmental stage across the timespan of the study
with the complete key adjacent and the major cellular mechanisms of histogenesis below (b) Whole-tissue transcriptome
top 3 principal components (PCs); color code from (a) (viewable in 3D, Supplementary Video 1). n = 156 bio replicates.
(c) Hierarchical clustering of differentially expressed genes, heat map (bottom) for normalized log2(FPKM) values; 2
bio-replicates per tissue. Thy, thymus; Spl, spleen; Lvr, liver; Hrt, heart; Mus, skeletal muscle; Bld, bladder; Adr, adrenal

(legend continued on next page)
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mitotic cell cycle components (GO p = 3e-13) that map to
expression Cluster 21 (Fig. 1c and Extended Data Fig. 2–
21) which, in turn, maps to the stromal and early erythroid
cell types of Cao et al (Fig. 1d, red boxes). Furthermore,
their stromal cell marker set is itself enriched in cell cy-
cle genes (p =1.8e-13 “Cell cycle”) and the reverse is also
true. Thus the universal transcriptome time axis of PC3
can be explained, at least in part, by a gradual system-wide
disappearance of circulating primitive erythrocytes and a
decrease in the relative proportion of proliferating stromal
cells across many tissues and organs.

2) Specification and differentiation: The most nu-
merous and diverse temporal drivers reflect cell differentia-
tion pathways. For example, PC5 is prominent in differen-
tiating skeletal muscle systems of limbs and face (p = 3e-
12), with the high-PC5-loading Cluster 2 containing genes
turned on as myogenesis progresses (Fig. 1c and Extended
Data Fig. 2–2). Neuronal and glial differentiation in CNS
tissues are highlighted in PC1 (p =2e-22), prominently
marking genes of Cluster 34 (Extended Data Fig. 2–34),
that are further parsed from single cell marker distributions
by cell sub-type (Fig. 1d).

3) Inter-tissue cell migration: Migratory cell pop-
ulations, either invading or exiting, are well known to be
important for the development of many tissues, as de-
tailed further below using scRNA-seq data of the limb. At
whole-tissue resolution, examples include a blood compo-
nent (e.g. PC2 p =3e-35) that emerges prominently in the
haematopoietic tissue of origin (liver) and then in other tis-
sues (Fig. 1c and Cluster 10 in Extended Data Fig. 2-10),
while genes marking maturing B-cells15–18 in Cluster 10 ap-
pear in liver, and then in tissues with developing lymphatics
(Extended Data Fig. 3b).

Additional data structure. Much additional dy-
namic and biological structure is summarized schematically
at the major cluster level and is annotated further for in-
dividual clusters and sub-clusters (Extended Data Fig. 2).
The anterior/posterior (AP) spatial axis was evident from
its enrichment in six of the top twenty PCs of different
Hox cluster members expressed according to their known
positional codes (Supplementary Data 1 and 2, and expres-
sion clusters 19 and 25 in Extended Data Fig. 2–19 and
2–25). Reanalyzing specific gene groups of interest, such
as transcription factors (Extended Data Fig. 5a-e), or ap-
plying specialty algorithms can provide additional insights
such as anti-correlations of miRNAs with predicted polyA
RNA targets19. To evaluate additional meta-data feature

effects on transcriptome structure, we applied canonical cor-
relation analysis20,21 (CCA, see Methods), which identified
dissection-based batch effects and sex-specific expression
that may be pertinent to some future data uses (e.g. dif-
ferential amounts of maternal blood; thymic contamination
of some lung and heart samples; sex-biased samples from
embryos of different sex. Extended Data Fig. 1l and 6,
Supplementary Data 3).

Global transcription factor DNA motif topology.
RNA co-expression patterns revealed by clustering (Fig.1c;
Extended Data Fig. 2) are caused in part by transcrip-
tional co-regulation. Elevated frequencies of TF recogni-
tion sequence motifs in promoters of co-expressed genes can
computationally link specific TFs or TF families to their
likely target genes and regulatory elements. We tested the
proximal promoters (500 bp) of all genes in each expres-
sion cluster, (numbered according to the expression cluster
origin in Fig. 1c) for enrichment of all known consensus
TF binding motifs (718 motifs) (see Methods). A bipartite
graph was constructed to identify local and global relation-
ships between the resulting combinatoric motif-codes and
their source expression clusters (Fig. 2). First, the re-
sulting 307 significantly enriched motifs displayed expected
local relationships: fetal liver Cluster 10 is characterized
by haematopoetic (GATA1/2, Runx1, Bcl11a) and hepatic
(SMAD1, PPARG, NR1H2) markers, the highly specific
Rfx factor family marks its cilium cluster (Cluster 28); and
the E2F family is prominent in the previously discussed
cell cycle-themed Cluster 21 (Extended Data Fig. 2; Sup-
plementary Data 5).

The graph topology also shows binary and higher-degree
motif code-sharing (gray shaded nodes) that selectively con-
nect specific expression cluster promoter nodes from Fig. 1c
with each other, suggesting that they jointly use identical or
paralogous TFs. At a high level, the prominent separation
of neurogenesis (Cluster 34) from haematopoiesis (Cluster
10) first observed in the transcriptome emerged indepen-
dently for the motif codes, with only two shared motifs be-
tween them, whereas many other clusters share numerous
motifs with each of them and with each other. The ubiq-
uitous expression cluster had the strongest and most nu-
merous motif enrichments in the entire transcriptome, with
extensive Ets and Cre family representation (Fig. 2b and
Extended Data Fig. 8e), whose enrichment and occupancy
have been previously associated with human housekeeping
genes22,23. Finally, the most extensive code-sharing among
expression clusters was with CNS neuronal Cluster 34 which

gland; Kdn, kidney; Lng, lung; Stm, stomach; Int, intestine; Lmb, limb; Fac, craniofacial prominence; Fb, forebrain; Mb,
midbrain; Hb, hindbrain; Nt, Neural tube. Right panel: Normalized loadings of each gene for the top 5 PCs. Bottom
panel: normalized scores of the top 5 PCs (same sample order as clustergram). Gene ontology (GO) terms for the top 100
positive-loading and top 100 negative-loading genes abbreviated as key words (bottom right). (d) Integrating single-cell
organogenesis data from whole mouse embryos (Cao et al. 2019) with the whole-tissue transcriptome clustering (c). Y -
axis, genes are ordered as in (c); x -axis, 38 cell types from Cao et al. (2019). A point in the diagram indicates expression
of a Cao et al. marker gene with horizontal jittering. Boxes highlight specific cell types and gene clusters of interest (see
text).
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Figure 2: Promoter motif codes for dynamic expression clusters of Figure 1. (a) Flowchart for motif enrich-
ment analysis. (b) A computed graph summary of unique and shared TF recognition sequence motifs. TF motifs and
their respective source gene cluster identities (colored and numbered per clusters in Fig. 1c) are shown as graph nodes.
Edges connect the motif node and the expression cluster node(s) in which it is enriched, with edge thickness indicating
significance (−log10(p-value)). Motifs enriched in more than one cluster (gray) versus yellow for unique enrichment. The
size of each source expression cluster node is proportionate to the scaled number of genes in the corresponding cluster.

connects with many other clusters of diverse tissue origins
and functional themes (Figs. 1c; 2b). A plausible expla-
nation for this CNS-centric sharing pattern is that many
involved TFs (and/or their paralogs) were recruited during
evolution to new uses that support increasing mammalian
neuronal diversity.

Cluster-specific regulatory mechanisms. The
transcriptome structure and corresponding promoter mo-
tif resource provide entry points to identify cluster-specific
regulatory mechanisms. For example, integrating our tran-
scriptome and global epigenomic maps across matched sam-
ples showed that the up-regulated brain Cluster 34 has
strong repressive histone mark density (H3K27me3) at early
developmental times that declines with rising RNA expres-
sion (Extended Data Fig. 7e,f). Subsequent global quan-
tification of developmental differentials in H3K27me3 pro-
moter signal relative to RNA output across all clusters

found that brain clusters 30, 32 and 34 stand out as candi-
dates for a H3K27me3-mediated de-repression mechanism,
despite similarly rising RNA trajectories in many other clus-
ters (Extended Data Fig. 7a,d). Our prior motif enrichment
analysis showed that the neuronal repressor REST/NRSF’s
motif is specifically and strongly enriched in cluster 34 pro-
moters (Fig. 2b). The putative targets of REST/NRSF,
inferred from an independent ChIP-seq study24, are also
specifically enriched in Cluster 34 (Extended Data Fig. 7b);
the RNA expression of REST/NRSF decreases in brain tis-
sues over time (Extended Data Fig. 7c); and REST/NRSF-
occupied promoters24 show even greater H3K27me3 sig-
nal enrichment at early times (Extended Data Fig. 7f),
all of which is consistent with a significant role in CNS-
focused de-repression. This in vivo brain result agrees with
a prior cell culture-based neural progenitor study25, but it
contrasts with an embryonic stem cell study reporting no
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Figure 3: Single cell analyses of forelimb histogenesis. (a) Limb development schematic. Arrow indicates im-
migrating lineages. (b) 2D t-SNE of cell clusters, of 10x (left, n = 90,637 cells) and C1 data (right, n = 920 cells).
Colors indicate provisional cell identities per Supplementary Note 1. (c) Cell cluster marker genes (top 15 per cluster),
down-sampled for display to 100 cells per cluster for 10x and 30 cells for C1. (d) Integrated visualization of 10x (left)
and C1 (right) single cells on a 2D UMAP plane, separately or jointly projected (center panel) (see text and Methods).
(e) Cell type composition plotted as a time series. The color code corresponds to cell clusters in (b). (f) Monocle lineage
inference model for skeletal myogenesis. Pseudotime, developmental time and cell type (left); informative marker gene
expression mapped on the right; n = 7,668 muscle cells.
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H3K27me3 enrichment at REST/NRSF locations26. Be-
yond REST/NRSF, other candidate repressors whose mo-
tifs are enriched in clusters 34 and/or 32, also exhibit
expression trajectories that diminish as development pro-
gresses (e.g. Zfp219, Zbtb1, Zbtb3, Zfp740; red oval out-
lines, Fig. 2b) while additional presumptive C2H2 zinc fin-
ger transcriptional repressors whose recognition motifs are
unknown, are concentrated in the CNS-enriched expression
Cluster 33 (Extended Data Fig. 5e) with overall down-
ward expression trajectories (Extended Data Fig. 2–33).
Our working model is that they provide additional target-
ing diversity and specificity for the pervasive H3K27me3-
mediated repression/depression process of the developing
brain. This will become testable as their individual bind-
ing targets and derived motifs are determined. In a sepa-
rate analysis, we examined the large ubiquitous cluster and
found evidence suggesting that a post-transcriptional mech-
anism is playing a substantial role in setting divergent levels
of expression within the ubiquitous cluster (Extended Data
Fig. 8).

Histogenesis at single cell resolution. From E10
to E15.5 the developing forelimb progresses from a simple
limb bud composed mainly of undifferentiated mesoderm
to a highly patterned structure with distinct skeletal, mus-
cular, vascular, haematopoietic and dermal tissue systems
(Fig. 3a). Two scRNA-seq datatypes were collected; each
spans the same time points as the parent bulk tissue study
(Fig. 3): 1) 920 cells from the C1 platform, sequenced
to relatively high depth (∼1M reads/cell), which achieved
sensitive RNA detection rates, and full-length transcript
coverage comparability with the bulk data (Extended Data
Fig. 1c–k); and 2) ∼90,000 cells from the 10x Genomics 3’
end-tag platform which expanded cell type discovery (Ex-
tended Data Fig. 1c-e). We detected in the high-resolution
data 15,931 protein coding and 938 lncRNAs, of which 91%
and 71% respectively overlapped with the limb whole tis-
sue time-course (Extended Data Fig. 1b), while the 10x
data captured 81% and 36%. Comparing these data with
published whole embryo scRNA-seq11, showed overlap of
cell type relationships (Extended Data Fig. 9b) and genes,
with 15,314 protein coding genes in common plus 2,230 and
637 genes novel to the whole embryo and the forelimb, re-
spectively. This is consistent with greater cellular breadth
in the whole embryo study versus deeper cellular and molec-
ular coverage in the more focused forelimb study (Extended
data Fig. 1 c-e).

