
DILS: Demographic Inferences with Linked Selection by using ABC1

Christelle Fraïsse1,2,7, Iva Popovic3, Clément Mazoyer2, Bruno Spataro4, Stéphane Delmotte4,2

Jonathan Romiguier5, Étienne Loire6, Alexis Simon5, Nicolas Galtier5, Laurent Duret4, Nicolas3

Bierne5, Xavier Vekemans2, and Camille Roux2,74

1Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria5

2Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France6

3School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia7

4Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard8

Lyon 1, Lyon, France9

5ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France10

6Centre de Coopération Internationale en Recherche Agronomique pour le Développement11

(CIRAD), UMR, ASTRE, Montpellier, France12

7Corresponding authors: christelle.fraisse@ist.ac.at and camille.roux@univ-lille.fr13

ABSTRACT14

We present DILS, a deployable statistical analysis platform for conducting demographic in-15

ferences with linked selection from population genomic data using an Approximate Bayesian16

Computation framework. DILS takes as input single-population or two-population datasets (mul-17

tilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying:18

1) the best demographic model to study the importance of gene flow and population size change19

on the genetic patterns of polymorphism and divergence, 2) the best genomic model to determine20

whether the effective size #4 and migration rate #.< are heterogeneously distributed along the21

genome (implying linked selection) and 3) loci in genomic regions most associated with barriers22

to gene flow. Also available E80 a web interface, an objective of DILS is to facilitate collaborative23
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research in speciation genomics. Here, we show the performance and limitations of DILS by using24

simulations, and finally apply the method to published data on a divergence continuum composed25

by 28 pairs of "HC8;DB mussel populations/species.26

INTRODUCTION27

Population genomic data along with efficient computational methods are becoming increasingly28

available, paving the way to broad-scale application of model-based inferences for understanding29

signatures of evolutionary processes (Hahn 2019). Neutral processes such as divergence, gene flow30

and changes in population size all shape patterns of genomic variation; and so demographic models31

attempting to reconstruct the past history of single populations or closely-related species can also32

serve as null models in genome scans for selection. Considering a single species, model-based33

inferences are valuable for example in domesticated crops for disentangling the effect of population34

size changes from selection on agronomic traits (Gaut et al. 2018). Two-population models allow to35

tackle issues on speciation genomics, where this approach provides direct testing of distinct modes36

of speciation (Sousa and Hey 2013), with at the two extremes a model of allopatric speciation that37

occurs in complete isolation and amodel where speciation is opposed by continuous gene flow. This38

is critical to build-up a unifying picture of the genic view of speciation by quantifying the reduction39

in gene exchange between lineages as a function of their molecular divergence (Roux et al. 2016;40

Peñalba et al. 2019); and identify in silico genomic regions harboring speciation genes (Roux et al.41

2013; Sethuraman et al. 2019), given that their barrier effects can only be detected in the presence42

of ongoing gene flow (see (Ravinet et al. 2017) for a review). At a broader scale, model-based43

inferences can be applied to ecological communities to infer, for example, the assembly history of44

trophically linked species (Bunnefeld et al. 2018).45

Various methods have been proposed to extract such information from population genomic46

data. Site frequency spectrum (SFS)-based methods compute or approximate the likelihood of the47

allele frequency distribution from a demographic model using either the diffusion approximation48

(Gutenkunst et al. 2009), the moment closure (Jouganous et al. 2017) or the coalescent (Excoffier49

et al. 2013). While these methods are fast and can accommodate complex demographic histories,50
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they ignore linkage information which is informative about past demography (Terhorst and Song51

2015). Therefore, other methods rely on the block-wise SFS, i.e. the SFS of short non-recombining52

blocks of sequences that are unlinked to each other (Lohse et al. 2011). That way the genealogical53

information contained within each block is combined along the genome. Other multilocus methods54

can explicitly account for recombination along chromosomes therefore capturing longer range55

linkage disequilibrium (e.g. based on the Sequentially Markov Coalescent: Pairwise SMC, (Li56

and Durbin 2011); Multiple SMC, (Schiffels and Durbin 2014); SMC++ scaling to large genomic57

data, (Terhorst et al. 2017)); however they are still restricted to simple demographic histories58

excluding migration (but see MSMC-IM, (Wang et al. 2020) and diCal2, (Steinrücken et al.59

2019)). Still, the flexibility of simulation-based approximate Bayesian computation (ABC) enables60

including recombination within unlinked blocks in multilocus inference of complex (and hopefully61

more realistic) evolutionary scenarios (Beaumont et al. 2002). Although more computationally62

expensive, the analysis of thousands of loci results in high-precision parameter estimation for most63

demographic scenarios (Robinson et al. 2014; Smith and Flaxman 2020).64

In this paper, we present an ABC framework (DILS) building upon and extending current65

statistical machinery (Pudlo et al. 2015; Roux et al. 2016). Our method is flexible both in terms66

of the evolutionary scenarios that can be accommodated (allowing changes in population size over67

time, linked selection and implementing various models of migration), and type of data (multilocus68

fasta sequences produced e.g. from RNAseq, DNA capture or whole genome sequencing); but it69

also makes important assumptions such as free recombination between (blocks of) sequences, and70

it is restricted to a single size-change event in the past. A major improvement compared to most71

existing methods is decoupling the effect of linked selection and neutral history by relaxing the72

assumption that all loci share the same demography (Sethuraman et al. 2019; Sousa et al. 2013).73

We model variation in the rate of drift among loci to account for linked selection effects due to74

background selection (i.e. purifying selection) in low-recombination and gene-dense regions. And75

by explicitly modelling variation in migration rates among loci in two-population models, we can76

capture the effect of selection against migrants at neutral markers linked to species barriers, and so77
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analyse further these candidate genomic regions for reproductive isolation (Roux et al. 2013).78

DILS is deployable on every machine, but also offers an online platform for configuring demo-79

graphic inferences based on genomic data of thousands of loci, performing them and visualizing80

the returned output. These advances are made possible by progress in simulator performance81

(Hudson 2002), reduction in the number of simulations required to train prediction algorithms82

(Pudlo et al. 2015) and development of computer clusters and tools facilitating parallelism (Köster83

and Rahmann 2012). DILS thus contributes to the nascent and promising applications of machine84

learning to population genomic inferences (see (Schrider and Kern 2018) for a review). Following85

other user-friendly ABC programs, DILS also aims to ease the use of high-performance tools for86

non-experts in methodology (Cornuet et al. 2008; Cornuet et al. 2014). Importantly, as there is a87

limit to howmuch information can be extracted from genomic data, DILS also implements rigorous88

quality controls. Therefore, not only does the user receive 1) the best-supported model among those89

proposed (figure 1), 2) an estimate of the demographic parameters describing this model and 3) a90

locus-specific test to identify barriers to gene flow (when relevant); the user will also get feedback91

on whether the best model is relevant and to which extent the estimates are able to reproduce the92

observed data.93

A long-term aim of DILS is to facilitate collaborative research in speciation genomics. The94

degree of reproductive isolation appears to follow a quasi-shared molecular clock among animals,95

depending on the level of net genomic divergence between lineages (Roux et al. 2016). However, for96

the same level of divergence, two opposite situations coexist in the so-called grey zone of speciation97

with, on the one hand, semi-isolated pairs capable of exchanging genetic material and, on the other98

hand, pairs of species that are fully reproductively isolated. Many hypotheses have been advanced99

to explain such a reproductive barrier contrast within the same range of molecular divergence,100

including differences related to life history traits (internal versus external fertilization), ecology101

(marine versus terrestrial organisms), reproductive systems (e.g. in plants: self-incompatibility102

versus self-fertilization), genome size and recombination landscape, functional redundancies in103

genomes, etc... Speciation is such a multi-factorial process that it seems impossible for a single104
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research group to study these different components.105

Consequently, our aim is to include in DILS a collaborative science option, allowing to feed106

in real time the relationship between molecular divergence and genetic isolation between lineages.107

Available as a choice, the sharing of the inferences made in DILS, associated with the expertise that108

users have about their biological model, will contribute to a long-term collaborative study aiming109

to better understand the speciation process. This objective is illustrated here with the analysis of 28110

new pairs of mussel populations whose transcriptomes were recently published, revealing ongoing111

gene flow for levels of divergence greater than 2%.112

In this study, we have four objectives:113

1. providing a flexible and powerful demographic inference method with linked selection to114

analyse genome-scaled dataset in single and two-population models.115

2. presenting a user-friendly tool that implements this approach and paves the way for collab-116

orative science.117

3. testing the performance and limitations of the method by using simulations.118

4. applying it to an empirical dataset of "HC8;DB mussels.119

MATERIALS AND METHODS120

DILS input121

DILS can accommodate any type of multilocus sequence data in fasta format. It requires a single122

fasta file containing all sequences obtained from all populations/species (formatted as in reads2snp,123

(Tsagkogeorga et al. 2012)). Missing data are encoded by ’N’ and gaps (insertion/deletions) by124

