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Abstract 

Preliminary evidence indicates that occipito-temporal activation patterns for different visual stimuli are 

less distinct in older (OAs) than younger (YAs) adults, suggesting a dedifferentiation of visual 

representations with aging. Yet, it is unclear if this deficit (1) affects only sensory or also categorical 

aspects of representations during visual perception (perceptual representations), and (2) affects only 

perceptual or also mnemonic representations. To investigate these issues, we fMRI-scanned YAs and 

OAs viewing and then remembering visual scenes. First, using representational similarity analyses, we 
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distinguished sensory vs. categorical features of perceptual representations. We found that, compared 

to YAs, sensory features in early visual cortex were less differentiated in OAs (i.e., age-related 

dedifferentiation), replicating previous research, whereas categorical features in anterior temporal lobe 

(ATL) were more differentiated in OAs. This is, to our knowledge, the first report of an age-related 

hyperdifferentiation. Second, we assessed the quality of mnemonic representations by measuring 

encoding-retrieval similarity (ERS) in activation patterns. We found that aging impaired mnemonic 

representations in early visual cortex and hippocampus but enhanced mnemonic representations in 

ATL. Thus, both perceptual and mnemonic representations in ATL were enhanced by aging. In sum, 

our findings suggest that aging impairs visual and mnemonic representations in posterior brain regions 

but enhances them in anterior regions. 

 

Keywords: aging, perception, memory, functional MRI, representations. 
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1. Introduction 

As we age, the anatomy and physiology of our brain declines, impairing cognitive abilities such as 

perception and memory (Grady, 2012; Grady, 2008). Most prior functional MRI (fMRI) studies 

investigating the neural bases of these impairments have focused primarily on processes (operations 

performed on information) and only rarely examined age effects on representations (the nature of the 

information processed) (Cowell et al., 2019). In fMRI studies, differences in the mean activity level 

(univariate measure) of a group of voxels is assumed to reflect differences in processes, whereas 

differences in the spatial distribution (pattern) of activity (multivariate measure) within a group of voxels 

is assumed to reflect differences in representations (Haxby et al., 2001; Norman et al., 2006; 

Kreigeskorte et al., 2008). There has been accumulating evidence that activation patterns elicited by 

different types of visual stimuli (faces, places, etc.) are less distinct in older adults (OAs) than in 

younger adults (YAs; Park et al., 2004; Chee et al., 2006; Payer et al., 2006; Voss et al., 2008; Goh et 

al., 2010; Bowman et al., 2019; Koen et al., 2019; Koen and Rugg, 2019; Koen et al., 2020). This 

phenomenon, known as age-related neural dedifferentiation, suggests that aging impairs the quality of 

representations during visual perception (perceptual representations). Yet, two fundamental questions 

remain unanswered: (1) what aspects of perceptual representations are impaired by aging? and (2) are 

age-related deficits in perceptual representations associated with deficits in visual memory traces 

(mnemonic representations)? The current study investigates these two critical questions. 

1. What aspects of the perceptual representations are impaired by aging? This is a critical issue 

because perceptual representations consist of multiple features, which are processed in different brain 

regions and are affected differentially by aging. In particular, it is well established that sensory features 

of visual representations are processed primarily in early visual cortex and that these features form 

conjunctions of categorical features in more anterior ventral pathway regions, such as the anterior 

temporal lobe (ATL; Bussey et al., 2005; Clarke and Tyler, 2014). The sensory-to-categorical feature 

distinction is relevant to aging because OAs tend to be impaired in perceptual processes (Park et al., 
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2004; Chee et al., 2006; Goh et al., 2010; Bowman et al., 2019; Koen et al., 2019; Koen and Rugg, 

2019; Koen et al., 2020). However, their abilities to process categorical and conceptual information are 

relatively preserved (Cherry et al., 2012; Mohanty et al., 2016; Monge and Madden, 2016; Owsley, 

2011), suggesting that age-related perceptual impariment could be driven more by the deficit in 

processing lower-level sensory information. Thus, we hypothesized that age-related visual 

dedifferentiation impairs sensory features of perceptual representations in early visual cortex but not 

categorical features in the ATL (Hypothesis 1). Given than some aspects of categorical-related 

processing are actually better in OAs than YAs (Long and Shaw, 2000; Park et al., 2002), an intriguing 

possibility is that categorical features in the ATL could be enhanced by aging. 

We investigated Hypothesis 1 using representational similarity analyses (Kriegeskorte and Kievit, 

2013; Kriegeskorte et al., 2008), in which the sensory and categorical similarities between stimuli are 

coded by two separate stimuli models. In the sensory model, pair-wise stimuli similarity is based on 

sensory visual features, such as shape (e.g., gun » hair dryer), whereas in the categorical model, it is 

based on categorical features (e.g., gun » sword). The pair-wise stimuli similarity coded by the model is 

then correlated with pair-wise similarity in fMRI activation patterns (representations) for the same set of 

stimuli. The resulting model-brain fit (2nd order correlation) identifies brain regions that process and/or 

store representations emphasizing sensory and/or categorical visual features (Fig. 1a). As stimuli 

models code the differences between images based upon a selective feature of interest (e.g., sensory, 

categorical), this model-brain fit may be operationalized as a measure of differentiation, where higher 

values in a brain region indicate greater neural differentiation.  

 

[Figure 1] 
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Figure 1: Perceptual and mnemonic representations analysis approach. 

Panel a shows a model of the analysis combining representational similarity analysis and DNN layers. To create models from 

DNN layers, the image stimuli are submitted to the pre-trained DNN and at each layer of interest, the “activation” values are 

extracted. Here, our layers of interest were the first and penultimate layers. For each image and layer of interest, the vectors of 

activation values are correlated with each other resulting in a stimuli model for each layer of interest. The stimuli models may 

then be used to predict brain activation patterns (model-brain fit) within ‘searchlight’ volumes (green circle). Panel b shows our 

paradigm in which participants, while undergoing fMRI scanning, studied images (while rating the quality of the images) and 

later retrieved their memories of the scenes (while rating the vividness of their memories). We quantified the similarity of 

encoding to retrieval representations by calculating ERS. Panel c shows for each in-scan vividness rating value, the 

corresponding post-scan memory accuracy (hit rate). Error bars represent the standard error of the mean. ERS = encoding-

retrieval similarity; DNN = deep convolutional neural network; fMRI = functional MRI; OA = older adult; RSA = representational 

similarity analysis; YA = younger adult. 
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In the current study, our stimuli models were derived from deep convolutional neural networks 

(DNNs; Krizhevsky et al., 2012; LeCun et al., 2015). DNNs consist of layers of convolutional filters and 

can be trained to classify images into categories with a high level of accuracy. During training, DNNs 

“learn” convolutional filters in service of classification in the final layer, where filters from early layers 

predominately detect sensory features and while later layers organize items by their categorical 

features (Zeiler and Fergus, 2014). Previous work has demonstrated that progressive layers of typical 

DNNs (AlexNet, VGG16, etc.) may help to model visual representations along the ventral visual 

pathway, where early layers map brain activation patterns predominately in early visual cortex and late 

layers map brain activation patterns in more anterior ventral visual pathway regions (Güçlü and van 

Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; Kriegeskorte, 2015; Leeds et al., 2013; Wen et 

al., 2017; Davis et al., 2020). Thus, a principle advantage of DNNs is that they afford the ability to 

model a continuum of low-level sensory features to more semantically meaningful categorical features. 

