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Abstract. Epistasis between mutations can make adaptation contingent on evolutionary history.
Yet despite widespread “microscopic” epistasis between the mutations involved, microbial evolution
experiments show consistent patterns of fitness increase between replicate lines. Recent work shows
that this consistency is driven in part by global patterns of diminishing-returns and increasing-costs
epistasis, which make mutations systematically less beneficial (or more deleterious) on fitter genetic
backgrounds. However, the mechanistic basis of this “global” epistasis remains unknown. Here we
show that diminishing-returns and increasing-costs epistasis emerge generically as a consequence of
pervasive microscopic epistasis. Our model predicts a specific quantitative relationship between the
magnitude of global epistasis and the stochastic effects of microscopic epistasis, which we confirm
by re-analyzing existing data. We further show that the distribution of fitness effects takes on a
universal form when epistasis is widespread, and introduce a novel fitness landscape model to show
how phenotypic evolution can be repeatable despite sequence-level stochasticity.
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I. INTRODUCTION

Despite the idiosyncrasies of epistasis, a number of
laboratory microbial evolution experiments show sys-
tematic patterns of convergent phenotypic evolution
and declining adaptability. A striking example is pro-
vided by the E.coli long-term evolution experiment
(LTEE) (Figure 1a): 12 replicate populations that
adapt in parallel show remarkably similar trajectories
of fitness increase over time [1, 2], despite stochasticity
in the identity of fixed mutations and the underlying
dynamics of molecular evolution [3, 4]. Similar consis-
tent patterns of fitness evolution characterized by de-
clining adaptability over time have also been observed
in parallel yeast populations evolved from different ge-
netic backgrounds and initial fitnesses [5] (Figure 1b)
and in other organisms [6–12]. Declining adaptabil-
ity is thought to arise from diminishing-returns epis-
tasis [5, 13, 14], where a global coupling induced by
epistatic interactions systematically reduces the effect
size of individual beneficial mutations on fitter back-
grounds. Diminishing-returns manifests as a striking
linear dependence of the fitness effect of a mutation
on background fitness (Figure 1c). While diminishing-
returns can be rationalized as the saturation of a trait
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close to a fitness peak, recent work shows a similar
dependence on background fitness even for deleterious
mutations, which become more costly on higher fitness
backgrounds [15]. This suggests that fitter backgrounds
are also less robust to deleterious effects (Figure 1d),
a phenomenon that has been termed increasing-costs
epistasis. The mechanistic basis for the global coupling
that results in these effects is unknown.

Put together, these observations suggest that the con-
tributions to the fitness effect, si, of a mutation at a
locus i in a given genetic background can be written as

si = sadditive,i + sgenotype,i � ciy, (1)

where sadditive,i is the additive effect of the mutation,
sgenotype,i is its genotype-dependent epistatic contribu-
tion independent of the background fitness y (i.e., id-
iosyncratic epistasis), and ci quantifies the magnitude of
global epistasis for locus i. Eq. (1) reflects the observa-
tion that the strength of global epistasis depends on the
specific mutation and applies independently of whether
its additive effect is deleterious (increasing-costs) or
beneficial (diminishing-returns). Over the course of
adaptation in a fixed environment, global epistatic feed-
back on mutational effects can lead to a long-term de-
crease in adaptability. If this feedback dominates, Eq.
(1) suggests that the dependence of the fitness effect on
evolutionary history is summarized entirely by the cur-
rent fitness, and therefore results in predictable fitness
evolution.
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Here, we show that diminishing-returns and
increasing-costs epistasis are a simple consequence of
widespread epistasis. This is consistent with recent
work [16] that proposes a similar argument to explain
these phenomena. However, while the core idea is simi-
lar, we present here an alternative framework based on
the Fourier analysis of fitness landscapes, which leads
to new insights and quantitative predictions. In partic-
ular, our framework leads to novel predictions for the
relationship between the magnitude of global epistasis
and the stochastic effects of microscopic epistasis, which
we confirm by re-analyzing existing data. Extending
this framework, we further quantify how the distribu-
tion of fitness effects shifts as the organism adapts and
how the fitness effect of a mutation depends on the se-
quence of mutations that have fixed over the course of
adaptation (i.e., historical contingency). While specific
historical relationships depend on the genetic architec-
ture, we introduce a novel fitness landscape model with
an intuitive architecture for which the entire history is
summarized by the current fitness. Using this fitness
landscape model, we investigate the long-term dynam-
ics of adaptation and elucidate the architectural fea-
tures that lead to predictable fitness evolution.

RESULTS

Diminishing-returns and increasing-costs epistasis

We begin by examining the most general way to ex-
press the relationship between genotype and fitness (i.e.,
to describe the fitness landscape). A map between a
quantitative trait (such as fitness), y, and the under-
lying genotype can be expressed as a sum of combina-
tions of ` biallelic loci x1, x2, . . . , x` that take on values
xi = ±1:

y = ȳ +
X

i

fixi +
X

i>j

fijxixj +
X

i>j>k

fijkxixjxk + . . . ,

(2)
where ȳ is a constant that sets the overall scale of fit-
ness. The symmetric convention xi = ±1 for the two
allelic variants is less often used than xi = 0, 1, but
it is an equivalent formulation [17–21], which we em-
ploy here because it will prove more convenient for our
purposes (see [22] for a discussion). The coefficients of
terms linear in xi represent the additive contribution
of each locus to the fitness (i.e. its fitness effect aver-
aged across genotypes at all other loci), the higher-order
terms quantify epistatic interactions of all orders, and
ȳ is the average fitness across all possible genotypes.
Importantly, Eq. (2) makes apparent the idiosyncrasies
induced by epistasis: a mutation at a locus with ` in-
teracting partners has an effect composed of 2`�1 con-
tributions.

To explicitly compute the fitness effect of a mutation
at locus i on a particular genetic background, we sim-
ply flip the sign of xi, keeping all other xj constant, and
write down the difference in fitness that results. This fit-
ness effect will generally involve a sum over a large num-
ber of terms involving the f ’s in Eq. (2). While this may
suggest that an analysis of fitness effects via Eq. (2) is
intractable, the analysis in fact simplifies considerably if
the locus has a significant number of independent inter-
actions that contribute to the fitness (i.e., provided that
the number of independent, nonzero epistatic terms as-
sociated to the locus is large). In this case, we show
that the fitness effects of individual mutations decrease
linearly with background fitness and the fluctuations
around this linear trend are normally-distributed. In
other words, Eq. (2) implies that widespread indepen-
dent idiosyncratic epistatic interactions lead to the ob-
served patterns of diminishing-returns and increasing-
costs epistasis.

We present a derivation of this result in the SI. Here
we explain the key intuition using a heuristic argument.
The argument is based on a simple idea: for a well-
adapted organism (y > ȳ) with complex epistatic in-
teractions, a mutation is more likely to disrupt rather
than enhance fitness. To be quantitative, consider a
highly simplified scenario where some number N of the
f ’s in Eq. (2) are ±1 at random and the others are
0. In this case, the fitness of a given genotype is a
sum of N+ and N� interactions that contribute posi-
tively and negatively to the trait respectively, each with
unit magnitude, so that y = ȳ + N+ � N�. When
positive and negative interactions balance, the organ-
ism is in a “neutrally-adapted” state (y ⇡ ȳ). By se-
lecting for positive interactions, adaptation generates
a bias so that N+ > N� and y > ȳ. If locus i in-
volved in a fraction vi of all of N = N+ + N� inter-
actions is mutated, the effect of the mutation, on aver-
age, is to flip the sign of N+vi positive interactions and
N�vi negative interactions. The new fitness is then
yi = y� 2N+vi+2N�vi = ȳ+(1� 2vi)(y� ȳ) and thus
si = yi � y = �2vi(y � ȳ). The negative linear rela-
tion between the background fitness, y, and the fitness
effect of the mutation, si, is immediately apparent and
emerges as a systematic trend simply due to a sampling
bias towards positive interactions. Of course, while this
relation is true on average, it is possible that locus i

affects more or less positive interactions due to sam-
pling fluctuations. Provided only that N is large and
the interactions are independent, these fluctuations are
approximately Gaussian with magnitude

p
Nvi(1� vi).

This basic argument holds beyond the simple model
with unit interactions. In the more general case, if the
mutation is directed from xi = �1 ! +1, we show
in the SI that its fitness effect, si, on a background of
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Figure 1. Declining adaptability and global epistasis in microbial evolution experiments. (a) Convergent phenotypic
evolution in the E.coli long-term evolution experiment: the fitness relative to the common ancestor of 11 independently
adapting populations over 50,000 generations is shown (data from [1]). The 12th population, Ara+6, has limited data and
is not shown. (b) Yeast strains with lower initial fitness adapt faster (data from [5]). The fitness gain after 250 (green)
and 500 (orange) generations of 640 independently adapting populations with 64 different founders and 10 replicates of
each founder. Mean and SE are computed over replicates. (c) Diminishing returns of specific beneficial mutations on fitter
backgrounds for three knocked out genes (green, orange and purple) (data from [5]). Control in pink. (d) Increasing costs of
specific deleterious mutations on fitter backgrounds (data from [15]). The fitness effect relative to the least fit background
for the mean over 91 mutations (in red) and five of the 91 mutations are shown. Linear fits for the five specific mutations
and the mean using dashed and solid lines respectively are shown.

fitness y can be written as

si = 2fi(1� ṽi)| {z }
additive

� 2ṽi(y � ȳ)| {z }
global epistasis

+ ✏̃i|{z}
genotype

, (3)

where

ṽi ⌘
P

j 6=i(f
2
ij � fjfij) +

P
j>k 6=i(f

2
ijk � fjkfijk) + . . .

P
j 6=i(fj � fij)2 +

P
j>k 6=i(fjk � fijk)2 + . . .

,

(4)
and ✏̃i is a genotype and locus-dependent term which is
distributed across genotypes with mean zero and vari-
ance expressed in terms of the f ’s from Eq. (2) (see SI
for details). Note that ṽi depends on the direction of
the mutation xi = �1 ! +1; a similar equation for the
case xi = +1 ! �1 can be derived.

Note that these results hold for any fitness land-
scape, and do not necessarily imply diminishing-returns
or increasing-costs epistasis. That is, ṽi is not guaran-
teed to be positive, and ✏̃i is in general arbitrary and
determined by the genotype-fitness map. However, con-
sistent patterns emerge when locus i has a large number
of independent, nonzero epistatic terms and the addi-
tive effects f1, f2, . . . of its interacting partners are not

much larger than the epistatic terms (defined further
below), which we call the widespread-epistasis (WE)
limit. In the WE limit, ✏̃i is normally-distributed across
genotypes with variance proportional to ṽi(1� ṽi). This
follows from the same reasoning as in our heuristic argu-
ment with unit interactions above (see SI for details). In
addition, ṽi is typically positive, giving rise to a negative
linear trend (i.e. diminishing-returns and increasing-
costs). We can see this by taking the third and higher-
order terms in Eq. (4) to be zero, in which case ṽi is
positive if

P
j 6=i f

2
ij >

P
j 6=i fjfij . This will typically

be true in the WE limit because we expect
P

j 6=i f
2
ij to

scale with the number of interacting partners `, while
each term in

P
j 6=i fjfij can be positive or negative and

thus the sum scales as
p
` if the terms are independent.

Thus when locus i has a large number of interacting
partners, ṽi is typically positive unless the magnitude
of the additive terms (a) is much larger than the mag-
nitude of the epistatic terms (e), a � e

p
`. This ar-

gument is easily extended to the case when the third
and higher-order terms are non-zero (see SI); the up-
shot is that the bias towards ṽi positive gets stronger
with increasing epistasis.
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The conditions for the WE limit are more likely to
hold when the number of loci, `, that affect the trait is
large. Therefore, we expect to generically observe pat-
terns of diminishing-returns and increasing-costs epis-
tasis for a complex trait involving many loci. Impor-
tantly, whether we observe a negative linear trend does
not depend on the magnitude of a locus’ epistatic in-
teractions relative to its own additive effect, but rather
relative to the additive effects of its interacting part-
ners. If we are not in the WE limit, and instead the
additive effects dominate (i.e., a � e

p
l), then Eq. (4)

suggests that the slope of the linear trend can be either
positive or negative. We will show further below that
recent experimental data demonstrates that both sce-
narios can be relevant: some loci have a ⌧ e

p
l while

others have a � e
p
l, with the former creating a bias

towards the observed negative linear trends that char-
acterize diminishing-returns and increasing-costs epis-
tasis.