’-’. The user can define a maximum proportion of ’Ns’/gaps (max_N_tolerated) and a minimum125

number of treatable sites (Lmin) beyond which a sequence is removed from the analysis. If the126

number of sequences per locus and per population/species is lower than a number defined by the127

user (nMin), then the locus is discarded from the analysis. Otherwise, DILS performs a draw of128

nMin sequences (without replacement) from the set of available sequences.129

Sequences (genes, DNA fragments) can be produced from a variety of sequencing techniques,130
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the most appropriate of which are RNAseq, DNA capture and whole genome sequencing. For131

saving computing time with large datasets (whole genomes), it is recommended to first partition132

the data to generate shorter blocks of sequences (i.e. produce block-wise data of a few Kb long).133

Note that because DILS assumes free recombination between loci, it is important for the (blocks134

of) sequences to be unlinked (this can be verified by using a reference genome). In the current135

version, there are no haplotype-based statistics being used in the inference; therefore the SNPs do136

not need to be phased (i.e. the association of alleles across distinct heterozygous positions in a137

sequence can be arbitrary). Haploid data may also be used.138

ABC implemented in DILS139

Summary statistics140

Since ABC is a category of inferential method based on the comparison between statistics141

summarizing simulated and observed datasets, we first describe here the statistics computed in our142

framework.143

We assume that users are interested in carrying out inferences from multilocus datasets. For144

single population models, DILS calculates for each locus: 1) the pairwise nucleotide diversity (c)145

(Tajima 1983); 2) Watterson’s \ (Watterson 1975) and 3) Tajima’s D (Tajima 1989). In addition146

to these three statistics, the site-frequency spectrum (SFS; (Braverman et al. 1995)) is also used to147

summarize the data, i.e., the number of single-nucleotide polymorphism (SNP) where the derived148

allele is present in [2, ..., ="8=] copies in the studied population/species, where ="8= represents149

the number of copies sampled for a given locus. Note that singletons are excluded from the SFS to150

reduce inferential artifacts related to sequencing errors. If the SFS is folded by the absence of an151

outgroup, then the SFS will be described by the number of SNPs where the minor allele is present in152

[2, ..., ="8=] copies. Overall, multilocus inferences are based on 6 multilocus summary statistics153

which are the means and standard deviations of c, \ and Tajima’s �, to which we add [="8= − 1]154

individual statistics corresponding to the sum over all loci of each bin in the SFS ([(="8= − 1)/2]155

if no outgroup is available).156

For models with two populations/species, c, \ and Tajima’s � statistics are also calculated157
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for each of the two samples. These are supplemented with statistics approximating the joint SFS158

(jSFS; (Wakeley and Hey 1997)): 1) the fraction of sites showing a fixed difference between159

the populations/species (( 5 ), 2) the fraction of sites showing an exclusive polymorphism to a160

given population/species ((GA and (GB) and 3) the fraction of sites with a polymorphism shared161

between the population/species ((B). Statistics describing the divergence between the two popula-162

tions/species are also calculated, including the raw (�xy; (Nei and Li 1979)) and the net (�a; (Nei163

and Li 1979)) divergence between the population/species, and their relative genetic differentiation164

measured by �ST (Wright 1943). The use of the jSFS (without singletons) as a vector of summary165

statistics is an option that the user can switch on or off, to avoid cases where the jSFS is composed166

of a large number of bins. If the jSFS is unfolded, then this vector has a length of [="8=2 - 4]167

available statistics (minus 4 to remove the two bins corresponding to singletons and the two bins168

corresponding to the fixation of the derived or ancestral allele in both samples), and a length of169

(∑="8=+1
8=1 8) − 3 if the jSFS is folded (minus 3 to remove singletons and the (0,0) bin). The jSFS170

will be in the form of a square where the same number of nMin samples will be assumed for both171

species. If for a given locus the number of samples exceeds nMin, then a draw without replacement172

of nMin copies will be performed.173

Simulations174

In the current version of DILS, all simulations are performed using the msnsam coalescent175

simulator (Ross-Ibarra et al. 2008), which is a modified version of the ms program (Hudson 2002)176

allowing variations in sample size among loci under an infinite site mutationmodel. Each simulated177

multilocus dataset takes properties from the observed datasets (same number of genes, lengths and178

sample size). Since the summary statistics used to perform the ABC inferences are averages and179

standard deviations measured over all the surveyed loci, then for model comparisons and parameter180

estimations DILS randomly sub-sample 1, 000 loci (in the default version) if more loci are present181

in the total dataset. The purpose of this sub-sampling is to avoid unnecessarily long simulation182

times because the values of statistics for a given locus will not impact the used summary statistics183

over 1, 000 loci.184
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If no outgroup is provided then the same mutation rate, `8 (specified by the user), is applied185

to all loci. Otherwise, the outgroup will be used for each locus to correct its mutation rate `8 to186 ̂̀. 38E8
3̂8E

where ̂̀ is the neutral mutation rate assumed by the user, 38E8 is the raw divergence between187

the focal population/species and the outgroup measured by DILS at a given locus 8, and 3̂8E is the188

average raw divergence between the focal population/species and the outgroup measured over all189

loci. The other implication of using an outgroup will be to orientate the mutations and consequently190

to unfold the jSFS. Finally, a d̂

\̂
ratio value has to be specified by the user where d̂ is the average191

population recombination rate 4.#4.A (A in number of recombination events per generation and192

per nucleotide for each locus). Loci are assumed to be genetically independent from each other193

(unlinked), with intralocus recombination rate d.194

Modeling linked selection195

We considered that the effects of selection on linked sites can be described with a genomic196

model of: 1) heterogeneous effective population size (hetero-Ne), which well approximates the197

effect of background selection with a down-scaling of Ne (Charlesworth et al. 1993) ; and/or 2)198

heterogeneous migration rate (hetero-N.m) for the effect of selection against migrants (Barton and199

Bengtsson 1986).200

In the hetero-Ne genomic model, the variable effective size among loci is assumed to follow a201

re-scaled Beta distribution. In other words, all populations share the same Beta distribution (with202

two shape parameters drawn from uniform distributions in [1-20]), but are independently re-scaled203

by different Ne values (drawn from uniform distributions in [0-500,000]). In the homo-Ne genomic204

model, all loci are simulated by sharing the same effective population size, which is independently205

estimated in all populations. This homogeneous model implies that the genome is unaffected (or206

equally affected) by background selection.207

The hetero-N.m genomic model accounts for the existence of local barriers to gene flow that208

affects the effective migration at linked loci. We modeled variation in migration rates among loci209

in two ways, implemented in DILS as 2 options : 1) with a Beta distribution (two shape parameters210

drawn from uniform distributions in [1-20]), which is independently re-scaled by different N.m211
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values (drawn from uniform distributions in [0-20]) in each direction of introgression; 2) with a212

Bimodal distribution where a proportion of loci (drawn from an uniform distribution in [1-100]) is213

linked to barriers, i.e. N.m=0, and the rest evolves neutrally at a rate N.m (drawn from an uniform214

distribution in [0-20]). In the homo-N.m, a single migration rate N.m (for a given direction of215

introgression) is shared by all loci, such that they all share the same probability to receive alleles216

from the other population/species.217

Model comparisons218

Here, when used alone, the term model means a given combination between a demographic and219

a genomic model. All comparisons are performed by using the abcrf function of the eponymous R220

package (Pudlo et al. 2015). The comparison is a two-step process.221

First, grow the random forest with the abcrf function. This requires one reference table per222

model for the training. The reference table of each model is produced by 10, 000 multilocus223

simulations whose parameters correspond to random combinations sampled from priors. They224

are composed of one row per multilocus simulation and one column for each summary statistic225

described in section "Summary statistics". When categories of models are compared following226

the hierarchical approaches (figures 2 and 3), the reference tables of the different models in the227

same category are merged together. For instance, in the comparison between Current isolation228

and Ongoing migration (figure 3), 60, 000 multilocus simulations are used for the training of the229

super-model Current isolation, and 80, 000 multilocus simulations for the training of Ongoing230

migration. Each forest is made up of 1, 000 grown decision trees regardless of the comparison231

made throughout the hierarchical approach.232

The second step is the prediction of the best model among those proposed by passing the233

observed data through the trained random forest. DILS reports the model supported by the largest234

number of decision trees in the random forest and its associated posterior probability.235

Parameter estimations236

Two strategies are applied to estimate the parameters describing the best-supported model237

among those compared. The first one is a joint estimation of the set of parameters using a238
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rejection/regression method (Csilléry et al. 2012). Estimation is based on the 5, 000 multilocus239

simulations producing the statistics closest to the observed dataset among 1, 000, 000 simulations.240

We then correct for imperfect matches between observed and retained values of statistics. The241

parameter values of the selected simulations are weighted by their Euclidean distance and corrected242

according to a non-linear regression method using a neural network. 10 trained neural networks243

with 10 hidden networks are used in the regression. The second strategy is an individual estimation244

of each parameter by constructing a random forest of 1, 000 trees per parameter (Raynal et al. 2019).245