These models are especially helpful in addressing the complex visual arrays typical of most scenes (as 

opposed to single objects, Josephs and Konkle, 2019), especially with scenes where their categories 

are less clear. DNNs allow for this hierarchy to be investigated within a single framework. Furthermore, 

DNNs outperform traditional theoretical models of the ventral visual pathway (e.g., HMAX, object-based 

models; Cadieu et al., 2014; Groen et al., 2018) in their capacity to identify specific objects with the 

appropriate category- or basic-level label. Therefore, a DNN is an ideal model to investigate this 

sensory-to-categorical feature distinction. Here, we used a pre-trained 16-layer DNN, the VGG16 

(Simonyan and Zisserman, 2014), which was successfully trained to classify 1.8 million scenes into 365 

categories (Zhou et al., 2017). The first hidden layer generated a sensory model, since this model is 

derived from a layer that detects sensory features, and the penultimate layer, a categorical model, 

since this model is derived from the layer before the images are explicitly categorized into the trained 

categories (Bankson et al., 2018; Devereux et al., 2018; Groen et al., 2018). 

Given the posterior-anterior organization of the ventral visual pathway, we expected that the 

sensory model would correlate with activation patterns in early visual cortex, and the categorical model, 
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with activation patterns in more anterior temporal regions such as the ATL. On the basis of Hypothesis 

1, we predicted that, compared to YAs, (1) the correlation between brain activation patterns and the 

sensory model (i.e., model-brain fit) would be reduced in OAs, whereas (2) the correlation between 

brain activation patterns and the categorical model would be spared (or even enhanced) in OAs. 

2. Are age-related deficits in perceptual representations associated with deficits in mnemonic 

representations? Age-related sensory and cognitive deficits are strongly related to each other (Baltes 

and Lindenberger, 1997; Lindenberger and Baltes, 1994), possibly because sensory deficits cascade 

through the cognitive system impairing downstream cognitive processes (Monge and Madden, 2016). 

Consistent with this idea, degrading stimuli (i.e., mimicking sensory impairment) by adding noise yields 

cognitive deficits in YAs that resemble cognitive deficits in OAs (Gilmore et al., 2006; Monge and 

Madden, 2016; Murphy et al., 2000; Pichora-Fuller et al., 1995). In contrast, spared categorical 

processing in OAs may explain why age-related memory deficits are attenuated for semantically rich 

stimuli (Kausler, 1994; Naveh-Benjamin, 2000). Thus, the sensory to categorical dissociation we 

postulated for perceptual representations (Hypothesis 1) is likely to apply also to mnemonic 

representations.  

We operationalize “perceptual representations” as the model-brain fit during the initial image 

presentation during the encoding phase of our study. Two types of perceptual representations are 

investigated, sensory representations and categorical representations. In contrast, we operationalize 

“mnemonic representations” in terms of the reactivation of the encoded activation during retrieval, as 

measured by the similarity between encoding and retrieval activation patterns or encoding-retrieval 

similarity (ERS, Fig. 1b). In the case of mnemonic representations, however, the age-related deficit is 

likely to affect not only visual cortex but also downstream memory-binding regions, such as the 

hippocampus. The hippocampus shows strong evidence of reactivation during retrieval (Danker and 

Anderson, 2010; Moscovitch et al., 2016) and shows age-related deficits in activity and connectivity 

during retrieval (Daselaar et al., 2006; Trelle et al., 2019; Deng et al., 2020). Thus, we hypothesized 

that aging is associated with impaired mnemonic representations in early visual cortex and 
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hippocampus but spared, or possibly even enhanced, mnemonic representations in the ATL 

(Hypothesis 2).  

We investigated Hypothesis 2 using a reactivation fMRI paradigm (Danker and Anderson, 2010; 

Rugg and Vilberg, 2013). As illustrated by Fig. 1b, during encoding scans, samples of YAs and OAs 

viewed 96 pictures of scenes paired with labels, and during retrieval scans, they recalled the scenes in 

response to the labels and rated the quality of their memories. These in-scan ratings were validated 

with a post-scan forced-choice memory recognition test, which showed that greater in-scan ratings 

were associated with better post-scan accuracy (Fig. 1c; see the Materials and Methods for more 

details on participants and the experimental design). Previous reactivation fMRI studies with OAs 

compared broad categories of stimuli (Abdulrahman et al., 2017; Johnson et al., 2015; Thakral et al., 

2019; Wang et al., 2016) or presented stimuli multiple times during encoding (St-Laurent et al., 2014), 

precluding reactivation measures for individual events. In contrast, we measured the reactivation of 

individual events (each scene) by directly measuring encoding-retrieval similarity (ERS) in activation 

patterns (Ritchey et al., 2013; Wing et al., 2014). On the bases of Hypothesis 2, we predicted that, 

compared to YAs, OAs would show reduced ERS in the early visual cortex but spared (or even 

enhanced) ERS in the ATL. 

2. Materials and Methods 

2.1. Study Participants 

 Our study sample included 22 YAs and 22 OAs. One YA and one OA were excluded from 

analysis because of functional data missing from the first fMRI run due to a technical error. Another OA 

was excluded from analysis due to a poor quality T1 image, not allowing the participant’s functional 

images to be properly normalized into MNI space. This left a study sample of 21 YAs (12 women, age 

range = 18-30 years, M  = 23.5 years, SD = 3.0 years) and 20 OAs (9 women, age range = 61-82 

years, M = 70.5 years, SD = 5.4 years). Participants self-reported to be free of significant health 
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problems (including atherosclerosis, neurological and psychiatric disorders), and not taking medications 

known to affect cognitive function or cerebral blood flow (except antihypertensive agents). Also, all 

participants were right-handed and completed at least 12 years of education. The OAs were 

additionally screened for dementia via the Mini-Mental State Examination (MMSE; inclusion criterion ≥ 

27; M = 29.2, SD = 0.7; Folstein et al., 1975); no exclusions were necessary based upon this criterion. 

After study completion, participants were monetarily compensated for their time. Study results from the 

sample of YAs were previously reported in other manuscripts (Geib et al., 2017; Wing et al., 2014). The 

Duke University Institutional Review Board approved all experimental procedures, and participants 

provided informed consent prior to testing. 

2.2. Experimental Design 

 Participants completed three encoding runs followed by three retrieval runs. During the 

encoding runs, participants explicitly studied a total of 96 color pictures of complex scenes (32 images 

per run, order randomized within run). The 96 images were very similar to the ones used to train the 

DNN model employed (VGG16), including many of the same images. During each encoding trial (4 

sec), participants were presented a single picture with a unique descriptive label below the image (e.g., 

“tunnel” or “barn”). Within the trials, participants were asked to rate, on a four-point scale, the quality of 

the image (i.e., how well the image represents the label, 1 = low quality, 4 = high quality). This was to 

ensure participants would pay attention to the details of each image. Each encoding trial was followed 

by an active baseline interval of 8 sec, in which participants were presented digits from 1 to 4 and 

pushed the button corresponding to the presented numbers. 