Resident and immigrating cell types. Clustering
the most differential genes across all cells identified major
progenitor and differentiating cell types and showed sim-
ilarity relationships between them (Fig. 3b-d; Extended
Data Fig. 9; Materials and Methods). Provisional cell
identity assignments were based on GO enrichment anal-
ysis together with support from the developmental litera-
ture for previously reported “marker” genes (Supplemen-
tary Note 1, Supplementary Tables 1 and 2; references and
discussion of marker gene limitations therein; Fig. 3b,c).
Major cell types in both studies included resident limb-bud

mesenchyme and its chondrogenic and osteogenic deriva-
tives, plus independently immigrating lineages that give rise
to myogenic, monocyte/macrophage, endothelial or neu-
ral crest derivatives. 10x data additionally provided evi-
dence for 14 more cell types or states. When projected
into the whole-tissue transcriptome and compared with sim-
ilarly projected whole-embryo scRNA-seq, this deeper and
more focused limb sampling showed lineage subdivisions
and sharpening of some types compared with the whole
embryo (e.g. myocytes, connective progenitors, limb mes-
enchyme; Extended Data Fig. 9b).

Developmental progression and lineage infer-
ence. Whole transcriptome t-SNE and UMAP and phy-
logenetic clustering analyses segregated cell types (Fig. 3b-
d; Extended Data Fig. 9c-e) whose trajectories through
time were then mapped (Fig. 3e). The extent of under-
representation of large multinucleated myotubes, together
with other possible disaggregation, differential cell capture
and survival, and stochastic sampling artifacts, were as-
sessed relative to unperturbed whole-limb RNA data using
CIBERSORT27 to produce an adjusted tissue proportion
model (Extended Data Fig. 9f,g).

Computed UMAP and Monocle lineage models (Fig.
3d,f and Extended Data Fig. 9c) were consistent with clas-
sical and modern tracing studies and inferences from genetic
knockouts, while also identifying new relationships and as-
sociated regulators. In the myogenic system early progen-
itors require the Pax3 TF to migrate into the limb bud
from adjacent axial somites28–30, and Pax3 is indeed the
strongest differential gene defining the Muscle1 cell cluster
(Wilcoxon rank sum test: 3.7-fold enrichment in 10x data
and 16.7-fold in C1 from both data-types), which mapped
to the earliest Monocle pseudo-time group (Fig. 3f). The
stages in the progression and inferred relationships among
stages are defined by overall correlation patterns among dif-
ferential genes (Extended Data Fig. 9a,b), while specific
marker genes from the myogenesis literature provided bi-
ological interpretation and hypothesis generation (Fig. 3f;
Extended Data Fig. 9d).

The Monocle myogenic lineage model showed two
branch points, with the first in both real time and pseu-
dotime producing a branch 1A consistent with an impor-
tant known population of muscle stem cells that later give
rise to the regenerative cells of adult muscle. They are
marked by the genetically essential Pax7 regulator (Ex-
tended Data Fig. 9d), and its direct target Msc (Fig.
3f), which represses myocyte differentiation31,32. Branch
point 2 leads, on one hand, to expected mature myocytes
marked by Tnnc expression (branch 2B), while branch 2A
was unexpected. It models a cell population expressing sig-
natures of interstitial muscle fibroblasts (IMFs)33, such as
Col1a1 and Osr1/2, in addition to classic myogenic mark-
ers including MyoD1 (Fig. 3f; Extended Data Fig. 9h).
We confirmed that individual cells in the developing fore-
limb co-immunostain for muscle and IMF marker proteins
(Extended Data Fig. 9i). This phenotype resembles the
small and somewhat mysterious 10x Cluster 22, and a
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second Monocle model incorporating Cluster 22 cells sup-
ports that interpretation (Extended Data Fig 9h). These
observations and models, considered in light of prior stud-
ies showing that adult tissue IMFs have latent myogenic
capacity34–36, raise questions about the developmental ori-
gin (from resident mesenchyme or Pax3+ precursors); adult
fate (whether to become an adult IMF and whether to main-
tain myogenic potential); and the biological significance of
these cells. More broadly, we confirmed and extended prior
microarray results on populations of FACS enriched muscle
precursor cells37,38 and recent scRNA-seq of Pax3 -GFP se-
lected cells39. Our Monocle models share some basic char-
acteristics with the one originally constructed by Trapnell
and colleagues40, although the systems and models also re-
flect substantial differences between adult human muscle
regeneration in vitro and fetal murine myogenesis in vivo.

In haematopoiesis, we identified both EMP and
macrophage at early stages, aided by their exceptionally ro-
bust sets of marker genes (Supplemental Note 1; Extended
Data Fig. 9e), which is consistent with limb macrophage
developing from limb-resident EMPs (Extended Data Fig.
9c) in situ. Finally, the skeletogenic system and its resi-
dent progenitors are the largest limb component through-
out the time course. Condensation, expansion and differ-
entiation into cartilage and bone is the primary fate of the
resident limb mesenchyme,41–43 represented here by UMAP
and Monocle models (Extended Data Fig. 9c) that focus
on putative chondrocytes and fibroblast/perichondrial cells
that form two dominant branches from the mesenchyme.
The structure detected is much less clearly partitioned and
ordered than myogenesis, and a more refined single-cell re-
solved model of skeletogenesis will likely require deeper and
more focused cell sampling coupled with spatial genomics
methods to capture additional anatomical clues.44–47

Trans-acting cell-type TF networks and their
cis-acting candidate enhancers. Each cell type cluster
has a substantial set of differentially expressed transcrip-
tion factors (Supplementary Data 4). In the myogenic lin-
eage, these differential TFs were expressed in three modes
with different regulatory and lineage inference implications
(Fig. 4a,b; Extended Data Fig. 9d,j): 1) sharply stage-
restricted Boolean patterns separate cell stages from each
other, including the well-known causal transcription regu-
lators Pax3, Pax7, Msc, and Myog ; plus newly added ones
(e.g. Sp5 and Sox8 ); 2) lineage-restricted uniformly ex-
pressed regulators that define the lineage (Pitx2 and Six1 );
and 3) multi-stage TFs with graded expression levels like
MyoD1 and Pitx3, whose expression joins two or more
stages together, while nevertheless discriminating stages
quantitatively (Fig. 4b). Some regulators, including TFs
widely understood to function only at later stages in the
lineage, were detectably and precociously expressed at low
levels, but only in the more sensitive C1 data (Fig. 4a,b).
For example, low level MyoD1 in Pax3 -expressing cells
is detected ahead of MyoD1’s well-known myoblast- and
myocyte-stage functions48. This suggests that the locus is

already open, and companion ENCODE DHS and browser
inspection of histone mark data at E10.5 show distal and
promoter proximal sites that support this idea (Extended
Data Fig 11f).

Known protein and genetic interactions were used to or-
ganize all cell-type differential TFs into their respective in-
teraction networks (myogenic lineage Fig. 4c; all other cell
type clusters Extended Data Fig. 10), showing that pan-
lineage and graded factors extensively switch interacting
partners across stages of the myogenic lineage progression.
The inference leverage provided by the low-level graded-
pattern genes was platform sensitive, with the higher sensi-
tivity of the C1 data detecting anticipatory (and also trail-
ing) expression in sequential stages that had escaped detec-
tion in our 10x data (Fig. 4a).

Cis-acting cell-type regulatory elements: De-
composing whole-tissue epigenomics. The compan-
ion ENCODE whole tissue histone modification, chromatin
accessibility and DNA methylation data provide rich bio-
chemical signatures from which candidate regulatory ele-
ments can be computationally inferred at the whole-tissue
level2,13,14, although they lack cell type resolution. To parse
genomic elements that are selectively active in a given cell
type or state (Fig. 4d), we first defined the boundaries of
biochemically active sequence elements using the compan-
ion limb DNase peak calls. We then applied IDEAS13,14

to learn and summarize epigenomic features over fixed ge-
nomic segment bins, and extracted those DNase peaks that
overlap with active and bivalent IDEAs bins (the bivalents
include both active signals from minor cell types diluted by
cells with alternative signatures, as well as poised elements)
(http://personal.psu.edu/yzz2/IDEAS/). We assigned
these active elements to cell types based on the cell type
specificity of their associated genes from scRNA-seq. Sum-
ming the active and bivalent signatures, among 2,208 cell-
type and lineage-specific genes, 2,018 (91.4%) had at least
one affiliated active or poised element among the total col-
lection of 22,230 (Supplementary Data 6). Individual loci
with multiple candidate elements, plus supporting IDEAS
state tracks, developmental DHS and RNA expression pat-
terns are shown for biologically important chondrogenic,
myogenic and macrophage examples (Fig. 4e; Extended
data Fig. 11b,c). Based on our overall element recovery
and on prior limb tissue reconstruction results (Fig. 3e;
Extended Data Fig. 9f,g), we estimate that the whole limb
epigenomic data have the sensitivity to identify validated
cell type enhancers for cells comprising less than 5% of the
starting population.

We evaluated all elements in our collection that overlap
with the independently derived VISTA transgenic mouse
database of regulatory elements. For the overlapping set
63% were validated VISTA enhancers (https://enhancer.
lbl.gov/) distributed across our major cell types2,49 (Fig.
4f). We did not expect all IDEAS overlapping elements to
have scored positively in the VISTA assay paradigm for rea-
sons summarized in the accompanying paper2 and because
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of VISTA’s narrower developmental time-window (E11.5–
E12.5 versus the IDEAS limb input E10.5–E15). The spa-
tiotemporal domains in VISTA typically included limb LacZ
transgene staining, but additionally showed staining else-
where in the embryo. This is expected, as our major cell
types are all represented elsewhere in the body and are
not restricted to the limb. Conversely, there are some spa-
tially patterned limb elements in VISTA (e.g. Mm1505 and
Mm1492; Extended Data Fig. 11b) that do not appear lim-
ited to a single cell type, and so are not in our cell-type dif-
ferential collection. Compared with the mouse FANTOM
enhancer and promoter sets, which were computed from
CAGE data and covered a wide sampling of fetal tissues and
cell types10 (http://fantom.gsc.riken.jp/5/), the limb
IDEAS set overlaps with 44% and 30% of all FANTOM
promoters and enhancers, respectively. Of these, 14% of
each (9,943 promoters and 2,147 enhancers) are specific to
our cell-type collection. Another large group of ours (20,119
and 19,384 IDEAS cell-type enhancers and promoters) were
not in the FANTOM collection, which is overall a smaller
collection (Extended Data Fig. 11e).

Transcription factor binding motifs significantly en-
riched in cell-type IDEAS elements (Supplementary Data
5) of distal candidate enhancer elements (≥2Kb from the
affiliated TSS) or promoters, were organized in computed
graphs that show lineage-related cluster nodes joined by
motif sharing across stages and related cell types (i.e. mus-
cle clusters 4, 12, 17; haematopoetic clusters 8, 13, 20, 21
in Extended Data Fig. 11d). Neural crest stood out for its
large number of distal motifs, including many Hox family
members, likely reflecting the use by neural crest deriva-
tives of positional signaling gradients in their specification
and migration. We similarly extracted motif codes for genes
whose expression is significantly depleted in a cell type-
specific manner. Such genes were especially prominent in
early haematopoetic cells, and their distal and promoter el-
ements were strikingly enriched in repressor and Hox motifs.
Although speculative, this suggests to us a regulatory logic

in which cells traversing the entire embryo silence genes
which, in other cell states or types, actively respond to po-
sitional signaling. Overall, it should be possible to model
cell-type/state-preferential enhancers in this and other ways
for other ENCODE tissues by adding a corresponding sc-
RNA-seq dataset and integrating it with the IDEAS models
or another epigenomic state model of choice.

Conclusions

As developmental biologists might expect, the fetal tran-
scriptome reflects known molecular and cellular mechanisms
of histogenesis at multiple levels of organization. Across all
tissues, we found a relatively simple and universal temporal
RNA signature, attributable to changing stromal and ery-
throid cell components. And within individual tissues and
organs, distinctive signatures emerge from shifting propor-
tions of constituent cell lineages, each progressing toward
cytodifferentiation and a final spatial distribution. These
sensitive whole-tissue data, uniformly processed and encom-
passing 17 tissues, define a dynamic transcriptome whose
derived co-expression modules and corresponding DNA mo-
tif topology comprise an initial regulatory code map for
mouse fetal development that can be further interpreted by
single-cell data.