We note that Eq. (3) immediately leads to testable
quantitative predictions: in the WE limit, the distri-
bution of the residuals, ✏̃i, obtained from regressing si

and y is entirely determined by the slope of the regres-
sion, �2ṽi. Specifically, we predict that these residuals
(the deviations of individual genotype fitnesses from the
overall diminishing-returns or increasing-costs trend)
should be normally distributed with a variance propor-
tional to ṽi(1� ṽi). However, this condition only applies
if diminishing-returns arises from the WE limit. It does
not hold if epistasis is negligible, if locus i interacts sig-
nificantly with only a few other dominant loci, or if the
epistatic terms are interrelated (e.g., when global epis-
tasis arises from a nonlinearity applied to an unobserved
additive trait [23–25]). The latter case may still lead to
a negative linear trend, but the statistics of the residuals
will differ from Eq. (3) (see SI for a discussion).

It is convenient to subsequently work with the sym-
metric version of Eq. (3) where the fitness effects of
both xi = �1 ! +1 and xi = +1 ! �1 are regressed
against the background fitness. In this case, the ad-
ditive term is averaged out, and in the WE limit we
have

si = �2vi(y � ȳ) + 2
p
vi(1� vi)⌘i, (5)

where ⌘i depends on the genetic background and the
locus, and is normally-distributed with zero mean and
variance V , and

vi ⌘
Vi

V
=

f
2
i +

P
j 6=i f

2
ij + . . .

P
k f

2
k +

P
k>l f

2
kl + . . .

. (6)

Here V is the total genetic variance due to all loci
(i.e., the variance in fitness across all possible geno-
types) while Vi is the contribution to the total variance
by the f ’s involving locus i. We therefore refer to vi

as the variance fraction of locus i. However, we em-
phasize that the vi’s do not sum to one unless there
is no epistasis (with epistasis,

P
i vi > 1, reflecting the

fact that the variance contributed by different loci over-
lap). Eq. (5) and Eq. (3) coincide and vi ⇡ ṽi in the
WE limit if the additive effect of a locus is small (i.e.,
f
2
i ⌧

P
j 6=i f

2
ij +

P
j>k 6=i f

2
ijk + . . . ).

Our results show that the variance fraction vi plays an
important role. It determines the slope of the negative
relationship between the fitness effect and background
fitness. At the same time, it determines the magnitude
of the idiosyncratic fluctuations away from this trend.
We also note that this slope can be used to experimen-
tally probe the contribution of a locus to the trait (i.e.,
its variance fraction) taking into account all orders of
epistasis, which circumvents the estimation of the indi-
vidual f ’s in Eq. (2). The theory additionally predicts
that the negative slope of a double mutant at loci i, j is
vij = vi + vj � 2eij , where eij quantifies the magnitude
of epistatic interactions of all orders between i and j

(SI).
Importantly, while the fitness effects of individual

mutations (and hence the distribution of fitness effects)
may change over the course of evolution due to epistasis,
the distribution of variance fractions (DVF) across loci,
P (v), is an invariant measure of the range of effect-sizes
available to the organism during adaptation. As we will
see, this means that the DVF plays an important role
in determining long-term adaptability.

Numerical results and experimental tests

To test our analytical results, we first demonstrate
that the effects described above are reproduced in nu-
merical simulations. To do so, we numerically generated
a genotype-phenotype map of the form in Eq. (2), with
` = 400 loci and an exponential DVF, P (v) = v̄

�1
e
�v/v̄,

where v̄ = 0.02 (Methods). This DVF is shown in Fig-
ure 2a. Note that v̄` � 1 corresponds to an epistatic
landscape; v̄` = 8 chosen here thus corresponds to
a model within the WE limit (note that ṽi ⇡ vi in
this parameter range). Using this numerical landscape,
we measured the fitness effect of mutations at 30 loci
across 640 background genotypes with a range of fit-
nesses (Figure 2b). Our results recapitulate the pre-
dicted linear dependence on background fitness (Figure
1c,d), with a negative slope equal to twice the variance
fraction predicted from Eq. (5). We further simulated
the evolution of randomly generated genotypes similar
to the experimental procedure used in Kryazhimskiy et
al. [5] (Figure 2c), finding that our results reproduce
the patterns of declining adaptability observed in exper-
iments (Figure 1b). Note that ⇠10 mutations are fixed
during this simulated evolution; declining adaptability
here is not due to a finite-sites effect.
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As described previously, Eq. (5) implies a propor-
tional relationship between the magnitude of global
epistasis (quantified by the slope of the relationship be-
tween the fitness effect of a mutation and the back-
ground fitness) and the magnitude of microscopic epis-
tasis (quantified by the residual variance around this
linear trend); see also Figure 3a. We verify this re-
lationship in simulations (Figure 2d). The negative
slope of a double mutant at loci i, j is predicted to
be vij = vi + vj � 2eij . We further assume that
eij = O(v̄2) (specifically, eij = vivj for the genotype-
phenotype map used for numerics). Since vi and vj

are typically small for a complex trait, we expect near-
additivity vij ⇡ vi + vj and that any deviations are
sub-additive, which is confirmed in simulations (Figure
2e,f).

While testing the latter prediction on double mutants
requires further experiments, we can immediately test
the relationship between the slope and the distribution
of residuals from existing experimental data. To do so,
we re-analyzed the data from Johnson et al. [15], which
measured the fitness effect of 91 insertion mutants on
about 145 backgrounds. These background strains were
obtained by crossing two yeast strains that differed by
⇡ 40, 000 SNPs. Of these 40,000 loci, ` ⇡ 40 have
been identified as causal loci with currently available
mapping resolution [26]. In Figure 3, we show the esti-
mated ṽi (negative one-half of the slope of the best-fit
line) and the variance fraction vi for each of the 91 mu-
tations. These mutations were selected after screening
for nonzero effect, and thus the DVF is biased upwards.
The mean variance fraction is v̄ ⇡ 0.06. The wide range
of vi observed in the data implies that the epistatic in-
fluence of loci varies greatly across loci and we will show
further below that this is crucial for maintaining a sup-
ply of beneficial mutations even when the organism is
well-adapted to the environment.

Our theoretical results imply that we expect the lin-
ear relationship between background fitness and fitness
effect to be negative if the additive effects of a locus’ in-
teracting partners are not much larger than the epistatic
terms. Specifically, we define the additivity of interact-
ing loci (AoIL) for locus i as

AoIL(i) ⌘ K

1 +K
, where (7)

K =
|
P

j 6=i fjfij +
P

j>k 6=i fjkfijk + . . . |
P

j 6=i f
2
ij +

P
j>k 6=i f

2
ijk + . . .

which we show can be estimated from data (Methods
and SI). If the AoIL is less than half, Eq. (4) implies
that the linear trend is guaranteed to be negative. If
instead the AoIL is greater than 0.5, the trend can be
either positive or negative. The data shows a range of
AoIL between 0 and 1 across loci. As predicted by our
theory, we find that the loci with AoIL < 0.5 always

show negative trends and the ones with AoIL > 0.5
show both negative and positive trends (Figure 3c). Im-
portantly, the sign of the trend is determined by the
AoIL and not by the additivity of the mutated locus,
which we define as

Additivity(i) ⌘ f
2
i

f2
i +

P
j 6=i f

2
ij +

P
j>k 6=i f

2
ijk + . . .

.

(8)
The additivity across loci also has a wide range. How-
ever, small additivity does not necessarily imply a neg-
ative trend (Figure 3d).

We next used the data from Johnson et al. [15] to
analyze the relationship between the slope of the linear
trend and the residual variance around this trend. We
find that the experimental data confirms our theoretical
prediction that the residual variance is proportional to
ṽi(1 � ṽi) if the AoIL is small (Figure 3e, R

2 = 0.5
for loci with AoIL < 0.5 and R

2 = 0.42 for all loci).
The Gaussian-distributed term in Eq. (3) also predicts
the shape of the distribution of the residuals given the
variance fractions, which aligns well with the empirical
distribution of the residuals (Figure 3f).

Together, these theoretical results and our reanalysis
of experimental data show that linear patterns of global
diminishing-returns and increasing-costs epistasis are a
simple consequence of widespread epistatic interactions.
The distribution of variance fractions observed in data
(Figure 3b) further implies that the epistatic influence
of different loci on fitness can vary across a wide range.
In what follows, we show that these two observations
can be put together to make general predictions about
the distribution of fitness effects, and consequently the
long-term dynamics of adaptation. The key ingredient
that enables this analysis (including Eq. (5)) is that
in the WE limit, fitness and fitness effects are jointly
normal (with respect to a uniform distribution over all
possible genotypes), which allows us to quantify com-
plex dependencies between these variables in terms of
pairwise covariances.

The distribution of fitness effects

Long-term adaptation is determined by the distribu-
tion of fitness effects (DFE) of possible mutations and
the stochastic dynamical processes that lead to fixa-
tion. While Eq. (5) represents the distribution of the
fitness effects of a specific mutation at locus i over all
genotypes in the population that have fitness y, we
are instead interested in the DFE, where fitness effects
are measured for all the mutations arising in the back-
ground of a particular genotype that has fitness y. For
now we ignore the influence of evolutionary history on
the DFE; we expand on that complication in the follow-
ing Section.
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Figure 2. Global epistasis is recapitulated in a generic model of a complex trait and leads to testable predictions. (a) The
distribution of variance fractions (DVF) over 400 loci for the simulated genotype-phenotype map. (b) The predicted linear
relationship between fitness effect (relative to the fitness effect on the least fit background) and background fitness for the
mean over 30 randomly chosen loci (red, solid line) and five loci (dashed lines in colors) is recapitulated. The slope of the
linear fit for each locus is proportional to its variance fraction, v (slope = �2v). Mean and SE are over backgrounds of
approximately equal fitness. See Methods for more details. (c) The mean fitness gain after 25 (green) and 50 (orange)
generations of simulated evolution of 768 independently adapting populations with 64 unique founders and 12 replicates
each. Means and SEs are computed over the 12 replicates. Error bars are s.e.m. (d) The relationship predicted from theory
between the residual variance from the linear fit for each locus and its slope is confirmed in simulations. (e) The mean
fitness effect for single mutants at 30 loci and double mutants from all possible pairs of the 30 loci. The slope for the
double mutants is predicted to be roughly twice that of single mutants. (f) The estimated variance fraction of a double
mutant with mutations at two loci is predicted from theory and confirmed in simulations to be approximately the sum of
the variance fractions for single mutations at the two loci. Sub-additivity is due to epistasis between the two loci. See
Methods for more details.

Examining the DFE over ` loci for a randomly cho-
sen genotype of fitness y can be thought of as sampling
the fitness effects s1, s2, . . . , s` from the conditional joint
distribution P (s1, s2, . . . , s`|y), which generally depends
on epistasis. If the number of independent, nonzero
epistatic terms is large, then P (s1, s2, . . . , s`|y) is a
multivariate normal distribution defined by the means
and covariances of the ` + 1 variables y, s1, s2, . . . , s`,
which in turn can be computed in terms of the f ’s from
Eq. (2). In particular, the conditional means and co-
variances are Meany(si) = �2vi(y � ȳ),Covy(si, sj) =
4V (eij � vivj), where eij is the epistatic variance frac-
tion between loci i and j and eii = vi. This implies
that the conditional correlation between fitness effects
is (eij � vivj)/

p
vivj(1� vi)(1� vj).

The DFE simplifies considerably if we make certain
additional assumptions on the magnitude of epistatic
interactions. If we assume the typical variance fraction
v̄ is small (i.e., v̄ ⌧ 1) and also that eij is O(v̄2), then

correlations are O(v̄) and thus negligible. Then, in a
particular sample s1, s2, . . . , s`, we can think of each si

as being drawn independently with mean �2vi(y � ȳ)
and variance 4viV . If ` is large, this leads to a DFE

⇢(s|y) =
Z 1

0
dv(2

p
vV )�1

P (v)'

✓
s+ 2v(y � ȳ)

2
p
vV

◆
,

(9)
where P (v) is the DVF across loci and ' is the stan-
dard normal pdf. Curiously, the correlations between
si’s vanish when eij = vivj , in which case the above
equation is exact and the DFE is determined entirely
by the DVF. Further below, we introduce a specific
fitness landscape model for which this relation does
hold. Diminishing-returns is naturally incorporated in
Eq. (9): the mean of s is �2v̄(y�ȳ), i.e., the DFE shifts
progressively towards deleterious values with increasing
fitness.
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Figure 3. Experimental observations from Johnson et al. [15] are consistent with theoretical predictions. (a) The fitness
effect of one of the 91 mutations from [15] plotted against background fitness. (b) The distribution of the measured ṽi
(negative one-half of the slope from (a)) and variance fractions vi for the 91 insertion mutations. (c,d) ṽi plotted against
the additivity of interacting loci and the additivity of the mutated locus (see main text for definitions). The histograms
are shown below the plots. The sign of the trend depends on the additivity of interacting loci rather than the additivity
of the mutated locus. (e) The measured variance of the residuals against the prediction ṽi(1 � ṽi), shown here for the 91
mutations. The yellow circles correspond to the loci with AoIL < 0.5. The best-fit line (yellow dashed line) to these loci
has R2 = 0.50 (R2 = 0.42 for all points). (f) The shape of the distribution of residuals pooled from all 91 mutations aligns
well with the prediction from Eq. (3). The variances of the two distributions are matched. Inset: same plot in log-linear
scale. See Methods for more details.

