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ABSTRACT 

Malaria transmission is dependent on formation of gametocytes in the human blood. 

The sexual conversion rate, the proportion of asexual parasites that convert into 

gametocytes at each multiplication cycle, is variable and reflects the relative parasite 30 

investment between transmission and maintaining the infection. The impact of 

environmental factors such as drugs on sexual conversion rates is not well 

understood. We developed a robust assay using gametocyte-reporter parasite lines 

to accurately measure the impact of drugs on conversion rates, independently from 

their gametocytocidal activity. We found that exposure to subcurative doses of the 35 

frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted 

in a ~4-fold increase in sexual conversion. In contrast, no increase was observed 

when ring stages were exposed or in cultures in which sexual conversion was 

stimulated by choline depletion. Our results reveal a complex relationship between 

antimalarial drugs and sexual conversion, with potential public health implications. 40 
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INTRODUCTION 

Plasmodium falciparum is responsible for the most severe forms of human malaria. 

Repeated rounds of its ~48 h intraerythrocytic asexual replication cycle result in an 45 

exponential increase in parasite numbers and are responsible for all clinical 

symptoms of malaria.  At each round of replication, a small subset of the parasites 

commits to differentiation into non-replicative sexual forms termed gametocytes, 

which are the only form transmissible to a mosquito vector. Sexual commitment is 

marked by epigenetic activation of the master regulator PfAP2-G, a transcription 50 

factor of the ApiAP2 family (Josling et al, 2020; Kafsack et al, 2014; Llorà-Batlle et al, 

2020; Poran et al, 2017). This is followed by sexual conversion, which according to 

our recently proposed definitions (Bancells et al, 2019) is marked by expression of 

gametocyte-specific proteins absent from any replicating blood stages. After sexual 

conversion, parasites at the sexual ring stage develop through gametocyte stages I 55 

to V in a maturation process that lasts for ~10 days (Josling et al, 2018; Ngotho et al, 

2019). While immature gametocytes are sequestered in organs such as the bone 

marrow (Venugopal et al, 2020), mature gametocytes (stage V) are released into the 

circulation, where they are infectious to mosquitoes for several days or even weeks 

(Cao et al, 2019). To eliminate malaria, which the World Health Organization has 60 

adopted as a global goal, it is necessary to block transmission, as well as killing 

asexual parasites to cure patients (World_Health_Organization, 2017). 

To secure within-host survival and between-host transmission, the proportion 

of parasites that convert into sexual forms at each replicative cycle, termed sexual 

conversion rate, is variable and tightly regulated. In human infections, gametocyte 65 

densities are always much lower than asexual parasite densities, and basal P. 

falciparum sexual conversion rates in vivo are estimated to be ~1% (Cao et al, 2019; 

Eichner et al, 2001). This reveals a reproductive restraint for which multiple 

alternative hypotheses have been proposed (McKenzie & Bossert, 1998; Mideo & 

Day, 2008; Taylor & Read, 1997). Whatever the reason for the low levels of sexual 70 

conversion, multiple observations suggest that malaria parasites can respond to 

changes in the conditions of their environment by adjusting the trade-off between 

transmission and within-host survival. From an evolutionary perspective, the ability to 

adjust sexual conversion rates depending on the host conditions would be clearly 

advantageous for the parasite (Carter et al, 2013; Schneider et al, 2018). In P. 75 
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falciparum, several specific conditions have been shown to increase sexual 

conversion rates, and exposure to stress in general was proposed to enhance sexual 

conversion (Baker, 2010; Bousema & Drakeley, 2011; Dyer & Day, 2000; Josling et 

al, 2018). The most commonly used method to enhance sexual conversion and 

obtain large numbers of gametocytes in vitro relies on overgrowing blood stage 80 

cultures (the “crash method”) (Delves et al, 2016) and/or maintaining the cultures 

with parasite-conditioned (spent) medium (Brancucci et al, 2015; Fivelman et al, 

2007). Recent research has established that depletion of the human serum lipid 

lysophosphatidylcholine (LysoPC) underlies the stimulation of sexual conversion by 

high asexual parasitemia or spent medium, providing the first mechanistic insight into 85 

how environmental conditions can influence the rate of sexual conversion (Brancucci 

et al, 2018; Brancucci et al, 2017). Low plasma LysoPC levels were also associated 

with increased sexual conversion rates in human infections (Usui et al, 2019). 

