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fact, the TRF results in Figures 2-4 indicated that a higher proficiency level does not always lead to 

EEG responses that are equivalent to the ones of native speakers. Specifically, while there was 

some level of L1-L2 convergence for phoneme-level TRFs, this phenomenon was less pronounced 

for phonotactics and semantic dissimilarity responses, with marked differences between L1 and C-

level L2 (e.g., the latency of the negative component at ~120 ms in TRFPt). Here, we attempted to 

disentangle those differences from the effect of L2 proficiency by conducting an SVM binary 

classification analysis for L1 versus L2 participants. This procedure used the same 26 features and 

backward elimination strategy as in the previous regression analysis. First, an L1 versus L2 

classification accuracy of 87% was obtained when all 71 subjects were included in the analysis, with 

a baseline classification accuracy of 70% (95th percentile of a distribution of classification accuracy 

values when L1-L2 labels were randomly shuffled – 100 shuffles). Second, the same analysis was 

run on L1 and C-level L2 participants to assess more specifically the effect of nativeness. In this 

case, a classification accuracy of 73% was measured, with a baseline of 66%, thus indicating that 

the EEG responses to continuous speech reflect both the influence of L2 proficiency and nativeness. 

 

 

 
Figure 5. Accurate decoding of L2 proficiency and nativeness from EEG data. (A) A multilinear principal 
component analysis (MPCA) was performed on the TRF weights corresponding to speech descriptors at all 
linguistic levels of interest. The first MPCA component was retained for the TRFs corresponding to Env, Phn, 
Pt, and Sem. The combination of those four features was predictive of L2 proficiency (r = 0.68), with significant 
effects for all features which were not due to group-differences in age or attention. (B) A support-vector 
regression analysis shows that EEG data accurately predict the L2 proficiency level at the individual subject 
level (r =0.83, MSE = 1.14). (C) Classification accuracy for L1 versus L2 and L1 versus C-level L2. The red 
dotted lines indicate the baseline classification levels, which were calculated as the 95th percentile of a 
distribution of classification accuracies derived after random shuffling the output class labels (N = 100). 
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Discussion 

The human brain responds differently when listening to second-language and native speech13,15,16, 

typically leading to lower listening performances that vary between individuals and can be quantified 

with standardized language tests. Despite the general consensus for the cognitive, social, and 

economic advantages that come with high L2 proficiency, the neural underpinnings of second 

language perception and learning remain unclear70,71. One reason why this issue remains 

unresolved is methodological. Experimental evidence derived from direct neural measures is 

minimal and often limited to single linguistic properties72–76, thus offering only a partial view of this 

complex brain mechanism. The present study establishes a methodological framework to provide a 

more comprehensive examination of the language processing system in naturalistic conditions. We 

isolated neural indices of speech perception at multiple processing stages from EEG responses to 

natural speech, revealing marked effects of L2 proficiency and nativeness that were robust at the 

individual subject level. Overall, the results confirm our hypothesis that the cortical encoding of 

spoken language in L2 listeners becomes progressively more similar to L1 with proficiency, and that 

this convergence is only partial as there are differences between L1 and L2 that persist even for 

listeners with high L2 proficiency. This finding suggests that proficiency and nativeness have 

somewhat distinct effects on the EEG signal, pointing to precise spatio-temporal neural patterns that 

may underpin the two phenomena. 

Previous studies that investigated L2 perception in naturalistic paradigms focused on the relationship 

between neural activity and acoustic envelope, and found stronger coupling in L2 than L1 subjects77. 

That EEG result, which was found with a selective attention listening task in a multi-talker scenario, 

pointed to a link between increased listening effort and stronger cortical tracking of the speech 

envelope. However, it remained unclear which of the linguistic and non-linguistic properties of 

speech correlate with the acoustic envelope results in this increased cortical tracking. In fact, an 

increased coupling between EEG and speech envelope could reflect increased encoding of acoustic 

features, stronger reliance on higher order processes, or even activation of distinct cortical areas. 