Historical contingency in adaptive trajectories

A key unresolved question is the extent to which evo-
lutionary history influences the DFE and the dynamics
of adaptation [27]. That is, what does our theory say
about historical contingency?

Suppose a clonal population of fitness y0 accu-
mulates k successive mutations resulting in fitnesses
y1, y2, . . . , yk. By virtue of arising on the same ancestral
background, the fitness gain of a new mutation, sk+1, is
in general correlated with the full sequence of past fit-
nesses and the identity of the k mutations through its
epistatic interactions with them. Based on these cor-
relations, we use well-known properties of conditional
normal distributions to write

sk+1 =
kX

i=0

wk+1,iyi + ✏, (10)

where the weights wk+1,i depend on the variance frac-
tion (vk+1) of the new mutation and its epistatic inter-
actions with past mutations. Here ✏ is the normally-
distributed residual that depends on the initial geno-

type and the weights (SI). Eq. (10) is a generalization
to a sequence of mutations of Eq. (5), which we can
think of as the special case where k = 0.

To gain intuition, it is useful to first analyze Eq. (10)
when k = 1 (i.e., to compute the effect of a second
mutation conditional on the first). In this case, we show
in the SI that

s2 ' �2v2(y1 � ȳ) +
v1v2 � e12

v1
s1 + ✏, (11)

where s1 = y1 � y0 is the fitness effect due to mutation
1. The first term on the right hand side is the depen-
dence on the fitness of the immediate ancestor, similar
to the corresponding term in Eq. (5). The second term
quantifies the influence of epistasis between loci 1 and
2 on s2. When e12 = v1v2, dependence on s1 vanishes
entirely and s2 depends only on y1. In contrast, if loci
1 and 2 do not interact, e12 = 0, and s2 is, on average,
larger if the mutation at 1 is beneficial compared to
when it is deleterious. This has an intuitive interpreta-
tion: diminishing-returns applies to the overall fitness
and the mechanism through which it acts is epistasis.
However, if mutations 1 and 2 do not interact, then the
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increase in fitness corresponding to mutation 1 does not
actually reduce the effect of mutation 2 (as expected by
diminishing-returns) so the expected effect of mutation
2 is larger. This analysis suggests that during adapta-
tion, since selection favors mutations with stronger fit-
ness effects on the current background, a mutation that
interacts less with previous mutations is more likely to
be selected.

To identify the conditions under which history plays
a minimal role, we would like to examine when sk+1 de-
pends only on the current fitness, yk, and is independent
of both the past fitnesses and idiosyncratic epistasis. If
this were true, then Eq. (5) would apply for new mu-
tations that arise through the course of a single evolu-
tionary path (i.e., the fitness effect of a new mutation is
“memoryless” and depends only on its variance fraction
and the current fitness). Surprisingly, such a condition
does exist. We show that this occurs when the mag-
nitude of epistatic interactions between the new muta-
tion and the k previous mutations, ek+1,1:k, satisfies a
specific relation: ek+1,1:k = vk+1v1:k, where v1:k is the
combined variance fraction of the k previous mutations
(SI). In general, this condition is not satisfied, implying
that there will be historical contingency which can be
analyzed using the framework above. Remarkably, it
turns out that a fitness landscape model for which the
condition is satisfied does exist and arises from certain
intuitive assumptions on the organization of biological
pathways and cellular processes. This fitness landscape
model is described below.

The connectedness model

We introduce the “connectedness” model (CN model,
for short). In this model, each locus i is involved in a
fraction µi of independent “pathways”, where each path-
way has epistatic interactions between all loci involved
in that pathway (Figure 4a). The probability of an
epistatic interaction between three loci (i, j, k) is then
proportional to µiµjµk, since this is the probability that
these loci are involved in the same pathway. When the
number of loci ` is large, we show that in this model,
vi = µi/(1+µi), and when ` is small, vi = µi/µ̄`, where
µ̄ is the average over all loci (SI). The CN model there-
fore has a specific interpretation: the outsized contribu-
tion to the fitness from certain loci (large vi) is due to
their involvement in many different complex pathways
(large µi) and not from an unusually large perturbative
effect on a few pathways. The distribution, P (µ), across
loci determines the DVF.

Statistical fitness landscapes such as the NK model
and the Rough Mt. Fuji model [27–32] are related to
the CN model. Specifically, the CN model is a sub-class
of the broader class of generalized NK models (see [33]
for a review). However, often-studied fitness landscape

models have one important difference that distinguishes
them and gives qualitatively different dynamics of adap-
tation (shown further below): in contrast to the CN
model, classical fitness landscapes are typically ‘regu-
lar.’ That is, the variance fraction of every locus is
assumed to be the same (except the star neighborhood
model which has a bimodal DVF [33]).

The CN model is equivalent to a Gaussian fit-
ness landscape with exponentially-decaying correlations
(SI). The CN model has tunable ruggedness, where the
landscape transitions from additivity to maximal epis-
tasis with increasing µ̄. Maximal epistasis corresponds
to µi = 1 (and hence vi = 1/2) for all i. From Eq.
(5), this implies that the new fitness after a mutation
occurs is independent of the previous fitness, consistent
with the expectation from a House-of-Cards model [34]
(where genotypes have uncorrelated fitness). Regular
fitness landscape models with exponentially-decaying
correlations have memoryless fitness effects under the
restrictive assumption that every locus is equivalent
[27]. We show that the dynamics of adaptation of the
more general CN model are also memoryless, i.e., the
condition detailed in the previous section holds true
(SI). Yet, as we show below, the predicted dynamics
for the CN model are very different to those from a
regular fitness landscape model.

We emphasize that the well-connectedness assumed
for the CN model is not a requirement for Eq. (5) to
hold. However, how diminishing-returns influences the
long-term dynamics of adaptation depends on the spe-
cific genetic architecture and the corresponding fitness
landscape. Consider for example an alternative model
of genetic networks organized in a modular structure
(Figure 4b). In this model, each locus is part of a sin-
gle module, and interacts epistatically with other loci
in that module to determine the fitness of that mod-
ule; overall fitness is then determined as a function of
the module fitnesses. In this case, the variance con-
tributed by a locus is due to its additive contribution
and from epistasis between loci restricted to its module.
While the argument for diminishing-returns still applies
to the fitness as a whole, it follows from the same ar-
gument that diminishing-returns should also apply to
each module separately. Consequently, the dynamics of
adaptation for the modular model are different from the
CN model. For simplicity, we analyze the dynamics of
adaptation for the CN model and postpone a discus-
sion of how the dynamics differ for different models to
subsequent work.

The dynamics of adaptation

We now examine the DFE that follows from Eq. (5)
and what that implies for long-term adaptation under
the conditions for memoryless fitness effects. We hence-
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forth assume a large number of loci with sparse epista-
sis (though the total number of nonzero epistatic terms
is still large). This implies that ` � 1, vi ⌧ 1 and
v̄` � 1; we also assume strong-selection-weak-mutation
(SSWM) selection dynamics (i.e., a mutation sweeps
and fixes in a population before another one arises).
It is convenient to rescale fitnesses based on the to-
tal variance in fitness across all possible genotypes by
defining z = V

�1/2(y � ȳ),� = V
�1/2

s, ⌫ = V
�1/2

⌘.
Note that ⌫ is normally-distributed with zero mean and
unit variance. Here z has an intuitive interpretation as
the “adaptedness” of the organism. When the organism
is neutrally-adapted (|z| ⌧ 1), positive and negative
epistatic contributions to the fitness are balanced and
diminishing-returns is negligible. Diminishing-returns
is relevant when the organism is well-adapted (z � 1).
Below, we give the intuition behind our analysis, which
is presented in full detail in the SI.

In the neutrally-adapted regime, the linear negative
feedback in Eq. (5) is negligible and the DFE is deter-
mined by the distribution of ' v

1/2
⌫. Loci with large

v can lead to a DFE with a long tail. If v̄ is the typ-
ical variance fraction of a locus, the fitness increases
as z ⇠ nsv̄

1/2, where ns is the number of substitu-
tions. Since v̄ is a measure of overall epistasis, this im-
plies that epistasis speeds adaptation in the neutrally-
adapted regime by allowing access to more influential
beneficial mutations.

Fitness increases until the effect of the negative feed-
back cannot be neglected. From Eq. (5), this happens
when v̄z ⇠ v̄

1/2
⌫ (i.e., when z

2 ⇠ v̄
�1). Intuitively,

fitness begins to plateau when its accumulated bene-
fit from substitutions is comparable to the scale of the
total genetic variance (nsv̄ ⇠ 1) and further improve-
ments are due to rare positive fluctuations. In this well-
adapted regime, diminishing-returns and increasing-
costs epistasis strongly constrain the availability of ben-
eficial mutations, whose effects can be quantified in this
model: for a mutation to have a fitness effect �, we re-
quire from Eq. (5) that ⌫ ' �/2v1/2 + v

1/2
z, which has

probability ⇠ e
�⌫2/2. Beneficial effects of large � arise

when ⌫ has a large positive deviation. The most likely
v that leads to a particular � is when ⌫ is smallest (i.e.,
at v

⇤ ' �/2z), in which case ⌫ '
p
2�z, yielding a tail

probability ⇠ e
��z. Remarkably, the beneficial DFE in

the well-adapted regime is quite generally an exponen-
tial distribution independent of the precise form of the
DVF (unless it is singular). In particular, we show that
for the DFE, ⇢(�|z),

⇢(�|z)
⇢(��|z) = e

��z
, (12)

which depends solely on the adaptedness of the organ-
ism. The exponential form arises because of the Gaus-
sianity of ⌫, but the argument can be easily extended

to ⌫ with non-Gaussian tails. An exponential benefi-
cial DFE has been previously proposed by Orr [35] but
arises here due to a qualitatively different argument (see
Discussion).

Under SSWM assumptions, from Eq. (12), the typ-
ical effect size of a fixed mutation is �fix ⇠ z

�1, which
typically has a variance fraction,

v
⇤
fix ' �fix/2z ⇠ 1/2z2. (13)

The above relation makes precise the effects of
increasing-costs epistasis on adaptation. As adaptation
proceeds, the delicate balance of high fitness configura-
tions constrains fixed beneficial mutations to have mod-
erate variance fractions. A mutation of small variance
fraction is likely to confer small benefit and is lost to
genetic drift, while one with a large variance fraction is
more likely to disrupt an established high fitness con-
figuration.

This intuition is not captured in regular fitness land-
scape models, which assume statistically equivalent loci,
i.e., vi = v̄ for all i and P (v) = �(v � v̄) is singular.
From Eq. (9), we see that this leads to a Gaussian
DFE whose mean decreases linearly with increasing fit-
ness, in contrast to the exponential DFE in our theory.
The key difference is the lack of loci with intermedi-
ate effect, which drive adaptation in the well-adapted
regime. As a consequence, the rate of beneficial mu-
tations declines exponentially (Ub ⇠ e

�v̄z2/2) and the
fitness thus sharply plateaus at z ⇠ v̄

�1/2. In contrast,
our theory predicts a much slower depletion of benefi-
cial mutations, Ub ⇠ z

�2 (SI). The rate of adaptation
is dz/dt ⇠ Ubpfix�fix ⇠ z

�4 (since pfix ⇠ �fix), which
leads to a slow but steady power-law gain in fitness,
z ⇠ t

1/5. The rate of fixation of beneficial mutations is
dns/dt ⇠ Ubpfix ⇠ z

�3 ⇠ t
�3/5, which gives ns ⇠ t

2/5.
We verify our analytical results using numerics. As

before, we generated a genotype-phenotype map us-
ing the CN model with an exponential DVF, P (v) =
v̄
�1

e
�v/v̄ and ` = 400 loci. The DFE in this case can

be calculated exactly from Eq. (9):

⇢(�|z) = v̄
�1

2
p
2v̄�1 + z2

e
��z/2�|�|

p
2v̄�1+z2/2

. (14)

We simulated the evolution of randomly generated
genotypes from z = 0 to z = 2.5 and z = 5 and the DFE
across all loci was measured (we chose ȳ = 0, V = 1 so
that y = z, s = �). The theoretical prediction for the
DFE, Eq. (14), closely aligns with the numerical results
(Figure 4c).