Depletion of LysoPC or choline, a downstream metabolite in the same metabolic 

pathway, have now been used by several groups to stimulate sexual conversion 90 

under culture conditions (Brancucci et al, 2017; Filarsky et al, 2018; Portugaliza et al, 

2019).  

Artemisinin and its derivatives (collectively referred to as ARTs) are potent 

antimalarial drugs that rapidly kill asexual parasites. After activation by cleavage of 

their endoperoxide bond by haemoglobin degradation products, ARTs produce 95 

reactive oxygen species and free radicals that result in widespread damage in 

parasite proteins and lipids. However, because ARTs have a very short elimination 

half-life in the human circulation (~1-3 h), their application as monotherapy was 

discontinued to avoid infection recrudescence and development of drug resistance. 

Artemisinin-based combination therapies (ACTs), consisting of ART and a long-100 

acting partner drug, are the current frontline treatment for uncomplicated as well as 

severe malaria cases (Blasco et al, 2017; de Vries & Dien, 1996; Haldar et al, 2018; 

Talman et al, 2019). Resistance to ARTs has emerged in South-East Asia in the 

form of delayed parasite clearance (Dondorp et al, 2009). ART resistance is 

associated with mutations in the PfKelch13 protein (Ariey et al, 2014) that prevent 105 

haemoglobin degradation in early ring-stage parasites. This in turn prevents ART 

activation, resulting in resistance of early rings to the drug (Birnbaum et al, 2020; 

Yang et al, 2019). Nowadays, ART resistance is frequently accompanied by 
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simultaneous resistance to partner drugs such as mefloquine, piperaquine or 

amodiaquine, resulting in high rates of treatment failure and limiting treatment 110 

options (Mairet-Khedim et al, 2020; Phyo et al, 2016; van der Pluijm et al, 2019). 

Treatment with antimalarial drugs such as chloroquine (CQ) or sulfadoxine-

pyrimethamine is usually associated with increased gametocytemia (density of 

gametocytes in the blood) on the days following drug administration, whereas 

treatment with ACTs results in reduced gametocytemia and transmission to 115 

mosquitoes (Ippolito et al, 2017; Okell et al, 2008; Price et al, 1996; Sawa et al, 

2013; von Seidlein et al, 2001; WWARN_Gametocyte_Study_Group, 2016). Despite 

the efficacy of ACTs in reducing gametocytemia, successfully treated patients can 

remain infectious for several days and contribute to transmission (Bousema et al, 

2006; Bousema et al, 2010; Karl et al, 2015; Targett et al, 2001). The higher capacity 120 

of ACTs to reduce gametocytemia compared to other drugs is attributable to several 

factors: i) faster killing of asexual parasites, which prevents the formation of new 

gametocytes; ii) more efficient killing of immature gametocytes; iii) partial clearance 

of mature gametocytes, which are insensitive to most other clinically relevant drugs 

(Adjalley et al, 2011; Chotivanich et al, 2006; Plouffe et al, 2016).  125 

Although it has been proposed that the increase of gametocytemia observed 

after treatment with some drugs may reflect stimulation of sexual conversion, there is 

no direct linear relationship between conversion rates and the prevalence and 

density of circulating gametocytes (Carter et al, 2013; Koepfli & Yan, 2018; Reece & 

Schneider, 2018). The dynamics of circulating gametocyte densities after treatment 130 

can be explained without invoking an adjustment of sexual conversion rates: first, 

gametocytes are sequestered away from the circulation until ~10 days after sexual 

conversion, implying that the peaks of gametocytemia observed after treatment with 

some drugs (within less than 10 days) may reflect the dynamics of asexual parasite 

growth before treatment, rather than post-treatment changes in sexual conversion. 135 