An advantage of the ENCODE fetal transcriptome com-
pared to prior conceptually similar efforts is the opportu-
nity to integrate companion epigenome and microRNA re-
sources.2,19,50,51 As an example, single cell RNA-seq decom-
posed whole-tissue chromatin state models (IDEAS) built
from ENCODE epigenomic data, to extract cis-regulatory
enhancer/promoter element collections for major limb cell
types, together with corresponding trans-acting TF iden-
tity networks and their respective motif codes. This could
be generalized to other tissues by introducing appropri-
ate scRNA-seq, and further strengthened by integrating
scATAC-seq and more sophisticated algorithms52–54.

Both tissue-level and single-cell datasets are available

Figure 4 (preceding page): Trans-acting and cis-acting regulatory networks inferred for specific limb cell
types. (a) Transcription factors enriched in limb mesenchyme and skeletal muscle lineage clusters from 10x or C1 data.
Cells down-sampled for display per Fig. 3c and color-coded for cell-cluster identity per Fig 3b. Boxes highlight genes
(Myod1, Plagl1 ) with early stage expression detected in C1 but not 10x data versus pan-lineage markers (Six1, Pitx2 )
detected similarly in both. (b) Box plots of Boolean, graded, and pan-lineage pattern TFs; n = 23 Muscle 3 cells; n
= 38 Muscle 2 cells; n = 54 Muscle 1 cells. Boxes are 25th–75th percentiles; median-centered; minima and maxima
1.5×interquartile. (c) STRING networks of skeletal muscle lineage for cell-type differential TFs from 10x data (methods);
edges are colored by types of STRING evidence (cyan for database and magenta for experimental); nodes colored according
to 10x RNA-seq levels; arrows indicate lineage transitions (see text). (d) Schematic for discovering cell-type enhancer and
promoter elements using scRNA-seq and IDEAS chromatin state elements defined in whole tissue chromatin assays (see
text, methods and Extended Data Fig. 11a). (e) Candidate upstream limb skeletal enhancers (Ca1-3) for Sox5 with in vivo
enhancer data from VISTA for a Ca3-containing segment at right (https://enhancer.lbl.gov/frnt_page_n.shtml).
Computed IDEAS limb cell-type elements (purple track); IDEAS epigenomic segmentation tracks below with poised and
active enhancer type (orange) and promoter type (red) states below. (f) Summary of IDEAS/scRNA-seq cell-type elements
in the VISTA resource. Top: IDEAS limb elements in VISTA (n = 235/371, 63%). Bottom: VISTA-positive IDEAS
elements by cell-type (n = 66 cell-type-specific elements).

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.14.150599doi: bioRxiv preprint 

http://fantom.gsc.riken.jp/5/
https://enhancer.lbl.gov/frnt_page_n.shtml
https://doi.org/10.1101/2020.06.14.150599
http://creativecommons.org/licenses/by-nc/4.0/


through the ENCODE portal for browser viewing or large-
scale computing. They cover a substantial window of mouse
fetal development, but the earliest steps for most organs
were not included, owing mainly to limitations imposed by
available tissue amounts. Recent progress in low-input and
single-cell methods for both transcriptome and epigenome
mapping open the door to filling these gaps.

Materials and Methods

Bulk RNA-seq from mouse embryo tissues

Pulverized pooled mouse embryo tissue replicates from
timepoints E10.5, E11.5, E12.5, E13.5 E15.5 and E16.5
were received from the Ren lab which supplied these tis-
sues for the entire mouse development project47. E14.5
and P0 tissues were dissected from single animals at Cal-
tech. Replicate tissue samples were lysed and extracted
using the Ambion mirVana protocol (AM1560). Resid-
ual genomic DNA was removed using the Ambion Turbo
DNA-free kit (AM1907). Total RNA was quantified with
Qubit and RIN values were collected with the BioAnalyzer
Pico RNA kit (5067–1513). The median RIN value was 9.7
(CV=4.4%). Each cDNA library was built using 10 ng to-
tal RNA spiked with ERCC spikes (AM4456740) diluted
1:5,000 in UltraPure H2O (InVitrogen 10977023) contain-
ing carrier tRNA (AM7119) at 100 ng/µL, RNAse inhibitor
(Clontech 2313A) at 1 units/µL and DTT (Promega P1171)
at 1 mM. cDNA was reverse-transcribed and amplified ac-
cording to the protocol in the SMARTer UltraLow RNA kit
for Illumina (634935) using Clontech SMARTScribe reverse
transcriptase (639536), and TSO, dT priming and amplifi-
cation primers from the Smart-seq2 protocol5. The first-
strand product was cleaned up on Ampure XP beads, and
then amplified using the Clontech Advantage 2 PCR kit
(639207) with 13 PCR cycles and an extension time of 12
minutes. After a second round of Ampure XP cleanup,
the amplified cDNA was quantified on Qubit and the size
distribution was checked with the HS DNA BioAnalyzer kit
(5067-4626). cDNA libraries were then tagmented using the
Illumina/Nextera DNA prep kit (FC 121-1030) with index
tags from Illumina (FC 121-1031), cleaned up with Ampure
XP beads, quantified on Qubit and sized with the Agilent
HS DNA kit. Libraries were sequenced on the Illumina
HiSeq 2500 as 100 bp single-end reads to 30M aligned reads
depth. Inclusion for ENCODE submission required repli-
cate concordance scores by Spearman correlation of FPKM
values ≥ 9.0.

Single-cell transcriptome measurements using the
Fluidigm C1 and 10x Genomics v2

One pair of embryonic forelimbs from a single mouse was
used at each timepoint (E10.5, E11.0, E11.5, E12.0 and
E13.0, E13.5, E14.0, E15.0. After dissection from the car-
cass, limbs were incubated in a 50 µL droplet of a 10%
collagenase solution (Worthington LS004202) for 5 minutes

at 37 ◦C. The limbs were then visualized under a dissecting
scope and the ectoderm was removed manually with a pair
of #5 Dumont forceps. The mesenchymal core of the limb
bud was then transferred to a 200-µL droplet of Accumax
(AM105), and the dish was reincubated for 15 minutes at
room temperature. The cells were then manually triturated
once with a P200 tip to suspend them, and pipetted into
500 µL of DMEM + 10% FBS. Limb cells were spun at
500 g for 5 minutes at 4 ◦C, resuspended in 500 µLs fresh
DMEM + 10% FBS, and passed over a 20 micron mesh
(Miltenyi 130-101-812). They were then counted and di-
luted in DMEM + 10% FBS to achieve a final concentration
of 250,000 cells/mL. 12 µLs of this suspension was added
to 8 µLs of Fluidigm Cell Suspension Reagent for loading
on the Fluidigm IFC (10-17 micron size). Cells were then
visually inventoried for doublets and empty chambers, and
returned to the C1 for lysis, reverse transcription and am-
plification using the SMART-Seq v4 protocol. Lysis buffer:
8.6 µL water, 1 µL C1 loading buffer, 2.4 µL Smartseq2
oligo dT primer (10mM), 2.4 µL Clontech 10mM dNTPs, 2
µL ERCC spikes (AM4456740) (diluted 1:40,000 in Ultra-
Pure H2O (InVitrogen 10977023) containing carrier tRNA
(AM7119) at 200 pg/µL, RNAse inhibitor (Clontech 2313A)
at 1 units/µL and DTT (Promega P1171) at 1 mM), 0.5 µL
100mM DTT, 2.6 µL Clontech single-cell reaction buffer.
Reverse transcription reaction: 5.6 µL Clontech 10x tran-
scription buffer, 0.6 µL C1 loading buffer, 5.6 µL Smart-
seq2 TSO (10mM), 0.4. µL Clontech RNAse inhibitor, 2.8
µL Clontech SMARTScribe. PCR reaction: 4.4 µL H2O,
4.5 µL C1 loading buffer, 75.2 µL Clontech SeqAmp buffer,
3 µL Smart-seq2 amplification primers (10 mM) and 2.9 µL
Clontech SeqAmp polymerase.

Amplified cDNA samples were diluted in 10 µL of C1
DNA dilution reagent, and a 1 µL aliquot of each was quan-
tified on Qubit. 11 samples from the IFC were selected for
BioAnalyzer sizing based on yield and chamber occupancy.
An aliquot of the cDNA libraries was diluted to 0.1–0.3
ng/µL using C1 Harvest reagent, and the libraries were
then tagmented using the Nextera XT DNA sample prep kit
(FC 131-1096) and Nextera XT indices (FC 131-1002). Af-
ter tagmentation and amplification, libraries were pooled,
cleaned up twice with Ampure XP beads (0.9× volume),
quantified on Qubit and sized on the BioAnalyzer using the
HS DNA kit. The libraries were then sequenced as 50-bp
single reads to a depth of about 1M aligned reads on the
Illumina Hi-Seq 2500.

10x Genomics single-cell libraries were prepared from
the single-cell suspensions described above, targeting 10,000
cells per library, exactly as described in the manufacturer’s
protocol. They were sequenced as 150 bp paired end li-
braries, to a depth of 400M reads each on the Illumina Hi-
Seq 4000.

Read mapping and quantification

All the whole-tissue RNA-seq and C1 single-cell RNA-
seq data were processed through the standard ENCODE
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pipeline (https://www.encodeproject.org/pipelines/
ENCPL002LSE/), which uses STAR to align raw reads
against mm10 genome with spikes and quantifies transcript
abundances using RSEM which provides FPKM, TPM and
count values. Downstream analyses were mainly done us-
ing Matlab scripts (https://github.com/brianpenghe/
Matlab-genomics). 10x single-cell RNA-seq data were pro-
cessed using CellRanger with a compatible GTF annotation
and default parameters.

Whole-tissue RNA-seq PCA, CCA and
Hierarchical clustering

tRNA genes and genes covered by fewer than 10 reads in
all tissues were removed. Principal Component Analysis
(PCA) was performed over the log2-transformed FPKM
values (with 0.1 added as pseudo-counts) to unmask rela-
tively lowly expressed transcripts in order to accommodate
high sensitivity of whole-tissue RNA-seq assays. Z-scores of
eigenvalues from PCA were used to visualize “PC scores”,
while eigenvector coefficients from PCA were used to visu-
alize “PC loadings”. Genes with top highest positive values
and lowest negative values were used to interpret biological
meanings for each PC.

Canonical Components Analysis (CCA) was performed
on the top 20 PCs and Boolean variables for tissue iden-
tities, stages, gender and dissection metadata. Standard-
ized canonical variables scores were visualized using the
heatmap in Extended Data Fig. 6c, while z-scores of sam-
ple canonical coefficients were visualized using the heatmap
in Extended Data Fig. 6b and d. Canonical-correlation
gene loading coefficients could be calculated by multiply-
ing the PC-gene loading coefficient matrix (from PCA) and
canonical-correlation PC loading coefficients (from CCA).
Genes with top highest positive values and lowest negative
values could be used to interpret biological meanings for
each CC (Supplementary Data 3).

The dynamic genes were defined as those with at least
10-fold difference in FPKM values between the most and
least abundant RNA samples; genes with less than 10-fold
difference were defined as flat, or ubiquitous. Dynamic
genes and ubiquitous genes were categorized into different
classes (protein-coding etc.) based on gene types annotated
by GENCODE M4. One-way and two-way hierarchical clus-
tering were done using Pearson correlation coefficient and
average linkage for the dynamic genes. Clusters were de-
fined by traversing from the root of the tree towards the
leaves, and splitting out clades with different dominant tis-
sues and GO terms, recognized manually, until no more
major clusters could be split out. Clades with at least 30
nodes were defined as major clusters. In order to test the
robustness of the results, we did an independent analysis
with the forebrain, hindbrain and neural tube removed to
decrease CNS representation, using the same methodology.
Another independent analysis was performed using TPM
values for all the tissues, using the same methodology. The
main conclusions were largely the same.