Due to computational constraints, it is difficult to
simulate evolution deep into the well-adapted regime.
To compute the shape of adaptive trajectories and their
variability, we instead simulated SSWM dynamics us-
ing the DFE directly from Eq. (14), beginning from a
neutrally-adapted fitness (z = 0). Typical trajectories
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Figure 4. The DFE and long-term adaptation dynamics predicted for the connectedness model. (a) Schematic of the
connectedness (CN) model, where each locus is associated with a fraction µ of pathways that contribute to the organism’s
fitness. (b) An alternative model with modular organization, where sets of loci interact only within the pathways specific
to a single module. (c) The DFE predicted from Eq. (14) matches those obtained from simulated evolution of genotypes
from the CN model. 128 randomly drawn genotypes (400 loci) with initial fitness y close to zero are evolved to y = 2.5 and
y = 5 and the DFE is measured across loci and genotypes. We chose ȳ = 0 and V = 1 so that y represents adaptedness.
Insets: same plots in log-linear scale. Note that the number of beneficial mutations acquired during the simulated evolution
(⇠10-20) is much less than the total number of loci (400). (d) For a neutrally-adapted organism, the theory predicts quick
adaptation to a well-adapted state beyond which the adaptation dynamics are independent of the specific details of the
genotype-fitness map. Shown here is the mean adaptation curve predicted under strong-selection-weak-mutation (SSWM)
assumptions, which leads to a power-law growth of fitness with exponent 1/5 in the well-adapted regime (inset). (e) The
number of fixed beneficial mutations under SSWM, which grows as a power-law with exponent 2/5 in the well-adapted
regime (inset). The shaded region is the 95% confidence interval around the mean for (c) and (d). See Methods and SI for
more details.

(Figure 4d) show rapid adaptation to the well-adapted
regime beyond which the fitness grows slowly as t

1/5,
as predicted from theory. The predictions for the num-
ber of fixed beneficial mutation are also re-capitulated
(Figure 4e).

DISCUSSION

Recent empirical studies have observed consistent
patterns of diminishing-returns and increasing-costs
epistasis. Our model gives a simple mechanistic ex-
planation for these observations. In particular, we
showed that these patterns are generic consequences
of widespread microscopic epistatic interactions. The
intuition underlying this result is that a random mu-
tation typically has a larger disruptive effect on the
delicate balance of microscopic epistasis that under-
pins a fitter background. Our model predicts a quan-
titative relationship between the magnitudes of global
epistasis (i.e., the negative slope of diminishing-returns
and increasing-costs epistasis) and microscopic epista-

sis, which we confirmed using existing data (Figure 3).
A similar explanation for diminishing-returns and

increasing-costs epistasis has been recently proposed
by Lyons et al. [16]. While our core argument for
diminishing-returns and increasing-costs epistasis is the
same as in that work, our Fourier analysis framework
dissects the features of the fitness landscape necessary
to observe these phenomena in terms of experimentally
measurable average effects (i.e., the f ’s in Eq. (2)). In
particular, we show that the additivity of a locus’ inter-
acting partners critically determines whether the trend
is negative or unbiased. In addition, the Fourier analy-
sis framework yields predictions for the distribution of
fitness effects, the historical influence of past mutations
on the fitness effect of a newly mutated site and mo-
tivates the proposed ‘connectedness’ fitness landscape
model. The analysis of experimental data presented in
Lyons et al. complements the experimental data con-
sidered here, lending further empirical support for the
prevalence of epistasis and its importance in determin-
ing long-term adaptability.

Our model leads to other experimentally testable pre-
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dictions. The most direct and accessible test of the
theory is to measure the fitness for all possible combi-
nations of mutations at ⇠10-15 significant loci and com-
pare (using Eq. (6)) the magnitude of global epistasis
to the measured fitness coefficients (the f ’s). Addition-
ally, we predict that the magnitude of global epistasis
of a double mutant should be nearly the sum of magni-
tudes of the corresponding single mutants, and any de-
viations should be biased towards sub-additivity. Since
the predictions involve measuring residual variance, ex-
perimental noise can be an important confounding fac-
tor.

We emphasize that our key result, Eq. (5), is a gen-
eral statistical relation that holds irrespective of the
specific genetic architecture and the corresponding fit-
ness landscape. Weak epistasis with many loci is suffi-
cient to observe noticeable patterns of global epistasis.
However, the argument fails if the contribution of a lo-
cus is purely additive or when epistasis is limited to one
or a handful of other loci. In the latter case, we expect
the fitness effect of a mutation to be dominated by the
allelic states of its partner loci, and thus take on a few
discrete values. A few examples from Johnson et al.
[15] indeed exhibit this pattern, (e.g. cases where the
fitness effect of a specific mutation depends primarily
on the allelic state at a single other locus).

We highlight a distinction between global epistasis
discussed in this work and another form of global epis-
tasis (also known as “unidimensional” or “nonspecific”
epistasis) typically used in protein evolution to describe
nonspecific epistatic interactions due to a nearly ad-
ditive trait transformed by a nonlinear function [23–
25, 36, 37]. This nonlinear function creates system-
atic relationships between epistasis terms and breaks
the condition of independent epistatic terms required
for our arguments to apply. Specific nonlinearities such
as an exponential function may indeed lead to a neg-
ative linear trend on average, but the structure of the
residuals differs from the one in Eq. (5) and observed
in data.

A surprising empirical observation is that the nega-
tive linear relationship between fitness effect and ances-
tral fitness characteristic of global epistasis has different
slopes for different loci. Our model identifies the nega-
tive slope as twice the fraction of variance contributed
by a locus to the trait. To explain the wide range of
variance fractions (VF) observed in data, we developed
the connectedness (CN) model, a framework to think
about the organization of cellular processes that can
lead to loci of widely varying VFs. In the CN model,
loci have a large VF due to their involvement in many
different pathways rather than due to a large effect on
a single pathway. The CN model can be viewed as a
statistical fitness landscape where loci can have a range
of VFs, specified by the distribution of variance frac-
tions (DVF). In the special case of every locus having

the same VF, the CN model corresponds to a fitness
landscape with tunable ruggedness and exponentially-
decaying correlations.

Extending our framework to incorporate adaptation,
we showed that the distribution of fitness effects (DFE)
depends only on the current fitness, rather than the
entire evolutionary history, under the intuitive assump-
tions behind the CN model. The theory therefore gives
a simple explanation for why phenotypic evolution can
be predictable, even while the specific mutations that
underlie this evolution are highly stochastic.

Our framework has an implicit notion of ‘adapted-
ness’ without referencing a Gaussian-shaped phenotypic
optimum, often assumed in models of adaptation (e.g.
Fisher’s geometric model) [38–40]. Over the course of
adaptation, the DFE shifts towards deleterious values,
reflecting diminishing-returns, which naturally arises
from our basic arguments. For a well-adapted organ-
ism, we show that the DFE for beneficial mutations
takes on an exponential form, and leads to universal
adaptive dynamics. While an exponential DFE for ben-
eficial mutations has been proposed previously based on
extreme value theory [35], our result arises due to an en-
tirely different argument: the tail of the beneficial DFE
is determined by loci of intermediate size whose disrup-
tive effect due to increasing-costs is small, yet whose
effect size is large enough not to be lost due to genetic
drift. Our theory further predicts declining adaptabil-
ity, with rapid adaptation in a neutrally-adapted regime
followed by much slower increases in fitness, resulting in
power-law adaptive trajectories when the organism is
well-adapted. This is consistent with observations from
the E.coli LTEE [1, 2]. Our model predicts a quicker
decline in the number of substitutions (ns ⇠ t

2/5) com-
pared to the near linear trend observed in the LTEE
data [4]; however, the dynamics of fixation in the LTEE
deviate strongly from SSWM assumptions, which may
explain the discrepancy.

METHODS AND MATERIALS

The code and data to generate the figures are avail-
able at [41].

Simulations

We use a fitness landscape model with ` loci to gen-
erate the genotype-fitness map. Each locus is assigned
a sparsity µ from P (µ), which is an exponential distri-
bution with mean µ̄. Each of M independent path-
ways sample loci with each locus i having probabil-
ity µi of being selected to a pathway. We choose
` = 400, µ̄ = 0.02,M = 500 so that µ̄` = 8 ensures
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signficant epistasis. All loci in a pathway interact with
each other, where additive and higher-order coefficient
terms of all orders were drawn independently from a
standard normal distribution. The total fitness is the
sum of contributions from the M pathways. We nor-
malize the coefficients so that the sum of squares of all
coefficients is 1, i.e., the total variance across genotypes
is 1. The mean, ȳ is close to zero from our sampling
procedure. The above procedure is a simple and effi-
cient way to generate epistatic terms to order ⇠20, be-
yond which the computational requirements are limited
by the exponentially increasing demand. Note that the
effects described in the paper were also observed with
only pairwise and cubic epistatic terms.

The variance fractions shown in Figure 2a can be cal-
culated numerically from the definition. From the the-
ory, given our choice of P (µ), these should follow an ex-
ponential distribution with mean v̄ ⇡ µ̄/(1 + µ̄). There
may be deviations since M is finite whereas the calcula-
tions assume M ! 1. To generate Figure 2b, in order
to get a range of background fitnesses, we first sam-
ple 128 random genotypes. These have fitnesses close
to zero; in order to obtain a range of fitness values,
we simulated the evolution of these 128 genotypes up
to y = 1, 2, 3, 4, 5 under strong-selection-weak-mutation
(SSWM) assumptions to get 128⇥5 = 640 genotypes at
roughly five fitness values. The fitness effect of apply-
ing a mutation (i.e., flipping its sign) is measured for 30
randomly chosen loci (which are kept fixed) over each
of the 640 genotypes. This is shown for five of the 30
and for the mean over the 30 loci in Figure 2b.

To generate Figure 2c, we sampled 64 random geno-
types and 12 replicates of each. The evolution of these
768 genotypes was simulated for a total of 50 genera-
tions with a mutation rate of 1 per generation. The
mean fitness gain over the 12 replicates is plotted for
each of the 64 founders against their initial fitness.

To generate Figure 2d, the residuals are measured
using the same procedure as for the experimental data
analysis described below for the initial 128 genotypes at
y ⇡ 0 and the 30 loci with the largest variance fraction.

Double mutants were created by mutating all pairs of
the 30 randomly chosen loci on the 640 evolved geno-
types. Their mean fitness effect was computed and plot-
ted along with the mean fitness effect for single mutants,
shown in Figure 2e. The variance fraction of the pair of
loci for the double mutant was estimated as before and
compared to the sum of the estimated variance fractions
of the corresponding single mutants. This is shown in
Figure 2f.

To generate the plots in Figure 4c, we simulated the
evolution of 128 randomly sampled genotypes to y = 2.5
and y = 5. The fitness effect of 200 randomly sampled
loci was measured and the distribution is plotted.

Analysis of the data from Johnson et al.

The data from Johnson et al. [15] consists of the
fitness after the addition of 91 insertion mutations on
each of 145 background genotypes. The fitness of a
particular mutation at locus i can be modeled as

yi = �ciy + bi + Residuali(g), (15)

where yi, y are the mutant and background fitnesses re-
spectively, ci, bi are constants for each locus and the
residual Residuali(g) depends on the background geno-
type g.