Second, the effects of the drugs on sexual conversion rates in human infections 

cannot be disentangled from other drug-mediated actions such as the release of 

sequestered parasites or gametocyte clearance (Babiker et al, 2008; Bousema & 

Drakeley, 2011; Butcher, 1997; Koepfli & Yan, 2018).  
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To directly address the effect of drug treatment on sexual conversion, a small 140 

number of studies have used P. falciparum in vitro cultures, yielding inconsistent 

results. While some studies reported increased sexual conversion upon exposure to 

specific doses of drugs such as CQ or ART (Buckling et al, 1999b; Peatey et al, 

2009; Rajapandi, 2019), others did not observe this effect with ART (Brancucci et al, 

2015), or reported reduced sexual conversion upon exposure to low doses of CQ or 145 

pyrimethamine (Reece et al, 2010). Although the discrepancies may reflect 

methodological differences between these studies and limited accuracy in 

determining sexual conversion rates, the divergent conclusions also suggest a 

complex scenario in which conditions such as the specific drug used, the parasite 

stage at the time of exposure, and drug concentration may determine the effect of 150 

treatment on sexual conversion.  

Given the widespread use of ACTs for malaria treatment and in mass drug 

administration campaigns aimed at malaria elimination, understanding the impact of 

ARTs on sexual conversion is an urgent research priority. Here, we developed a 

robust assay based on recently described gametocyte-reporter parasite lines 155 

(Portugaliza et al, 2019) to accurately measure the impact of drugs on sexual 

conversion rates, independently from their gametocytocidal activity. Using this assay, 

we tested the effect of exposing parasites to dihydroartemisinin (DHA, the active 

metabolite of all ARTs) and CQ at different stages and under different metabolic 

conditions, to provide an accurate and comprehensive description of the direct effect 160 

of these drugs on sexual conversion rates. 

 

RESULTS 

Exposure to DHA at the trophozoite stage enhances sexual conversion 

To examine the effect of ARTs on P. falciparum sexual conversion, we administered 165 

a 3 h pulse of DHA to synchronous cultures of the NF54-gexp02-Tom reporter line. 

This parasite line expresses the fluorescent reporter tdTomato under the control of 

the promoter of the sexual stage-specific gene gexp02 (PF3D7_1102500), which 

allows accurate flow cytometry-based detection of very early gametocytes within a 

few hours after sexual conversion (Portugaliza et al, 2019). The short drug pulse 170 

mimics the short plasma half-life of ARTs (de Vries & Dien, 1996). Cultures were 
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regularly maintained in choline-containing culture medium (Albumax-based medium 

with a supplement of choline) to mimic the repression of sexual conversion by 

healthy human serum, and choline was either maintained or removed during the 

experiment to repress or stimulate sexual conversion (Brancucci et al, 2017; Filarsky 175 

et al, 2018). The DHA pulse was administered at the trophozoite (Fig. 1A) or the ring 

stage (Fig. 2A), using subcurative DHA concentrations (5 and 10 nM) that resulted in 

a reduction of growth of <40% and <25% in trophozoites and rings, respectively (Fig. 

1B and 2B). The sexual conversion rate was calculated as the proportion of 

parasites that developed into gametocytes at the cycle after exposure (i.e., after 180 

reinvasion). 