 The retrieval runs were identical in format to the encoding runs, except the pictures of the 

scenes were not presented. During each retrieval trial, participants were presented the 96 descriptive 

scene labels previously presented along with the pictures of the scene, and participants were instructed 

to recall the corresponding image from encoding with as much detail as possible. Participants then 
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rated, on a four-point scale, the amount of detail with which they could remember for the specific picture 

(1 = least amount of detail, 4 = highly detailed memory). 

Immediately after the retrieval runs, participants completed a four-alternative forced-choice 

recognition test outside the scanner, in a testing room located adjacent to the MR scanner. For each 

recognition trial, the participants selected the picture they believed they saw during encoding among 4 

pictures (1 target picture, 3 distractors) that were simultaneously presented for 5 sec (Fig. 1b, right). 

Participants then reported their confidence in the recognition decision using a 4-pt scale (1 = guess, 4 = 

very confident) in each trial. The performance of post-scan memory recognition for each participant was 

measured as the hit rate (the number of correct trials over the number of total trials). 

2.3. MRI Data Acquisition 

 MRI data were collected on a General Electric 3T MR750 whole-body 60 cm bore MRI scanner 

and an 8-channel head coil. The MRI session started with a localizer scan, in which 3-plane (straight 

axial/coronal/sagittal) localizer faster spin echo (FSE) images were collected. Following, using a 

SENSE spiral-in sequence (repetition time [TR] = 2000 msec, echo time = 30 msec, field of view [FOV] 

= 24 cm, 34 oblique slices with voxel dimensions of 3.75 x 3.75 x 3.8 mm3), the functional images were 

acquired. The functional images were collected over six runs – three encoding runs and three retrieval 

runs; there was also a functional resting-state run after the third encoding run, which is not reported 

here. Stimuli were projected onto a mirror at the back of the scanner bore, and responses were 

recorded using a four-button fiber-optic response box (Current Designs, Philadelphia, PA, USA). 

Following, a high-resolution anatomical image (96 axial slices parallel to the AC-PC plane with voxel 

dimensions of 0.9 x 0.9 x 1.9 mm) was collected. Finally, diffusion-weighted images were collected, 

which are not reported here. Participants wore earplugs to reduce scanner noise, and foam pads were 

used to reduce head motion, and, when necessary, participants wore MRI-compatible lenses to correct 

vision. 
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2.4. Functional MRI Data Preprocessing 

 For each run, the first six functional images were discarded to allow for scanner equilibrium. All 

functional images were preprocessed in a SPM12 (London, United Kingdom; 

http://www.fil.ion.ucl.ac.uk/spm/) pipeline. Briefly, the functional images were slice timing corrected 

(reference slice = first slice), realigned to the first scan in the first session, and subsequently unwarped. 

Following, the functional images were coregistered to the skull-stripped high-resolution anatomical 

image (skull-stripped by segmenting the high-resolution anatomical image and only including the gray 

matter, white matter, and cerebrospinal fluid segments). The functional images were normalized into 

MNI space using DARTEL (Ashburner, 2007); the study specific high-resolution anatomical image was 

created using all of the study participants. The voxel size was maintained at 3.75 x 3.75 x 3.8 mm3 and 

the normalized-functional images were not spatially smoothed. Lastly, the DRIFTER toolbox (Sarkka et 

al., 2012) was used to denoise the functional images. We also calculated the temporal signal-to-noise 

ratio (SNR), that is, the ratio between mean and the standard deviation of the time series in a given ROI 

(Welvaert and Rosseel, 2013). 

2.5. Functional MRI Analysis 

2.5.1. Functional Representational Similarity 

To obtain the beta estimates for each event, we conducted a single-trial model analysis within a 

general linear model. These beta estimates were calculated using a least squares-separate approach 

(Mumford et al., 2012). This approach estimates a first-level model in which one regressor models a 

specific event of interest and another regressor models all the other events (each run included a 

regressor modeling these other trials). Each event was modeled with a stick function placed at stimulus 

onset convolved with a standard hemodynamic response function with the temporal and dispersion 

derivative. Each model also included the six raw motion regressions, a composite motion parameter 

(derived from the Artifact Detection Tools [ART]), outlier TRs (scan-to-scan motion > 2.0 mm or 

degrees, scan-to-scan global signal change > 9.0 z score; derived from ART), the white matter 
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timeseries, and cerebrospinal fluid timeseries. In each model we also modeled the temporal and 

dispersion derivatives and implemented a 128 sec cutoff high-pass temporal filter.  

These beta-images were used for (1) the representational similarity analysis combined with 

DNNs and (2) ERS. These analyses were conducted using in-house MATLAB (Natick, MA, USA) 

scripts (https://github.com/brg015). For the ERS analyses, we excluded trials in which participants 

responded (during retrieval) either not at all or in less than 250 msec. 

2.5.2. Representational Similarity Analysis Combined with Deep Convolutional Neural 

Networks 

To examine our first goal, we performed representational similarity analysis (Kriegeskorte and 

Kievit, 2013; Kriegeskorte et al., 2008) based on stimuli models derived from DNNs (Khaligh-Razavi 

and Kriegeskorte, 2014; Kriegeskorte, 2015; Leeds et al., 2013; Wen et al., 2017) that captured the 

similarities between the stimuli in two different aspects (i.e., sensory vs. categorical aspects). The 

stimuli models (96 x 96 matrix) were correlated with the brain activation patterns similarity matrix (96 x 

96 matrix) derived from searchlight volumes using Spearman’s correlation (a.k.a. model-brain fit), and 

the level of such model-brain fit may indicate the extent the neural representation reflects the 

processing of features associated with the given model (Kriegeskorte et al., 2006).  

For the searchlight analysis across brain regions, a 5 x 5 x 5 voxel cube (Wing et al., 2014) was 

placed around a voxel location and the activation values from this cube were extracted and vectorized 

for each beta image, representing the local activation pattern associated with each stimuli at this voxel 

location (Fig. 1a). This procedure was conducted for each stimulus and the activation values from each 

stimulus were correlated (Fisher-transformed Pearson’s r) with each other, representing the brain 

activation patterns. The brain activation patterns were then correlated (Spearman’s correlation) with the 

DNN-stimuli models (model-brain fit), which was the value placed in the voxel location. This procedure 

was repeated for every voxel in the brain and the output of this analysis was searchlight volumes 

representing brain activation pattern-DNN layer stimuli model similarity.  
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For the stimuli model, we used a popular DNN known as VGG16 (Simonyan and Zisserman, 

2014), which is pre-trained on approximately 1.8 million images of scenes in service of categorizing the 

images into 365 scene categories (Zhou et al., 2017). The VGG16 consists of 13 convolutional layers 

and 3 fully-connected layers. The first hidden DNN layer is a convolutional layer whose artificial 

neurons directly receive image inputs and have small spatial receptive fields. This layer is sensitive to 

low-level visual features, such as Gabor patches, boundaries, and blobs (Eickenberg et al., 2016). In 

comparison, the penultimate layer is the last hidden layer with 4096 artificial neurons, whose collective 

activation pattern is sent to the output layer (a.k.a. Softmax layer) to produce evidence scores of each 

of the 365 scene categories. Thus, the penultimate layer contains a rich array of computational 

information that is not defined by one visual feature (e.g., horizontal lines) or a simple combination of a 

few features (e.g., red horizontal lines) but instead a high-dimensional feature matrix which may 

dissociate many object classes (here, 365 classes), based on complex spatial configurations of 

information associated with different objects (ships, house, etc.) and backgrounds (sea, farmland, etc.) 

that allow to distinguish one scene from another (e.g., seaport vs. barn). In other words, the 

representation in the VGG16 penultimate layer directly supports its categorical outputs, which are 

highly consistent with the categorical judgements from human. 