For example, recent work indicated that envelope tracking increases with age due to a stronger 
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engagement of higher order areas, thus reflecting a difference in processing strategy for older 

listeners78,79. While our results did not show differences in envelope tracking (EEG prediction 

correlations) with proficiency, the shape of the envelope TRF significantly contributed to both L2 

proficiency and nativeness decoding (Figure 5), which is in line with a link between acoustic-level 

encoding and effort. Interestingly, this result was obtained on a single-talker task with no competing 

noise. Therefore, the application of this same approach on a more cognitively demanding task62,80 

could help tease apart the effects of L2 proficiency and listening effort on the cortical encoding of 

acoustic features.  

As we had hypothesized, the cortical encoding of phonemes changed with L2 proficiency, becoming 

progressively more similar to L1, which is in line with perceptual theories such as the expanded 

Native Language Magnet Theory (NML-e81) and the Perceptual Assimilation Model (PAM-L282). Our 

TRF analysis has discerned individual phonemic contrasts, showing that the cortical encoding of 

phonemes becomes progressively more sensitive to contrasts existing in English but not Standard 

Chinese (Figure 3). This work extends previous findings on the cortical encoding of phonemes32,34,64 

by demonstrating that EEG responses to natural speech show sensitivity to individual phoneme 

contrasts, with response patterns that become progressively more categorical with proficiency. 

Furthermore, that result goes beyond previous work64 by revealing a low-frequency EEG component 

that could not be explained by simple acoustic features such as acoustic envelope, derivative of the 

envelope, and spectrogram. Our results are in line with the majority of theories on L2 perception 

which suggest the impact of a subject’s L1 on phonological encoding of the L2. Specifically, Figure 

3A indicates that the native language constitutes a “starting point” for the phonological encoding in 

L2 learners, which then changes with experience and converges toward the encoding for L1 

listeners. Reproducing this work on participants with other native languages could provide us with 

detailed insights on the effect of the native language on the phoneme encoding in high proficiency 

L2 learners. Furthermore, additional data based on a more balanced design, with subjects listening 

to both their native and non-native language, could reveal whether and how learning a particular L2 
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influences the cortical processing of the native language19,83, as was postulated by the bidirectional 

cross-linguistic influence principle in the Speech Learning Model (SLM84). 

Proficiency was also shown to shape language encoding at the level of phonotactics, with TRFs in 

L2 subjects progressively converging toward L1 TRFs. Our results indicate two effects of 

phonotactics.  First, an hypothesized, TRF component peaking at speech-EEG latencies of about 

300-450ms, as measured in a previous EEG study by our group39, with more negative responses for 

higher proficiency-levels (Figure 4A); Second, an effect at shorter latencies of about 120ms, where 

a negative component that was not present for L1 participants emerged for L2 participants. 

Interestingly, a component reflecting phonotactics was previously measured at that speech-neural 

signal latencies with MEG33 but not EEG. Our finding provides a new link between the EEG and 

MEG literature by clarifying that phonotactics modulates EEG responses at both shorter and longer 

latencies, and that the effect at shorter latencies emerges for L2 learners but not L1. This 

discrepancy may be due to the difference in the type of signal recorded by EEG and MEG modalities. 

The larger values for lower-proficiency users could reflect an effect of surprise on the phoneme 

sequences due to the use of an incorrect (or imperfect) model of phonotactics. 

Semantic dissimilarity TRFs were previously shown to be characterized by a negative centro-parietal 

component at speech-EEG latencies of about 350-400ms. This finding is in line with previous work 

on the N400 event-related response42,85,86 which shows that this component is modulated by 

intelligibility and attention40. Similarly, we expected a strong response negativity for users with higher 

language proficiency, and no response for people with no English at all. Consistent with this 

hypothesis, our results identified a posterior component with magnitude that increases with 

proficiency (Figure 4B). In addition, an unexpected centro-frontal component arose at latencies of 

about 440-520ms which was negatively correlated with the latency of response rather than the 

magnitude of the component. This bilateral centro-frontal negativity (BCN) emerged even for 

participants with no English understanding, thus reflecting neural correlates time-locked to word 

onset but not semantics per se. This component may instead be related to other processes, such as 

the processing of sentence structure, memory, and learning of frequent words87–90. Further work is 
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needed to clarify whether that signal reflects, for example, the familiarity with particular words, or it 

is related to ERP components such as the left anterior negativity (LAN), which was shown to reflect 

processing difficulties in morpho-syntax91,92. 