Whole-tissue RNA-seq transcription factor
analysis

Transcription factor expression vectors were used to gen-
erate t-SNE and clustering maps using the same settings
as the whole-transcriptome analysis. Transcription factor
families were compared against cluster identities. The hy-
pergeometric test was performed to assess enrichment.

Embryo sex inference

For the samples that were made from single embryos, we in-
ferred their sex by comparing gene expression levels of Xist
(a female marker) and Ddx3y (a male marker). Embryos
that expressed Xist only are female while those that ex-
press Ddx3y only are male. Mixed embryo pools had both
genes detected.

Ubiquitous gene analysis

Among the genes defined ubiquitous by the whole-tissue
RNA-seq analysis, those with log2(FPKM + 0.1) values no
higher than 2 were removed. The 3000 genes with smallest
sample variance were equally assigned into high, medium
and low groups based on their average FPKM values.

GRO-seq and Bru-seq reads were mapped and quan-
tified using the ENCODE standard pipeline for computa-
tional consistency. Average 3’ UTR lengths for each gene
were extracted from the GENCODE M4 annotation. The
log2(FPKM + 0.1) values and log2(3’ UTR length) were
used for comparisons and linear regressions.

Histone modification analysis

Histone modification ChIP-seq data were processed us-
ing the ENCODE ChIP-seq pipeline (https://www.
encodeproject.org/pipelines/ENCPL220NBH/), and log2
fold change for ChIP-seq samples over input controls were
calculated and plotted using Deeptools2.4.1 (https://
github.com/fidelram/deepTools/tree/2.4.1). To sum-
marize the fold decrease of histone modification signals in
a specific sample among a specific cluster of genes, a 4-kb
window enclosing the TSS at the center is used and average
log2 fold change against input samples were calculated and
visualized using a 3D heated barplot. The fold decrease
is the difference between the fold changes of the earliest
and latest timepoint. Rest target overlap p-value is cal-
culated based on the hypergeometric test using the iQNP
Rest ChIP-seq target list from Mukherjee et al, 2016..

Gene Ontology Analysis

FuncAssociate 3.0 (http://llama.mshri.on.ca/
funcassociate/) was used at its default settings for term
calling.
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C1 Single-cell RNA-seq clustering and t-SNE
visualization

Spike and tRNA gene FPKM values were removed to rescale
FPKM values. Libraries with no cell or more than one cell
in their corresponding C1 chambers spotted by microscope
were removed. Libraries from the same C1 Fluidigm chip
that had systemic 3’ coverage bias were all removed. Cells
with fewer than 100,000 reads mapped to the transcrip-
tome or fewer than 4000 genes above 10 FPKM cutoff were
removed. Genes that were expressed in less than 5 cells
(0.5%), or at lower than 10 FPKM in all cells, or that were
covered by fewer than 100 mapped reads in all cells were
filtered out. We then used log2-transformed (FPKM + 1)
values for the following analyses. The genes were ranked
based on their dispersion scores (defined by sample vari-
ance over sample mean). The top 1,500 genes were selected,
from which non-coding genes and mitochondria genes were
filtered out, leaving 1,269 genes. t−SNE projection was
done based on these genes, using the top 30 PCs and 30 as
perplexity parameter (default for Laurens van der Matten’s
original MATLAB script)55. Two-way hierarchical cluster-
ing was then performed on the log2-transformed FPKM val-
ues using complete linkage with Spearman rank correlation
coefficient to cluster the cells. Cell types were annotated
manually.

10x Single-cell RNA-seq clustering and t-SNE
visualization

UMI counts from CellRanger were filtered first, where cells
with fewer than 1000 genes detected and genes detected
in less than 0.1% cells were removed. Within each cell,
counts were divided by the sum and multiplied by 10,000,
added by 1, and log-transformed. Top 4,000 high-dispersion
genes were identified. To remove noise (https://github.
com/brianpenghe/python-genomics), we first performed
a hierarchical clustering for these genes and then extracted
genes that fell in “tight” clusters (those with more than 2
members after cutting the dendrogram at 0.8 distance), re-
moving a large number of sporadic genes which had high
dispersion scores but were barely co-expressed with other
genes. These genes were used in place of “highly-variable
genes” for the Seurat pipeline. Using the Seurat pipeline,
cells with more than 20% mitochondria reads or more than
8000 genes detected were removed. Genes were scaled and
regressed against the number of UMI per cell and mito-
chondria percentage. The resulting matrix, guided by the
aforementioned feature genes, was used to perform PCA.
Jackstraw was then performed using Seurat’s default set-
tings, resulting in 42 significant PCs. These PCs were in
turn used for Louvain cell clustering and tSNE visualiza-
tion. Clusters 3,4,5,6,8,12 and 13 were further re-clustered
using the same method, yielding clusters 17-24.

Marker gene identification for C1 and 10x
single-cell RNA-seq data

Marker genes (Supplementary Table 4) were calculated us-
ing Seurat’s FindMarkers() for both C1 and 10x single-
cell data with min.pct = 0.25 and its default Wilcoxon
rank sum test with min.diff.pct set to be 0.2 or 0.4. For
marker visualization, each cell type was down-sampled to
at most 100 cells for 10x data and at most 30 cells for C1
data. min.diff.pct was set to be 0.2 and top 15 markers
for each cell type were visualized.

Comparing C1 and 10x cell types

Two methods were used to compare cell type annotations
for C1 and 10x data. Based on Seurat3’s “Label Transfer”
method, transfer anchors were calculated from 10x data and
were used to predict cell types for C1 data. Independently,
the scaled 10x data matrix was used to train a multinomial
logistic regression model using scikit-learn package. The
trained model was used to predict cell types for C1 data.

Integrating C1 and 10x data for UMAP
visualization

Seurat3 was used to calculate integration anchors and to
integrate the two different types of datasets. The joint set
was scaled and visualized on UMAP based on an arbitrary
top 50 PCs.

Lineage trajectory analyses

Prior to lineage inference, doublets were removed using a
Scrublet-based56,57 subclustering scheme. Monocle3 alpha
(2.99.3) was then used for trajectory analysis of the 10x
data that contain a large number of cells. The function
plot_pc_variance_explained() was used to select signif-
icant PCs above the knee cutoff. UMAP visualization and
SimplePPT method were applied. The root node for each
lineage tree was defined as the node that connects to the
largest number of the cells from the earliest developmental
timepoint (E10.5).

Differential transcription factor analysis

Transcription factors recorded at TFDB (http://bioinfo.
life.hust.edu.cn/AnimalTFDB/) were selected from
marker genes derived at 0.2 cutoff (described above), to
infer evidence-based interaction networks using STRING58

(https://string-db.org/). A Python interface for
STRING was used to query the database directly and
render the resulting graph using Graphviz59. Edges of type
“database” and “experimental” were used, filtered to meet
a confidence value of greater than 0.400. Nodes were col-
ored using normalized values obtained from SCANPY60.
The graph was laid-out using layout software included with
the Graphviz package. The algorithm used was SFDP. The
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complete code base as well as Docker and Singularity con-
tainer recipes can be accessed on the GitHub repository:
https://github.com/hamrhein/mouse_embryo.

IDEAS states

The IDEAS epigenetic states on the ENCODE3 mouse
developmental data were generated by the IDEAS soft-
ware13,14 using 10 epigenetic marks: H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K9me3, ATAC-Seq and DNAse methylation data. We
first converted the raw data in each sample to −log10p-
values using a Negative Binomial model. The mean and
variance parameters of the model for each sample were
calculated using the bottom 99% of the data. We then
adjusted the mean parameters at each genomic position
from the input data to account for local genomic varia-
tions. Specifically, we downloaded the input data for each
tissue (see list of data sets), and we calculated rolling means
per genomic position using a 20-kb window centered at
the position, for both signals and the input. The ratio
between the two means at each position is multiplied to
the overall mean estimate of the sample, and we normal-
ized the ratios across the genome to have mean 1. We
treated the −log10p-value as input data for IDEAS, capped
at 16, and we ran the program in its default setting. The
output from IDEAS is a set of genome tracks to display
in the genome browser, where each epigenetic state is as-
signed a color as a weighted mixture of colors preassigned
by the program to each epigenetic mark. The IDEAS
segmentation can be accessed by the Hub link at http:

//bx.psu.edu/~yuzhang/me66/hub_me66n_org.txt.

Cell type and lineage-specific marker genes
identification and cCRE assignment

Genes exclusively expressed in only one cell type or lineage
were regarded as marker genes for this series of analysis. Us-
ing the high-resolution C1 Fluidigm data, marker genes at
0.2 or 0.4 cutoff were cross-intersected to derive exclusively
expressed markers of cell types or groups of related cell
types (Muscle 1+Muscle 2, Muscle 2+Muscle 3, Muscle1-
3, Chondrocyte+Perichondrium, EMP+Macrophage etc.).
Candidate cis-regulatory elements (cCREs) were defined
by merging all the DHS peaks called by the ENCODE
HOTSPOT2 pipeline. These merged regions were assigned
to closest transcription start sites of genes that are ex-
pressed (FPKM higher than 0.1 in at least one bulk limb tis-
sue, or detected in more than 4 cells in single-cell limb data).
These merged regions were then compared against IDEAS
chromatin states generated from ENCODE3 mouse devel-
opmental time course data (see below). Only the peaks that
overlapped with active (state 14, 19, 20, 21, 23, 24, 25, 27,
28, 30–32), poised (8 and 13) or bivalent (26 and 29) IDEAS
states were regarded as “IDEAS active DHS” (cCREs). Fi-
nally, these cCREs assigned to the aforementioned marker
genes’ TSS’s were regarded as cell type or lineage-specific

cCREs. Based on the distance between each cCRE and its
assigned gene, cCREs were further divided into three cate-
gories: proximal (the distance is no greater than 200bp in
any direction), middle (the distance is longer than 200 bp
no greater than 2,000 bp in any direction) and distal (the
distance is longer than 2,000bp in any direction).

Motif analysis

For whole-tissue RNA-seq promoter motif analysis, the
upstream 500 bp sequences of each co-expression cluster
were extracted and pooled. For limb cell type-associated
gene promoter analysis, the upstream 500 bp sequences of
each cell type’s marker genes (derived from 10x data using
Seurat, min.diff.pct = 0.4) were extracted and pooled.
For limb cell type-associated cCRE analysis, the DNA se-
quences of proximal, middle, or distal cCREs for each cell
types marker genes were extracted and pooled. These se-
quence pools were used for motif discovery.

A detailed flowchart can be found in Extended Data
Figure 11.

The analysis of transcription factor recognition mo-
tifs was carried out using version 4.11.2 of the MEME-
SUITE61. Motifs annotated in the CIS-BP database62

(http://cisbp.ccbr.utoronto.ca/) were used to eval-
uate motif enrichment in the sequence pools mentioned
above; enrichment was scored by the AME program in the
MEME-SUITE63. The analysis was carried out twice based
on UCSC mm10 refFlat and GENCODE M4 separately and
only motifs with corrected p-values smaller than 0.01 in
both analyses were called significant.

Comparing whole-tissue RNA-seq and single-cell
RNA-seq

10x single-cell data (without log transformation or Gaus-
sian scaling) and the aforementioned 10x feature genes were
used as input for CIBERSORT27 (https://cibersort.
stanford.edu/) to compare against whole-limb RNA-seq
data (without log transformation or Gaussian scaling). To
compare cell type-associated gene signatures against EN-
CODE whole-tissue RNA-seq clusters, cell type-associated
marker genes were acquired from the article by Cao et al.
2019 (Table S4 for gene names and Table S3 for cell type
names) and filtered (p < 0.05 and q < 0.05). These sig-
nature genes (noting that CIBERSORT is highly sensitive
to the choice of input gene set) were mapped to the or-
dered heatmap of the bulk-tissue clustergram (Fig. 1d).
For better visualization, we jittered individual dots, to cre-
ate a re-purposed swarm plot to show distribution of the
locations (instead of quantities) of signature genes for each
cell.