The results from both approaches are returned to the user, as there is no evidence to further246

support amethod over the other in terms of estimation accuracy. Within the framework of themodels247

currently compared in DILS, both approaches produce similar estimates when tested on pseudo-248

observed datasets. However, joint parameter estimation has the advantages of including parameter249

co-variations as well as providing a probability density. This is achieved at a computational cost that250

is≈ 100 times greater regarding the number ofmultilocus simulations, since 10, 000 are required for251

a parameter estimation using random forest versus 1, 000, 000 when using the rejection/regression252

algorithm.253

Locus-specific model comparison254

To identify barriers to gene flow among a set of sequenced DNA fragments (genes for instance),255

we adopt the same procedure as in Ciona intestinalis (Roux et al. 2013) and Mytilus (Roux et al.256

2014), but by replacing the neural network with a random forest to divide the computational cost257

by 100. This step is performed by DILS only if 1) observed data better fits models with ongoing258

migration (IM or SC; figure 1) and 2) models of N.m. variation explain the data better than259

homogeneous models.260

We first estimate the parameters of the best model from the multilocus dataset. Based on this261

estimation, two models are compared at each locus: 1) local-migration: the multilocus estimated262

model with the non-zero migration rate estimated over the whole genome; 2) local-isolation: the263

multilocus estimated model with a migration rate set to zero. A random forest of 1, 000 trees is264

then trained to recognize combinations of summary statistics specific to each of the two evaluated265
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models. This forest allows to return for each sequenced DNA fragment the locus-specific model266

that best explains the statistics observed, and its posterior probability.267

DILS performance268

In this study we distinguish two types of simulations. Simulations carried out to build reference269

tables used to train a random forest, or from which a small proportion will be sub-sampled in a270

rejection/regression algorithm based on the Euclidean distance with the observed data. Then a271

second type of simulations produces pseudo-observed datasets. These are not used for training, but272

to evaluate the inferential power of the ABC approach, and test whether it can recapture the param-273

eters used to simulate the pseudo-observed datasets. To assess the reliability of model comparisons274

and parameter estimations, for single and two population models, we simulate pseudo-observed275

datasets consisting of 100 loci, of length equal to 1, 000 nucleotides, sampled from 10 diploid indi-276

viduals in each population/species and a mutation rate of 5.10−8 mutations/nucleotide/generation.277

These datasets are simulated according to demographic histories using random combinations of278

parameters from the priors.279

Analysis with DILS of the Mytilus dataset280

We downloaded the rawRNA-seq data deposited to the NCBI sequence read archive (BioProject281

ID: PRJNA560413; https://cutt.ly/OtQN1Y0) by (Popovic et al. 2019). The raw data consist in a282

total of ≈ 145�1 from the sequenced transcriptomes of 47 mussel individuals. Three individuals283

from the M. californianus species were removed as they do not belong to the M. edulis complex.284

The reference transcriptome used for the mapping is made up of 16, 151 CDS, for a total length285

of ≈ 23"1. The reference was indexed using bowtie2 (version 2.2.6 (Langmead and Salzberg286

2012)). For each individual, reads were aligned to the reference with bowtie2, and cleaned using287

samtools with a mapping quality threshold of 20 (version 1.3.1; (Li et al. 2009)). Individual288

genotypes were called using reads2snp (Tsagkogeorga et al. 2012) at positions covered by at least289

8 reads, and the program outputted multilocus fasta sequences. These were then used as input290

data for DILS, which was run for each of the 28 possible pairs of localities by tolerating up291

to 20% of missing data, rejecting genes with less than 100 codons without missing data, and292
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by keeping 6 copies per gene within each population/species. Simulations were conducted by293

exploring uniform priors for effective population sizes between 0 and 500, 000 diploid individuals,294

times of different demographic events (split, secondary contact, arrest of migration) between 0 and295

1, 750, 000 generations, and migration rates between 1 and 40 4.N.m units. Presentation of the296

results was carried out with R (Wickham et al. 2019; Chang et al. 2019; Sievert 2018; R Core Team297

2020).298

RESULTS299

Demographic and genomic models implemented in DILS300

In the current version of DILS, evolutionary scenarios can be investigated for sampling schemes301

involving one or two populations. For both types of analysis, the first step is to compare the302

demographic models described in figure 1. With a single population, DILS will examine the303

changes in size over time. With two populations, such variations in population size are also304

implemented, but DILS will additionally compare alternative temporal patterns of introgression.305

An important feature of DILS is to include linked selection, either through the effect of back-306

ground selection that modulates the effective population size along the genome, or through the307

effect of selection against migrants that reduces locally the effective introgression rate in genomic308

regions locked to gene flow. Therefore, all demographic models exist under two alternative ge-309

nomic sub-models regarding the effective population size (homo-Ne versus hetero-Ne), and the310

introgression rate (homo-N.m versus hetero-N.m) for models allowing migration, depending on311

whether these parameters are homogeneous or heterogeneous among loci.312

Single population models313

Three demographic models are compared, describing either 1) a Constant population size314

#4current, 2) a recent demographic Expansion or 3) a Contraction. Demographic changes are315

assumed to be instantaneous, with a transition from #4past to #4current occurring )dem generations316

ago (figure 1-A). The first step of the algorithm 1 implemented in DILS is to estimate the best-317

fitting demographic model among those depicted in figure 1-A by carrying out 10, 000 simulations318
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under each alternative genomic sub-model (i.e. 10, 000 under the homogeneous Ne model, and319

10, 000 under the heterogeneous Ne model). These simulations produce reference tables, i.e., a320

set of simulated summary statistics used to train a random forest algorithm to predict which of321

the proposed models best explains observed data. The second step is to evaluate the best-fitting322

genomic sub-model, i.e. with genomic variation in effective size (hetero) or without variation323

(homo), for the best demographic model supported in the previous step (algorithm 1).324

Data: A single fasta containing all loci sequenced in all individuals sampled in the studied
population

Result: Posterior probabilities for the best 1) demographic and 2) genomic models
• Data cleaning:

forall loci i making the dataset do
.discard from the alignment of gene i the individuals with too many ’Ns’/gaps;
.discard gene i if there are not enough retained individuals;
.discard gene i if it doesn’t contain enough positions without ’Ns’/gaps

end
• Reference simulations to train the random-forest: 10, 000 multilocus datasets under

each combination of [demographic models] x [genomic models];
• Model comparisons:

Random Forest (RF) comparisons of:
step 1. Expansion [homo + hetero] versus Constant [homo + hetero] versus

Contraction [homo + hetero];
step 2. [homo-Ne] versus [hetero-Ne] for the best demographic model supported

in the previous step;

Algorithm 1: Single-population hierarchical model comparisons

Two population models325

The two-population models are grouped into two supermodels (figure 1): with current isolation326

(Strict Isolation (SI) +AncientMigration (AM)) and ongoingmigration (IsolationMigration (IM) +327

Secondary Contact (SC)). The first step of the hierarchical comparisons therefore aims to determine328

which supermodel best explains the data observed in the two sampled populations (see algorithm329

2). This is achieved by labeling as "isolation" all reference simulations performed under the two330

SI models (with homo-Ne or hetero-Ne) and the four AM models (homo-Ne or hetero-Ne, and331

homo-N.m or hetero-N.m). All other models are labeled as "migration" supermodel. The second332

step is to evaluate the demographic models described in figure 1-B (i.e. SI versus AM versus IM333
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versus SC), within the supermodel that was best supported in the previous step. The third and final334

step is to discriminate among alternative models of genomic distribution for Ne (all models) and335

N.m (in case of ongoing migration).336

Data: A single fasta containing all loci sequenced in all individuals sampled in the two
studied populations

Result: Posterior probabilities for the best 1) supermodel: [current isolation, ongoing
migration], 2) demographic model: [SI, AM] (in case of current isolation) or [IM,
SC] (in case of ongoing migration), 3) genomic sub-model in Ne ([homo-Ne]
versus [hetero-Ne]) and N.m ([homo-N.m] versus [hetero-N.m]

, in case of ongoing migration)
• data cleaning:

forall loci i do
forall population/species j do

.discard from the alignment of gene i the individuals with too many
’Ns’/gaps;

.discard gene i if there are not enough retained individuals in population j;

.discard gene i if it doesn’t contain enough positions without ’Ns’/gaps;
end

end
• Reference simulations to train the random-forest: 20, 000 multilocus datasets under

each combination of [demographic models] x [genomic models];
• Model comparisons:;

Random Forest (RF) comparisons of:;
step 1. isolation ([all SI + all AM]) versus migration ([all IM + all SC]);
step 2. if isolation then [all SI] versus [all AM] else [all IM] versus [all SC];
step 3a. if isolation then [homo-Ne SI + homo-Ne AM] versus [hetero-Ne SI +

hetero-Ne AM] else [homo-Ne IM + homo-Ne SC] versus [hetero-Ne IM + hetero-Ne SC];
step 3b. if migration then [homo-N.m IM + homo-N.m SC] versus [hetero-N.m IM

+ hetero-N.m SC];

Algorithm 2: Two-population hierarchical model comparisons

Performance for the model comparisons337

In this section, we present DILS performance to compare demo-genomic models involving one338