Although both phonotactics and semantic level TRFs for L2 showed some level of convergence to 

L1, there was also a pronounced difference between L1 and C-level L2 participants, which was also 

reflected in the significant L1 versus C classification result in Figure 5C. This effect may reflect 

fundamental differences in the cortical mechanisms underlying L1 and L2 processing, rather than an 

effect of proficiency per se. This effect of nativeness that is somewhat different from the effect of 

proficiency is in line with the observation that a second language learnt after a certain critical (or 

sensitive) period usually leads to lower language proficiency than those of a native speaker1,93,94. 

More data could provide further insights on this topic, for example, by comparing L1 monolinguals 

with bilinguals and multilinguals with a wide range of learning-onsets of the English language. 

Further research is also needed to better understand the precise sources of the effect of nativeness, 

e.g. by comparing L1 and high-proficiency L2 listeners with a semantic task guaranteeing the same 

level of comprehension for all participants. Such a task could not be employed in the present study, 

whose primary focus was the effect of proficiency across L2 participants from A- to C-levels which, 

by design, presented variable levels of comprehension. 

Our analysis focused on just few components of the speech processing hierarchy, namely the 

acoustic, phonemic, phonotactic, and semantic levels. One powerful element of this framework is 

that it can be extended to other levels of processing without the need for additional data. In fact, the 

EEG responses to natural speech likely reflect many more components of interest than the ones 

targeted in this occasion, and demonstrating how to isolate them would give us insights on each 

newly added feature and its link with proficiency, as well as giving us the chance to improve the 

accuracy of our EEG-based L2 proficiency assessment. For these reasons, we believe that a wide 

collaborative effort under a common protocol of data acquisition with EEG/MEG and natural stimuli 

could significantly and quickly advance our understanding of the speech and language cortical 

processing network (and could indeed extend to other questions of interest).  
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Understanding the neural underpinnings of second language perception and learning becomes 

particularly relevant when we consider that there are more children throughout the world that have 

been educated via a second (or a later acquired) language rather than exclusively via their L195. 

Furthermore, there is evidence for perceptual advantage of bilinguals and multilinguals that is due 

to cross-language transfer83,96,97, and particular combination of languages may be better than others 

in the emergence of such a benefit. Further work in this direction may provide us with tools to predict 

the perceptual advantage that a particular second language would bring to a person given their 

background, thus constituting the basis for a procedure that, for example, could inform us on what 

second languages should be encouraged in school to particular individuals. 

 

Materials and Methods 

Participants  

Fifty-one healthy subjects (twenty-four male, aged between 18 and 60, with median = 24 and mean 

= 27.5, forty-eight were right-handed) that learnt English as a second language (or that did not speak 

English) participated in the EEG experiment (L2 group). Two of these subjects were excluded 

because of issues with the EEG recordings (data could not be synchronized because of missing 

trigger signals). L2 participants were asked to take a 20-minute American English listening level test 

before the experiment. According to the results of this assessment, each participant was assigned 

to one of seven proficiency groups according to the CEFR framework (Common European 

Framework of Reference for Languages): A1, A2, B1, B2, C1, C2 (from low to high proficiency). A-, 

B-, and C- levels indicated basic, independent, and proficient users respectively. The A1 group 

included participants with no English understanding. 

Data from twenty-two native English speakers (twelve male, aged between 18 and 45, twenty were 

right-handed) was originally collected for a previous study34 based on the same experiment, with the 

same setup and location (L1 group). All subjects reported having normal hearing and no history of 
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neurological disorders. All subjects provided written informed consent and were paid for their 

participation. The Institutional Review Board of Columbia University at Morningside Campus 

approved all procedures. 

Stimuli and experimental procedure 

EEG data were collected in a sound-proof, electrically shielded booth in dim light conditions. 