In cultures supplemented with choline, the sexual conversion rate increased 

from <10% in control cultures to up to 40% in cultures exposed to a 5 or 10 nM DHA 

pulse at the trophozoite stage (Fig. 1C-D). Importantly, total gametocytemia was also 

clearly higher in DHA-exposed cultures than in control cultures (Fig. 1E). This result 185 

indicates that the increase in the sexual conversion rate is not only attributable to the 

lower number of asexual parasites after drug treatment, but also to a net increase in 

the number of gametocytes produced. By contrast, in cultures in which sexual 

conversion was already stimulated by choline depletion, DHA treatment did not result 

in a further increase in the sexual conversion rate or in the absolute number of 190 

gametocytes (Fig. 1C-E). Similar results were obtained in experiments in which 

sexual conversion rates were calculated based only on viable parasites as identified 

by a marker of active mitochondria (Supplementary Fig. 1), using an analogous 

reporter line generated in the 3D7-E5 genetic background that has lower levels of 

basal sexual conversion than NF54 (E5-gexp02-Tom line, Supplementary Fig. 2) 195 

(Portugaliza et al, 2019), and using a transgenic line with the fluorescent reporter 

under the control of the etramp10.3 (PF3D7_1016900) gametocyte-specific promoter 

(NF54-10.3-Tom line) (Portugaliza et al, 2019). Using this latter parasite line, we 

measured sexual conversion rates by flow cytometry, by immunofluorescence assay 

(IFA) detecting the Pfs16 (PF3D7_0406200) early gametocyte marker and by light 200 

microscopy analysis of Giemsa-stained blood smears. All approaches yielded similar 

results and confirmed enhanced sexual conversion after exposure of trophozoites to 

subcurative doses of DHA (Supplementary Fig. 3).  
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We also tested the impact on sexual conversion of higher DHA doses up to 30 

nM, a concentration that kills ~90% of the parasites (Supplementary Fig. 4A-B). In 205 

choline-supplemented cultures, both sexual conversion rates and total 

gametocytemia were clearly enhanced upon exposure to DHA concentrations up to 

15 nM, but the increase was lower upon exposure to higher concentrations. In 

choline-depleted cultures, >10 nM DHA resulted in a reduction of sexual conversion 

compared with no drug controls (Supplementary Fig. 4). However, it is important to 210 

note that the determination of sexual conversion rates is less accurate when the 

majority of the parasites are killed by the drug. Thus, given that maximum induction 

was observed at 10 nM and the difficulties to estimate sexual conversion accurately 

in experiments with higher drug doses, we used 5 and 10 nM DHA pulses for the 

experiments described in the next sections.   215 

Gametocytes of the NF54-gexp02-Tom line produced in cultures treated with 

5 nM DHA matured through stages I to V without any apparent morphological 

alteration. Furthermore, they were able to exflagellate and to infect mosquitoes 

(Supplementary Fig. 5).  

 220 

DHA exposure at the ring stage does not enhance sexual conversion 

A DHA pulse (5 or 10 nM) at the early ring stage did not enhance sexual conversion. 

Instead, it resulted in a reduction of sexual conversion and gametocytemia, both in 

choline-supplemented and choline-depleted NF54-gexp02-Tom cultures (Fig. 2; 

Supplementary Fig. 6). This unexpected result was confirmed using the NF54-10.3-225 

Tom reporter line and the different methods described above to assess sexual 

conversion (Supplementary Fig. 7). To explore the possibility that DHA exposure at 

the early ring stage may stimulate immediate sexual conversion via the same cycle 

conversion (SCC) pathway (Bancells et al, 2019), rather than by the canonical next 

cycle conversion (NCC) pathway, we assessed the effect of DHA exposure at the 230 

ring stage on the level of gametocytes produced within the same cycle of exposure 

(Fig. 3A). We observed no apparent differences in sexual conversion rates via the 

SCC route between DHA-exposed cultures and their controls (Fig. 3B-C; 

Supplementary Fig. 8). Similar results were obtained using the NF54-10.3-Tom 

reporter line and flow cytometry or light microscopy analysis of Giemsa-stained 235 
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smears to measure sexual conversion by the SCC pathway. However, IFA analysis 

of this parasite line using anti-Pfs16 antibodies revealed an increase in the 

proportion of parasites expressing this endogenous protein upon DHA exposure 

(Supplementary Fig. 9). The significance of this observation remains unclear, but it 

may indicate a rapid effect of DHA on the expression of some gametocyte specific 240 

genes without further sexual development.  