(figure 2) or two (figure 3) populations/species. These evaluations were performed by analyzing339

pseudo-observed datasets simulated under specified models, in order to assess the efficacy of340

our approach to correctly support the true model. In both analyses, a given demographic model341

corresponds to the set of all its genomic sub-models. All model comparisons are performed using342
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random forest algorithms (Pudlo et al. 2015; Fraimout et al. 2017), and pseudo-observed datasets343

do not contribute to their training.344

Single population models345

We simulated 30, 000 pseudo-observed datasets of 100 loci by using random combinations346

of parameters. Such a number of loci has been chosen to be conservative at a time when more347

than 1, 000 loci are commonly used. These simulated datasets are equally distributed between348

the demographic models (10, 000 for each of the three Expansion/Constant/Contraction models)349

and between their genomic sub-models (5, 000 for each of the two homo/hetero Ne alternative350

models). Then, for each of these pseudo-observed datasets, we apply step 1 and step 2 of the351

algorithm 1 in order to obtain for each model M, the proportion of pseudo-observed datasets that352

is either correctly and strongly captured by the random forest approach (blue, figure 2), falsely and353

strongly captured (yellow, figure 2) or ambiguous, i.e, associated to an insufficiently high posterior354

probability (purple, figure 2).355

We determine whether an inference is strong or ambiguous from the posterior probability356

with which the best model is supported. For this we apply a probability threshold beyond which357

an inference is considered strong. This threshold is determined recursively on the basis of the358

false positive rate which decreases monotonically by increasing the value of the threshold. From359

datasets randomly simulated under different models, we establish a threshold value such that the360

false positive rate (i.e. the proportion of wrong inferences) is less than or equal to 1%. With361

this approach, the false-positive rate remains consistently low, but the relative proportions of true362

positives versus ambiguous cases vary according to the power of the ABC to discriminate among363

an arbitrary set of models.364

Among the 30, 000 pseudo-observed datasets simulated under the Expansion, Constant and365

Contraction models, if a threshold is applied that keeps the error rate below 1%, the proportions366

that are correctly supported by our approach are 86%, 89% and 99% respectively, while the367

proportions that are ambiguous are 13%, 10% and 0.2% (figure 2). For the Expansion and Constant368

demographic models, the correct recapture rates of homo and hetero Ne genomic models range369
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from 75% (Expansion + hetero Ne; 24% of ambiguity) to 86% (Constant + homo Ne; 13% of370

ambiguity). Finally, while recovering the Contraction demographic model is a very robust analysis371

with 99% of inferences that are both correct and associated with a high posterior probability, it is372

more complicated to distinguish between "Contraction + homo Ne" and "Contraction + hetero Ne".373

About 41% of the pseudo-observed datasets simulated in the "Contraction + homo Ne" model are374

correctly captured by the random forest, and only 26% for the "Contraction + hetero Ne" model.375

The occurrence of a recent bottleneck tends to reduce the genomic variance of Ne to levels that376

generate apparent homogeneity (figure 2).377

Two population models378

We evaluated the performance of DILS for 60, 000 pseudo-observed datasets simulated under379

the "isolation" supermodel (10, 000 for each combination of [SI; AM], [homo-Ne; hetero-Ne] and380

[homo-N.m; hetero-N.m] for the AM model only) and 80, 000 under the "migration" supermodel381

(10, 000 for each combination of [IM; SC], [homo-Ne; hetero-Ne] and [homo-N.m; hetero-N.m]).382

As shown in figure 3, 95% of the datasets simulated under the supermodel "isolation" with random383

combinations of parameters from large priors are correctly recaptured by the random forest approach384

with a high probability (4% ambiguity and 1% error if we apply a posterior probability threshold of385

0.84; table S1). Similarly, 98% of the pseudo-observed datasets under the "migration" supermodel386

are strongly recaptured (with 1% of ambiguity and 1% of error for a threshold of 0.665). Models387

with migration are globally more efficiently recaptured by DILS, relying on a lower threshold388

probability to be robustly supported.389

The results of the performance analyses for the demographic models within each supermodel390

first show that a pseudo-observed dataset simulated under an SI model (homo-Ne and hetero-Ne) is391

very unlikely to be strongly supported in an SI versus AM comparison. Out of 20, 000 simulations,392

only 1% are correctly recaptured by DILS (98% ambiguity and 1% error for a threshold of 0.845).393

The AM model is more robustly supported than SI (56%), but the 10, 000 inferences made under394

each of the AMmodels lead to weak support (43% ambiguity, 1% error for a threshold of 0.705). On395

the contrary, the two models making the "migration" supermodel (IM and SC) are more efficiently396
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distinguished by DILS. The 40, 000 pseudo-observed datasets randomly simulated under the IM397

model are captured at 79%with a high probability in the IM versus SC comparison (20% ambiguity,398

1% error for a threshold of 0.885). Similarly, 70% of the 40, 000 pseudo-observed datasets from399

the SC model are correctly recaptured by DILS (29% ambiguity, 1% error for a threshold of 0.915).400

We then evaluate DILS performance for discriminating among alternative models of genomic401

distribution for the Ne (figure 3-B; table S2) and N.m (figure 3-C). Concerning the effective402

population size, DILS systematically recaptures the homogeneous model more easily than the403

heterogeneous model for each of the four demographic models tested. The most complicated404

model to recapture is the genomic heterogeneity of Ne in an SC model (≈ 64% true positives),405

while homo-Ne under an SI model is the most straightforward. Concerning the migration rate, the406

main parameter determining the quality of inference is the relative duration of gene flow versus407

speciation time )split (figure 1). This leads to a higher robustness for the IM model (probabilities408

of correctly supporting homo-N.m and hetero-N.m of ≈ 86% and ≈ 76%, respectively) compared409

to the SC model (≈ 71% and ≈ 60%).410

Performance for the parameter estimations411

In this section, we describe performance tests for estimating the parameters of different de-412

mographic models. The same procedure was applied for single and two-population models: first,413

simulating pseudo-observed datasets (10, 000 for the three single-population models, 2, 000 for414

the 14 two-population models) and then ABC estimation of the parameters to test DILS ability to415

recapture the parameter values used. We only detail here the results obtained for the demographic416

parameters, i.e., those describing the mean effective population size (#4current and #4past), time of417

split ()split), the date for the cessation of gene flow ()AM), the age of the secondary contact ()SC)418

and the migration rates (#.<).419

Single-population models420

The current effective population size is by far the parameter that is most accurately recaptured,421

especially in a constant and homogeneous model with a mean-squared error (MSE) close to zero422

(MSE≈ 0.005; figure 5-A; table S2). The introduction of a recent demographic change reduces the423

17 Fraïsse, October 8, 2020

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.06.15.151597doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151597
http://creativecommons.org/licenses/by-nc-nd/4.0/


quality of inferences for #4current, more for the expansion model than for the contraction model.424

The inference of ancestral size conducted for 4 x 10, 000 pseudo-observed datasets shows425

globally a low error rate on the raw values of #4past with a "(�max ≈ 0.09 (table S2). Errors426

depend very closely on the relative values between #4past and #4current as shown on figure 4-B427

with the estimates of the ratio #4past/#4current. Hence, while the estimate of a #4past is reliable428

for a change in size by a factor of 10, it becomes less accurate as the contrast with #4current is429

increasingly sharp.430

In a similar manner, the quality of inferences of the age of demographic change )dem is highly431

dependent on its relative value with #4current (figure 4-C where the age of the demographic events432

is expressed as the ratio )dem/#4current). Any change more recent than 0.1#4current generations ago433

will be dated with poor precision. Conversely, the age of events older than 0.1#4current appears434

more accurately recaptured by our ABC approach.435

Two-population models436

The error rate in the estimation of the parameter #4current is of the same order of magnitude437

as in models with a single population (figure 5-A; table S3). However, the imprecision increases438

with ongoing migration and tends to underestimate #4current. Estimates of #4current are thus more439

accurate for the SI model, than for the AM model, and the worst for IM and/or SC. This negative440

effect of ongoing migration on the accuracy of parameter estimation is more pronounced for the441

ancestral population size #4past (figure 5-B). Hence, the ongoing migration implemented in the IM442

and SC models will lead to the overestimation of very low #4past values and underestimation of443

large #4past values.444

The precision of the estimate of )split for a given model is of the same order of magnitude as for445

the ancestral size, with the exception of an accentuated imprecision of )split in the IM model when446

the migration is homogeneous along the genome (figure 5-C; table S3). The AM and SC models447

both have an additional parameter describing the time of the demographic transition between two448

periods (with and without migration). In the AM model, )AM describes the number of generations449

during which the two current populations remain genetically isolated after a period of ancestral450
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migration. Conversely, in the SC model, )SC describes the number of generations where the two451

current populations are connected by gene flow during a secondary contact occurring after a past452

period of isolation. For the AM model, )AM is better estimated than )split unlike )SC under the SC453

model (figure 5-D; table S3).454

Finally, DILS performance to estimate the migration rate #.< is reported on the figure 5-E.455