Participants listened to short stories narrated by two speakers (1 male) while minimizing motor 

movements and maintaining visual fixation on a crosshair at the center of the screen. The male and 

the female narrators were alternated to minimize speaker-specific electrical effects. Stimuli were 

presented at a sampling rate of 44,100 Hz, monophonically, and at a comfortable volume from 

loudspeakers in front of the participant. Each session consisted of 20 experimental blocks (3 min 

each), divided in five sections that were interleaved by short breaks. Participants were asked to 

attend to speech material from seven audio-stories that were presented in a random order. To 

assess attention in L1 participants, three questions about the content of the story were asked after 

each block. All L1 participants were attentive and could all answer correctly at least 60% of the 

questions. A modified version of the behavioral task was used for L2 participants to assess their 

attention level, as some L2 participants were not sufficiently proficient to understand the questions 

nor the speech sentences. Participants were asked three questions at the end of each block. First, 

we asked whether the last sentence of the section was spoken by a male or female speaker. Next, 

participants were asked to identify 3-5 words with high-frequency in the sentence from a list of eight 

words. Third, participants performed a phrase-repetition detection task. Specifically, the last two to 

four words were repeated immediately after the end of some of the sentences (1-5 per block). Given 

that our target was monitoring attention, a finger-tip clicker was used to count the repetitions so that 

they would be engaged in a detection and not counting task, which would instead require additional 

memory resources and, potentially, reduce their engagement to the main listening task. Participants 

were asked to indicate how many sentences in the story presented these repetitions at the end of 

each block. 
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EEG recordings and preprocessing 

EEG recordings were performed using a g.HIamp biosignal amplifier (Guger Technologies) with 62 

active electrodes mounted on an elastic cap (10 –20 enhanced montage). EEG signals were 

recorded at a sampling rate of 2 kHz. An external frontal electrode (AFz) was used as ground and 

the average of two earlobe electrodes were used as reference. EEG data were filtered online using 

a high-pass Butterworth filter with a 0.01 Hz cut-off frequency to remove DC drift. Channel 

impedances were kept below 20 kΩ throughout the recording. 

Neural data were analyzed offline using MATLAB software (The Mathworks Inc). EEG signals were 

digitally filtered between 1 and 15 Hz using a Butterworth zero-phase filter (order 2+2 and 

implemented with the function filtfilt), and down-sampled to 50 Hz. EEG channels with a variance 

exceeding three times that of the surrounding ones were replaced by an estimate calculated using 

spherical spline interpolation. 

 

Speech features 

In the present study, we have assessed the coupling between the EEG data and various properties 

of the speech stimuli. These properties were extracted from the stimulus data based on previous 

research. First, we defined a set of descriptors summarizing low-level acoustic properties of the 

music stimuli. Specifically, a time-frequency representation of the speech sounds was calculated 

using a model of the peripheral auditory system98 consisting of three stages: (1) a cochlear filter-

bank with 128 asymmetric filters equally spaced on a logarithmic axis, (2) a hair cell stage consisting 

of a low-pass filter and a nonlinear compression function, and (3) a lateral inhibitory network 

consisting of a first-order derivative along the spectral axis. Finally, the envelope was estimated for 

each frequency band, resulting in a two dimensional representation simulating the pattern of activity 

on the auditory nerve99 (the relevant Matlab code is available at 

https://isr.umd.edu/Labs/NSL/Software.htm). This acoustic spectrogram (S) was then resampled to 

16 bands32,100. A broadband envelope descriptor (E) was also obtained by averaging all envelopes 
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across the frequency dimension. Finally, the half-way rectified first derivative of the broadband 

envelope (E') was used as an additional descriptor, which was shown to contribute to the speech-

EEG mapping and was used here to regress out the most acoustic-related responses as possible64. 

Additional speech descriptors were defined to capture neural signatures of higher-order speech 

processing. The speech material was segmented into time-aligned sequences of phonemes using 

the Penn Phonetics Lab Forced Aligner Toolkit101, and the phoneme alignments were then manually 

corrected using Praat software102. Phoneme onset times were then encoded in an appropriate 

univariate descriptor (Pon),  where ones indicate an onset and all other time samples were marked 

with zeros. An additional descriptor was also defined to distinguish between vowels and consonants 

(Pvc). Specifically, this regressor consisted of two vectors, similar to Pon, but marking either vowels 

or consonants only. While this information was shown to be particularly relevant when describing the 

cortical responses to speech33, there remains additional information on phoneme categories that 

contributes to those signals32,103. This information was encoded in a 19-dimensional descriptor 

indicating the phonetic articulatory features corresponding to each phoneme (Phn). Features 

indicated whether a phoneme was voiced, unvoiced, sonorant, syllabic, consonantal, approximant, 

plosive, strident, labial, coronal, anterior, dorsal, nasal, fricative, obstruent, front (vowel), back, high, 

low. The Phn descriptor encoded this categorical information as step functions, with steps 

corresponding to the starting and ending time points for each phoneme.  