These experiments also revealed that choline depletion did not increase 

sexual conversion via the SCC route (Fig. 3B). This result may be explained by two 

alternative scenarios: i) conversion via the SCC route is insensitive to choline 

depletion; ii) ring stages are insensitive to choline depletion. To distinguish between 245 

these two possibilities, we assessed sexual conversion via the NCC pathway in 

cultures in which choline was depleted at different stages of the life cycle (Fig. 4A). 

We found that choline depletion at the ring stage does not induce sexual conversion, 

in contrast to depletion at the trophozoite stage (Fig. 4B-C). Altogether, these results 

show that in parasites at the ring stage neither a DHA pulse nor choline depletion 250 

induces sexual conversion, suggesting that this developmental stage is largely 

insensitive to environmental stimulation of sexual conversion.  

 

CQ exposure at the trophozoite stage can also enhance sexual conversion 

Using the same drug pulse approach, we assessed whether CQ, a drug with a 255 

different mode of action than DHA (Haldar et al, 2018), also stimulates sexual 

conversion (Fig. 5A). Exposure to 80 nM CQ at the trophozoite stage, a dose that 

induces ~40% lethality (Fig. 5B), resulted in enhanced sexual conversion rates in 

choline-supplemented cultures (Fig. 5C-D; Supplementary Fig. 10). However, the 

level of induction was only ~2-fold, much lower than induction by DHA, and there 260 

was no consistent induction at higher or lower drug doses. Similar to DHA, CQ 

exposure at the trophozoite stage did not increase sexual conversion in choline-

depleted cultures (Fig. 5C-D), and exposure to CQ at the ring stage did not enhance 

sexual conversion by either the NCC (Supplementary Fig. 11) or the SCC 

(Supplementary Fig. 12) routes. Reduced sexual conversion was observed in choline 265 

depleted cultures treated with CQ doses that kill the vast majority of parasites, but 

this needs to be interpreted with caution because of the intrinsic limitations of sexual 
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conversion assays when the majority of parasites are killed (Fig. 5; Supplementary 

Fig. 10-11).  

 270 

Enhancement of sexual conversion by DHA operates via pfap2-g  

To determine whether stimulation of sexual conversion by DHA involves activation of 

the master regulator pfap2-g (PF3D7_1222600), we analysed the transcript levels for 

this gene after a DHA pulse, and also for one of its earliest known targets, gexp02 

(Filarsky et al, 2018; Josling et al, 2020; Llorà-Batlle et al, 2020; Portugaliza et al, 275 

2019; Silvestrini et al, 2010). Transcript levels for the two genes were determined at 

the schizont stage of the cycle of exposure and at the ring stage of the next cycle. A 

subcurative DHA pulse at the trophozoite stage resulted in upregulation of both 

pfap2-g and gexp02 relative to the serine-tRNA ligase (PF3D7_0717700) reference 

gene in choline-supplemented cultures, but not in choline-depleted cultures (Figure 280 

6A-C). In contrast, exposure to DHA at the ring stage resulted in reduced expression 

of both genes (Figure 6D-F). Analysis of transcripts only 2 h after DHA exposure at 

the ring stage did not reveal induction of pfap2-g or gexp02 (Fig. 6G-I), ruling out 

activation of the genes at a time consistent with conversion via the SCC route. 

Identical results were obtained when normalizing pfap2-g or gexp02 transcript levels 285 

against ubiquitin-conjugating (PF3D7_0812600) enzyme as a reference gene 

(Supplementary Fig. 13). Overall, the findings of these transcriptional analyses 

clearly mirror the effect of the drug on sexual conversion rates, indicating that 

induction of sexual conversion by DHA is associated with pfap2-g activation.  