Therefore, we created stimuli models from the first hidden DNN layer (reflecting sensory 

features) and penultimate DNN layer (reflecting categorical features). These stimuli models were 

constructed by feeding the study stimuli through the pretrained DNN and for each stimulus at each 

layer of interest (i.e., the first and penultimate layers), extracting the activation values. For each layer of 

interest, the activation values between stimuli were correlated (Pearson correlation) with each other. 

This yielded two 96x96 matrices (one for each layer of interest), which represent the similarity of the 

DNN activation values and are the image models (sensory and categorical image models). It should be 

noted that, although the first convolutional layer mimics low-level visual processing, and the penultimate 

layer, categorical judgement, the whole VGG16 should not be viewed as a model that emulates the 

entire ventral visual pathway.  
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After conducting the searchlight analysis examining model-brain fit, the searchlight volumes 

were spatially smoothed with a 5 mm Gaussian kernel (Clarke et al., 2016; Clarke and Tyler, 2014). 

Then, for each model, we extracted model-brain fit from a priori ROIs derived from the AAL atlas 

(Tzourio-Mazoyer et al., 2002), which consisted of early visual cortex (bilateral calcarine, cuneus, and 

lingual ROIs) and ATL (left dorsal temporal pole and ventral temporal pole). We chose to examine only 

the left ATL because of our interest in categorical representations and an extensive literature 

demonstrating greater processing of categorical-related features (e.g., conceptual processing) in the 

left hemisphere (Hodges et al., 1992; Tyler et al., 2004; Warrington and McCarthy, 1983). See the 

Introduction for an explanation of a priori ROI choice. 

2.5.3. Encoding-Retrieval Similarity 

To examine our second goal, we calculated ERS for each item using a searchlight procedure 

(Kriegeskorte et al., 2006). For each item (e.g., ‘barn’), its corresponding encoding and retrieval 

activation patterns were extracted from searchlight spheres, forming an encoding-retrieval vector pair. 

A 5 x 5 x 5 voxel cube was placed around each voxel and the activation patterns were extracted and 

vectorized. For each item, the encoding and retrieval vectors were correlated and the correlation value 

(Fisher-transformed Pearson’s r, which is ERS) was placed in the original center voxel location. Within 

each voxel location, the ERS value for each stimulus was averaged across all 96 encoding items. This 

procedure was repeated for every voxel within the brain. Afterwards, the searchlight volumes were 

spatially smoothed with a 5 mm Gaussian kernel (Clarke et al., 2016; Clarke and Tyler, 2014). We then 

extracted ERS from a priori ROIs derived from the AAL atlas (Tzourio-Mazoyer et al., 2002), which 

consisted of early visual cortex (bilateral calcarine, cuneus, and lingual ROIs), ATL (left dorsal temporal 

pole and ventral temporal pole), and the hippocampus (bilateral hippocampi). See the Introduction for 

an explanation of a priori ROI choice. In addition to item-level ERS, as a control analysis, we also 

calculated set-level ERS, which is ERS between an item and every other item within the stimuli set 

(Ritchey et al., 2013; Wing et al., 2014), reflecting the baseline level of recurring activation patterns that 
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were non-specific to the retrieval of specific item. Thus, the value of dissociating item- and set-level 

ERS is that we are able to control for the amount of pattern similarity that would be seen between any 

pair of items, and describe a more specific reinstantiation of a neural pattern unique to the target item. 

The analysis contrasting item and set ERS was constrained to the items that were subsequently 

remembered on the post-scan memory task. 

2.6. VGG16 Model Validation 

We conducted two preliminary analyses to validate the VGG16 (Simonyan and Zisserman, 

2014) as a model of sensory to categorical representations in our study. (i) The VGG16 was already 

successfully trained to classify 1.8 million scenes into 365 categories (Zhou et al., 2017), but we wanted 

to confirm it could also classify the 96 images employed in our study. Given that some of the scene 

labels we used were different than the categories used to train the VGG16 but were nevertheless 

closely related terms (e.g., “seaport” in Fig. 1-B, versus “harbor” in the VGG16 output category), it is 

difficult to evaluate the performance of VGG16 directly. Therefore, we created a slightly modified 

VGG16 for binary indoor-outdoor scene classification. This was achieved by removing the last layer of 

the VGG16 and adding a layer with two outputs (with a Softmax activation function), corresponding to 

indoor and outdoor scenes. The revised VGG16 was then trained using three pictures from each image 

category (images from the post-scan recognition task besides the target images) and tested on the 

pictures presented within the scanner. After 30 epochs, the revised VGG16 was able to classify the 

images into indoor vs. outdoor domains with 94.8% accuracy, suggesting that the stimuli images were 

well-matched with the training images. It should be noted that the model with this binary indoor-outdoor 

scene classification was only used to validate the use of the VGG16 within our study; the original 

pretrained VGG16 was used for stimuli model construction. (ii) We correlated the sensory and 

categorical stimuli models based on the original pretrained VGG16 and found that they were only 

moderately correlated with each other (r = 0.32, Figure S1), indicating that each model represents 
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unique features. In comparison, the stimuli models constructed from adjacent layers are more closely 

correlated with each other (Supplementary Fig. 1). 

 

2.7. Statistical Analysis 

 Statistical analyses (unless otherwise stated) were conducted within StatsModels (Seabold and 

Perktold, 2010) ran in Python 3 (Python Software Foundation, https://www.python.org/). Repeated 

measures ANOVAs were used to assess omnibus effects. Two-sided linear mixed effects models, with 

participant specified as a random effect, were used as a substitute of t-test or correlation. This model 

allowed us to include SNR as a nuisance variable when needed, as ATL can be vulnerable to low SNR. 

The significance of effects was based on the z-scores associated with the parameter estimates. Before 

entering the data into the linear mixed effects models, all values were z-transformed. All effect sizes 

reported in the manuscript were Cohen’s d. 