The poor estimation accuracy for #.< contrasts sharply with the reliable inferences obtained when456

comparing the ’ongoing migration’ versus ’current isolation’ supermodels (paragraph 3). Indeed,457

it is straightforward to discriminate between these two categories of supermodels while an accurate458

estimate of the migration rate is more challenging to obtain (figure 5-E). We were unable to reach a459

reliable measure of #.< for the AM model, but more accurate inferences are obtained for both the460

IM and SC models. Accuracy is reported to increase for models where #.< is homogeneous (table461

S3). We also investigated how the number of sampled loci can impact the quality of inferences.462

The results presented above correspond to simulated datasets of 100 loci. When reproduced with463

50 loci (tables S4-S6), we show that DILS is not robust enough to study single population models.464

On the other hand, a reduction in the number of loci does not change the detection of migration in465

two-population models (although SI versus AM and IM versus SC comparisons are less robust).466

Errors associated with parameter estimates are of the same order of magnitude for 50 as for 100467

loci.468

Detection of barriers to gene flow469

One additional purpose of DILS is to identify genomic regions which are associated with a470

local reduction in the introgression rate N.m. This analysis will only be carried out by DILS if the471

observed dataset is better explained by 1) a demographic model with ongoing migration (IM or SC)472

and 2) a genomic sub-model with gene flow heterogeneity (hetero-N.m). To achieve this purpose,473

DILS will infer the parameters under the model that best explains the data. Then, for each locus,474

DILS performs a comparison between two models that differ only for the parameter N.m: 1) the475

migration model corresponds to the whole set of parameters estimated under the best supported476

model; 2) the isolation model corresponds to the previous model whose N.m has been set to zero,477
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because a barrier gene impedes gene flow locally along the chromosome. Therefore, such a locus478

should be supported by the isolation model if the barrier effect is strong. This approach therefore479

seeks to approximate a continuous variable, N.m, by a dichotomous choice of model: region with480

a local-isolation versus local-migration.481

In order to evaluate DILS performance, the locus-specific model comparison was applied for482

locus simulated under an IM model with different values of N.m in [0, 1] (figure 6). A value of483

zero means no exchange during the divergence process from one population to another. A value484

of 1 means that there is one immigrant individual on average every generation. We simulated485

loci 10, 000 times for different combinations of N.m and )split under an IM model. Then, for each486

simulated dataset, we applied the locus-specific model comparison to finally record for each locus487

which model is the best between local-migration and local-isolation. Ideally, we aim that DILS488

considers 100% of the simulations with #.< = 0 as local-isolation, and 100% of the simulations489

with #.< = 1 as local-migration. Values of N.m greater than 1 were not explored because the490

comparison between "high migration" and "very high migration" is not relevant here.491

As shown in figure 6, in the case of two populations of 100, 000 individuals separated only492

5, 000 generations ago ()split = 0.05), DILS will support gene flow for ≈ 50% of the loci that have493

a N.m equals to zero (figure 6). For #.< = 1, the proportion of loci inferred as local-isolation is of494

similar magnitude, indicating that DILS is not at all designed to detect barriers to gene flow in the495

genomes of populations that have separated very recently. Our recommendation, therefore, is to496

disregard the results of DILS if the studied populations are extremely recent. However, as soon as497

barrier regions have enough time to differentiate ()split ≥ 0.5; figure 6), then ≈ 100% of loci with498

#.< = 0 are correctly inferred as local-isolation, and only few loci with #.< = 1 are incorrectly499

supported by the model of local-isolation. DILS performance therefore depends directly on the true500

history of the studied populations/species, not on the amount of data. The ideal case for identifying501

which loci in the genome are linked to barriers occurs when the patterns of polymorphism and502

divergence at such loci differ greatly from the rest of the genomic background (figure 6). An ideal503

demographic scenario for identifying barriers with DILS would be:504
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1. a divergence that is old enough to allow the neutral regions linked to barriers to have at least505

one position with variants that are differentially fixed between the two populations/species.506

2. a migration rate in the genomic background high enough to counteract the effect of differ-507

entiation in non-barrier regions.508

Illustration of DILS with RNA-seq data from 28 pairs of Mytilus populations509

We now illustrate DILS potential to contribute to the study of speciation among 8 populations510

of a complex of four Mytilus mussels species (figure 7-A; (Bierne et al. 2003; Popovic et al.511

2019)). Using DILS, we established the relationship between molecular divergence and genetic512

isolation over 28 pairs ofMytilus populations. The aim was to identify which pairs of populations,513

characterized by different levels of molecular divergence (net synonymous divergence between514

0.003% and 6.705%), are inferred to be currently connected by ongoing gene flow (figure 7-B).515

This large scale analysis within the same genus was made possible by the use of a large RNA-seq516

dataset recently published by (Popovic et al. 2019) in 44 individuals ofMytilus from 8 populations517

(one M. edulis, five M. galloprovincialis, one M. planulatus and one M. trossulus; figure 7-A).518

Out of 28 pairs of Mytilus populations that have been tested for ongoing gene flow, 9 pairs519

receive support for models with current isolation, while models with migration suggest a better fit520

in the remaining 19 pairs (figure 7-B). Within the group composed of M. galloprovincialis and M.521

planulatus, the 15 possible pairs are characterized by levels of divergence ranging from ≈ 0.003%522

(Crique - Herceq) to ≈ 0.673% (Primel - Spring). All of them are supported by models with523

ongoing gene flow. Our ABC analysis provides support for gene flow for a single inter-specific pair524

with high divergence level ≈ 6% (Darling - Lighthouse). This pair is the only one to be genetically525

connected by migration among the 8 pairs in our analysis that have a level of net synonymous526

divergence higher than 2%, most probably due to gene flow between West Atlantic trossulus and527

edulis populations. Such gene flow also contrasts with an analysis realized for 61 pairs of animal528

species that had been studied without a priori on their speciation history, and for which a threshold529

of ≈ 2% had emerged above which all inter-specific pairs were currently isolated (figure 7-B; (Roux530

et al. 2016)).531
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DISCUSSION532

Our statistical analysis platform, DILS, goes beyond simple summary statistics by explicitly533

testing evolutionary scenarios in a model-based inference framework. In this sense, it is important534

for users to be mindful that all biological interpretations must be made in light of the models535

discussed here. This approach is especially time-wise in speciation genomics as comparative536

studies of closely-related species are accumulating (e.g. in butterflies: (Cong et al. 2019; Edelman537

et al. 2019; Martin et al. 2019; Ebdon et al. 2020); in birds: (Peñalba et al. 2019); in fishes:538

(Malinsky et al. 2018); in plants: (Stankowski et al. 2019)); and so there is a strong demand for539

efficient and powerful inference tools. Applied to genomic data, DILS will first identify the best540

demographic model to test for changes in effective size and migration rate over time, then it will541

identify the best genomic sub-model to test for genome-wide heterogeneity in these parameters542

(and thus linked selection), and finally it will identify loci most associated with genomic regions543

locked to gene flow.544

Performances of DILS545

For single-population models, DILS is highly efficient at distinguishing the three demographic546

models (Expansion versus Constant versus Contraction). It fairly discriminates among the two547

genomic sub-models (homo-Ne versus hetero-Ne) for the Expansion and Constant models, but548

has too much ambiguity to distinguish them in a Contraction model. Current population sizes549

(#4current) are accurately estimated under all three demographic models, as well as the time of550

size change ()dem) provided that it is not too recent. However, the past population size (#4past)551

is increasingly overestimated in an expansion model (respectively, underestimated in a contraction552

model) when the contrast with #4current is increasingly sharp.553

We also found that in two-population models, DILS very accurately discriminates between the554

two supermodels classically tested in speciation ("current isolation" versus "ongoing migration"),555

and it discriminates reasonably well among models with ongoing migration (IM versus SC), but556

quite poorly among models without (SI versus AM). Within each demographic model, the two Ne-557

genomic sub-models are fairly discernible; and the same is true for the twoN.m-genomic sub-models558
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(homo-N.m versus hetero-N.m) in scenarios of ongoing migration. Parameters are reasonably well559

estimated in all models (i.e. population sizes #4current and #4past, and times )dem, )AM and )SC);560

except for the migration rate (#.<). The latter is poorly estimated in ongoing migration models,561

and cannot be evaluated at all when migration happened only in the past (AM).562

Therefore it is critical for users to be aware of the limits of DILS; especially when it does563

accurately discriminate among models and estimate parameter values, and when it does not. For564

example, the best scenarios for identifying barriers to gene flow is when the genetic signal for565

these loci strongly contrasts with the rest of the genome, i.e. when speciation time is long enough566

to build-up divergence at barrier regions, and migration rate is high enough to homogenize the567

genomic background between species. In general, DILS fails to make accurate inferences when568

divergence or changes in population size have occurred very recently.569

Another caveat is that (linked) selection causes demographic parameters to be mis-estimated.570

This includes the impact of both positive selection (e.g. (Schrider et al. 2016)) and background571

selection (e.g. (Ewing and Jensen 2016); (Johri et al. 2020)). DILS cannot fully account for this572

inference bias because of the hierarchical manner in which models are inferred (i.e. the genomic573

models that test for linked selection are analyzed after demography is inferred).574