 290 

DISCUSSION 

ARTs are the key component of ACTs, the most widely used treatment for clinical 

malaria. Additionally, ACTs may be widely administered in mass drug administration 

campaigns aimed at malaria elimination. Given that the success of malaria control 

and elimination efforts largely depends on preventing disease transmission, 295 

understanding the impact of ARTs on the production of transmission forms is of 

paramount importance. Our results show a complex effect of DHA on the trade-off 

between asexual proliferation and formation of transmission forms. Exposure of 
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parasites at the trophozoite stage to subcurative doses of DHA resulted in a large 

increase in sexual conversion rates and total number of gametocytes, which were 300 

viable and infectious to mosquitoes. However, this was not observed when parasites 

were exposed to the same drug doses at the ring stage. Furthermore, in cultures in 

which sexual conversion was already stimulated at the metabolic level (i.e., by 

depletion of choline), DHA did not further stimulate sexual conversion at either stage. 

The accurate determination of the impact of DHA on sexual conversion rates at 305 

different stages was possible thanks to the development of an assay that uses a 

short drug pulse and reporter parasite lines that enable very early detection of 

gametocytes by flow cytometry. 

The overall effect of a drug on the transmission potential of an infection 

depends on its effect on the sexual conversion rate, and on several other factors. In 310 

the case of ARTs, the stimulation of sexual commitment at the trophozoite stage may 

not result in an overall increase in transmission due to rapid clearance of asexual 

parasites, which prevents new rounds of gametocyte production, and to the activity 

of the drug against developing and mature gametocytes. Indeed, several studies 

have observed that treatment with drug combinations containing ARTs reduce 315 

gametocyte density and the duration of gametocyte carriage (Bousema et al, 2006; 

Bousema et al, 2010; Ippolito et al, 2017; Karl et al, 2015; Okell et al, 2008; Price et 

al, 1996; Sawa et al, 2013; Targett et al, 2001; von Seidlein et al, 2001; 

WWARN_Gametocyte_Study_Group, 2016). Notwithstanding the net reduction of 

transmission potential commonly observed after ART treatment, it is possible that 320 

patients in which many of the parasites are at the trophozoite stage at the time of 

ART administration may experience a peak of circulating gametocytes ~10 days after 

treatment (the time required for gametocyte maturation), if the drug does not kill all 

parasites. In this regard, it is noteworthy that the largest stimulation of sexual 

conversion was observed at subcurative doses of the drug. Such low drug 325 

concentrations may occur during treatment with substandard or underdosed drugs, 

through poor compliance with the prescribed regimen, as a consequence of drug 

malabsorption, or as the drug is eliminated following its natural pharmacokinetics 

profile. Treatment associated with low ARTs concentration may enable survival of 

some parasites, and at the same time enhance the probability of sexual conversion. 330 

Thus, our findings have potential public health implications for the use of ARTs in 
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treatment and elimination strategies. While the benefits of ARTs for malaria 

treatment clearly outweigh the potential risks, the possibility that ARTs increase the 

transmission potential of some patients should be taken into account when 

considering their massive use in preventive treatment or elimination campaigns. 335 

There is ongoing debate regarding whether human malaria parasites can 

modulate their level of investment in producing transmission forms as a response to 

“stress” (i.e., a condition that reduces the asexual multiplication rate). Whether the 

impact of stress on sexual conversion rates is positive (enhancement) or negative 

(reduction) also remains controversial (Buckling et al, 1999a; Buckling et al, 1999b; 340 

Buckling et al, 1997; Koepfli & Yan, 2018; Peatey et al, 2009; Schneider et al, 2018). 