Immunocytochemical detection in tissue sections

Staged embryos were fixed in 4% PFA in PBS, cryopro-
tected with 30% sucrose in PBS, and frozen in OCT on dry
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ice. 10-micron cryosections were blocked using the mouse on
mouse blocking reagent from Vector (cat. # MKB-2213),
and then stained with antibodies for Osr1 (mouse mono-
clonal Santa Cruz cat. # 376545 at 1:40) and myogenin
(Abcam RabMab cat. # ab124800 at 1:40). Secondary de-
tection was done with InVitrogen donkey anti-rabbit Alexa
594 cat. # A21207, and InVitrogen goat anti-mouse Alexa
488 cat. # A11029, both at 1:300 dilutions. Sections were
first screened on a Zeiss Axio Observer Z.1 and then im-
aged for deconvolution microscopy using a Leica DMI6000,
with a 63X oil immersion lens, and Huygens Professional
deconvolution software from SVI.
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Extended Data Figure 1: Quality metrics of bulk RNA-seq and single-cell RNA-seq. (a) Percentages of
ubiquitous, differential and undetected genes in each of the three categories: Protein-coding genes (Prot. code), lncRNA
(long intergenic noncoding RNA), and others. (b) Pairwise comparisons of detected protein-coding genes and lncRNAs
among the three RNA-seq platforms. (c) Number of genes detected per cell by C1 and 10x platforms in boxplots (left
panel), and full histogram distributions (right panel). n = 920 cells for C1; n = 90637 cells for 10x. (d) Genes per cell
histogram distributions colored by abundance values. Cells are sorted in ascending order based on the number of genes
detected per cell at the least stringent cutoff. Abundances are shown using the color scale on the right of the two plots.
Arrows represent the “knee” cutoffs we picked for inclusion in the analysis (4000 genes/cell for C1; 1000 genes/cell for
10x). (e) Average numbers of genes detected among each cell type defined by the C1 platform (mus3, Muscle 3; mus2,
Muscle 2; mus1; Muscle 1; mesprox, Mesenchymal; chon, chondrocyte; EMP, EMP; mac, Macrophage; endo, Endothelial;
pchon, Perichondrial; sup epi, Epithelial; neur, Neural crest) and the 10x platform (mus4, Muscle 4; mus3, Muscle 3;
mus2, Muscle 2; mus1, Muscle 1; mesprox, Mesenchymal 1; mesdist, Mesenchymal 2; mesX, Stressed mesenchymal; chon,
Chondrocyte; chon Ihh, Ihh+ chondrocyte; ost, Osteoblast; EMP, EMP; mac, Macrophage; meg, Megakatyocyte; endo,
Endothelial; pchon, Perichondrial; pchon Fox, Foxp1+ perichondrial; ecto, Epithelial 1; sup epi, Epithelial 2; neur, Neural
crest; eryth2, Late erythrocyte; eryth1, Early erythrocyte; teno, Tenocyte; smm, Smooth muscle; fibro, Fibroblast; int/mus
(22), Col1a1+ muscle 4). Boxes are 25th–75th percentiles; median centered; minimum and maximum 1.5×Interquartile.
Left: n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n = 571 mesprox cells; n = 57 chon cells; n = 5 EMP
cells; n = 10 mac cells; n = 7 endo cells; n = 139 pchon cells; n = 8 ecto cells; n = 8 neur cells. Right: n = 404 mus4
cells; n = 1,764 mus3 cells; n = 3,625 mus2 cells; n = 1,875 mus1 cells; n = 22,925 mesprox cells; n = 17,205 mesdist
cells; n = 114 mesX cells; n = 10,536 chon cells; n = 494 chon Ihh cells; n = 86 ost cells; n = 238 EMP cells; n = 1,123
mac cells; n = 29 meg cells; n = 1,011 endo cells; n = 20,254 pchon cells; n = 912 pchon Fox cells; n = 2,719 ecto cells;
n = 629 sup epi cells; n = 577 neur cells; n = 188 eryth2 cells; n = 425 eryth1 cells; n = 762 teno cells; n = 210 smm
cells; n = 2,204 fibro cells; n = 328 int/mus(22) cells. (f) Transcript coverage from 5’ to 3’ (left to right on x-axis) in
C1 single-cell libraries is uniform and consistent across the 11 different cell types. Y -axis is normalized, aggregate read
counts. The center values are median values for each bin; the shading represents standard deviations for each bin. n = 23
mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n = 571 mesprox cells; n = 57 chon cells; n = 5 EMP cells; n = 10 mac
cells; n = 7 endo cells; n = 139 pchon cells; n = 8 ecto cells; n = 8 neur cells. (g) Probability of single-molecule capture
(psmc) estimates for each of the 11 different C1 cell types. Boxes are defined by 25th and 75th percentiles; the center is
median; minimum and maximum are 1.5×Interquartile. n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n =
571 mesprox cells; n = 57 chon cells; n = 5 EMP cells; n = 10 mac cells; n = 7 endo cells; n = 139 pchon cells; n = 8
ecto cells; n = 8 neur cells. (h) Estimated input (x-axis) and output (y-axis) amounts of ERCC spikes in each cell type.
One cell is represented by one dot. The slopes of the fitted lines in log space have been labeled in each panel. (i) Psmc

estimates for each C1 run. Error bars are standard error. Boxes are defined by 25th and 75th percentiles; the center is
median; minimum and maximum are 1.5×Interquartile. n = 23 mus3 cells; n = 38 mus2 cells; n = 54 mus1 cells; n =
571 mesprox cells; n= 57 chon cells; n = 5 EMP cells; n = 10 mac cells; n = 7 endo cells; n = 139 pchon cells; n = 8 ecto
cells; n = 8 neur cells. (j) Cell type specific TSS choice for Mef2c in the developing limb identified by short-read RNA-seq.

(legend continued on next page)
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UCSC genome browser tracks display Fluidigm C1 data from muscle3 (dark red) and chondrocyte (cyan) cells at Mef2c
with Gencode VM20 gene and transcript models. Splice-crossing reads document exon1/2, 2/4 (red) and 3/4 junctions.
Aggregate signal tracks for mus3 and chon show that the TSS at exon 1 is used in mus3, whereas chondrocytes select the
TSS at exon 3. Median expressed level for Mef2c in muscle3 cells 53.4 FPKM; in chondrocytes 40.3. (k) Alternate splice
choices in different single mesenchymal cells of the developing limb result in alternate forms of Tcf3 (E12 and E47 bHLH
TFs) with different DNA binding specificities. Individual splice-crossing reads are displayed beneath the read tracks for
each of 3 separate exemplar cells. (l) Table representing all bulk RNA tissue/time samples in this study according to the
color scheme in Figure 1, including ENCODE BioSample accession numbers. The individual embryo samples for E14.5
and P0 were characterized by sex-specific expression markers; embryo sex determinations are indicated. (m) Comparisons
of whole tissue and single-cell transcriptome gene content with external whole tissue and single-cell resources10,11. For all
datasets, comparisons were restricted to only protein-coding genes that were detected.
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Extended Data Figure 2: Individual clusters from hierarchical analysis. (a) Sample identities are labeled
at the top with the code specified in Fig. 1. Cluster identities are labeled on the right, and the number of genes
in each cluster (sample size n) is shown at the top of each panel. Normalized expression levels were mapped to
the heatmap scale shown at the bottom right. Detailed descriptions of each cluster are given below. (b) Sum-
mary of expression cluster dynamics and dominant functional themes for clusters in (a). Rectangles represent ma-
jor gene expression clusters from (a) with more than 30 members, labeled by the dominant features based on Gene
Ontology, tissue specificity and gene class are labeled. Blue boxes indicate increase over time; pink decreases over
time; green reflect relatively constant levels; lavender lacks coherent time course dynamics; yellow represent likely
technical issues. The remainder are small clusters (≤30 genes), labeled as hexagons with the cluster size given.

(legend continued on next page)
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Extended Data Fig. 2-1. Cluster 1 from hierarchical clustering analysis of bulk RNA samples.

1. Cluster 1 has prominent increasing expression in limb and craniofacial prominence.

2. Over one third of the genes in this cluster are genes coding for keratin and keratin associated proteins. Top GO
terms include “intermediate filament” (p = 3.7e-34) and “hair cycle” (p = 2.4e-7), pointing to development of skin
and hair.

Extended Data Fig. 2-2. Cluster 2 from hierarchical clustering analysis of bulk RNA samples.

1. Cluster 2 has prominent expression in skeletal muscle and an increasing trajectory in limb and craniofacial promi-
nence.

2. Cluster 2 contains multiple muscle regulators like Myod1 and Myog. Its top GO terms include “muscle system
process” (p = 4.5e-18) and “contractile fiber part” (p = 9.9e-14). The increasing expression in limb and craniofacial
prominence is likely due to differentiation of muscle precursors and to increasing relative muscle mass as a fraction
of the total tissue.

3. In addition to the dominant muscle-limb-face feature, there are two clades with different patterns that illustrate the
informational leverage that comes from a more pure P0 dissected tissue (here muscle).

(a) The clade of 13 genes labeled in blue have increasing expression in limb and craniofacial prominence but not
in the P0 pure skeletal muscle sample. Among the 13 genes, five (Dcstamp, Mmp13, Bglap, Ifitm5 and Ibsp)
are associated in prior work with osteogenesis.

(b) The clade of 13 other genes labeled in purple is biased for limb alone, and not cranioface. It includes four
major urinary protein (MUP) genes at low but detectable abundance. The mouse genome has 21 annotated
Mup genes in a 2-Mbp cluster on Chromosome 4. Although none have human orthologs, members of the family
have known functions in mouse chemical communication and nutrient metabolism. A recent study reported
dramatic and unexpected upregulation of Mup1 in mouse embryos when Sox2, a transcription factor regulating
proximal bone formation in limbs, is mutated. This raises the possibility that the MUPs in this limb cluster
play a role in limb development.

4. **Technical user note: Sporadic samples of adrenal gland, kidney, lung, stomach, hindbrain and neural tube from
this mouse embryo bulk RNA ENCODE series show slight enrichments for genes from this cluster, implying variable
minor tissue contamination during dissection.

Extended Data Fig. 2-3. Cluster 3 from hierarchical clustering analysis of bulk RNA samples.

1. Most genes in this cluster have high and constant levels of expression in heart, and roughly half also have substantial
expression in skeletal muscle-containing samples, which is expected due to contractile protein genes shared in both
kinds of striated muscle.

2. GO terms are mainly about muscle, including “contractile fiber part” (p = 8.9e-47) and “regulation of heart con-
traction” (p = 4.3e-21)

3. *The clade in the upper half of the heatmap has narrow dark red bars, that indicate single replicate enrichment.
This group of genes contains mostly pseudogenes (see also Cluster 15).

Extended Data Fig. 2-4. Cluster 4 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 4 show differing degrees of bladder-specific expression, which may result from a bladder-specific
cell type that has a unique transcriptome signature.

2. GO analysis produced no terms. Mouse bladder has not been extensively studied, and under-annotation may
compromise the statistical power of GO in this case.
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Extended Data Fig. 2-5. Cluster 5 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 5 are very prominently expressed in thymus and most have minimal expression in other tissues.

2. Highly expressed genes also have positive signals in several non-thymus samples, with atypical irreproducibility
between replicates. A candidate explanation is batch-specific contamination of thymus-proximate tissues with thymus
during dissection. While this kind of contamination doesnt greatly alter global QC scores, it is readily detectable in
this clustering analysis (see also CCA analysis).

3. GO analysis revealed enrichment in later stage maturing immune components, especially T-cell terms. Top terms
include “immune system process” (p = 1.8e-18) and “regulation of T-cell activation” (p = 3.0e-13).

4. Roughly one quarter of the genes are T-cell receptor components (alpha chain, gamma chain and delta chain).
Interestingly, the two recombinases Rag1 and Rag2 are also in this cluster, indicating a TCR VDJ theme for this
cluster.

Extended Data Fig. 2-6. Cluster 6 from hierarchical clustering analysis of bulk RNA samples.

1. The unifying theme of this cluster is high expression in the adrenal gland.

2. Top GO terms include “hormone biosynthetic process” (p = 1.5e-7) and “hormone metabolic process” (p = 7.3e-7).
More specifically, Cyp11b1, Cyp21a1 and Cyp11b2 contribute to the term “mineralocorticoid biosynthetic process”
(p = 2.8e-7). These cytochrome P450 genes are involved in biosynthesis of aldosterone which, unlike many other
hormones, is produced only in the adrenal gland. However, these genes also have detectable expression signals in
E15.5 and E16.5 samples of kidney. Their presence at E15.5 and E16.5 stages and absence in E14.5 and P0 may
be due to contamination in E15.5 and E16.5 pooled samples, while E14.5 and P0 samples from individual embryos
were more contamination-free.