Collaborative research575

DILS was designed with the objective to facilitate collaborative research in speciation. One576

major question in the field is to understand how fast reproductive isolation builds-up with diver-577

gence between lineages, and so how fast introgression decreases along a continuum of molecular578

divergence. This relationship has been investigated in 61 pairs of animals (Roux et al. 2016)579

only providing a partial picture. Here, we extended this work by analyzing genomic data of 28580

species/populations of "HC8;DB mussels. Within this specific clade, we found a pattern of non-581

linear decrease of migration probability with the neutral molecular divergence, similar to what was582

observed in Roux et al. (2016). However, we also documented ongoing migration between two583

highly divergent mussel species, hence pushing the grey zone of speciation threshold beyond 2%584

of net synonymous divergence, maybe due to the outstanding life history traits of mussels (i.e.585
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broadcast spawning, high-dispersal larvae, large effective population sizes and living in a highly586

connected marine environment).587

DILS offers the possibility for the users to participate in this enterprise, and record where their588

biological model falls within this global speciation picture. Such a global picture of transition from589

gene flow to no gene flow is necessary for the central problem of species delineation (Hey and Pinho590

2012). Although a universal criterion for delineating species seems impossible, as exemplified by591

themussel dataset, the idea of defining a grey zone by taxonomic system is promising (Galtier 2019).592

Thus, our collaborative approach option included in DILS will allow in the future to establish a593

relationship between molecular divergence and genetic isolation for different taxa, i.e. vertebrates,594

terrestrial plants, algae, etc ..., and thus will provide delimitation rules by system.595

Non-detailed features596

The raw data can be easily visualized with DILS as a site frequency spectrum and summary597

statistics across loci. DILS produces comprehensive results for each inference step: 1) the global598

model comparison to estimate the best demo-genomic model; 2) the locus-specific model com-599

parison to identify barrier loci; and 3) the estimation of parameter values for the best model. To600

help users interpreting these results, DILS produces a series of goodness-of-fit tests to the data.601

These tests are performed by simulating under the best model each population genetic statistic602

calculated in section "Summary statistics" (genomic mean and variance of c, \, �ST, etc.), as well603

as for each bin of the SFS (or jSFS for two-population models). In addition to an individual test604

for each summary statistic, a test is also performed from statistics transformed by a PCA following605

(Cornuet et al. 2008; Cornuet et al. 2014). DILS also provides values for each locus of: 1) each606

summary statistic; 2) the approximated recombination rate calculated based on the four-gamete607

rule ((Hudson and Kaplan 1985); implemented in a C-code from (Galtier et al. 2017)); and 3)608

the posterior probability of being genetically linked to a barrier to gene flow (for two-population609

models only). These results are outputted as interactive graphics in the application.610

Our method is implemented in a user-friendly platform allowing the configuration of the ABC611

analysis via a graphical interface, its execution and visualization of the results. Detailed information612
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on how to use DILS is provided in the manual. The released version of DILS is currently hosted by613

the CC LBBE/PRABI, but to ensure full reproducibility and portability on any server, DILS is also614

packaged in a singularity container freely available at https://github.com/popgenomics/615

DILS_web. The complete analysis of a dataset (model comparison + parameter estimations +616

locus-specific tests + goodness-of-fit tests) on the host server takes 2h30 on average.617

Prospects for the future618

With the improvement of computational methods, it is now possible to simulate entire chro-619

mosomes under the full ancestral process of coalescence and recombination (Kelleher et al. 2016).620

Combining this type of coalescent simulators with haplotype-based statistics in our ABC frame-621

work would be very promising to improve estimates of the timing and extent of gene-flow after622

secondary contact (Harris and Nielsen 2013). The architecture of DILS has been designed to easily623

add simulators other than ms and its modified versions (Hudson 2002). Thus, it would be readily624

achievable to use forward-in-time simulations including direct selection (Haller and Messer 2019),625

and information on local recombination rates or gene density, and therefore making inferences for626

any selective scheme while taking into account the demographic history of the sample, without627

changing the pipeline upstream or downstream of the simulator. Recent progress in this direction628

has been made by Johri et al. (Johri et al. 2020) who jointly inferred past demography and back-629

ground selection using an ABC framework, and by Sackman et al. ((Sackman et al. 2019)) who630

developed a similar approach to estimate site-specific selection coefficients under a multiple-merger631

coalescent model.632

DATA ACCESSIBILITY633

The web platform for DILS is available at http://eep.univ-lille.fr/en/productions/634

dils-software. Source codes to deploy DILS can be freely used from GitHub: https://635

github.com/popgenomics/DILS_web. A manual is also provided. This GitHub repository also636

contain theMytilus sequences analyzed (sub-directory ’example’). The corresponding raw data are637

available under the accession number SRP218536 (https://cutt.ly/ErrDuwj).638
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Supplementary Table 1. DILS performance for model comparisons

comparison target correct ambiguous wrong threshold
Single-population models

Expansion versus Constant versus Contraction Expansion 0.8627 0.1275 0.0098 0.919
Constant 0.891 0.099 0.01 0.856

Contraction 0.9937 0.0024 0.0039 0.501
Expansion homo-Ne versus hetero-Ne homo-Ne 0.8248 0.1652 0.01 0.83

hetero-Ne 0.7492 0.2408 0.01 0.92
Constant homo-Ne versus hetero-Ne homo-Ne 0.8562 0.134 0.0098 0.835

hetero-Ne 0.8336 0.1564 0.01 0.89
Contraction homo-Ne versus hetero-Ne homo-Ne 0.4074 0.5828 0.0098 0.906

hetero-Ne 0.2634 0.7266 0.01 0.901
Two-populations models
migration versus isolation migration 0.97922 0.01078 0.01 0.665

isolation 0.95053 0.03968 0.00978 0.84
SI versus AM SI 0.01465 0.9754 0.00995 0.845

AM 0.81482 0.18518 0 0.705
IM versus SC IM 0.791 0.19908 0.00992 0.885

SC 0.69958 0.29042 0.01 0.915
SI homo-Ne versus SI hetero-Ne homo-Ne 0.9688 0.0213 0.0099 0.8

hetero-Ne 0.8173 0.1741 0.0086 0.96
AM homo-Ne versus AM hetero-Ne homo-Ne 0.95495 0.0355 0.00955 0.82

hetero-Ne 0.8156 0.17445 0.00995 0.95
IM homo-Ne versus IM hetero-Ne homo-Ne 0.7006 0.29005 0.00935 0.855

hetero-Ne 0.6469 0.3433 0.0098 0.93
SC homo-Ne versus SC hetero-Ne homo-Ne 0.7063 0.284 0.0097 0.85

hetero-Ne 0.64645 0.34445 0.0091 0.925
IM homo-N.m versus IM hetero-N.m homo-N.m 0.85915 0.13105 0.0098 0.845

hetero-N.m 0.759 0.23265 0.00835 0.95
SC homo-N.m versus SC hetero-N.m homo-N.m 0.7144 0.27585 0.00975 0.855

hetero-N.m 0.59875 0.39165 0.0096 0.915
For each model, 10, 000 sets of pseudo-observed data were analysed. These datasets were

simulated by taking random combinations of parameters from large prior distributions. The table
reports for each model comparison the proportions among these simulations that lead to correct,
ambiguous or wrong inferences according to a threshold set to keep the rate of wrong inferences

below 1%.
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Supplementary Table 2. Mean-squared error in parameter estimations for single-population
models

demographic model genomic model #4 #4current #4past U V )dem

Constant homo 0.00523
hetero 0.01178 0.39888 0.92462

Expansion homo 0.2009 0.00922 0.74168
hetero 0.20754 0.01369 0.46283 0.94578 0.74924

Contraction homo 0.12258 0.08716 0.88229
hetero 0.12563 0.09423 0.52025 0.95338 0.90631

Estimation errors are calculated on # = 10, 000 simulated datasets for each model, by using
random combination of parameter values. The reported values are measured as follows

1
# ∗ E0A80=24(\8)

#∑
8=1
(\̂8 − \8)2,

where \̂8 and \8 represent the estimated and the true parameter values respectively

Supplementary Table 3. Mean-squared error in parameter estimations for two-population models

demographic model genomic model #.< genomic model #4 #4current #4past )split )AM )SC #.< number of barriers U V

AM homo homo 0.02114 0.09633 0.08024 0.02503 1.01278
hetero 0.02832 0.10649 0.09502 0.02797 1.0092 0.39736 0.96193

hetero homo 0.02134 0.09238 0.08401 0.04687 1.02054 1.01096
hetero 0.03793 0.21534 0.22518 0.07039 1.00063 0.94219 0.46799 0.97759

IM homo homo 0.08547 0.30056 0.60409 0.37401
hetero 0.09235 0.35789 0.62885 0.40637 0.452 0.97489

hetero homo 0.05707 0.31596 0.27658 0.6166 0.52701
hetero 0.07003 0.29829 0.27734 0.65794 0.55112 0.55623 0.97603