We estimate the variance fraction vi = (1 � ⇢̂i)/2,
where the Pearson correlation ⇢̂i = Corr(yi, y) across
backgrounds, while ṽi is estimated as the negative one-
half of the slope of the best linear fit of si and y. The
residuals for each of the 145 genotypes for each of the
91 mutations is simply

Residuali(g) = (yi + ciy)� (yi + ciy), (16)

where the overline represents an average over the 145
genotypes, which is used as an estimate of the con-
stant term and ci is either 2vi � 1 or 2ṽi � 1. In Fig-
ure 3b, we plot the distribution of estimated vi and
ṽi. In Figure 3c, we compute the AoIL for each lo-
cus using Eq. (7), which we show in the SI to be
|Cov(si, yi + y)|/(|Cov(si, yi + y)| + Var(si)). In Fig-
ure 3d, we compute the additivity using Eq. (8). The
additive effect is fi = (yi � y)/2 and Var(si)/4 gives the
sum of squares of the epistatic terms (SI). In Figure 3e,
we compute the variance of the residuals across the 145
genotypes for each locus and plot it against the locus’
estimated ṽi(1� ṽi). In Figure 3f, we plot the distribu-
tion of residuals over all genotypes and loci. The pre-
diction is that in the WE limit the distribution of resid-
uals is determined by 2ṽi(1 � ṽi)⌘, where ⌘ is a Gaus-
sian random variable. We multiply

p
ṽi(1� ṽi) for each

locus with 10,000 i.i.d standard normal RVs, pool the
resulting numbers for all loci and plot the predicted dis-
tribution in Figure 3f. The distributions are variance-
matched. While Figure 3e shows that the variance of
the residuals aligns with the theoretical prediction of
being proportional to slope, Figure 3f shows that the
data is also consistent with the predicted Gaussianity
of the background-genotype-dependent contribution.
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I. DIMINISHING-RETURNS AND INCREASING-COSTS EPISTASIS IN A MODEL24

OF A COMPLEX TRAIT25

In the main text, we propose that the fitness effect after a mutation at locus i can be written26

as27

si = �2vi(y � ȳ) + 2
p

vi(1� vi)⌘i, 0  vi  1. (1)

Here ⌘i is a genotype and locus-dependent contribution, which is distributed as a mean-zero28

Gaussian with variance equal to the total genetic variance, ȳ is a constant, and vi is the variance29

fraction defined further below. Eq. (1) corresponds to the symmetric case where the fitness effects30

of the mutations xi = �1 ! +1 and xi = +1 ! �1 are simultaneously regressed against their31

respective background fitness. The directed case when the mutation is specified to change from32

xi = �1 ! +1 (or xi = +1 ! �1) will be considered in Section I C.33

We will now show that Eq. (1) arises under certain conditions in a generic model of a complex34

trait with ` � 1 biallelic loci. Essentially, we would like to compute the distribution of the new35

fitness, yi, across genotypes after a mutation at locus i given the current fitness y and the set of all36

parameters ⇥ of the model (i.e. P (yi|y,⇥), with si = yi � y). Using the chain rule of probability,37

we can write38

P (yi|y,⇥) =
X

g

P (yi|g,⇥)P (g|y,⇥), (2)

where the sum is over all possible genotypes. While P (yi|g,⇥) is determined by the genotype-39

fitness map, P (g|y,⇥) is the crucial factor that gives weight only to the genotypes that yield the40

current fitness y. If the fitness is much larger than the mean fitness over all possible genotypes,41

Eq. (2) implicitly ensures that weight is given to only those genotypic configurations that lead to42

such an unusually large fitness. We will analyze the case of a “microcanonical ensemble” where43

every genotypic configuration that leads to a particular fitness is equally likely (with no linkage)44

i.e., the prior P (g) across genotypes is uniform (see Section I D 2 for a discussion).45

It is difficult to directly evaluate the sum in Eq. (2). In the following sections, we give a46

simple derivation but elaborated to highlight the key assumption that leads to Eq. (1). In short,47

the negative correlation between si = yi � y and y implied by Eq. (1) is a trivial consequence48

of yi and y having the same distribution w.r.t P (g). ⌘i is in general arbitrary and determined49

by the genotype-fitness map. However, ⌘i is normally-distributed if we make certain assumptions50

2
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about the structure of epistasis in the genotype-fitness map. The emergence of the negative linear51

relationship for a directed mutation xi = �1 ! +1 is subtler.52

A. Fourier representation of the fitness function53

The fitness y(g) for a genotype of length `, g = {x1, x2, . . . , x`}, where xi = ±1, can be54

generally written as55

y(g) = ȳ +
X

i

fixi +
X

i>j

fijxixj +
X

i>j>k

fijkxixjxk + . . . (3)

The symmetric choice of xi = ±1 is chosen for mathematical convenience. In this form, the total56

variance contribution from the qth order epistatic terms is
P

i1>i2>...iq
f
2
i1i2...iq and the total genetic57

variance, defined as58

V ⌘ 1

2`

X

g

(y(g)� ȳ)2, (4)

is the sum of variance contributions from orders q = 1 to `, i.e., the sum of squares of all the f ’s.59

The sum over the 2` genotypes is an expectation value assuming all genotypes are equally likely;60

we will denote this expectation using an overline hereafter. We use this expectation value as a61

proxy for empirical averages over the “background” genotypes in a population. With a sufficient62

number of background genotypes, the empirical average should converge to this expectation value.63

The representation in Eq. (3) is a Fourier representation of the fitness function on the `-64

dimensional hypercube, and makes calculations much simpler. For instance, to get the terms65

from each order, we have66

ȳ = y(g), fi = xiy(g), fij = xixjy(g), . . . (5)

It is useful to define the variance contribution due to a particular locus i as (symmetry w.r.t67

interchanging indices is used for each term throughout)68

Vi ⌘ f
2
i +

X

j 6=i

f
2
ij +

X

k<j 6=i

f
2
ijk + . . . . (6)

We also define the variance fraction of locus i,69

vi ⌘
Vi

V
, (7)

which plays a key role in the model.70

3
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B. Derivation of Eq. (1)71

We would like to relate the fitness before and after locus i is flipped (i.e. xi ! �xi), denoted

by y and yi respectively. We have from Eq. (3),

y � ȳ = yī + ⇠i, (8)

yi � ȳ = yī � ⇠i, (9)

where yī and ⇠i respectively contain all the terms not containing and containing locus i, i.e.,72

⇠i = fixi +
X

j 6=i

fijxixj +
X

k<j 6=i

fijkxixjxk + . . . . (10)

We have yī = (y+yi)/2�ȳ and ⇠i = (y�yi)/2. Since yī and ⇠i contain all the genotype-dependence,

we can write

P (yi|y,⇥) / P (yi, y|⇥) (11)

=

Z
P (yi, y|yī, ⇠i)P (yī, ⇠i|⇥)dyī⇠i (12)

= P

✓
yī =

y + yi

2
� ȳ, ⇠i =

y � yi

2

����⇥
◆
. (13)

From the properties of the Fourier representation in Eq. (5), it is easy to see that the means are73

yī = 0, ⇠i = 0, the variances are y2ī = V � Vi, ⇠2i = Vi, and the covariance is yī⇠i = 0.74

The calculations so far have been exact. We now make the key assumption that yī and ⇠i are75

both normal-distributed across genotypes. This assumption is similar to that of Fisher’s infinites-76

imal model, where the distribution of trait values across strains for a complex trait is argued77

to be normal-distributed since the trait value is due to infinitesimal independent contributions78

from many loci. While yī is easily seen to be normal-distributed for large `, an argument can be79

made for ⇠i only if locus i has a large number of independent, nonzero epistatic terms and the80

additive term fi is smaller in magnitude than the epistatic terms; specifically, we require that81

f
2
i .Pj 6=i f

2
ij+
P

k<j 6=i f
2
ijk+ . . . . If instead f

2
i �

P
j 6=i f

2
ij+
P

k<j 6=i f
2
ijk+ . . . , then ⇠i is bi-modal,82

where the two modes correspond to ⇠i ⇡ ±fi at xi = ±1. For loci with pairwise and third-order83

epistasis, the number of pairwise and third-order epistatic terms scale / ` and / `
2 respectively,84

which justifies the normality assumption for large ` even if individual epistatic terms are smaller85

in magnitude than the additive terms.86
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Under these assumptions and since yī and ⇠i are linearly independent, we have87

P (yi|y,⇥) / '

✓
y + yi � 2ȳ

2
p
V � Vi

◆
'

✓
y � yi

2
p
Vi

◆
, (14)

where ' is the standard normal pdf. Therefore, yi is normal-distributed across genotypes and88

from the above equation can be written as89

yi � ȳ = (1� 2vi)(y � ȳ) + 2
p

vi(1� vi)⌘i, (15)

where the variance fraction vi = Vi/V was defined previously and ⌘i = 0, ⌘2i = V . This leads to90

the form in Eq. (1),91

si = �2vi(y � ȳ) + 2
p
vi(1� vi)⌘i. (16)

The above derivation was presented to clarify the basic assumptions. Simply computing the92

covariance between y and yi in Eq. (8) and Eq. (9), we get (y � ȳ)(yi � ȳ) = y2ī � ⇠2i = V � 2Vi.93

The correlation is then 1 � 2vi. Eq. (16) follows if additionally yi, y are jointly Gaussian, which94

is true if locus i has many independent, nonzero epistatic terms.95

C. Directed mutation96

Previously, we considered the symmetric flip xi ! �xi and averaged over all ` loci including i.97

Here, we consider the case when the mutation is specified to change either from xi = �1 ! +198

or xi = +1 ! �1. In this case, we should average over all loci except i.99

We consider xi = �1 ! +1 (the opposite case is similar). The fitness before the mutation is100

ỹi = ȳ � fi +
X

j 6=i

(fj � fij)xj +
X

j>k 6=i

(fjk � fijk)xjxk + . . . , (17)

and the fitness after the mutation is101

ŷi = ȳ + fi +
X

j 6=i

(fj + fij)xj +
X

j>k 6=i

(fjk + fijk)xjxk + . . . , (18)

so that102

si = ŷi � ỹi = 2fi + 2
X

j 6=i

fijxj + 2
X

j>k 6=i

fijkxjxk + . . . . (19)

5
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The tilde and hat are used here to distinguish the fitness from the yi defined previously for the

symmetric case corresponding to the flip xi ! �xi. Using orthogonality relations, we have for

the means, variance and covariance,

si = 2fi, (20)

ỹi = ȳ � fi, (21)

(si � si)2 = 4
X

j 6=i

f
2
ij + 4

X

j>k 6=i

f
2
ijk + . . . , (22)

(ỹi � ỹi)2 =
X

j 6=i

(fj � fij)
2 +

X

j>k 6=i

(fjk � fijk)
2 + . . . , (23)

(si � s̄i)(ỹi � ỹi) = 2
X

j 6=i

(fj � fij)fij + 2
X

j>k 6=i

(fjk � fijk)fijk + . . . (24)

= 2

 
X

j 6=i

fjfij +
X

j>k 6=i

fjkfijk + . . .

!
� (si � s̄i)2

2
(25)

The slope when si is regressed against ỹi is (si � si)(ỹi � ỹi)/(ỹi � ỹi)2. We can define a “modified”

variance fraction ṽi as half the negative-slope,

ṽi ⌘
(si � si)2/4�

⇣P
j 6=i fjfij +

P
j>k 6=i fjkfijk + . . .

⌘

P
j 6=i(fj � fij)2 +

P
j>k 6=i(fjk � fijk)2 + . . .

, (26)

=

⇣P
j 6=i f

2
ij +

P
j>k 6=i f

2
ijk + . . .

⌘
�
⇣P

j 6=i fjfij +
P

j>k 6=i fjkfijk + . . .

⌘

P
j 6=i(fj � fij)2 +

P
j>k 6=i(fjk � fijk)2 + . . .

. (27)

Writing the linear form based on this correlation, we get103

si = 2fi � 2ṽi(ỹi � y + fi) +Ki⌘i, (28)

where ⌘i is again normally distributed (in the widespread epistasis (WE) limit) with zero mean104

and variance (ỹi � ¯̃yi)2 and K
2
i = (si�s̄i)2

(ỹi�¯̃yi)2
� 4ṽ2i . Note that, unlike vi, ṽi can be negative.105

However, we argue that ṽi is typically positive in the WE limit, which leads to a negative linear106

trend. The second term in the numerator on the right hand side of Eq. (26) has the same number107

of terms as (si � s̄i)2 but these terms appear as products of Fourier coefficients that may have108

opposing signs. In particular, if
P

j 6=i f
2
ij >

P
j 6=i fjfij,

P
j>k 6=i f

2
ijk >

P
j 6=i fjkfijk and so on, then109

ṽi is guaranteed to be positive. If we denote the typical magnitude of qth order epistasis terms as110

eq (e1 corresponds to additive effects), each of this relationships has the form e
2
q+1` > eqeq+1

p
`111
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when ` � 1, i.e., eq < eq+1

p
`. If the number of loci is sufficiently large, then these relationships112

will hold even if the typical magnitude of individual higher-order epistasis terms are smaller than113

the lower-order terms. We therefore expect that the second term in the numerator on the right114

hand side of Eq. (26) is smaller than (si�s̄i)2

2 when ` � 1. A similar argument can be made for115

the cross terms fjfij, fjkfijk, . . . once the squares in the denominator of the right hand side of116

Eq. (26) are expanded.117

When ` � 1, we can then write118

ṽi ⇡
Vi � f

2
i

V � f 2
i

=
vi � f

2
i /V

1� f 2
i /V

⇡ vi � f
2
i /V. (29)

Further, in the WE limit, K2
i ⇡ 4ṽi � 4ṽ2i so that the variance of Ki⌘i is / ṽi(1� ṽi).119

To estimate the ratio of the magnitudes of the second and first terms in the numerator on the120

right hand side of Eq. (26) from data, we use the expression for the covariance,121

(si � si)(ŷi � ŷi) = 2
X

j 6=i

(fj + fij)fij + 2
X

j>k 6=i

(fjk + fijk)fijk + . . . , (30)

to get122

|
P

j 6=i fjfij +
P

j>k 6=i fjkfijk + . . . |
P

j 6=i f
2
ij +

P
j>k 6=i f

2
ijk + . . .