Next, we encoded phonotactic probability information in an appropriate two-dimensional vector 

(Pt)33,39. Probabilities were derived by means of the BLICK computational model54, which estimates 

the probability of a phoneme sequence to belong to the English language. This model is based on a 

combination of explicit theoretical rules from traditional phonology and a maxent grammar104, which 

find optimal weights for such constraints to best match the phonotactic intuition of native speakers. 

The phonotactic probability was derived for all phoneme sub-sequences within a word (ph1..k, 1 ≤ k 

≤ n, where n is the word length) and used to modulate the magnitude of a phoneme onset vector 

(Pt1). A second vector was produced to encode the change in phonotactic probability due to the 

addition of a phoneme (ph1..k - ph1..k-1, 2 ≤ k ≤ n) (Pt2).  
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Finally, a semantic dissimilarity descriptor was calculated for content words using word2vec55,105, a 

state-of-the-art algorithm consisting of a neural network for the prediction of a word given the 

surrounding context. In this specific application, a sliding-window of 11 words was used, where the 

central word was the output and the surrounding 10 words were the input. This approach is based 

on the “distributional hypothesis” that words with similar meaning occur in similar contexts, and it 

uses an artificial neural network approach to capture this phenomenon. This network has a 400-

dimensional hidden layer that is fully connected to both input and output. For our purposes, the 

weights of this layer are the features used to describe each word in a 400-dimensional space 

capturing the co-occurrence of a content word with all others. In this space, words that share similar 

meanings will have a closer proximity. The semantic dissimilarity indices are calculated by 

subtracting from 1 the Pearson’s correlation between a word’s feature vector and the average feature 

vector across all previous words in that particular sentence (the first word in a sentence was instead 

correlated with the average feature vector for all words in the previous sentence). Thus, if a word is 

not likely to co-occur with the other words in the sentence, it should not correlate with the context, 

resulting in a higher semantic dissimilarity value. The semantic dissimilarity vector (Sem) marks the 

onset of content words with their semantic dissimilarity index. 

 

Computational model and data analysis 

A single input event at time t0 affects the neural signals for a certain time-window [t1, t1+twin], with t1 

≥ 0 and twin > 0. Temporal response functions (TRF) were fit to describe the speech-EEG mapping 

within that latency-window for each EEG channel (TRF106,107). We did this by means of a regularized 

linear regression58 that estimates a filter that allows to optimally predict the neural response from the 

stimulus features (forward model; Fig. 2A). The  input of the regression also included time-shifted 

versions of the stimulus features, so that the various time-lags in the latency-window of interest were 

all simultaneously considered. Therefore, the regression weights reflect the relative importance 

between time-latencies to the stimulus-EEG mapping and were here studied to infer the temporal 

dynamics of the speech responses (see Figures 2 and 3). Here, a time-lag window of 0–600 ms 
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was used to fit the TRF models which is thought to contain most of the EEG responses to speech of 

interest. The reliability of the TRF models was assessed using a leave-one-out cross-validation 

procedure (across trials), which quantified the EEG prediction correlation (Pearson’s r) on unseen 

data while controlling for overfitting. Note that the correlation values are calculated with noisy EEG 

signal, therefore the r-scores can be highly significant even though they have low absolute values (r 

~ 0.1 for sensor-space low-frequency EEG32,64,100). 