Evolutionary theory for life histories predicts that treatment with low doses of 

antimalarial drugs results in reproductive restraint (reduced sexual conversion) to 

facilitate within-host survival, whereas treatment with high doses that kill the majority 

of the parasites elicits terminal investment (increased sexual conversion). The 345 

results of a recent study using a murine model of malaria were consistent with this 

prediction (Schneider et al, 2018). However, our experiments with in vitro cultured P. 

falciparum showed the opposite trend: treatment with low doses of DHA and CQ 

stimulated sexual conversion, in line with some previous studies using P. falciparum 

(Buckling et al, 1999b; Peatey et al, 2009) or a murine malaria model (Buckling et al, 350 

1999a; Buckling et al, 1997). A possible explanation for the discrepancy with the 

predictions of evolutionary theory is that in the absence of stress, sexual conversion 

in P. falciparum is already restrained, with estimated conversion rates of ~1% in 

human infections (Cao et al, 2019; Eichner et al, 2001). Thus, a further reduction of 

the investment in transmission upon exposure to low drug doses would not have a 355 

substantial impact on within-host survival. Of note, absence of LysoPC and choline, 

which reduces the multiplication rate of P. falciparum cultures and therefore can be 

considered as another type of sublethal stress signal, also stimulates sexual 

conversion (Brancucci et al, 2017). Together, the results of experiments with P. 

falciparum cultures exposed to low level of stress do not support the predictions of 360 

evolutionary theory, whereas for murine malaria parasites different studies reported 

conflicting results. In this regard, it is possible that different Plasmodium species use 

different strategies to adjust sexual conversion rates upon stress: although the role 

of AP2-G as the master regulator of sexual conversion appears to be widely 
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conserved in all malaria parasite species, upstream events involved in the regulation 365 

of sexual conversion are remarkably different between human and murine parasites. 

The latter show higher conversion rates, do not alter sexual conversion in response 

to LysoPC restriction, and their genomes lack a gdv1 ortholog (Ngotho et al, 2019). 

Our experiments clearly establish that sexual conversion can be stimulated by 

exposure to DHA at the trophozoite stage, but not at the early ring stage. Of note, 370 

stimulation of sexual conversion by depletion of choline (as a proxy for LysoPC 

depletion) or by exposure to CQ shows the same stage dependency, suggesting that 

the ring stage is largely insensitive to stimulation of sexual conversion. At the ring 

stage, some types of stress, such as exposure to DHA, may induce latency (Barrett 

et al, 2019; Talman et al, 2019), rather than enhancing sexual conversion. 375 

Furthermore, we found that in cultures in which sexual conversion is stimulated by 

choline depletion, it cannot be further stimulated by drugs, such that there are no 

additive or synergistic effects between drugs and choline depletion. Together, these 

observations suggest that the different stimuli converge into the same mechanism of 

pfap2-g activation, which likely involves cellular components that are absent during 380 

the ring stage. Because stimulation of sexual conversion by choline depletion has 

been shown to involve GDV1 (Filarsky et al, 2018), which is only expressed in the 

second half of the intraerythrocytic development cycle and is absent from ring stage 

parasites, we hypothesize that stimulation by DHA may also depend on GDV1. A 

possible explanation for the similar effects of DHA and choline depletion on sexual 385 

conversion is that treatment with DHA may result in choline depletion: DHA induces 

damage on membrane lipids (Hartwig et al, 2009), which may increase the use of 

LysoPC or choline, resulting in a reduction of their levels. Alternatively, parasites 

may be able to sense a state of mild to moderate “stress” or growth restriction 

(Schneider et al, 2018): the drug doses that result in increased sexual conversion, as 390 

well as LysoPC or choline restriction (Brancucci et al, 2017; Portugaliza et al, 2019), 

are all associated with a <50% reduction of multiplication rates (Fig. 1B,E, Fig. 

5B,D). In this regard, activation of the cellular stress response has been proposed to 

be associated with enhanced gametocyte production (Chaubey et al, 2014), and 

DHA triggers this stress response (Bridgford et al, 2018; Zhang et al, 2017).  395 

Altogether, here we provide a detailed characterization of the changes in P. 

falciparum sexual conversion rates that occur in response to a pulse of DHA. We 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.151746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151746


14 
 

demonstrate remarkable plasticity in sexual conversion rates, and a complex 

response that depends on the stage of the parasites at the time when they are 

exposed to the drug, the drug dose, and the metabolic state (presence or absence of 400 

choline). This complex scenario may explain the discrepant results obtained by 

previous studies. The assay that we have developed to test the impact of DHA on 

sexual conversion rates can be used to test the impact of any other drug or 

condition. Of note, the success of malaria elimination efforts largely depends on the 

ability to reduce or interrupt transmission. Although our results are not of immediate 405 

public health concern because the overall impact of treatment with ACTs is a 

reduction of the transmission potential, at least when compared with other drugs, the 

capacity of ARTs to induce sexual conversion must be taken into account. 