Extended Data Fig. 2-7. Cluster 7 from hierarchical clustering analysis of bulk RNA samples.

1. The central theme of this cluster is prominent expression in the developing kidney, where the RNA trajectories
generally increase over time. Roughly 40% of these genes are also expressed in liver, again with increasing trajectories,
plus some smaller subclades that are shared with gut or lung samples.

2. Top GO terms of this cluster include transporter-related categories such as “sodium ion transport” (p = 2.0e-14)
and “anion transport” (p = 4.7e-9) and structural terms like “apical plasma membrane”. This cluster is dominated
by genes responsible for transporter machinery and epithelial cell organization in the kidney. This cluster was also
highlighted by CCA analysis. Further examination found that the increasing number of nephrons through time, and
the up-regulation, in particular, of genes of the proximal tubule are explanatory.

3. The clade of 72 genes labeled in purple contains genes enriched in both liver and kidney. The top enriched GO terms
for this group are for amino acid catabolic processes performed in both liver and kidney (“organic acid metabolic
process” (p = 7.7e-12), “fatty acid metabolic process” (p = 1.2e-7) and “alpha-amino acid catabolic process” (p
= 1.5e-6). 20 of these genes are enriched in kidney proximal tubule brush border cells while 7 are enriched in
hepatocytes12.

Extended Data Fig. 2-8. Cluster 8 from hierarchical clustering analysis of bulk RNA samples.

1. The genes in Cluster 8 have increasing expression patterns in almost all tissues, although the kinetics of increase
differ.

2. Top enriched GO terms include “inflammatory response” (p = 1.0e-6) and “extracellular exosome” (p = 1.5e-5).

3. There are two major clades. The clade labeled in purple is consistent with genes marking the immune system, whose
levels are highest in thymus and spleen, but also include expression in the hematopoietic fetal liver. Subsets of these
genes increase at later times in other tissues. GO analysis called terms including “regulation of T cell activation”
(p = 8.8e-5) and “inflammatory response” (p = 2.2e-5). The second major clade, labeled in blue, is dominated by
increasing expression in liver and gut tissues. Top GO terms included “extracellular exosome” (p = 3.3e-9).
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Extended Data Fig. 2-9 Cluster 9 from hierarchical clustering analysis of bulk RNA samples.

1. The genes in Cluster 9 have highest enrichment by far in spleen and on the P0 liver, but not at earlier times.
Moderate abundance is also seen in adrenal gland and lung. There is minimal but detectable expression in all other
tissues at P0 but very little at all times before birth.

2. GO analysis did not yield significantly enriched terms, but more than half of the genes in this cluster are immunoglob-
ulin components (kappa and lambda light chain variables, heavy chain variables and constant regions, consistent
with B-cell maturation, appearing in liver, spleen and in lesser proportions in lung and other lymphatic-containing
dissections.

Extended Data Fig. 2-10. Cluster 10 from hierarchical clustering analysis of bulk RNA samples.

1. Over 60% of the genes in Cluster 10 are preferentially expressed in liver, much lower in CNS tissues and variously
detected in other tissues. The RNA abundances mainly increase with time, but with differing kinetics.

2. Top GO terms of Cluster 10 include the immune system, such as “immune system process” (p = 4.8e-101) and
“regulation of immune system process” (p = 2.0e-62). The additional prominence of many genes in the P0 thymus
and/or spleen, along with other non-CNS tissues point to the lymphatic system.

3. In addition to the main immune theme, four clades with distinctions emerged. The one containing 267 genes labeled
in purple are most enriched in liver, as well as stomach and intestine, increasing over time. Its top GO terms focus on
lipids, including “lipid metabolic process” (p = 3.8e-13) and “lipid transport” (p = 4.1e-11), pointing to metabolic
functions shared by hepatocytes and gut tissues.

4. The clade of 200 genes labeled in pink contains genes enriched in spleen and liver only and point to erythropoiesis.
Its top GO terms are mainly related to maturing red blood cells, such as “tetrapyrrole biosynthetic process” (p =
1.2e-20) and “erythrocyte development” (p = 3.9e-10). DNA motif analysis of promoters in this clade revealed a
significant enrichment of Tal1:Gata1, a known pair of regulators essential for hematopoiesis.

5. Members of the clade of 91 genes labeled in blue are mainly expressed in late stage liver and are hepatic functions,
as well as in the adrenal gland. Top GO terms include “monooxygenase activity” (p = 1.1e-31), “steroid hydroxylase
activity” (p = 1.7e-20) and “steroid metabolic process” (p = 5.3e-9). More than a quarter of these are protein-
coding components of cytochrome P450, which are involved in steroid and drug metabolism. Additionally, six
sulfotransferase genes are also in this group. Sulfotransferase plays an important role in the metabolism of drugs,
hormones and bile acids.

6. Lastly, the clade of 155 genes labeled in yellow show more constant levels through time in liver, with additional
expression detected in adrenal gland, kidney, stomach and intestine. Its top GO terms include “blood coagulation”
(p = 1.7e-29) and “alpha-amino acid metabolic process” (p = 3.1e-12), with six coagulation factors, six complement
factors, fibrinogens and regulators (protein C and serpins) are found in this clade.

Extended Data Fig. 2-11 Cluster 11 from hierarchical clustering analysis of bulk RNA samples.

1. The main theme of Cluster 11 is gut development and differentiation. Its genes are most highly expressed in intestine
and are also enriched in stomach, with sharing of specific clades with either kidney (purple) or CNS (blue) tissues..
For the stomach, E14.5 and P0 timepoints show lower expression for multiple clades, which likely reflects systematic
dissection differences at the boundaries between the two gut tissues.

2. Top GO terms are mainly about intestine structure, including “brush border” (p = 2.3e-11) and “brush border
membrane” (p = 3.1e-9). Interestingly, out of 16 genes contributing to the term “brush border”, 8 are in the small
clade of 43 genes labeled in purple. This clade also has prominent increasing expression in kidney, representing a
shared program of brush border genes between kidney and intestine. Other terms include “sodium ion transport” (p
= 1.0e-6), “digestive system process” (p = 1.0e-6) and “alpha-amylase activity” (p = 1.8e-6). Additionally, several
gut hormones or peptides are found in this group such as cholecystokinin, gastrin, vasoactive intestinal polypeptide,
ghrelin, glucagon and insulin genes.
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Extended Data Fig. 2-12. Cluster 12 from hierarchical clustering analysis of bulk RNA samples.

1. Most genes in Cluster 12 are expressed widely and with an increasing trend, except in the liver, where most of the
cluster is depleted at all times.

2. The most prominent secondary theme is strong up-regulation at birth in multiple organs.

3. No GO terms were significantly enriched.

4. This cluster, and subclusters within, are candidates for novel DNA sequence motif-derivation or for correlated
mir-signatures that could mediate the birth transition pattern and/or the liver suppression pattern

Extended Data Fig. 2-13. Cluster 13 from hierarchical clustering analysis

1. Genes in Cluster 13 are mostly enriched in lung, especially at later stages.

2. Partly because of the small cluster size, Gene Ontology didnt provide highly significant terms. However, 4 surfactant-
associated proteins contributing to the term “multivesicular body” (p = 4.3e-6) are included in this cluster, indicating
a possible link to Type II alveolar cells in the lung.

Extended Data Fig. 2-14 Cluster 14 from hierarchical clustering analysis.

1. Cluster 14 contains genes that are highly expressed in stomach. Most are also highly expressed in limb and cranio-
facial prominence at very late stages. About a quarter of them are also expressed in the P0 bladder.

2. The top GO terms are “cornified envelope” (p = 6.7e-26) , “keratinization” (p = 1.7e-27), “epidermis development”
and “keratinocyte differentiation” (p = 1.6e-16). The cornified envelope is composed of a layer of dead cells found
in skin epidermis and forestomach for protection against the environment. Its major components include loricrin,
filaggrin, Involucrin, keratins and small proline-rich protein (SPR) genes that are all found in this cluster, together
with the genes required for generating the cornified envelope, such as transglutaminase, cystatin and envoplakin.

Extended Data Fig. 2-15. Cluster 15 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in this group are coherently enriched in specific replicate samples, but they do not reproduce between replicates
or among related tissues.

2. Almost all genes in this cluster are annotated as known pseudogenes or protein-coding genes with low mappability.
These low-mappability genes top-abundance mappable counterparts (their corresponding protein-coding genes or
paralogs) do not display similar variation (data not shown).

Extended Data Fig. 2-16. Cluster 16 from hierarchical clustering analysis of bulk RNA samples.

1. The broad theme of this cluster is expression in most tissues and organs, with the exception of the CNS and liver,
both of which show little expression.

2. Over the developmental time course, most members increase in limb and craniofacial prominence but are relatively
less changing or decreasing in other tissues.

3. The top GO terms of Cluster 16 are dominated by extracellular matrix (ECM) components, such as “extracellular
matrix” (p = 8.7e-58), “extracellular region part” (p = 6.0e-42) and “basement membrane” (p = 4.4e-34). Other
significant terms include “regulation of cell migration” (p = 8.0e-26), “angiogenesis” (p = 1.1e-25) and “‘cell junction”
(p = 2.3e-18).

4. This cluster contains two major clades, highlighted in purple and blue, that share expression in bladder, kidney, lung,
stomach, intestine, limb and craniofacial prominence. The blue clade is distinct in also showing strong expression
in heart. Their GO terms identify different biases. The purple clade features “occluding junction” (p = 7.6e-9) in
addition to ECM terms, while “angiogenesis” is absent. The blue clade includes most cluster 16 thematic terms, but
also emphasizes “anchoring junction” (p = 7.3e-19) and particularly “adherens junction” (p = 3.0e-18), consistent
with epithelial/endothelial cell junction formation and tube morphogenesis. Thus the purple clade focuses on tight
junctions that consist of an epithelial barrier and molecular gate between a cell mass and the environment, while
the blue clade concentrates on angiogenesis and adherens junctions that link cells together and also carry cadherin
receptors important for tissue morphogenesis.
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Extended Data Fig. 2-17. Cluster 17 from hierarchical clustering analysis of bulk RNA samples.

1. This cluster is divided into two major clades. The upper clade, similar to cluster 15, is coherently enriched in a few
individual samples that do not replicate nor do they reproduce among related tissues. Apart from these individual
samples, the pattern is noisy across developmental time. This pattern does not correspond to any known dissection
or global QC issue. Also similar to cluster 15, no GO term enrichment was found.

2. The lower clade contains genes that are widely expressed among different tissues that are also systematically depleted
in the E11.5 and E14.5 samples. This reflects known batch effects at tissue collection/dissection steps (see also CCA
analysis)

Extended Data Fig. 2-18 Cluster 18 from hierarchical clustering analysis of bulk RNA samples.

1. Most genes in Cluster 18 are enriched in the craniofacial prominence at early stages but not later.

2. Its top GO terms mainly concern eye development, including “structural constituent of eye lens” (p = 1.6e-17)
and “eye development” (p = 1.1e-15). Genes include crystallins, retinoic acid-metabolizing enzymes (Cyp26a1
and Cyp26c1 ), lens membrane protein (Lim2 ), melanin regulators (Tyrp1, Tyr and Pmel) and one developmental
regulator (Vax2 ).

3. The dissection plan for cranioface was to exclude the eyes, but at earlier stages it appears not to have been fully
successful. The expression pattern and Gene Ontology, of Cluster 18 genes in the early craniofacial prominence sam-
ples (E10.5, E11.5 and E12.5), including sharp transitions between adjacent timepoints, are likely due to imperfect
removal of early eyes. Sporadic enrichment of these genes in later stage craniofacial prominence samples (E16.5) is
likely due to a few imperfect dissections in a large embryo pool.

Extended Data Fig. 2-19. Cluster 19 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in this cluster are mostly enriched in bladder, kidney, limb and neural tube. Within these tissues, expression
levels are relatively constant over developmental time.