Stimulus descriptors at the levels of acoustics, phonemes, phonotactics, and semantics were 

combined in a single TRF model fit procedure. This strategy was adopted with the goal of discerning 

EEG responses at different processing stages. In fact, larger weights are assigned to regressors 

that are most relevant for predicting the EEG. For example, a TRF derived with Pt alone could reflect 

EEG responses to phonotactics and phoneme onset. A TRF based on the combination of Pt and 

Pon would instead discern their respective EEG contributions, namely by assigning larger weights 

to Pt for latencies that are most relevant to phonotactics. Here, individual-subject TRFs were fit by 

combining Env, Env', Pvc, Pon, Pt, and Sem (stimulus descriptor ALL). We also fit TRF models 

with an extended stimulus descriptor (EXT) including Sgr, Env', Phn, Pon, Pt, and Sem, which 

provided us with a higher level of detail on spectrotemporal and phonological speech features, at 

the cost of higher dimensionality. The combined stimulus descriptor had 40 dimensions, which have 

to be multiplied by the number of time-lags (30 with sampling frequency 50Hz) to have the 

dimensionality of the TRF input. For this reason, we conducted all analysis on the reduced stimulus 

set ALL, while the EXT descriptor was used to assess spectrotemporal and phoneme TRFs.  

The TRF weights constitute good features to study the spatio-temporal relationship between a 

stimulus feature and the neural signal. However, studying this relationship for multivariate speech 

descriptor, such as Phn, requires the identification of criteria to combine multiple dimensions of TRF 

weights. One solution to use the EEG prediction correlation values to quantify the goodness of fit for 

a multivariate TRF model. Here, we considered the relative enhancement in EEG prediction 

correlation when Phn was included in the model (using the ALL feature-set), thus allowing us to 

discern the relative contribution of phonetic features to the neural signal. This isolated index of 
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phoneme-level processing was also shown to correlate with psychometric measures of phonological 

skills35. Additional analyses were conducted with a generic modelling approach108. Specifically, one 

generic TRF model was derived for each of the groups A, B, C, and L1 by averaging the regression 

weights from all subjects within the group. Then, EEG data from each left-out subject (whose data 

was not included in the generic models) was predicted with the four models. The four prediction 

correlations were used as indicators of how similar the EEG signal from a subject was to the one 

expected for each of the four groups, providing us with a simple classifier of proficiency and 

nativeness. 

 

Proficiency-level decoding 

Support Vector Regression (SVR) with radial basis function kernel was used to decode the 

proficiency level of L2 participants. The output of the regression is the proficiency level, a continuous 

integer variable with six possible values corresponding with A1, A2, B1, B2, C1, and C2. The input 

of the SVR was the concatenation of 26 features derived from the TRF analysis described in the 

previous section. Specifically, we chose features based on the TRF weights (9 features), subject-

specific EEG prediction correlations (5 features), and generic models EEG prediction correlations 

(12 features). 

Each feature had multiple dimensions, such as EEG electrodes and time-latencies. A multilinear 

principal component analysis (MPCA) was performed to summarize each of them with a single value. 

The first component was retained for the TRFs corresponding to envelope, phoneme onsets, 

phonetic feature, phonotactics, and semantic dissimilarity. Based on previous TRF studies and our 

initial hypotheses, we complemented the result of this lossy compression by adding distinctive 

feature that summarize specific aspects of interest of the TRFs. For speech acoustics, we included 

information on the power spectrum of the TRF (the EEG responsiveness to 16 logarithmically-

spaced sound frequencies) by collapsing the weights in TRFALL corresponding to Sgr across the 

time-latency dimension. MPCA was then run on the resulting values to quantify this spectral feature 

with a single value per subject. For phonotactics and semantic dissimilarity, the strength of the main 
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TRF components was summarized by averaging the regression weights over selected time-windows 

and electrodes where they were strongest (80-140 and 300-700 for Pt, and 300-700 for Sem, at Fz, 

Cz, and Oz respectively). 

EEG prediction correlations were calculated when TRF models were trained and tested on each 

participant separately (with leave-one-out cross-validation across recording blocks). This procedure 

provided us with a correlation score for each electrode, which was then summarized with a single 

value by running MPCA and retaining the first component. This procedure provided us with four 

features for EEG predictions based on Env, Phn, Pt, Sem. A fifth feature was derived by measuring 

the increase in EEG prediction correlations when Phn was included in the stimulus set by 

concatenating it with Env' and Sgr (Phnr). This subtraction was suggested to constitute an isolated 

measure of phoneme-level processing32,35. Finally, EEG signals from a subject were also predicted 

with TRF models fit on all other subjects, grouped in A, B, C, and L1, with the rationale that the EEG 

data from a given subject should be best predicted by TRF models from subjects of the same group. 