SC homo homo 0.08764 0.23384 0.19008 0.33885 0.50572
hetero 0.09052 0.26734 0.21924 0.35622 0.50668 0.46972 0.9829

hetero homo 0.07016 0.25806 0.14854 0.30055 0.78375 0.49972
hetero 0.07937 0.26373 0.15774 0.32815 0.77411 0.5055 0.49075 0.9738

SI homo 0.0183 0.04164 0.01158
hetero 0.02918 0.05768 0.01458 0.38479 0.95003

Estimation errors are calculated on # = 2, 000 simulated datasets for each model, by using random combination of
parameter values. The reported values are measured as follows

1
# ∗ E0A80=24(\8)

#∑
8=1
(\̂8 − \8)2,

where \̂8 and \8 represent the estimated and the true parameter values respectively
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Supplementary Table 4. DILS performance for model comparisons (50 loci)

comparison target correct ambiguous wrong threshold
Single-population models

Expansion versus Constant versus Contraction Expansion 0.3631 0.627 0.0099 0.872
Constant 0.1156 0.8744 0.01 0.924

Contraction 0.8014 0.1887 0.0099 0.801
Expansion homo-Ne versus hetero-Ne homo-Ne 0.438 0.552 0.01 0.8

hetero-Ne 0.259 0.731 0.01 0.922
Constant homo-Ne versus hetero-Ne homo-Ne 0.1938 0.7962 0.01 0.898

hetero-Ne 0.3798 0.6106 0.0096 0.896
Contraction homo-Ne versus hetero-Ne homo-Ne 0.0388 0.9512 0.01 0.847

hetero-Ne 0.1422 0.8478 0.01 0.798
Two-populations models
migration versus isolation migration 0.96594 0.02419 0.00988 0.83

isolation 0.86258 0.12775 0.00967 0.94
SI versus AM SI 0.01675 0.974 0.00925 0.835

AM 0.74541 0.25459 0 0.7
IM versus SC IM 0.14212 0.84825 0.00962 0.815

SC 0.33162 0.65912 0.00925 0.84
SI homo-Ne versus SI hetero-Ne homo-Ne 0.8025 0.1878 0.0097 0.865

hetero-Ne 0.7669 0.2234 0.0097 0.945
AM homo-Ne versus AM hetero-Ne homo-Ne 0.8567 0.1339 0.0094 0.845

hetero-Ne 0.76395 0.22755 0.0085 0.945
IM homo-Ne versus IM hetero-Ne homo-Ne 0.6174 0.3733 0.0093 0.85

hetero-Ne 0.6078 0.38245 0.00975 0.925
SC homo-Ne versus SC hetero-Ne homo-Ne 0.5762 0.41425 0.00955 0.86

hetero-Ne 0.6026 0.38815 0.00925 0.92
IM homo-N.m versus IM hetero-N.m homo-N.m 0.82115 0.16975 0.0091 0.84

hetero-N.m 0.7286 0.2616 0.0098 0.94
SC homo-N.m versus SC hetero-N.m homo-N.m 0.6874 0.3026 0.01 0.84

hetero-N.m 0.5733 0.41685 0.00985 0.9
For each model, 10, 000 sets of pseudo-observed data were analysed. These datasets were

simulated by taking random combinations of parameters from large prior distributions. The table
reports for each model comparison the proportions among these simulations that lead to correct,
ambiguous or wrong inferences according to a threshold set to keep the rate of wrong inferences

below 1%.
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Supplementary Table 5. Mean-squared error in parameter estimations for single-population
models (50 loci)

demographic model genomic model #4 #4current #4past U V )dem

Constant homo 0.0228
hetero 0.03449 0.70947 0.98946

Expansion homo 0.08809 0.52517 0.16218
hetero 0.35216 0.04191 0.81278 0.99991 0.88967

Contraction homo 0.47073 0.21153 0.62715
hetero 0.46802 0.23797 0.93637 1.02559 0.61804

Estimation errors are calculated on # = 10, 000 simulated datasets for each model, by using
random combination of parameter values. The reported values are measured as follows

1
# ∗ E0A80=24(\8)

#∑
8=1
(\̂8 − \8)2,

where \̂8 and \8 represent the estimated and the true parameter values respectively

Supplementary Table 6. Mean-squared error in parameter estimations for two-population models
(50 loci)

demographic model genomic model #.< genomic model #4 #4current #4past )split )AM )SC #.< number of barriers U V

AM homo homo 0.055485 0.53191 0.12501 0.05644 1.015555
hetero 0.11993 0.55227 0.1225 0.05384 1.02654 0.46935 0.97141

hetero homo 0.059945 0.3713 0.12238 0.10461 1.033195 1.02842
hetero 0.137835 0.62798 0.43039 0.1357 3.396885 0.971325 0.55026 0.97256

IM homo homo 0.388225 0.7769 0.80515 0.805825
hetero 0.435665 0.72078 0.80752 0.81616 0.58108 0.99116

hetero homo 0.13616 0.62112 0.48981 0.801295 0.698155
hetero 0.38603 0.76231 0.68573 3.25778 0.792555 0.71352 0.98747

SC homo homo 0.356335 0.78699 0.50131 0.68767 0.793965
hetero 0.40256 0.76448 0.56498 0.73792 0.806405 0.63782 0.99261

hetero homo 0.141365 0.58488 0.31244 0.46769 0.89345 0.72939
hetero 0.37401 0.7561 0.62716 0.82784 3.268765 0.834315 0.78496 1.0084

SI homo 0.05146 0.42862 0.06767
hetero 0.10725 0.46691 0.07735 0.48983 0.94838

Estimation errors are calculated on # = 2, 000 simulated datasets for each model, by using random combination of
parameter values. The reported values are measured as follows

1
# ∗ E0A80=24(\8)

#∑
8=1
(\̂8 − \8)2,

where \̂8 and \8 represent the estimated and the true parameter values respectively
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List of Figures814

1 Demographic models currently implemented in DILS815

A. Single-population models. Demographic changes occurring )dem generations816

ago are modeled backwards in time by sudden transitions from #4current to #4past,817

either for expansions or contractions.818

B. Two-population models. The Strict Isolation (SI) and Ancient Migration (AM)819

models are characterized by an absence of ongoing migration. Conversely, the820

Isolation with Migration (IM) and Secondary Contact (SC) models describe two821

populations that are currently connected by introgression events at rate #.<. The822

two-population models shown here are of constant size, but DILS optionally in-823

corporates alternative versions of the same four models where effective size can824

change independently in both daughter populations between the present time and825

)split. This is a relevant addition given the influence of over-time size-changes on826

demographic inferences in speciation scenarios (Momigliano et al. 2020). . . . . . 43827
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2 DILS performance for hierarchical comparison of single-population models828

DILS first performs a comparison of the three demographic models (Expansion829

E4ABDB Constant E4ABDB Contraction). In a second step, it compares two genomic830

sub-models (homogeneous E4ABDB heterogeneous genomic distribution of #4) for831

the best supported demographic model. The pie charts designate for each model832

the proportion of simulations performed under the corresponding model that is833

strongly and correctly captured (correct: blue), strongly and incorrectly captured834

(wrong: yellow) and without strong statistical support for any of the studied models835

(ambiguous: purple). The performance of DILS was based on 10, 000 pseudo-836

observed datasets for each of the Expansion / Constant / Contraction demographic837

models. Each of these 10,000 simulated datasets are evenly distributed between838

the two genomic sub-models, homo and hetero Ne. The parameters used for the839

simulated datasets are randomly drawn fromuniform laws, with#4 in [1-1,000,000]840

individuals and )dem in [1-2,000,000] generations. Each simulated dataset consists841

of 100 loci of length 1, 000 nucleotides. . . . . . . . . . . . . . . . . . . . . . . . 44842
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3 DILS performance for hierarchical comparison of two-population models843

Two-population analyses are performed in three steps (panel A). DILS first per-844

forms a comparison of the two supermodels ("Current isolation" versus "Ongoing845

migration"). In a second step, it compares two demographic models for the best846

supported supermodel: if ’current isolation’, then DILS tests SI versus AM; if847

’ongoing migration’, then DILS tests IM versus SC. In a third step, DILS compares848

genomic sub-models for variation of effective population size, #4 (panel B) and849

migration rate, #.< (panel C; only for ongoing migration models) thus testing for850

linked selection. The letters ’o’ and ’e’ in panels B and C indicate simulations per-851

formed under genomic homogeneity and heterogeneity models, respectively. The852

pie charts designate for each model the proportion of simulations performed under853

the corresponding model that is strongly and correctly captured (correct: blue),854

strongly and incorrectly captured (wrong: yellow) and without strong statistical855

support for any of the studied models (ambiguous: purple). The performance of856

DILS was based on 10, 000 pseudo-observed datasets for each of the SI / AM /857

IM / SC demographic models. Each of these 10,000 simulated datasets are evenly858

distributed between the four genomic sub-models, homo and hetero Ne or N.m.859

The parameters used for the simulated datasets are randomly drawn from uniform860

laws, with #4 in [1-1,000,000] individuals, #.< in [0-20] 4.#.< units where m is861

the fraction of each population made up of new migrants each generation, )split in862