3. Results 

3.1. Behavioral Results 

We started by investigating the memory performance of the two age groups. In the post-scan 

recognition test, OAs showed lower number of hits comparing with YAs (YA: 75.10±10.98, OA: 

61.00±8.26, t=4.63, p=4.02e-5), as well as lower recognition confidence (YA: 3.11±0.30, OA: 

2.74±0.41, t=3.31, p=0.0022), suggesting age-related memory decline. In the retrieval scan, the two 

age groups showed comparable level of self-report recall vividness inside scanner (YA: 2.72±0.46, OA: 

2.70±0.40, t=0.12, p=0.91). The post-scan memory accuracy (hit rate) was positively related to 

vividness rating during retrieval (Fig. 1c), as is indicated by a significant effect of vividness 

(F(3,117)=13.17, p<2e-7). In addition, the confidence level of post-scan recognition was also 
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significantly contributed by in-scan vividness (Fig. S2; F(3,117)=64.62, p=2e-16). Memory performance 

for each stimulus can be found in Supplementary Table 2. 

3.2. Perceptual Representations: DNN-based Representational Similarity Analysis 

Our first hypothesis was that age-related visual dedifferentiation impairs the differentiation of 

sensory features in early visual cortex but not categorical features in the ATL, which may even be 

enhanced in aging. Using DNN-based representational similarity analysis, we tested this hypothesis by 

comparing age-related differences in model-brain fit for the sensory model based on the first VGG16 

layer, and for the categorical model based on the penultimate VGG16 layer. We tested this hypothesis 

in two a priori ROIs – early visual cortex and ATL. For raw model-brain fit values (see Supplementary 

Fig. 3a), we performed an omnibus Model_Type (sensory/categorical) x ROI (early visual cortex/ATL) x 

Age (YA/OA) repeated measures ANOVA, and we found a significant main effect of ROI 

(F(1,39)=15.37, p<0.001) and a significant Age x ROI interaction (F(1,39)=12.14, p<0.005), while the 

main effect of Model_Type (F(1,39)=0.34, p=0.57), Model_Type x Age interaction (F(1,39)=1.66, 

p=0.21), Model_Type x ROI interaction (F(1,39)=0.095, p=0.76) and Model_Type x ROI x Age 

interaction were not significant (F(1,39)=1.82, p=0.185). In an ROI-level analysis, as illustrated in Fig. 

2a, which shows z-scored 2nd order correlations, the evidence was consistent with our first hypothesis: 

compared to the YAs, in early visual cortex, the sensory model-brain fit was reduced in the OAs (β = -

0.39, z = 19.86, p < .0001, d = 0.83), whereas in the ATL, the categorical model-brain fit was enhanced 

in the OAs (β = 0.26, z = 12.82, p < .0001, d = 0.53). In other words, whereas early visual cortex 

showed age-related dedifferentiation, the ATL showed age-related hyperdifferentiation. As the ATL is 

particularly vulnerable to low signal-to-noise ratio (SNR), we repeated the analysis statistically 

controlling for SNR and still found that in the ATL that categorical model-brain fit was enhanced in the 

OAs compared to YAs (β = 0.26, z = 15.61, p < .0001). We did not find statistically significant age-

group differences of the sensory model-brain fit in the ATL (β = 0.17, z = 1.39, p = .17, d = 0.33), but 

we did find, compared to YAs, that the categorical model-brain fit in the early visual cortex was reduced 
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in the OAs (β = -0.27, z = 3.25, p < .01, d = 0.54). In sum, this is, to our knowledge, the first evidence of 

age-related hyperdifferentiation of activation patterns in the ventral pathway or any brain region. 

 

[Figure 2]  

 

Figure 2: Age-related neural dedifferentiation and hyperdifferentiation. 

Panel a shows within the early visual cortex and ATL the stimuli model (sensory and categorical)-brain fit; the figure shows z-

scored (mean set to one) 2nd order correlations. Compared to the YAs, in the early visual cortex, we found that the sensory 

model-brain fit was reduced in the OAs (age-related dedifferentiation), whereas in the ATL, the categorical model-brain fit was 

enhanced in the OAs (age-related hyperdifferentiation). Panel b shows the HMAX C1 response model-brain fit in early visual 

cortex. We found that, compared to YAs, OAs exhibited reduced HMAX-brain fit in early visual cortex. Panel c shows the brain 
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activation pattern similarity for within-domain minus between-domains (domains = indoor vs. outdoor scenes) in the ATL. We 

found that, compared to the YAs, OAs exhibited enhanced activation pattern similarity for within- than between-domains in the 

ATL. Error bars represent the standard error of the mean. Error bars represent the standard error of the mean. ATL = anterior 

temporal lobe, OAs = older adults, YAs = younger adults. 

 

Although DNNs provide stronger models of visual representations in the ventral visual pathway 

than traditional theoretical models (e.g., HMAX, object-based models; Cadieu et al., 2014; Groen et al., 

2018), DNNs are sometimes critiqued for being too complex and, therefore, less interpretable. We 

believe that this level of complexity is necessary to map representations within the brain (Kriegeskorte 

and Douglas, 2018), but the critique of interpretability is well received. Therefore, we examined if the 

age-related differences can also be observed using more traditional models. (i) For sensory 

representations, we used the C1 responses of the HMAX model (Clarke and Tyler, 2014; Serre et al., 

2007), which was proposed to reflect properties of early visual cortex (Riesenhuber and Poggio, 1999; 

Serre et al., 2007). Consistent with the DNN analysis, compared to the YAs, the OAs exhibited reduced 

HMAX-based model-brain fit in early visual cortex (Fig. 2b; β = -0.39, z = 13.73, p < .0001, d = 0.82). In 

addition, the HMAX-based model-brain fit was strongly correlated with the early DNN-based model-

brain fit across participants (r = 0.74, p < 0.001), suggesting good consistency of the two 

measurements. (ii) For categorical representations, we examined brain activation pattern similarity for 

within- compared to between-domains (indoor vs. outdoor scene trials), since images within the same 

domain likely share large amounts of objects and visual features, as demonstrated in our preliminary 

analysis using the VGG16 to classify indoor and outdoor scenes (see Preliminary analyses in the 

Results). We performed a Model_Type (HMAX C1/within-minus-between domains) x ROI (early visual 

cortex/ATL) x Age (YA/OA) ANOVA on these two alternative model-brain fit measures. We found 

significant main effect of ROI (F(1,39) = 5.23, p < 0.05), Age x ROI interaction (F(1,39) = 9.61, p < 

0.005), and Model_Type (F(1,39) = 4.89, p < 0.05). The Model_Type x Age interaction (F(1,39) = 3.51, 

p < 0.1), Model_Type x ROI interaction (F(1,39) = 3.52, p < 0.1) and Model_Type x ROI x Age 
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interaction (F(1,39) = 3.52, p < 0.1) were non-significant, although noticeable to some extent. 

Consistent with the DNN analysis, compared to the YAs, the OAs exhibited enhanced activation pattern 

similarity for within- than between-domains in the ATL (Fig. 2c; β = 0.23, z = 3.36, p < .001, d = 0.46; 

see Supplementary Fig. 3b for pattern similarity values within- and between-domains). These findings 

supported the robustness of DNN-based analysis on perceptual representation, providing further 

evidence for age-related dedifferentiation of sensory features in early visual cortex and 

hyperdifferentiation of categorical features in ATL. 