This approach, which has been referred to as average models or generic modelling approach36,108, 

provided each subject with a score for each group and for each feature of interest. Here we selected 

Env', Phnr, and the concatenation of Pt and Sem. MPCA was then used for dimensionality reduction 

as for the other features, providing us with twelve features (4 groups and 3 predicting features).  

SVR was used to decode the L2 proficiency level, for the binary classification L1 versus L2, or for 

the binary classification L1 versus C-level L2 with leave-one-out cross-validation. A backward 

elimination procedure was used to identify that optimal set of features that minimize the mean 

squared error (MSE) of the decoded proficiency levels. Specifically, starting from a set containing all 

the features, the regressor whose exclusion produced the larger decrease in MSE was removed at 

each step. This procedure continued as long as there was at least 5% improvement on the MSE 

score (please see Supplementary Table 1 for a full list of features and information on the selected 

feature for the L2 decoding and L1 vs. L2 classification procedures).  
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Statistical analysis 

Statistical analyses were performed using two-tailed permutation tests for pair-wise comparisons. 

Correction for multiple comparisons was applied where necessary via the false discovery rate (FDR) 

approach. One-way ANOVA was used to assess when testing the significance of an effect over 

multiple (> 2) groups. The values reported use the convention F(df, dferror). Greenhouse-Geisser 

corrections was applied when the assumption of sphericity was not met (as indicated by a significant 

Mauchly’s test). FDR-corrected Wilcoxon tests were used after the ANOVA for post-hoc 

comparisons. 
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Supplementary Figure 1. Average temporal response function weights across subjects at the electrode Cz 
and peri-stimulus time-latencies from 0 to 600 ms for each proficiency level. These TRF weights were used to 
produce the result in Figure 3A. 
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Supplementary Table 1. The 26 features used for the proficiency decoding and L1 vs. L2 classification analyses. Features are grouped into TRF weights, EEG 
prediction correlations when using subject-specific models, and EEG prediction correlations when using generic models that were averaged within a particular 
proficiency group. A backward elimination procedure was used for feature selection. Features that were selected for the decoding are indicated with a colored 
cell.

Feature Description L2 proficiency L1 vs. L2
Envelope Temporal dimension of the spectrogram response
Spectrogram Frequency dimension of the spectrogram response
Phonetic features Temporal and feature dimensions of the phoneme response
Phoneme onsets Temporal dimension of the phoneme onset response
Phonotactics Temporal and feature dimensions of the phoneme response
Semantic dissimilarity All EEG channels and time-lags
Semantic dissimilarity Front-Back Pz minus FPz for time-lags between 300 and 600 ms
Phonotactics short latencies Phonotactics for time-lags between 80 and 140 ms
Phonotactics longer latencies Phonotactics for time-lags between 300 and 700 ms
Env Prediction r when using Env feature
Phn Prediction r when using Phn feature
Pt Prediction r when using Pt feature
Sd Prediction r when using Sd feature
PhnEnv'Sgr - Env'Sgr Increase in Prediction r when using Phn features
Envelope: generic A Prediction r when using the Env generic model fit on the A group
Envelope: generic B Prediction r when using the Env generic model fit on the B group
Envelope: generic C Prediction r when using the Env generic model fit on the C group
Envelope: generic L1 Prediction r when using the Env generic model fit on the L1 group
PhnEnv'Sgr - Env'Sgr: generic A Increase in prediction r when using Phn - generic model A group
PhnEnv'Sgr - Env'Sgr: generic B Increase in prediction r when using Phn - generic model B group
PhnEnv'Sgr - Env'Sgr: generic C Increase in prediction r when using Phn - generic model C group
PhnEnv'Sgr - Env'Sgr: generic L1 Increase in prediction r when using Phn - generic model L1 group
Sd: generic A Prediction r when using the Sd generic model fit on the A group
Sd: generic B Prediction r when using the Sd generic model fit on the B group
Sd: generic C Prediction r when using the Sd generic model fit on the C group
Sd: generic L1 Prediction r when using the Sd generic model fit on the L1 group
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