=
|Cov(si, ỹi) + Cov(si, ŷi)|

Var(si)
=

|Cov(si, ỹi + ŷi)|
Var(si)

(31)

D. Comments on the result123

1. Fitness as a nonlinear function of an additive trait124

The negative linear trend observed in data may arise due to the measured fitness being a non-125

linear function of an unobserved additive trait. In this case, the epistasis terms are systematically126

related to each other and the independence assumptions used to derive Eq. (16) break down.127

In short, we show that specific nonlinearities can indeed lead to a negative linear trend, but the128

statistics of the residuals observed in data make this possibility unlikely.129

Suppose the fitness is y = �(u), where � is a nonlinear function, u = f0 +
P

i fixi is the130

unobserved additive trait, f0 is a constant and fi are additive coefficients. For a linear trend, we131

require si = �(ui)��(u) / �(u), where ui = u� 2fixi for the flip xi ! �xi. For small fi relative132

to the other coefficients, we can Taylor expand �(ui) and show that we require �(u) / e
u to get a133

linear trend. This nonlinearity creates a linear trend with slope e
�2fixi � 1. For a negative linear134
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trend, we require 2fixi > 0. However, even if this condition is true, the relation si = (e�2fixi �1)y135

is exact and there are no residuals.136

To introduce residuals, suppose instead that u = f0+
P

i fixi+h, where h is a House-of-Cards137

(HoC) term, i.e., it is an independent Gaussian random variable (mean 0, variance �
2
h) across138

genotypes and repeatable across measurements. h introduces epistasis in the unobserved trait.139

We have si = (e�2fixi+hi�h�1)y, where hi is the HoC term after the mutation, so that the average140

fitness effect conditional on y is s̄i = (e�2fixi+�2
h � 1)y. The conditional variance of the residuals141

is (si � s̄i)2 = e
�4fixi+2�2

h(e2�
2
h � 1)y2. Note that the residual variance is no longer proportional142

to the slope and this variance increases as y
2, which are both inconsistent with the data.143

2. Maximum entropy interpretation144

The expectation values are averages over all the genotypes assuming that every genotype of a145

particular fitness is equally likely i.e., the distribution over genotypes is uniform. This assumption146

is analogous to ensemble averages over a microcanonical ensemble in statistical physics, where one147

assumes that all the particle configurations that have a particular energy are equally likely. The148

experimental setting in Johnson et al [1] is similar. The background genotypes are generated from149

a cross between two strains, which due to recombination makes each locus have equal probability150

of being one of the two alleles. Closely-linked loci may be considered together as blocks. Some of151

the loci are partially linked, which may lead to deviations from the predictions. The expressions152

derived above can be easily extended to the case with different background genotype statistics.153

The uniform distribution has an information-theoretic interpretation as the distribution that154

has the maximum entropy (MaxEnt) given no additional knowledge of how the genotype was155

generated. Eq. (16) can therefore be viewed as the MaxEnt prediction of the fitness effect if156

locus i is mutated conditioned on the current observed fitness y. A key idea that will be used157

throughout the paper is that when each locus i has a significant number of independent, nonzero158

epistatic terms, the distribution of fitness and fitness effects is jointly normal with respect to the159

uniform prior over genotypes. From well-known properties of multivariate normal distributions,160

the MaxEnt predictions of unobserved variables are multilinear forms of the observed variables.161

For example, the MaxEnt prediction for si given an observed sequence of past fitness is an162

autoregressive Gaussian process defined by the covariance between the unobserved and observed163
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variables (Section III B).164

3. Varying a subset of loci165

In addition, the sums in Eq. (3) are over ` loci involved in a trait. In reality, we may vary a

subset P of all loci and take averages over only this subset. The derivation still follows through

in this case; we can simply write the fitness in terms of effective parameters as

y(g) = ỹ +
X

i2P

f̃ixi +
X

i,j2P

f̃ijxixj + . . . , where (32)

ỹ = ȳ +
X

i 62P

fixi +
X

i,j 62P

fijxixj + . . . , (33)

f̃i = fi +
X

j 62P

fijxj +
X

j,k 62P

fijkxjxk + . . . , and so on. (34)

Here we are abusing notation — it is to be assumed that a coefficient with a particular combination

of indices appears only once in the sums. The results from the previous section still apply w.r.t

these new effective parameters. For instance, the total variance and the variance due to locus

i 2 P are

Ṽ =
X

i2P

f̃
2
i +

X

i,j2P

f̃
2
ij +

X

i,j,k2P

f̃
2
ijk + . . . , (35)

Ṽi = f̃
2
i +

X

j2P

f̃
2
ij +

X

j,k2P

f̃
2
ijk + . . . , (36)

and the effective variance fraction is Ṽi/Ṽ .166

4. Relationship to the fluctuation-dissipation relation167

Eq. (16) is analogous to the fluctuation-dissipation theorem in statistical physics, which re-168

lates the response of a thermodynamic system to a perturbation. The relationship between the169

magnitude of macroscopic epistasis (the slope in Eq. (16)) and the variance due to the back-170

ground genotypes is analogous to the relationship between viscous drag and Brownian motion.171

For Brownian motion, the normality arises due to numerous, independent collisions of a particle172

with neighboring particles. In our case, natural selection acts as an external perturbation which173

pushes the system away from equilibrium (here ȳ). Diminishing-returns naturally arises as the174

tendency of the system to revert to its entropically-favored equilibrium state.175
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5. Variance fraction of double mutants176

Using the arguments from the previous section, it is easy to show that the variance of a double

mutant at loci i and j, Vij, is necessarily sub-additive. In particular, we have

Vij = Vi + Vj � 2Iij, where (37)

Iij = f
2
ij +

X

k 6=i,j

f
2
ijk + . . . (38)

is the total epistatic variance between loci i and j. The correlation between the new fitness after177

a double mutation and the previous fitness is 1� 2Vij/V ⌘ 1� 2vij = 1� 2vi � 2vj + 2eij, where178

eij ⌘ Iij/V is the epistatic variance fraction between i and j.179

II. CONNECTEDNESS MODEL180

We introduce a “connectedness” model (the CN model, for short), where each locus has a181

probability µi of being involved in any particular interaction. We can interpret µi as the fraction of182

independent pathways that involve locus i, where each pathway has epistatic interactions between183

all loci involved in that pathway. The number of independent pathways, M , is assumed to be184

very large. The probability of an epistatic interaction between, say loci i, j, k, is proportional185

to µiµjµk, since this is the probability that these loci are involved in the same pathway. The186

magnitude of the interaction term is f
2
ijk / µiµjµk, where the proportionality is the magnitude187

of the perturbative effect of the mutations, which is assumed to be constant for all orders of188

interaction. We set this quantity to unity since it simply scales the fitness coefficients and does189

not affect subsequent results. The CN model leads to a specific interpretation (and hence its190

name): the outsized contribution to the variance from a particular locus is due to its involvement191

in many different complex pathways and not from an unusually large perturbative effect on a192

few pathways. For large `, the CN model is specified by the distribution, P (µ), across loci. In193

particular, given P (µ), we can calculate the total genetic variance, V , and the variance due to194

locus i, Vi. We define µ̄ ⌘
R 1

0 µP (µ)dµ.195

We calculate the expected total variance across statistical ensembles. Note that here the

expectations are averages over ensembles where the parameters of the model are re-sampled, in

contrast to the derivations presented in Section I, which were ensemble averages over equally likely
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genotypes. Since each pathway is independently sampled, expectations approximate the values

in a single realization as M ! 1. All expectations are denoted h.i. We calculate the expected

variance contribution from one pathway: since all pathways are statistically identical, the total

variance from M pathways is simply M times the expected contribution from a single pathway.

The contribution from the qth order interaction between loci i1, i2, . . . , iq is hf 2
i1i2...iqi =

Qq
n=1 µin .

The expected total variance is

V =
X

i

hf 2
i i+

X

i>j

hf 2
iji+

X

i>j>k

hf 2
ijki+ . . . , (39)

=
X

i

µi +
X

i>j

µiµj +
X

i>j>k

µiµjµk + . . . , (40)

=
Ỳ

i=1

(1 + µi)� 1 (41)

The variance due to terms involving locus i is

Vi = hf 2
i i+

X

j 6=i

hf 2
iji+

X

j>k 6=i

hf 2
ijki+ . . . , (42)

= µi + µi

X

j 6=i

µj + µi

X

j>k 6=i

µjµk + . . . , (43)

= µi

Y

j 6=i

(1 + µj). (44)

Therefore, we have196

vi = Vi/V = µi

Q
j 6=i(1 + µj)Q

j(1 + µj)� 1
. (45)

There are two qualitatively different regimes, µ̄` ⌧ 1 and µ̄` � 1. When µ̄` ⌧ 1, each pathway197

typically contains a single locus and should lead to an additive model. In this limit, we can write198

from Eq. (45),199

vi ⇡
µi

`µ̄
, µ̄` ⌧ 1, (46)

which is consistent with the expectation that
P

i vi = 1 and vi ⇠ `
�1 for an additive model. In200

the opposite limit, µ̄` � 1, we have201

vi ⇡
µi

1 + µi
, µ̄` � 1. (47)

The CN model therefore leads to an intuitive interpretation of the variance fraction as being202

determined by the sparsity of interactions of a locus. Eq. (47) yields an upper bound at vi = 0.5,203
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at µi = 1. From Eq. (15), we see that this case is equivalent to the House-of-Cards model of204

maximal epistasis where the new fitness after a mutation is independent of the previous fitness.205

The DVF P (v) is directly determined by P (µ); the CN model can therefore be used as a generative206

model to generate fitness landscapes with arbitrary DVFs.207

We can further calculate the epistatic variance between two loci in the CN model. The total

epistatic variance Iij between loci i and j is

Iij = hf 2
iji+

X

k 6=i,j

hf 2
ijki+ . . . (48)

= µiµj

Y

k 6=i,j

(1 + µk). (49)

In the limit µ̄` � 1, the epistatic variance fraction after dividing by V is then simply eij =208

µiµj/(1 + µi)(1 + µj) = vivj. Using Eq. (37), we have209

vij = vi + vj � 2vivj. (50)

If vi’s are small, the CN model predicts near-additivity between the effects of two loci. This is not210

inconsistent with the strong epistasis assumption implicit in the limit µ̄` � 1: though the total211

contribution of epistatic interactions to the genetic variance may be large, the epistatic variance212

between two specific loci can still be negligible. This is because the majority of epistatic variance213

is due to the combinatorially large number of higher-order epistatic terms whose individual effects214

themselves can be weak.215

A. Relationship to statistical fitness landscapes216

Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model are closely217

related to the CN model described above. The CN model falls under the broad class of generalized218

NK models [2]. In generalized NK models, epistasis is due to modules (or “pathways”) of K loci219

that interact epistatically with each other. The different NK models differ in how the loci are220

assigned to the modules and the interaction structure within the module. In the CN model, each221

locus has a locus-specific probability of being part of any module and the interaction structure222

within a module is all-to-all. The locus-specific probability gives rise to a highly non-regular223

model, i.e., loci can have a wide range of contributions to the total variance. This feature gives224
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rise to qualitatively different adaptation properties. We will show this further below in addition225

to showing that the CN model has a special memoryless property.226

Well-studied fitness landscapes such as Kauffman’s NK model and the Rough Mt. Fuji land-227

scape are regular i.e., every locus contributes equally to the variance. In other words, the DFE,228

which is determined by the DVF in our picture instead comes from a single constant value v = v̄.229

The fluctuations of the fitness effects are solely due to the genotype-dependent term ⌘, which is230

a Gaussian. In Section III A, we show that the DFE in this case corresponds to a Gaussian with231

mean �2v̄(y � ȳ). As adaptation proceeds and y increases, the DFE shifts to the deleterious232

side but retains its Gaussian shape. The adaptation properties that result from this DFE are233

quite different from those arising from our theory. Further, while the regular fitness landscape234

picture may lead to a good approximation of our results when the number of mutations is large,235

it does not capture the different magnitudes of diminishing-returns for different loci observed in236

experiments.237

B. The landscape of the regular CN model238

The CN model for the special case of homogeneous loci, µi = µ̄ for all i, is similar to the NK239

model but with one major difference: the number of loci in each pathway in the NK model is240

fixed at K loci, whereas in the CN model the typical pathway size is controlled by a continuous241

parameter µ̄. This introduces contributions at every epistatic order while effectively imposing242

sparsity on the contributions from higher-order interactions. We now show that the regular CN243

model has tunable ruggedness, i.e., it transitions from an additive model to a model with maximal244

epistasis with increasing µ̄ and has exponentially-decaying correlations for µ̄` � 1.245

The regular fitness landscapes often discussed are stationary Gaussian processes on a `-

dimensional hypercube. The regular CN model (i.e., µi = µ̄ for all i) also falls into this class

as M ! 1. The key quantity that defines such a fitness landscape is the covariance function

between the fitnesses of genotypes g and g
0, C(g, g0) = C(d), where d ⌘ |g � g

0| is the Hamming

distance between two genotypes. We now compute the covariance C(d) for the regular CN model.