As an exploratory analysis, we further investigated the links between encoding representations and 

memory (Supplementary Table 3). In YAs, we found a significant positive correlation between post-

scan memory accuracy and sensory model-brain fits in early visual cortex (DNN Layer 1 model-brain fit: 

r = 0.45, p < 0.05; HMAX C1 model-brain fit: r = 0.51, p < 0.05), suggesting the sensory representation 

in visual cortex supported later memory retrieval. In comparison, in OAs, such a correlation between 

memory and sensory model-brain fits was absent (DNN Layer 1 model-brain fit: r = 0.04, p > 0.5; 

HMAX C1 model-brain fit: r = -0.03, p > 0.5), although there were no significant differences between the 

correlations of the two age groups. Collapsing across all participants (YAs & OAs), the association 

between early sensory model-brain fits for early layer models (DNN Layer 1, HMAX C1) and memory 

accuracy was significant (DNN Layer 1 model-brain fit: r = 0.46, p < 0.005; HMAX C1 model-brain fit: r 

= 0.47, p < 0.005); when corrected for age effect, such behavioral correlate was still significant for the 

HMAX C1 model (partial correlation, r=0.32, p=0.042) and almost reaching significant for the DNN 

Layer 1 model (partial correlation, r=0.31, p=0.051). We did not find significant correlation between 

memory and categorical model-brain fits in ATL in either YAs (r=0.14, p=0.54) or OAs (r=0.053, 

p=0.83). 

Although the a priori ROI analysis was used to test our hypothesis, as an exploratory analysis, we 

conducted the whole-brain searchlight analysis. Within both age groups, the first layer of the VGG16 

was primarily associated with early visual regions, and the penultimate layer was additionally linked to 

anterior temporal, parietal, and frontal regions (Fig. 3; see Supplementary Table 1 for cluster 
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coordinates). This is consistent with previous research that early DNN layers identified posterior brain 

regions mediating sensory representations, and later layers, anterior brain regions mediating 

categorical representations (Güçlü and van Gerven, 2015; Khaligh-Razavi and Kriegeskorte, 2014; 

Kriegeskorte, 2015; Leeds et al., 2013; Wen et al., 2017). With respect to age-related differences, YAs 

showed stronger sensory model-brain fit in the early visual regions, whereas OAs showed stronger 

categorical model-brain fit in anterior parahippocampal gyrus and some frontal regions 

(Supplementary Table 1). In sum, the whole-brain searchlight analysis largely mirrors the a priori ROI 

analysis. 

 

[Figure 3] 
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Figure 3: Sensory and categorical model-brain fit. 

The figure shows the whole-brain searchlight analysis of the stimuli model (sensory and categorical)-brain fit. Within both the 

YAs and OAs, we found that the sensory model (based upon the first DNN layer) correlated predominately with brain activation 

patterns in the visual cortices and the categorical model (based upon the penultimate DNN layer) additionally correlated with 

brain activation patterns in anterior temporal, parietal, and frontal regions. Qualitatively, in these maps it can be seen that that 

the sensory model is more strongly associated with earlier visual cortex region activation patterns in YAs than OAs, whereas 

the categorical model is more strongly associated with more anterior ventral visual pathway region, such as the ATL, activation 

patterns in OAs than YAs (see white arrows). DNN = deep convolutional neural network; L = left; Lat = lateral; Med = medial; 

OAs = older adults; R = right; YAs = younger adults. 
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3.3. Mnemonic Representations: Encoding-Retrieval Similarity 

Our second hypothesis was that aging impairs mnemonic representations for sensory features in 

early visual cortex and hippocampus but not for categorical features in the ATL. To test this hypothesis, 

we calculated encoding-retrieval similarity (ERS; Ritchey et al., 2013; Wing et al., 2014). We tested this 

hypothesis using the same a priori ROIs used to test our first hypothesis with the addition of the 

hippocampus because of the second hypothesis’s relation to memory (see the Methods for more 

details). Consistent with Hypothesis 2, as shown within Fig. 4a, we found that, compared to YAs, OAs 

exhibited reduced ERS in the early visual cortex (β = -0.35, z = 14.34, p < .0001, d = 0.74) and 

hippocampus (β = -0.45, z = 3.37, p < .001, d = 0.97), but increased ERS in the ATL (β = 0.20, z = 

3.62, p < .001, d = 0.39; see Supplementary Fig. 3c for raw ERS values). As the ATL is particularly 

vulnerable to low SNR, we repeated the analysis statistically controlling for SNR and still found the 

same effect within the ATL (β = 0.24, z = 2.98, p < .01). In sum, these results indicated age-related 

decrease in mnemonic representations within regions associated with sensory features, as well as age-

related increase in mnemonic representations within regions associated with categorical features. 

In order to determine whether the dedifferentiation of sensory representations observed in early 

visual cortex were associated with a deficit in mnemonic representations, we examined the correlation 

between the sensory-model brain fit during encoding and ERS in early visual cortex. We found a 

significant positive correlation (all participants, age-controlled partial correlation: r = 0.39, p = 0.01; YA: 

r = 0.36, p = 0.11; OA: r = 0.46, p = 0.042). This finding supports the assumption that age-related 

perceptual dedifferentiation is associated with a deficit in mnemonic representations.  

 

[Figure 4] 
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Figure 4: Age-related differences in mnemonic representations.  

Panel a shows age-related differences in ERS. We found, compared to the YAs, in the early visual cortex and hippocampus 

that the OAs exhibited reduced ERS, whereas in the ATL, the OAs exhibited increased ERS. The figure shows z-scored 

(mean set to one) ERS; error bars represent the standard error of the mean. Panel b shows item-specific ERS (item-minus-set 

level ERS) in the ATL for trials that were subsequently remembered on the post-scan memory recognition task. We found that, 

compared to the YAs, OAs exhibited enhanced item-specific ERS in the ATL. Error bars represent the standard error of the 

mean. Panel c shows the relation between item-specific ERS in the ATL (limited to the trials that were subsequently 

remembered) and accuracy of the post-scan memory recognition task. We found in the OAs that increased item-specific ERS 

in the ATL was associated with better accuracy of the post-scan memory recognition task; translucent bars around the 

regression lines represent the 95% confidence intervals. ATL = anterior temporal lobe; ERS = encoding-retrieval similarity; 

OAs = older adults; YAs = younger adults. 
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Within the previous analysis we examined ERS for individual items (i.e., the similarity between 

pairs of encoding and retrieval activation patterns of the same scenes; item-level ERS). However, in 

order to make the claim that such retrieval reactivation is related to the specific memory items during 

encoding, it is necessary to also compare item-level ERS with set-level ERS (i.e., average encoding-

retrieval pattern similarity between one scene and all other scenes in the stimuli set, which reflects 

baseline neural reactivation; Koen and Rugg, 2016; Ritchey et al., 2013; Wing et al., 2014). 