2. The lower half of this cluster contains 5’ Hox genes (Hox9 -Hox13 ) and lincRNAs localized in the 5’ region of Hox
clusters (Hotair and Hottip). Genes with names beginning with “Gm” that are clustered together with Hox genes
are also localized in 5’ Hox gene regions, suggesting shared transcriptional regulatory elements or RNA precursors.
Among these Hox -cluster genes, there are distinctions, with 5’ Hox expression being more abundant in posterior
tissues (e.g. bladder, kidney and intestine), consistent with previous findings.

3. As the time course begins at E10.5, we could not follow the well-known upregulation sequence of Hox genes which
displays “temporal co-linearity”, except for a gradual increase in Hoxc12 and Hoxc13 in the limb, which represent
the distal ends of limbs and whose upregulation pattern is late enough to be captured in our time window.

4. In E14.5 neural tube samples the 5’ most Hox genes Hox11-13 are missing, because that batch of embryo dissections
did not include the posterior tip of the tube.

5. Four major urinary protein (MUP) genes are enriched in limb, similar to the MUP paralogs in Cluster 2. However,
unlike those in Cluster 2, they are also enriched in early neural tube samples.
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Extended Data Fig. 2-20. Cluster 20 from hierarchical clustering analysis of bulk RNA samples.

1. Overall, genes in Cluster 20 are prominently absent from the liver at all stages and are absent or strongly reduced
at P0 in most tissues having P0 data. The top ∼1/3 of the cluster contributes little to the two major expression and
GO themes. It contains mainly pseudogenes and lncRNAs. In limb, craniofacial prominence and brain, depletion
of some of these genes is evident at E11.5 and E14.5 similar to Cluster 17, and possibly related to the batch effect
discussed before.

2. In the remaining bottom 2/3, there is considerable substructure among expressing tissues due to the two major
biological themes: The first GO enrichment theme is tissue morphogenesis and development, such as “skeletal
system morphogenesis” (p = 3.3e-13), “branching morphogenesis of an epithelial tube” (p = 5.5e-12), “sensory
organ development” (p = 7.7e-11), “odontogenesis” (p = 1.3e-10), “gland development” (p = 4.5e-10), “ossification”
(p = 9.1e-10), “limb morphogenesis” (p = 2.1e-9) and “kidney development” (p = 6.1e-9). The second GO theme is
Wnt signaling, such as “regulation of Wnt signaling pathway” (p = 8.2e-12), “Wnt signaling pathway” (p = 2.0e-10)
and “Wnt-protein binding” (p = 3.2e-10). Although this cluster called terms covering a variety of different aspects
of development demonstrated in the first theme, the driving genes are often shared among multiple terms referring
to different tissues. This likely reflects the broad usage of these signaling pathways in patterning and morphogenesis.
Moreover, roughly a quarter of the genes contributing to any Theme 1 terms also contribute to the Wnt theme. Other
Theme 1 genes that do not currently contribute to the Wnt GO terms, such as Irx3, Runx2, TWIST, Bmp4, Tbx1 and
Tbx3 have been independently associated with this signaling system. This is consistent with the current appreciation
that Wnt signaling plays an important and widely distributed role in different individual anlage, including stem cell
renewal.

3. The clade of genes colored in purple are highly enriched in kidney and moderately enriched in limb and craniofacial
prominence. The themes are suggested by Gene Ontology with terms “skeletal system morphogenesis” (p = 1.2e-6)
and “branching morphogenesis of an epithelial tube” (p = 2.3e-6). These terms of this clade are consistent with the
overall theme of this big cluster but the distinct gene expression pattern suggests intensive usage of this subprogram
of genes in the kidney.

4. The clade of genes labeled in blue has prominent enrichment in limbs and craniofacial prominence, and is lower but
still detectable and decreasing in other tissues. The top GO terms are similar to those called from the whole cluster,
but with much enhanced significance for “embryonic skeletal system morphogenesis” (p = 1.8e-15) and “cartilage
development” (p = 1.5e-9).

Extended Data Fig. 2-21. Cluster 21 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 21 are expressed in all the fetal tissues and decrease over time in most. At P0 the majority are
expressed in thymus and spleen but are notably depleted elsewhere.

2. Top GO terms are mainly cell division and nucleus components, such as “chromosomal part” (p = 1.2e-93) and “cell
cycle process” (p = 1.6e-87) consistent with genes involved in executing the cell cycle, especially components of the
chromosome and its associated proteins. The global decrease in RNA levels from these genes over time is consistent
with shifting from fast growing proliferating cells to more differentiated ones.

3. Fetal hemoglobins are also found in this cluster such as Hbb-bh1, Hbb-y and Hba-x.

Extended Data Fig. 2-22. Cluster 22 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 22 show distinct enrichment at E11.5 and E14.5 stages in some tissues, and they do so reproducibly
among the replicates.

2. Most of these genes are pseudogenes and low-mappability protein-coding genes. They are similar to the batch-effect
clades in Cluster 17 and Cluster 20 but display the inverse pattern trend.

Extended Data Fig. 2-23. Cluster 23 from hierarchical clustering analysis of bulk RNA samples.

1. This small cluster contains genes most prominently expressed at early times in CNS tissues. They are also depleted
preferentially at E16.5 in many other tissues. Unlike the candidate batch effects of clusters like 15, 17, and 22 that
are heavily enriched in pseudogenes, this cluster is not explained by annotated pseudogenes. There was no significant
GO enrichment.
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Extended Data Fig. 2-24. Cluster 24 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in this cluster are widely expressed and are preferentially higher in the CNS regions and/or in the developing
liver. Most, but not all, increase during development of these tissues.

2. Top Gene Ontology terms are dominated by lipid metabolism, such as “lipid metabolic process” (p = 2.7e-13)
and “cholesterol biosynthetic process” (p = 1.7e-11). Interestingly, all of the nine genes contributing to the term
“cholesterol biosynthetic process” are localized in a tiny clade of 23 genes labelled in purple. These 23 genes are all
very abundant and highly correlated among themselves.

Extended Data Fig. 2-25. Cluster 25 from hierarchical clustering analysis of bulk RNA samples.

1. More than half of the genes in Cluster 25 are consistently and highly enriched in the hindbrain and neural tube plus
stomach, intestine and adrenal gland. Kidney and lung also express distinct subsets of these genes.

2. This cluster contains most of the 3’ Hox genes, almost all located in the two clades labeled in purple and blue. The
purple clade consists of the 3’ most Hox genes and genes sitting in the 3’ end of Hox gene clusters while the blue
clade is made of Hox genes and non-Hox genes in the center (less 3’ but not 5’) of Hox clusters. The purple-clade
genes are expressed in lung while the blue ones are mostly not. This is probably because lung is relatively anterior
to other endoderm tissues assayed, which corresponds to the 3’ end of the endoderm Hox A/P axis.

3. For the genes outside the Hox gene clades combined, Gene Ontology generated terms related to the neural system,
such as “neuron differentiation” (p = 1.4e-7); focusing on “enteric nervous system development” (p = 2.4e-7).

4. In E14.5 neural tube samples some genes are more depleted compared to E13.5 and E15.5. We think this might
result from a dissection protocol detail that produced shorter spinal cord and depleted the 3’-most Hox expressing
tissue.

Extended Data Fig. 2-26. Cluster 26 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 26 are mostly enriched in forebrain at late stages.

2. Avp and Oxt encode neuropeptides synthesized in the hypothalamus that regulate complex maternal and sexual
behaviors. They are clustered together within 6 kbp on chromosome 2.

Extended Data Fig. 2-27. Cluster 27 from hierarchical clustering analysis of bulk RNA samples.

1. Cluster 27 contains genes highly enriched in kidney. Most are also expressed in brain and neural tube at later stages
but less abundantly than in kidney.

2. Pax2, Pax8 and their target Gata3 are found in this cluster which specify the nephric lineage and regulate branching
morphogenesis in the developing kidney. Pax2 and Pax8 are also reported to specify GABAergic and glycinergic
neuronal fates, partly explaining expression in the hindbrain and neural tube. It’s possible that this cluster concerns
two independent cell fate specification and morphogenesis programs that use overlapping regulatory factor sets, such
as Pax2, Pax8 and Gata3.

Extended Data Fig. 2-28. Cluster 28 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 28 are expressed in many tissues, but with lung and craniofacial prominence being highest, followed
by CNS regions. Almost all increase over time, but with differing kinetics in different tissues and brain regions.

2. Most of the significant GO terms are about ciliogenesis, such as “cilium movement” (p = 1.4e-19), “cilium” (p =
1.2e-17) and “outer dynein arm assembly” (p = 1.5e-14). The contributing genes include components of dynein arms
and radial spokes, genes coding for assembly machinery such as dynein docking complex, tubulin modifying enzyme
and the nexin-dynein regulatory complex. Two known cilium regulators, Foxj1 and Mcidas, are also in this cluster.
The cilium is a fundamental structure, with primary cilia being ubiquitous while secondary and sensory cilia having
more specialized distributions that correspond well with the pattern for the majority of genes in cluster 28. The
pattern can be explained by the emergence of airway cilia in the lung, the airways of the craniofacial prominence,
and the ependymal cilia of the CNS.
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Extended Data Fig. 2-29. Cluster 29 from hierarchical clustering analysis of bulk RNA samples.

1. Most genes in this relatively small cluster are distinguished by highest expression in the thymus, but more than half
are also expressed substantially in brain or in face/limb, or in kidney/lung and gut.

2. Gene Ontology failed to identify a significantly enriched term for this group.

Extended Data Fig. 2-30. Cluster 30 from hierarchical clustering analysis of bulk RNA samples.

1. Cluster 30 contains genes expressed most prominently in heart and/or CNS samples, with the admixture among the
tissues varying across different clades.

2. Top enriched GO terms mainly identify transport of metal ions, such as “metal ion transport” (p = 4.1e-8), “metal
ion transmembrane transporter activity” (p = 1.3e-7) and “potassium ion transmembrane transporter activity” (p
= 2.0e-7).

Extended Data Fig. 2-31. Cluster 31 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 31 are mainly enriched in brain and neural tube, with different regionalization for subclusters, plus
the facial prominence (perhaps partly driven by cross-contamination of face with forebrain dissection at early times).

2. More than a third of the genes in this cluster are transcription factors (“sequence-specific DNA binding”, p =
1.0e-26), most of which also contribute to the GO term “neuron differentiation” (p = 4.4e-18). It is likely that this
group of genes are involved in neuron maturation, such as Dlx1, Dlx2 and Helt which specifies GABAergic neuron
differentiation. Genes responsible for cerebral cortex GABAergic interneuron migration (Lhx6, Arx and Fezf2 ) are
also found in this cluster.

Extended Data Fig. 2-32. Cluster 32 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in Cluster 32 are expressed in nearly all the tissues with increasing trajectories over time, with the notable
exception of liver where they are expressed at very low levels and then decrease. This cluster contributes to the
global separation of the CNS (where expression is strongest) from the developing liver.

2. Gene Ontology offered little specific annotation, except “positive regulation of adenylate cyclase activity” (p =
1.7e-5).

Extended Data Fig. 2-33. Cluster 33 from hierarchical clustering analysis of bulk RNA samples.

1. Genes in the large cluster 33 are expressed in most tissues prior to P0, except liver. CNS and face/limb are by far
the most prominent. Most of these genes are time-course variant. Timecourses in different tissues display distinctive
trajectories, with decreasing courses being more common, unlike most other major clusters. Thus genes in this
cluster vanish very early in liver; decrease monotonically in kidney, lung, stomach and intestine; remain constant
early and slightly decrease at later stages in heart, craniofacial prominence, and limb.