Each order term in each pathway is independent and the covariances for each order add up over

all pathways. We first calculate the expectation of the first order term in a single pathway, which
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is

X

i,i0

hfixifi0x
0
i0i = µ̄

X

i,i0

�ii0xix
0
i0 (51)

= µ̄g.g
0 (52)

= µ̄ (`� 2d) . (53)

Here we have used hf 2
i i = µ̄, where the µ̄ comes from the probability of locus i being selected

for the module as argued previously. The covariance is linear in the distance between genotypes,

as one would expect from an additive model. Directly calculating the higher order terms is more

complicated because of the ordering restriction i > j for the second order term and for higher

orders. As noted previously [3–5], these can instead be calculated using combinatorics, which we

will demonstrate with the second-order term. We have for the second-order covariance

X

i>j,i0>j0

hfijxixjfi0j0x
0
i0x

0
j0i = µ̄

2
X

i>j,i0>j0

�ii0�jj0xix
0
i0xjx

0
j0 (54)

= µ̄
2
X

i>j

(gg0)i(gg
0)j, (55)

where the element-wise product (gg0)i ⌘ xix
0
i is 1 if xi = x

0
i match and �1 otherwise. If d is the246

distance between g and g
0 then the element-wise product gg

0 has d �1 terms and `� d 1 terms.247

The term in the summation above is 1 if both (gg0)i and (gg0)j are chosen from the `�d subset or248

both are chosen from d subset. This term is �1 if one of the two is chosen from the `� d subset249

and the other from the d subset. The number of terms that are 1s are therefore
�
`�d
2

��
d
0

�
+
�
`�d
0

��
d
2

�
250

and the number of terms that are �1s are
�
`�d
1

��
d
1

�
. This argument is easily extended to higher251

orders. The general qth order contribution to the covariance is252

µ̄
q

min(q,d)X

k=0

(�1)k
✓
`� d

q � k

◆✓
d

k

◆
. (56)

It is easily verified that the first-order term matches. When d = 0, we recover the binomial coef-253

ficients, as expected. The summation above is precisely the Krawtchouk polynomial Kq(d; `, 2),254

which we will denote by Kq(`, d). We therefore have255

C(d) =
dX

q=1

µ̄
qKq(`, d). (57)
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The generating function of the Krawtchouk polynomials yields256

C(d) = (1 + µ̄)`�d(1� µ̄)d � 1. (58)

The above expression is consistent with intuition: when µ̄` ⌧ 1, the covariance is linear in d, as257

expected for an additive model. In the opposite limit of µ̄` � 1 and 0 < d < `/2, the constant258

term 1 can be ignored, and we see that the covariance is proportional to e
��d, where � = ln

⇣
1+µ̄
1�µ̄

⌘
.259

Epistasis is maximal when µ̄ ! 1, in which case � ! 1 and the covariance rapidly goes to zero260

with d. This is the House-of-Cards model of maximal epistasis.261

C. The landscape of the general CN model262

The landscape of the general CN model, where loci can have different µi, is no longer stationary263

but the correlation structure can still be calculated. The qth order contribution to the covariance264

between genotypes g and g
0 in the general case is265

X

i1>i2>···>iq

hf 2
i1i2...iqi

qY

n=1

(xinx
0
in) =

X

i1>i2>···>iq

qY

n=1

µinxinx
0
in . (59)

It is easy to see that when the contributions from all orders are added up, the covariance C(g, g0)266

has a rather simple product form267

C(g, g0) =
Ỳ

i=1

(1 + µixix
0
i)� 1 (60)

The correlation c(g, g0) = C(g, g0)/
p
C(g, g)C(g0, g0) is268

c(g, g0) =

Q`
i=1(1 + µixix

0
i)� 1

Q`
i=1(1 + µi)� 1

. (61)

The above relation is exact. When µi ⌧ 1, µ̄` � 1, then 1 ± µi ⇡ e
±µi and the 1’s in the269

numerator and denominator above can be ignored. We get270

c(g, g0) ⇡ e
�2

P
i:xi 6=x0i

µi
. (62)

When µi’s are equal we recover the homogeneous case with exponentially-decaying correlations.271
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III. ADAPTATION272

A. The distribution of fitness effects273

Long-term adaptation is determined by the distribution of fitness effects (DFE) and the274

stochastic dynamical processes that lead to fixation. Before analyzing properties of adaptive275

walks, we clarify what our previous analysis, which ultimately led to Eq. (16), means for the276

DFE.277

Eq. (16) represents the distribution of the fitness effect of a specific mutation at locus i278

over all genotypes in the population that have fitness y. We are instead interested in the DFE,279

where fitness effects are measured for all the mutations of a particular genotype that has fitness280

y. The DFE for a particular genotype generally depends on idiosyncratic epistatic interactions281

between loci. In order to make this explicit, we turn to our analysis framework from Section I.282

For notational convenience, we will assume ȳ = 0 and V = 1 in this sub-section and the next.283

The DFE over ` loci for a particular genotype of a fitness y can be thought of as a sample,284

s1, s2, . . . , s`, from the conditional joint distribution P (s1, s2, . . . , s`|y). From our assumption of285

numerous, independent epistatic terms for each locus, this joint distribution is defined entirely in286

terms of the means and covariances of the ` + 1 variables y, s1, s2, . . . , s`. Recall that the fitness287

effect of a mutation at locus i is si = yi � y = �2⇠i as defined in Eq. (10). As shown previously,288

we have siy = �2vi. We also have sisj = 4eij with eii = vi. The means of all the variables are289

zero. Based on this covariance structure, we can compute P (s1, s2, . . . , s`|y) using the properties290

of the conditional distribution of a multivariate normal distribution. It is straightforward to show291

that conditional on the fitness y, the conditional means are given by Meany(si) = �2viy and the292

conditional covariances are Covy(si, sj) = 4(eij � vivj). This relation makes clear that in general293

the DFE from a sample s1, s2, . . . , s` ⇠ P (s1, s2, . . . , s`|y) depends on the epistatic interactions294

between all pairs of loci via eij. Note that Vary(si) = 4vi(1� vi), which leads to Eq. (16) for the295

marginal distribution P (si|y) of a particular locus.296

The DFE simplifies considerably if we make certain additional assumptions on the nature of297

epistatic interactions. In particular, the conditional correlation between fitness effects is298

Corry(si, sj) =
eij � vivjp

vivj(1� vi)(1� vj)
. (63)

If we assume the typical variance fraction, v̄ is small (i.e., v̄ ⌧ 1) and also that eij is O(v̄2), then299
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correlations are O(v̄) and thus negligible. Then, in a particular sample s1, s2, . . . , s`, we can think300

of each si as being drawn independently with mean �2viy and variance 4vi(1� vi). If ` is large,301

then this leads to a DFE302

⇢(s|y) =
Z 1

0

dv(2
p
v(1� v))�1

P (v)'

 
s+ 2vy

2
p
v(1� v)

!
, (64)

where P (v) is the distribution of variance fractions (DVF) across the loci and ' is the standard303

normal pdf. Surprisingly, this relation becomes exact for the CN model, where we have shown304

that eij = vivj (Eq. (50)) and therefore the correlations between si’s vanish. In this case, the305

DFE is thus determined entirely by the DVF, but we will show later that it has certain universal306

properties independent of even the DVF. Note that we derive the DFE starting from rather307

general assumptions on the organization of the genotype-phenotype map, in contrast to past308

models which assume the DFE as a starting point.309

Above, we have measured the DFE for the subset of genotypes that have fitness y without310

regard to their evolutionary history. Over the course of adaptation, mutations are fixed and311

certain fitness changes are observed. We would then like to measure the DFE for those genotypes312

that have undergone a particular adaptive trajectory. As we show below, the DFE again simplifies313

considerably if certain relations hold.314

B. History-dependence315

Using an analysis similar to the one in the previous section, we quantify history-dependence316

by calculating the correlations between the new fitness and the adaptive history conditional on317

the genotypes that have undergone a specific sequence of events in the past.318

To be precise, suppose an initial clonal population of fitness y0 gains k successive mutations

and the corresponding sequence of fitnesses is y1, y2, . . . , yk. We would like to quantify how the

fitness of a new mutation at locus k + 1, yk+1, depends on past fitnesses and the idiosyncratic

epistatic interactions between the previous k mutations and the new mutation. The correlation

between any two fitnesses yi and yj (i < j) is given by 1 � 2vi+1:j, where vi+1:j is the variance

fraction of the loci i+1, i+2, . . . , j (the subscript notation will be used throughout). In general,

vi+1:j accounts for the epistatic interactions of all orders between these j� i loci and is expressible

in terms of the coefficients of our original complex trait model in Eq. (3). One can then write
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the covariance matrix between y0, y1, . . . , yk+1. In block form, this is

⌃ =

0

@⌃0:k,0:k ⌃0:k,k+1

⌃k+1,0:k ⌃k+1,k+1

1

A . (65)

The mean of yk+1 conditional on y0, y1, . . . , yk is a linear weighted sum of the past fitnesses:319

yk+1 = ⌃k+1,0:k⌃
�1
0:k,0:ky, (66)

where y is a vector with elements y0, y1, . . . , yk. In other words, yk+1 can be written as320

yk+1 =
kX

i=0

wk+1,iyi + ✏, (67)

where ✏ is a mean-zero stochastic term that depends on the genotype of the initial population

and whose variance can be calculated from ⌃. To gain intuition, it is useful to explicitly calculate

the case of k = 1. In this case, the covariance matrix is

⌃ =

0

BBB@

1 1� 2v1 1� 2v12

1� 2v1 1 1� 2v2

1� 2v12 1� 2v2 1

1

CCCA
. (68)

We have

⌃2,01⌃
�1
01,01 =

1

4v1(1� v1)

⇣
1� 2v12 1� 2v1

⌘
0

@ 1 2v1 � 1

2v1 � 1 1

1

A (69)

=
1

4v1(1� v1)

⇣
1� 2v12 � (1� 2v1)(1� 2v2) (1� 2v2)� (1� 2v1)(1� 2v12)

⌘
. (70)

We therefore have321

y2 =
v1 � v2 + v12 � 2v1v12

2v1(1� v1)
y1 +

v1 + v2 � 2v1v2 � v12

2v1(1� v1)
y0. (71)

The dependence on the past has complex dependencies on epistasis between loci 1 and 2 even in322

this highly simplified case. To identify what contributes to history dependence beyond just the323

most recent fitness, we re-write Eq. (71) as324

y2 = (1� 2v2)y1 +
(1� 2v1)(v12 � v1 � v2 + 2v1v2)

2v1(1� v1)
y1 +

v1 + v2 � 2v1v2 � v12

2v1(1� v1)
y0. (72)
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From here, we observe that the dependence on v1 and y0 vanishes precisely when v12 = v1 + v2 �325

2v1v2. This is not true for all landscapes. However, as noted previously, this is in fact true for326

the CN model (Eq. (50)) when µ̄` � 1. In this case, we get the simple relation327

y2 = (1� 2v2)y1 + 2
p
v2(1� v2)⌘, (73)

where the pre-factor in the second term comes from normalization and ⌘ is a Gaussian random328

variable.329

From Eq. (37), we have the general relation v12 = v1 + v2 � 2e12, where e12 is the epistatic330

variance fraction between loci 1 and 2. We can then re-write Eq. (72) as331

y2 ⇡ (1� 2v2)y1 +
v1v2 � e12

v1
s1, (74)

for v1 ⌧ 1 and s1 = y1 � y0. An intuitive interpretation of this result is presented in the main332

text.333

C. Sufficient condition for memoryless fitness gains334

The k = 1 case suggests that the relation for memoryless fitness gains (e12 = v1v2) could in335

fact be true for all k under the CN model, which indeed turns out to be the case, as we show336

below. Motivated by the k = 1 case, we would like to have wk+1,k = 1 � 2vk+1 in Eq. (67) and337

the rest of the weights equal to zero. If this is the case,338

yk+1 = (1� 2vk+1)yk + ✏. (75)

Multiplying both sides by yj and computing the correlations, we get the condition 1�2vj+1:k+1 =339

(1� 2vj+1:k)(1� 2vk+1) for all j. Therefore, a sufficient condition for memoryless fitness gain is340

vj+1:k+1 = vk+1 + vj+1:k � 2vk+1vj+1:k (76)

for all k and for all j < k. We will now show that this is true for the CN model for j = 0,

i.e., v1:k+1 = vk+1 + v1:k � 2vk+1v1:k; the rest trivially follows. Let us first analyze what terms

contribute towards V1:k (dividing by V gives v1:k). When loci 1 through k are mutated, their effect

is to flip the signs of their coefficients in Eq. (3). The ones which have changed sign contribute

to the de-correlation between the fitnesses before and after the set of mutations, but the epistatic
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terms which have an even number of flips do not change and therefore their contribution has to

be subtracted. V1:k therefore is the sum of squares of all the coefficients in Eq. (3) whose loci have

flipped an odd number of times. To keep track of indices, suppose i1, i2, . . . are used to denote

the indices of the k loci (which take values from 1 to k) and j1, j2, . . . for the rest. Then,