Furthermore, in order to strengthen our claim that ERS here reflects memory, it is necessary to repeat 

the analysis only on items that were subsequently remembered on the post-scan memory recognition 

task. Therefore, we repeated the analysis subtracting set-level ERS from item-level ERS and only 

including trials that were subsequently remembered on the post-scan memory task. The only region 

that still exhibited the same age group difference pattern was the ATL, in which, compared to YAs, OAs 

exhibited enhanced ERS in the ATL (Fig. 4b; β = 0.016, z = 2.59, p = .01, d = 0.37; see 

Supplementary Fig. 3d for raw ERS values). The age-related increase in item-specific ERS in the ATL 

suggests that this region contributes to memory to a greater extent in OAs than YAs. To investigate this 

idea, we examined the relation between item-specific ERS (item-minus-set ERS) in the ATL and 

performance on the post-scan memory recognition task. As illustrated in Fig. 4c, greater ATL item-

specific ERS was associated with better accuracy of the post-scan memory recognition task in the OAs 

(β = 0.51, z = 2.17, p < .05) but not YAs (β = 0.082, z = 0.092, p = .93); it should be noted, however, 

that the age group by ERS interaction was not statistically significant (β = 0.40, z = 0.42, p = .68). As a 

control analysis, the item-specific ERS of subsequently forgotten items was not associated with better 

post-scan recognition accuracy in YAs (β = -0.10, z = -1.55, p = .12) or OAs (β = 0.44, z = 1.34, p = 

.18). Meanwhile, since such association with behavior was across participant, we further performed an 

Age (YA/OA) x Memory (Hits/Misses) repeated measures ANOVA on item-specific ERS in ATL. We did 

not find a higher ERS associated with hit items (F(1,39) = 0.02, p = 0.90) or a significant Age x Memory 

interaction (F(1,39) = 1.74, p = 0.19). 
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In sum, consistent with our second hypothesis, we found that OAs exhibited reduced ERS in the 

visual cortex and hippocampus but increased ERS in the ATL. The latter effect was found to be item-

specific and related to better memory accuracy across OA participants. 

4. Discussion 

 The overarching goal of the study was to examine age-related differences in the quality of 

perceptual and mnemonic representations. We had two main findings. First, in early visual cortex, 

activation patterns associated with sensory features showed dedifferentiation in OAs, replicating 

previous age-related dedifferentiation findings, whereas in the ATL, activation patterns associated with 

categorical features showed hyperdifferentiation in OAs. This is, to our knowledge, the first report of 

age-related hyperdifferentiation. Second, for mnemonic representations, we found that increased age 

was associated with impaired mnemonic representations (i.e., decreased ERS) in the early visual 

cortex and hippocampus but enhanced mnemonic representations (i.e, increased ERS) in the ATL. The 

enhanced mnemonic representations in the ATL was associated with better memory in OAs. These 

findings are discussed in greater detail below. 

4.1. Age-related Neural Dedifferentiation 

Previous studies have brought accumulating evidence for age-related neural dedifferentiation 

(Carp et al., 2011; Chee et al., 2006; Goh et al., 2010; Payer et al., 2006; Voss et al., 2008; Zheng et 

al., 2018; Sommer et al., 2019; Trelle et al., 2019; Bowman et al., 2019; Koen et al., 2019; Koen and 

Rugg, 2019; Koen et al., 2020). Age-related dedifferentiation has been often operationalized as 

reduced specificity of neural responses towards different stimuli sets (e.g., faces vs. places, living vs. 

non-living), which are heterogeneous domains with considerable within-domain variation. The current 

approach expands the utility of the research concept of dedifferentiation by considering how specific 

aspects of visual perception representations may be impaired in the visual system in older adults. Here, 

we compared age-related differences in the cortical differentiation of sensory vs. categorical features 
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using a novel DNN-based representational similarity analysis approach (Güçlü and van Gerven, 2015; 

Khaligh-Razavi and Kriegeskorte, 2014; Kriegeskorte, 2015; Leeds et al., 2013; Wen et al., 2017). 

Consistent with our hypothesis, within early visual cortex, we found evidence for age-related neural 

dedifferentiation of sensory features, where, compared to the YAs, brain activation patterns in early 

visual cortex exhibited a worse fit with the sensory model in the OAs (Figs. 2a, b). It is well known that 

increased age is associated with a robust decline in visual performance (Monge and Madden, 2016; 

Owsley, 2011). Our finding suggests that this decline may reflect not only a decline in perceptual 

operations (processes) performed on sensory information coming from earlier regions in the ventral 

stream, but also a deficit in the quality of visual information itself (representations) (Carp et al., 2011).  

The dedifferentiation observed in early visual cortex may have downstream influences on 

subsequent encoding-retrieval pattern matching, as indicated by the significant positive correlation 

between sensory model-brain fit and ERS within early visual cortex (all participants, age-controlled 

partial correlation: r = 0.39, p = 0.01; YA: r = 0.36, p = 0.11; OA: r = 0.46, p = 0.042). No correlation 

between sensory model-brain fit in early visual cortex and categorical model brain fit in ATL was found 

(all participants, age-controlled partial correlation: r = 0.017, p = 0.92; YA: r = -0.15, p = 0.52; OA: r = 

0.15, p = 0.53), suggesting that the downstream hyperdifferentiation was not driven by dedifferentiation 

in visual cortex. Taken together, these results provide evidence that the quality of perceptual 

representations at encoding will affect later mnemonic reinstatement. We used a straightforward 

recognition test to evaluate for successful retrieval, but future studies may wish to examine what 

influence this representational shift has for age-related changes in strategic retrieval operations 

mediated by more anterior PFC networks. Although the current analysis did not include multivariate 

measures of connectivity between regions, such an analysis would provide for a fruitful means of 

determining how OA networks adapt to declining differentiation of neural signals in primary visual 

regions. 
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4.2. Age-related Neural Hyperdifferentiation 

In contrast to sensory features in early visual cortex, we found that categorical features in the ATL 

were not just spared but actually enhanced within OAs. Within the ATL, compared to YAs, activation 

patterns had a better fit with the categorical model in the OAs (Fig. 2a). Thus, in contrast to age-related 

dedifferentiation in early visual cortex, in the ATL, we found age-related hyperdifferentiation. Regarding 

the regions that exhibited age-related hyperdifferentiation, the ATL is hypothesized to store prior 

knowledge (Lambon Ralph et al., 2017; Zhao et al., 2017). Given that OAs have a stronger knowledge 

network than YAs (Long and Shaw, 2000; Park et al., 2002), likely from more years of knowledge 

accruement, it is possible that certain processes, such as object recognition, are more reliant on 

categorical features. Perhaps the enhanced categorical model-brain fit in the ATL within the OAs 

reflects OAs utilizing enhanced semantic knowledge in service of perception.  

Given that we operationalized dedifferentiation using RSA, as a reduction in the fit between activity 

patterns and a model of the stimuli (visual or categorical), hyperdifferentiation was conversely 

operationalized as an increase in this fit. The neural mechanisms of dedifferentiation are unclear, and 

hence by necessity, those of hyperdifferentiation are also uncertain. We believe that the 

hyperdifferentiation finding reflects age-related differences in the strategies used during encoding. 