[1-2,000,000] generations and )dem / )SC / )AM between )split_min and the sampled863

)split value. Each simulated dataset consists of 100 loci of length 1, 000 nucleotides.864

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45865
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4 DILS performance for parameter estimations of single-population models866

10, 000 pseudo-observed datasets are simulated by taking random parameter values867

(x-axis) under the six models. These parameters are estimated using DILS (y-axis).868

The lines represent the loess (locally estimated scatterplot smoothing) regressions869

between exact and estimated parameter values for each of the six models. The870

fields represent the 99% confidence interval and the dotted line represents G = H.871

Estimation of the effective size of the current population #4current (A), of the872

ancestral population #4past (B) and the time of demographic changes )dem (C).873

#4past and )dem are both expressed here in terms of #4current individuals. . . . . . . 46874

5 DILS performance for parameter estimations of two-population models875

2, 000 pseudo-observed datasets are simulated by taking random parameter values876

under the 14models and analyzed using the same procedure as to produce the figure877

4, but for the effective size of the current population #4current (A), the ancestral878

population size #4past (B), the time of split )split (C, in generations), the times of879

demographic transitions )AM and )SC (D) and the migration rate N.m (E). . . . . . 47880
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6 Detection of barriers to gene flow881

x-axis: 11 explored values of the locus-specific #.< migration rate under an IM882

model.883

y-axis: proportion of loci supported by DILS as being linked to a barrier to gene884

flow (i.e. for which the best model corresponds to local-isolation in the locus-885

specific model comparison).886

The colors designate five different divergence times of the IM model ()split, figure887

1). The unit time is inNe generations whereNe is the number of haploid individuals888

making up the population. If #4 = 100, 000 individuals, then )split = 5 means a889

divergence time of 500, 000 generations under the IM model. If Ne is the number890

of diploids, then )split must be multiplied by two to find the same relationship.891

Each combination of )split and N.m was independently simulated 10, 000 times and892

analyzed by DILS to get the proportion of loci best fitting the local-isolation model893

for a given combination of parameters. The estimated points are connected by894

dotted lines for visibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48895
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7 Application of DILS to a Mytilus RNA-Seq dataset896

A: Transcriptomes were obtained in (Popovic et al. 2019) from 44 individuals897

sampled from 4 labelled species (throughout 8 localities), providing 28 possible898

pairs of Mytilus populations analysed to test for a genetic connection through899

migration events (SRP218536; https://cutt.ly/ErrDuwj). A median number900

of 1, 407 coding genes was used to perform demographic inferences after filtering901

the data (<8= = 144 genes; <0G = 2, 899 genes; depending on the pair of Mytilus902

considered).903

B: The x-axis shows the net divergence measured at the synonymous positions904

of the sequenced genes. The y-axis shows the probability provided by DILS of905

models with ongoing migration (IM + SC). Grey dots correspond to the 61 pairs906

of populations/semi-isolated species/species studied in (Roux et al. 2016). The907

coloured dots correspond to the 28 pairs of newly analyzed Mytilus. The colours908

refer to the labelled species from which the partners of each designated pair originate. 49909
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Fig. 1. Demographic models currently implemented in DILS
A. Single-population models. Demographic changes occurring )dem generations ago are modeled
backwards in time by sudden transitions from #4current to #4past, either for expansions or contrac-
tions.
B. Two-population models. The Strict Isolation (SI) and Ancient Migration (AM) models are
characterized by an absence of ongoing migration. Conversely, the Isolation with Migration (IM)
and Secondary Contact (SC) models describe two populations that are currently connected by
introgression events at rate #.<. The two-population models shown here are of constant size,
but DILS optionally incorporates alternative versions of the same four models where effective size
can change independently in both daughter populations between the present time and )split. This
is a relevant addition given the influence of over-time size-changes on demographic inferences in
speciation scenarios (Momigliano et al. 2020).
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Fig. 2. DILS performance for hierarchical comparison of single-population models
DILS first performs a comparison of the three demographic models (Expansion E4ABDB Constant
E4ABDB Contraction). In a second step, it compares two genomic sub-models (homogeneous E4ABDB
heterogeneous genomic distribution of #4) for the best supported demographic model. The pie
charts designate for each model the proportion of simulations performed under the corresponding
model that is strongly and correctly captured (correct: blue), strongly and incorrectly captured
(wrong: yellow) and without strong statistical support for any of the studied models (ambiguous:
purple). The performance of DILS was based on 10, 000 pseudo-observed datasets for each of the
Expansion / Constant / Contraction demographic models. Each of these 10,000 simulated datasets
are evenly distributed between the two genomic sub-models, homo and hetero Ne. The parameters
used for the simulated datasets are randomly drawn from uniform laws, with #4 in [1-1,000,000]
individuals and )dem in [1-2,000,000] generations. Each simulated dataset consists of 100 loci of
length 1, 000 nucleotides.
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Fig. 3. DILS performance for hierarchical comparison of two-population models
Two-population analyses are performed in three steps (panel A). DILS first performs a comparison
of the two supermodels ("Current isolation" versus "Ongoing migration"). In a second step, it
compares two demographic models for the best supported supermodel: if ’current isolation’, then
DILS tests SI versus AM; if ’ongoing migration’, then DILS tests IM versus SC. In a third step,
DILS compares genomic sub-models for variation of effective population size, #4 (panel B) and
migration rate, #.< (panel C; only for ongoing migration models) thus testing for linked selection.
The letters ’o’ and ’e’ in panels B andC indicate simulations performed under genomic homogeneity
and heterogeneity models, respectively. The pie charts designate for each model the proportion
of simulations performed under the corresponding model that is strongly and correctly captured
(correct: blue), strongly and incorrectly captured (wrong: yellow) and without strong statistical
support for any of the studied models (ambiguous: purple). The performance of DILS was based
on 10, 000 pseudo-observed datasets for each of the SI / AM / IM / SC demographic models. Each
of these 10,000 simulated datasets are evenly distributed between the four genomic sub-models,
homo and hetero Ne or N.m. The parameters used for the simulated datasets are randomly drawn
from uniform laws, with #4 in [1-1,000,000] individuals, #.< in [0-20] 4.#.< units where m is
the fraction of each population made up of new migrants each generation, )split in [1-2,000,000]
generations and )dem / )SC / )AM between )split_min and the sampled )split value. Each simulated
dataset consists of 100 loci of length 1, 000 nucleotides.
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Fig. 4. DILS performance for parameter estimations of single-population models
10, 000 pseudo-observed datasets are simulated by taking random parameter values (x-axis) under
the six models. These parameters are estimated using DILS (y-axis). The lines represent the loess
(locally estimated scatterplot smoothing) regressions between exact and estimated parameter values
for each of the six models. The fields represent the 99% confidence interval and the dotted line
represents G = H. Estimation of the effective size of the current population #4current (A), of the
ancestral population #4past (B) and the time of demographic changes )dem (C). #4past and )dem are
both expressed here in terms of #4current individuals.
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Fig. 5. DILS performance for parameter estimations of two-population models
2, 000 pseudo-observed datasets are simulated by taking random parameter values under the 14
models and analyzed using the same procedure as to produce the figure 4, but for the effective size
of the current population #4current (A), the ancestral population size #4past (B), the time of split
)split (C, in generations), the times of demographic transitions )AM and )SC (D) and the migration
rate N.m (E).
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Fig. 6. Detection of barriers to gene flow
x-axis: 11 explored values of the locus-specific #.< migration rate under an IM model.
y-axis: proportion of loci supported by DILS as being linked to a barrier to gene flow (i.e. for
which the best model corresponds to local-isolation in the locus-specific model comparison).
The colors designate five different divergence times of the IM model ()split, figure 1). The unit time
is in Ne generations where Ne is the number of haploid individuals making up the population. If
#4 = 100, 000 individuals, then )split = 5 means a divergence time of 500, 000 generations under
the IM model. If Ne is the number of diploids, then )split must be multiplied by two to find the
same relationship. Each combination of )split and N.m was independently simulated 10, 000 times
and analyzed by DILS to get the proportion of loci best fitting the local-isolation model for a given
combination of parameters. The estimated points are connected by dotted lines for visibility.
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Fig. 7. Application of DILS to a Mytilus RNA-Seq dataset
A: Transcriptomes were obtained in (Popovic et al. 2019) from 44 individuals sampled from
4 labelled species (throughout 8 localities), providing 28 possible pairs of Mytilus populations
analysed to test for a genetic connection through migration events (SRP218536; https://cutt.
ly/ErrDuwj). A median number of 1, 407 coding genes was used to perform demographic
inferences after filtering the data (<8= = 144 genes; <0G = 2, 899 genes; depending on the pair of
Mytilus considered).
B: The x-axis shows the net divergence measured at the synonymous positions of the sequenced
genes. The y-axis shows the probability provided by DILS of models with ongoing migration (IM
+ SC). Grey dots correspond to the 61 pairs of populations/semi-isolated species/species studied in
(Roux et al. 2016). The coloured dots correspond to the 28 pairs of newly analyzed Mytilus. The
colours refer to the labelled species from which the partners of each designated pair originate.
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