V1:k =
kX

i1=1

F
2
i1 +

kX

i1>i2>i3

F
2
i1i2i3 + . . . , where (77)

F
2
i1 = f

2
i1 +

X

j1 6=1:k

f
2
i1j1 +

X

j1>j2 6=1:k

f
2
i1j1j2 + . . . ,

F
2
i1i2i3 = f

2
i1i2i3 +

X

j1 6=1:k

f
2
i1i2i3j1 +

X

j1>j2 6=1:k

f
2
i1i2i3j1j2 + . . . ,

and so on. Now, when the k + 1th locus is also flipped, to compute V1:k+1, we can add up the341

two variances V1:k and Vk+1 except for the cross terms which have an even number of sign flips342

and which include both the k+1th locus and the other k loci. These have to be subtracted twice343

because they appear both in V1:k and Vk+1. These terms are344

I1:k,k+1 =
kX

i1=1

F
2
i1k+1 +

kX

i1>i2>i3

F
2
i1i2i3k+1 + . . . , (78)

where the F s are defined in a similar fashion as in Eq. (77) except the sums over js run from345

k + 2 to ` instead of k + 1 to `. We get the general relation346

V1:k+1 = Vk+1 + V1:k � 2I1:k,k+1. (79)

For the CN model specifically, we have hf 2
i1i2...ik

i =
Qk

j=1 µij . This implies

hI1:k,k+1i =
kX

i1=1

hF 2
i1k+1i+

kX

i1>i2>i3

hF 2
i1i2i3k+1i+ . . . , (80)

= µk+1

Ỳ

j=k+2

(1 + µj)

 
kX

i1=1

µi1 +
kX

i1>i2>i3

µi1µi2µi3 + . . .

!

= µk+1

 
Ỳ

j=k+2

(1 + µj)

! 
kY

i=1

(1 + µi)� 1

!

Performing a similar calculation for hV1:ki, we find

hV1:ki =
Ỳ

j=k+1

(1 + µj)

 
kY

i=1

(1 + µi)� 1

!
, (81)

= (1 + µk+1)

 
Ỳ

j=k+2

(1 + µj)

! 
kY

i=1

(1 + µi)� 1

!
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which gives347

hI1:k,k+1i = vk+1hV1:ki. (82)

for µ` � 1 since vk+1 = µk+1/(1 + µk+1). Dividing Eq. (79) by V throughout concludes the348

derivation.349

D. Adaptedness350

Under the conditions of memoryless fitness gains from the previous section, we can write351

� = �2vz + 2
p

v(1� v)⌫, (83)

where variables have been re-scaled as z = V
�1/2(y � ȳ), � = V

�1/2
s, ⌫ = V

�1/2
⌘. This equation352

suggests various forms for the DFE, ⇢(�|z), depending on the DVF, P (v).353

z is an intuitive measure of “adaptedness": (1) When z is negative, the organism is in the354

unlikely situation of being “negatively-adapted" to the environment. Beneficial mutations are355

much more likely than deleterious mutations and adaptation is dominated by loci that have a356

large v. (2) When |z| ⌧ 1, the organism is “neutrally-adapted". The number of beneficial and357

deleterious mutations are balanced. (3) When z � 1, the organism is “well-adapted", where the358

DFE is strongly skewed towards deleterious mutations.359

We will analyze adaptation in the neutrally-adapted and the well-adapted regimes. When the360

organism is negatively-adapted, Eq. (83) predicts that a few substitutions are sufficient to quickly361

reach the neutrally-adapted state. In addition, we assume the variance fraction of each locus is362

small, i.e., v ⌧ 1 but the number of loci ` is large enough so that overall epistasis ⇡ v̄` � 1 (v̄ is363

the mean variance fraction). We can then ignore the 1� v factor and re-write Eq. (83) as364

� = �2vz + 2
p
v⌫. (84)

The intuition behind the analytical results is discussed in the main text. We present the formal365

calculations here.366

E. Analytical results for an exponential DVF367

We begin by calculating the DFE, ⇢(�|z), for the specific case when the DVF is an exponential,368

P (v) = v̄
�1
e
�v/v̄

, (85)
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where v̄ ⌧ 1 is the mean variance fraction across loci. The true DVF likely has a large fraction369

of loci that have no effect; accounting for these loci simply scales the mutation rate and will be370

ignored in this analysis. The exponential DVF leads to analytical predictions for the shape of the371

average fitness trajectories under certain simplifying assumptions about the underlying selective372

forces.373

From Eq. (84), we have374

⇢(�|z) =
Z Z

dvd⌫P (v)P (⌫)�(� + 2vz � 2
p
v⌫). (86)

Here ⌫ is a standard normal random variable, which we integrate out, giving375

⇢(�|z) =
Z 1

0

dv(2
p
v)�1

P (v)'

✓
� + 2vz

2
p
v

◆
, (87)

where ' is the normal pdf. For P (v) given in Eq. (85), this integral can be calculated exactly:376

⇢(�|z) = v̄
�1

2
p
2v̄�1 + z2

e
��z/2�|�|

p
2v̄�1+z2/2

. (88)

The resulting DFE is a double exponential with scale ⇠ (z/2±
p
2v̄�1 + z2/2)�1. For |z| ⌧ 1 small,377

the DFE is symmetric around the origin, as expected, with a scale determined by the DVF. As378

z increases, the DFE skews towards deleterious effects. The typical magnitudes of beneficial and379

deleterious effects are not independent from the overall ratio of beneficial to deleterious mutations.380

The well-adapted regime is reached when z
2 is comparable to v̄

�1. To clearly delineate the two381

regimes, it is useful to define new variables x = z
p
v̄/2 and � = �

p
2/v̄. In the new variables,382

the DFE is383

⇢(�|x) = 1

4
p
1 + x2

e
��x+|�|

p
1+x2

2 . (89)

The neutrally-adapted and well-adapted regimes then correspond to x . 1 and x & 1 respectively.

The mean rate of adaptation in units of generations on the x scale is hdxi = hdzi
p

v̄/2 =

h�i
p

v̄/2 = h�iv̄/2, where the expectation is taken over fixation probabilities and the DFE. We

assume strong-selection-weak-mutation (SSWM) so that pfix(�) ⇠ 2� or pfix(�) ⇠ 2�
p

v̄/2 for

positive � and 0 otherwise. We find

hdxi = NUv̄/2

Z 1

�1
d�pfix(�)⇢(�|x)� (90)

= NUv̄

p
v̄/2

Z 1

0

d��
2
⇢(�|x), (91)
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where N is population size and U is the effective mutation rate for loci with non-zero effect.384

Integrating over �, we get385

hdxi = NU(2v̄)3/2p
1 + x2(x+

p
1 + x2)3

. (92)

Integrating over dx starting from an initial x0, we obtain an approximation to the mean fitness

trajectory

NU(2v̄)3/2ngen =

Z x

x0

dx
p
1 + x2(x+

p
1 + x2)3 = T (x)� T (x0), (93)

where T (x) =
4x5

5
+

5x3

3
+

p
x2 + 1

15

�
12x4 + 19x2 + 7

�
+ x. (94)

Note that this is only an approximation for small x since the typical fixed beneficial effect is386

a discrete jump. We show the result from Eq. (93) in Figure 1a, where the dependencies on387

the equilibrium fitness ȳ and genetic variance V are highlighted. There are two independent388

parameters that determine the scale (
p
v̄/2V ) and location (ȳ) of the fitness, and one parameter389

(NUngen) that determines the time scale. From Eq. (93), the x ⇠ t and x ⇠ t
1/5 scalings in the390

neutrally-adapted (x ⌧ 1) and well-adapted regime (x � 1) respectively are apparent.391

The number of substitutions, ns, as a function of x can also be calculated under the SSWM

assumption. We get

v̄ns = N(x)�N(x0), (95)

where N(x) = x(x+
p
x2 + 1)/4 + sinh�1(x)/4, (96)

which can be mapped onto time using Eq. (93). The scalings are ns ⇠ x ⇠ t in the neutrally-392

adapted regime and ns ⇠ x
2 ⇠ t

2/5 in the well-adapted regime.393

F. Asymptotics and general scaling results394

We now derive the asymptotic properties of the DFE in the well-adapted regime (v̄1/2z � 1).

Writing out the Gaussian pdf in Eq. (64), we have

⇢(�|z) =
Z 1

0

dv(2
p
2⇡v)�1

P (v)e�
(�+2vz)2

8v (97)

= e
��z/2

Z 1

0

dv(2
p
2⇡v)�1

P (v)e�
�2

8v �
vz2

2 (98)

= e
��z/2

Z 1

0

du(2
p
2⇡uy)�1

P (u/z)e
� z

2

⇣
�2

4u+u
⌘

, (99)
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where the change of variables v = u/z is used. When z � 1, Laplace’s method can be used. The395

exponent is minimized when u = |�|/2, which gives396

⇢(�|z) ⇡ (2z)�1
P (|�|/2z)e� z

2 (�+|�|)
. (100)

The contribution towards a fitness effect � at large z comes largely from loci with variance fraction397

v ⇡ |�|/2z. The exponential form of the beneficial DFE is determined entirely by the Gaussian398

tails of the genotype-dependent term. The argument can be easily generalized to non-Gaussian399

tail probabilities using a similar calculation. Eq. (100) implies that the ratio of the probabilities400

of beneficial and deleterious mutations is independent of the DVF as long as it has sufficient mass401

at v = |�|/2z:402

⇢(�|z)
⇢(��|z) = e

��z
. (101)

Such a relationship has been hypothesized previously based on simulations of an additive finite-403

sites model and the form of pfix close to the high-interference limit that could result in a fitness404

plateau [6]. Using our theory, we have shown that this result is indeed true independent of405

the DVF and under our core hypotheses of normality and memoryless fitness gains. If pfix ⇠406

e

p
V Tc� in the high-interference limit, where Tc is the coalescent time, fitness should plateau when407

pfix(�)⇢(�|z) = pfix(��)⇢(��|z), which is at408

zplateau = 2
p
V Tc. (102)

The
p
V appears to account for the re-scaling � = s/

p
V .409

We get Eq. (100) only if P (v) has probability mass at v = |�|/2z. This is not the case in410

the exponentially-correlated fitness landscape model with homogeneous loci, i.e., if for instance411

P (v) = �(v � v̄), we instead get from Eq. (64)412

⇢(�|z) = '

✓
� + 2v̄z

2
p
v̄

◆
. (103)

The DFE in this case is therefore a Gaussian with mean shifting towards the deleterious side. The413

ratio of beneficial to deleterious mutations goes rapidly to zero as ' '(
p
v̄z)/

p
v̄z and adaptation414

sharply plateaus beyond z = v̄
�1/2.415

From Eq. (100) various scaling results can be derived that apply independent of P (v) and the

Gaussian assumption on ⌫. We retain the exponential form for convenience. The rate of beneficial
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mutations is

Ub = U

Z 1

0

d�(2z)�1
P (|�|/2z)e��z (104)

=
U

2z2

Z 1

0

dwP (w/2z2)e�w
. (105)

The integral has an effective upper cutoff at w ⇠ O(1) and can be approximated as Ub ⇡416

UP (0)/2z2 ⇠ z
�2 under certain assumptions for P (v) for small v. The pre-factor P (0) suggests417

that the number of beneficial mutations depends on the number of small-effect loci. While strong418

epistatic loci drive adaptation in the neutrally-adapted regime, adaptation in the well-adapted419

regime is instead driven by weakly epistatic loci.420

From Eq. (100), the typical size of a beneficial mutation is � ⇠ z
�1. Under SSWM, pfix ⇠ � ⇠421

z
�1. As argued previously, since Ub ⇠ z

�2, we get dz/dt ⇠ z
�4 and therefore we obtain the two422

scaling relations423

z ⇠ t
1/5

, ns ⇠ t
2/5

, (106)

which apply independently of the form of the DVF in the well-adapted regime.424
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Figure 1. The mean fitness trajectory and the mean number of substitutions predicted by the model in

the strong-selection-weak-mutation regime. (a) The scaled fitness vs scaled time. Shown below is the

fitness in log-scale to highlight the different scalings in the neutrally-adapted and well-adapted regimes.

The slopes of the dashed lines are shown. (b) The scaled number of substitutions vs scaled time as in

panel (a).
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