2. Gene Ontology enrichment produced three major themes. First, 159 genes (16%) encode DNA binding proteins –
especially transcription factors – contributing to “DNA binding” (p = 1.7e-17) and “RNA biosynthetic process” (p
= 7.5e-14). As discussed in the Results section, zinc finger presumptive repressors are especially prominent (Ext.
Data Fig. 5e). Second, this cluster contains genes regulating different aspects of morphogenetic processes, with
enrichment in the term “embryonic morphogenesis” (p = 1.9e-12). This is similar to Cluster 20, which also has a
broadly decreasing pattern, though it features an emphasis on the Wnt pathway that does not apply to Cluster
33. Finally, significant overlaps of Cluster 33 with cell projection-related genes are called by terms “cell projection
organization” (p = 1.3e-15), “cilium assembly” (p = 1.9e-14), “neuron projection guidance” (p = 4.4e-11) and
“regulation of nervous system development” (p = 4.2e-12). This cluster of genes is different from the cilium-related
Cluster 28 in expression dynamics, showing opposite temporal trajectories that argue strongly for distinct regulation.

32

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.14.150599doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150599
http://creativecommons.org/licenses/by-nc/4.0/


Extended Data Fig. 2-34. Cluster 34 from hierarchical clustering analysis of bulk RNA samples.

1. The theme of this large cluster is expression in all four CNS tissues, with a dominant upward temporal pattern.
While most increase over time, they do so with varying kinetics among subclades and between brain regions. Gene
Ontology revealed enrichment for a large number of neuron-identity and structure terms associated with neuronal
differentiation and maturation, with the most dominant ones being “synapse” (p = 1.0e-93), “neuron projection” (p
= 6.9e-55), “behavior” (p = 2.3e-42) and “regulation of nervous system development” (p = 2.9e-34).

2. Apart from the central neuronal theme, subclades (colored purple, blue and pink) differ from each other and from
the major neural cluster. All three are significantly enriched with transcription factors and neural development
regulators, and they display diverse tissue patterns relative to each other. The small purple clade at the top
features genes enriched caudally in neural tube and hindbrain. The blue clade below it is enriched in midbrain and
significantly but less so in hindbrain and neural tube, with overall downward trajectories. The pink clade near the
bottom features genes expressed earliest in all four CNS regions, diminishing in later stages.
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Extended Data Figure 3: Additional groups of genes with diverse biological implications. In all plots, tissue
identities are labeled on top (x-axis) matching Fig. 1, and genes are on the y-axis. (a) Expression levels of ubiquitous
genes are shown in the heatmap according to the scale bar at right (b,c) Normalized expression levels of genes associated
with B-cell activation in Cluster 10 (b) and hemoglobin genes (c).
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Extended Data Figure 4 (preceding page): Alternative views of global bulk transcriptome. (a) Bulk tissue
transcriptome is organized on a 2D t-SNE plane, with color code as in Figure 1. n = 156 bulk RNA-seq libraries (b)
Two-way hierarchical clustering of differential genes in bulk data using Pearson correlation. (c) Normalized principal
component scores of the top 20 components. Tissue identities and stages are labeled at the bottom following color codes
in Fig. 1 (d,e) One-way hierarchical clustering (d) and PCA projection (PC scores are labeled at the bottom and loading
coefficients are on the right) (e) of whole transcriptome with forebrains, hindbrains and neural tubes removed to test
robustness. n = 112 bulk RNA-seq libraries. Color codes as in Figure 1. (f,g) One-way hierarchical clustering (f) and
PCA projection (similar to (e)) (g) of whole transcriptome quantified by TPM instead of FPKM. n = 156 bulk RNA-seq
libraries. Color codes as in Figure 1.
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Extended Data Figure 5 (preceding page): Transcription factor expressions in the bulk data. Color codes in
(a–d) as in Figure 1. (a) t-SNE representation of transcription factor expression profiles; n = 156 bulk RNA-seq libraries.
(b) 3-D projection of PC loading coefficients of transcription factors. (c) 3-D projection of PC loadings of transcription
factor expression profiles; n = 156 bulk RNA-seq libraries. (d) one-way hierarchical clustering of transcription factor
expressions in bulk data. Tissue identities are labeled following color codes in Fig. 1; n = 156 bulk RNA-seq libraries. (e)
abundance representation of transcription factor families in individual bulk expression clusters. Colors indicate Bonferroni-
corrected p-values from hypergeometric test.
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Extended Data Figure 6 (preceding page): Canonical correlation analysis of the bulk data. (a) A diagram
showing the setup of canonical correlation analysis (more details in Supplementary Data 3). (b) The vertically normalized
loadings of the Boolean metadata variables. Tissue identities are labeled with color codes in Fig. 1. (c) The horizontally
normalized scores of CCA variables across tissue samples. (d) The vertically normalized loadings of principal components.
(e) The correlations between U and V variables. Pairwise relationships between U and V variables are shown by the
corresponding scatter plots and heatmap representing the Pearson correlation coefficient; n = 156 bulk RNA-seq libraries.
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Extended Data Figure 7: CNS-specific genes are associated with REST/NRSF binding and de-repression.
(a) H3K27me3 fold-decrease and RNA fold-change. Each bar represents a cluster of genes in a tissue type. The height
represents RNA fold-increase between the earliest and latest time points while the colors represent H3K27me3 ChIP
signal fold decrease. The arrows point to the strongest decrease of H3K27me3 that happens in Cluster 34 in brain
samples. (b) REST/NRSF target enrichment in individual clusters. Bonferroni-corrected p-values are calculated based on
Hypergeometric tests. Sample size (equal to that of Ext Data Fig 2): Cluster 1 n = 21 genes, Cluster 2 n = 196 genes,
Cluster 3 n = 693 genes, Cluster 4 n = 65 genes, Cluster 5 n = 474 genes, Cluster 6 n = 95 genes, Cluster 7 n = 226
genes, Cluster 8 n = 106 genes, Cluster 9 n = 103 genes, Cluster 10 n = 2,182 genes, Cluster 11 n = 563 genes, Cluster 12
n = 536 genes, Cluster 13 n = 93 genes, Cluster 14 n = 341 genes, Cluster 15 n = 219 genes, Cluster 16 n= 1,176 genes,
Cluster 17 n = 338 genes, Cluster 18 n = 37 genes, Cluster 19 n = 45 genes, Cluster 20 n = 1,319 genes, Cluster 21 n =
801 genes, Cluster 22 n = 44 genes, Cluster 23 n = 95 genes, Cluster 24 n = 283 genes, Cluster 25 n = 138 genes, Cluster
26 n = 30 genes, Cluster 27 n = 68 genes, Cluster 28 n = 200 genes, Cluster 29 n = 56 genes, Cluster 30 n = 236 genes,
Cluster 31 n = 90 genes, Cluster 32 n = 256 genes, Cluster 33 n = 1,008 genes, Cluster 34 n = 3,073 genes, Ubiquitous
n = 3,000 genes. (c) Abundance of Rest mRNA in forebrain. The individual data points are shown as individual bars.
(d–f), Averaged H3K27me3 profiles near promoter regions (x-axis) for liver ChIP-seq signals over Cluster 10 genes (d),
forebrain ChIP-seq signals over Cluster 34 genes (e) and forebrain ChIP-seq signals over Rest-targeted genes in Cluster
34 (f).
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Extended Data Figure 8: Regulatory mechanisms of ubiquitous genes. (a–c) Cumulative distribution function
plots of polyA+ RNA-seq measurements from Skeletal muscle (a), C2C12 GRO-seq data (b) and average 3’ UTR length (c)
are compared among three equal-sized groups of ubiquitous genes defined by their RNA-seq abundance. (d) Comparisons
of 3’ UTR length, GRO-seq, Bru-seq and polyA+ RNA-seq assays among multiple different samples. Pearson correlation
scores between each pair of measurements on the columns and rows are visualized using a heatmap. In the corresponding
cell of the comparison, a scatter plot is provided. On the diagonal are histograms of each individual measurement; n =
24,832 detectable genes. (e) Significance of ETS motif enrichment in the promoters of ubiquitous genes determined using
AME in MEME suite. n = 1,000 each for high, medium and low groups. (f) A model is proposed that longer 3’ UTR
may harbor more binding sites for RNA-decay apparatus, leading to lower abundance at steady states.
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Extended Data Figure 9 (preceding page): Cell-type relationships inferred from single-cell data. (a) Cell-cell
correlations. Feature genes were used to calculate and visualize Pearson correlation coefficients between cells. Specific
cell-type populations (indicated by color bands on the axes) were downsampled to 100 (10x) or 30 (C1) (b) Comparing
single-cell data with bulk. As an extended version of Fig. 1d, this comparison added a panel for 10x single-cell RNA-seq
limb data (far right). (c) Lineage inference. Skeletal (left), myeloid (middle) and skin (right) cell types were used for
lineage inference, respectively. Pseudotime, developmental time and cell type are presented from top to the bottom. (d)
Selected transcription factor expressions are displayed on the Monocle graphs produced from the 10x data for the 4 cell
types comprising the myogenic lineage. (e) Feature gene expression profiles of C1 single cells. Normalized log-transformed
FPKM values (y-axis) are used for hierarchical clustering using Spearman coefficients with complete linkage. Major cell
types (x-axis) together with an Lmo2 + mesenchyme subtype are highlighted using colors corresponding to Fig. 3b. The
overall picture showed different numbers of marker genes across cell types. (f,g) CIBERSORT deconvolution of bulk
data. CIBERSORT was used to deduce proportions of major cell types (y-axis) present in staged samples (x-axis) of
independently produced forelimbs (f) and ENCODE mixed limb materials (g). The color codes match Fig. 3b. (h)
Monocle lineage inference for four skeletal muscle clusters including Cluster 22. Pseudotime, developmental time and cell
type are shown on the left, while marker gene expression is mapped on the right. (i) 20 micron sections of mouse E13.5
forelimb double-immunostained for Osr1 (green) and Myog (red) (left), DAPI blue counterstain (right). All images taken
with 63× oil immersion objective. Images in upper panels are enlarged from boxed areas in lower panels. Arrowheads:
green: Osr1(+) Myog(-) nucleus. Red: Myog(+) Osr1(-) nucleus. White: double (+/+) cells. Immunocytochemistry was
repeated 3 times independently. (j) Heatmaps for all TFs that scored as differential genes for cell types in the myogenic
lineage plus limb resident mesenchyme, at 0.2 δpct cutoff, downsampled to 100 (10x) or 30 (C1). Color code per Fig. 3b,
Extended Data Fig. 9e.
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Extended Data Figure 10: Cell type-specific transcription factor repertoire. (a–r) Transcription factors among
the marker genes of each cell type (see Methods) were used for interaction analysis by StringDB, and the results were
organized into graphs. Both database (teal) and experimental (magenta) evidence codes were used to produce edges.
Node colors reflect the abundance of RNA-Seq expression measurements in the 10x data.
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Extended Data Figure 11 (preceding page): Cis-regulatory element analysis using ENCODE chromatin
data and single-cell RNA-seq data. (a) A flowchart of the analysis (b) Computationally predicted regulatory elements
at the Myog locus. From the top to the bottom are the tracks for limb IDEAS active DHS (black bars), cell-type affiliated
ones among the former (purple bars), IDEAS scores of limb and liver samples from early to late timepoints, bulk DNAse-
seq raw data, bulk RNA-seq raw data, and aggregated C1 single-cell RNA-seq data per cell type. Validation of the Mu3
element in mouse embryo by enhancer assay is also included at the bottom right. (Modified, with permission, from Yee
and Rigby 1993, Cold Spring Harbor Laboratory Press)64. Lower: examples of limb-positive enhancer results from the
VISTA database that are not cell-type-specific. (c) UCSC genome browser visualization of the C1qb locus, which is in the
limb macrophage cluster. Three cEnhs for limb-specific expression of this macrophage gene were identified (Lb1-3). (d)
Enriched motifs over regulatory elements. Motifs enriched at the distal elements or promoters of positive and negative
markers for each cell type found in the 10x data (see Methods) are visualized using a similar method as Fig. 2b. Colors
and numbers of the round nodes correspond to 10x cell type identities (legend at lower right), while the grey and yellow
ovals represent shared and unique motifs, respectively. (e) Comparison between FANTOM5 detected promoters and
enhancers with promoters and enhancers detected in this study. Elements labeled as “other” are either active or poised
in limb generally, but are not cell-type preferential. (f) UCSC Genome Browser shot at the MyoD1 locus. DHS locus
accessibility data are shown, along with H3K4me2 and H3K4me3 histone ChIP-Seq data. Blue arrows indicate regions of
early chromatin accessibility (see text and Fig. 4a).
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