Representations are not necessarily ‘hard-wired’ into the brain and the representational space can be 

warped in response to task demands (Çukur et al., 2013; Martin et al., 2018; Wang et al., 2018). During 

encoding, participants rate the representativeness of its picture for its label; we speculate that YAs paid 

more attention to visual features (e.g., dark forest, shiny bathroom, tall cathedral), whereas OAs paid 

more attention to scene-level conceptual features (e.g., jungle-like forest, master bathroom, Gothic 

cathedral). The latter strategy is consistent with a greater age-related reliance on gist-level 

representations of scenes (Gutchess et al., 2006), and would tend to enhance the fit of activation 

patterns with late DNN layers (i.e., close to the scene label), which is what we mean by 

hyperdifferentiation of categorical representation in the current study.  
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Furthermore, this age-related shift in encoding strategies is likely to emerge slowly over the 

lifespan; we found no correlation between the strength of corresponding sensory—early visual cortex 

and categorical—ATL representations (r = -0.08, p = 0.59), suggesting that it may not be feasible to 

observe this shift in a cross-sectional cohort. In order to confirm our interpretation of the results, a study 

manipulating participants’ use of sensory and categorical representations is necessary. It would be also 

important to investigate the phenomenon of hyperdifferentiation of conceptual information using models 

of stimulus semantics based on validated feature norms, rather than inferring category selectivity via 

DNNs. For example, in a recent RSA study (Davis et al., 2020) using object pictures instead of scenes, 

we decomposed semantic features into Observed (“is round”), Taxonomic (“is a fruit”), and 

Encyclopedic (“is sweet”) sub-categories based on an independently collected set of conceptual feature 

norms and a validated organization of feature categories (McRae et al., 2005). This type of analyses 

could build on the current DNN-based results by providing more information about the nature of the 

conceptual representations underlying the current age-related hyperdifferentiation finding, revealing 

perhaps the type of semantic information that is most relevant reliable memory formation in younger or 

older adults. 

4.3. Age-related Differences in Mnemonic Representations 

Our second question examined age-related differences in mnemonic representations. To examine 

this question, we examined the reactivation of mnemonic representations, which was assessed as the 

similarity between activation patterns during encoding and retrieval (ERS). Consistent with previous 

studies (Johnson et al., 2015; St-Laurent et al., 2014), compared to YAs, in OAs ERS was weaker in 

the early visual cortex (Fig. 4a). Given that we also found age-related dedifferentiation of sensory 

representations in this region, the age-related attenuation of ERS in early visual cortex likely reflects a 

negative impact of degraded sensory features on visual memories. It should be noted that even though 

there are studies that have also demonstrated age-related reductions in reactivation within visual cortex 

(Johnson et al., 2015; St-Laurent et al., 2014), some previous studies did not find this pattern 
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(Abdulrahman et al., 2017; Thakral et al., 2019; Wang et al., 2016). The latter used multi-voxel pattern 

analysis (MVPA) to identify the reactivation of classes of stimuli (e.g., words vs. objects), whereas we 

used ERS to detect the reactivation of individual items of the same class. Thus, it is possible that MVPA 

is less sensitive than ERS in detecting age-related reactivation deficits. We also found an age-related 

ERS reduction in the hippocampus (Fig. 4a). This finding is consistent with evidence of impaired 

hippocampal activity in OAs (Kennedy et al., 2017; Nyberg, 2017), and it extends this evidence to 

multivariate activation patterns. Besides normal aging, the use of ERS to investigate hippocampal 

memory representations could be useful for investigating Alzheimer’s disease, in which the 

hippocampus structure and function are known to be particularly compromised (Frisoni et al., 2010; 

Dickerson and Sperling, 2008; Wang et al., 2006; Rathore et al., 2017).  

Finally, we found that, compared to YAs, OAs exhibited enhanced ERS in the ATL (Fig. 4a). As the 

ATL has been associated with abstract semantic representations (Lambon Ralph et al., 2017; Zhao et 

al., 2017), enhanced ATL ERS in OAs may reflect a greater reliance on semantic knowledge in service 

of memory. This idea is consistent with our finding of age-related hyperdifferentiation for categorical 

features in this region (Fig. 2a). The accumulation of knowledge during the lifespan is likely to lead to 

more distinct and detailed semantic representations, which could partially counteract the degraded 

quality of sensory information flowing through the visual system (Monge and Madden, 2016). 

4.4. Limitations and Further Considerations 

Although the models chosen in this study were intended to measure sensory and categorical 

representations, we noted that there was an absence of reliable age-invariant model specificity, as 

suggested by an insignificant Model_Type x ROI interaction for the DNN-based results. There may be 

several explanations to this observation. Firstly, the DNN may not fully characterize the region-specific 

processing of perceptual information, which may be addressed by using improved models in future 

studies. Secondly, the sensory and categorical aspects of the stimuli may not be completely 

independent. Note that, the DNN-based sensory and the categorical models were moderately 
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correlated (see 3.1), and it is common that scenes within a category may share similar low-level visual 

features (e.g., city skyline scenes may all have horizontal and vertical straight lines and sharp angles; 

rollercoaster scenes may all contain smooth spiral curvatures). In comparison, the analyses on 

alternative models (HMAX C1 vs. indoor-outdoor) showed improved Model_Type x ROI effect, probably 

due to the fact that scenes within the same broad domain (indoor or outdoor) were more 

heterogeneous in their low-level visual features, leading to better model specificity in different brain 

regions. Despite these limitations, our study points to the application of these computational models in 

quantifying sensory and categorical information, which could help future studies better control for the 

dependency between different feature similarities across stimuli items before carrying out the 

experiments.  

We found that in OAs, increased item-specific ERS in the ATL was associated with better accuracy 

of the post-scan memory recognition task (Fig. 4c), supporting the importance of ATL representational 

quality for memory in aging. This across-subject correlation suggests that individual differences in 

memory performance may be at least partially mediated by neural representational quality. However, it 

is important to note that such association with behavior was across participant, whereas, within 

individuals, we did not find a higher ERS associated with hit items (F(1,39) = 0.02, p = 0.90) or a 

significant Age x Memory interaction (F(1,39) = 1.74, p = 0.19). Therefore, based on current evidence, 

caution is needed to interpret enhanced ERS in ATL as a compensatory mechanism in OAs. In 

addition, the post-scan memory test is a largely visual memory task that may not rely on the type of 

semantic processing we show to be centered in the left ATL. Therefore, future research may further 

elucidate the functional consequences of such age-related shift to ATL engagement by adopting a more 

diverse array of post-scan memory tests tapping both perceptual and conceptual memory. 
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4.5. Conclusions 

The traditional idea that aging is associated with a generalized decline in cognitive abilities and 

their underlying neural mechanisms has been challenged by evidence that although some cognitive 

and brain mechanisms are impaired by aging, others are not only spared but even enhanced by aging 

(Long and Shaw, 2000; Park et al., 2002). One aspect of cognition that is spared by aging are 

processes that rely on categorical features, such as conceptual and semantic processing, but the 

neural mechanisms of these spared functions are largely unknown. The results of the present study 

suggest that one factor contributing to the preservation of these processes in old age is the enhanced 

quality of categorical representations in the ATL. These spared categorical representations may 

contribute not only to perceptual but also to mnemonic aspects of cognition. Lastly, these findings have 

implications not only for understanding normal aging but also the effects of pathological aging (e.g., 

Alzheimer’s disease) on memory representations, which, to our knowledge, has yet to be examined. 
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