Otherwise, under certain conditions, treatment may result in an increase in 

transmission that could jeopardize efforts to eliminate malaria.  410 

 

METHODS 

Parasite cultures  

The transgenic reporter lines NF54-gexp02-Tom, E5-gexp02-Tom, and NF54-10.3-

Tom were previously described and characterized (Portugaliza et al, 2019). These 415 

parasite lines carry a tdTomato reporter gene under the control of either the gexp02 

or the etramp10.3 promoters. Cultures were regularly maintained at 37ºC under 

shaking (100 rpm) or static conditions in a hypoxic atmosphere (2% O2, 5.5% CO2, 

balance N2), with B+ erythrocytes (3% hematocrit) and standard RPMI-HEPES 

parasite culture medium containing 0.5% Albumax and supplemented with 2 mM 420 

choline (Filarsky et al, 2018; Portugaliza et al, 2019). Erythrocytes were obtained 

from the Catalan official blood bank (Banc de Sang i Teixits). To obtain cultures of a 

well-defined age window, we used Percoll/sorbitol synchronization. In brief, Percoll-

purified schizonts were used to establish a fresh culture that 5 or 10 h later was 

subjected to 5% D-sorbitol lysis to obtain cultures of a defined 0-5 or 0-10 h post 425 

invasion (hpi) age window.  

 Cultures for the production of mature gametocytes for mosquito infection were 

maintained in a semi-automated shaker incubator system as described (Mogollon et 

al, 2016). Fresh human serum and red blood cells (RBC) for these experiments were 
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obtained from the Dutch National Blood Bank (Sanquin Amsterdam, the Netherlands; 430 

permission granted from donors for the use of blood products for malaria research 

and microbiology; tested for safety). RBC and human serum from different donors 

were pooled. 

 

Drug treatment and determination of drug survival rates 435 

To test the impact of drugs on sexual conversion in the presence or absence of 

choline, after tight synchronization (0-5 or 0-10 hpi) cultures at ~1.5% parasitemia 

were split in two and one culture was maintained with a 2 mM choline supplement 

whereas the other had no choline added. Drug pulses with DHA (Sigma-Aldrich no. 

D7439) or CQ (Sigma-Aldrich no. C6628) were performed at 1-6 hpi (NF54-10.3-440 

Tom) or 0-10 hpi (NF54-gexp02-Tom) for exposure at the ring stage, or starting at 

25-30 hpi for exposure at the trophozoite stage. After 3h, the drug was removed and 

fresh pre-warmed culture medium was added. In some experiments, 200 nM DHA 

was maintained for 48 h as a ‘kill’ control (Xie et al, 2014). 

The survival rate was calculated as the growth rate in treated cultures divided 445 

by the growth rate in control cultures, and expressed as percentage. The growth rate 

is calculated as the parasitemia at the next cycle after drug exposure (measured at 

~30-35 hpi or ~30-40  hpi) divided by the initial parasitemia (at the cycle of drug 

exposure, measured before drug treatment). Parasitemia was measured by flow 

cytometry (see below).  450 

 

Determination of sexual conversion rates 

We define day 0 (D0) as the first day of the next cycle after drug exposure, which 

corresponds to the first day of Generation 1 in the schematics in the figures. D1 

corresponds to the day when new sexual parasites become stage I gametocytes. 455 

When using the NF54-gexp02-Tom and E5-gexp02-Tom lines, the sexual conversion 

rate was calculated as the sexual stage parasitemia divided by the total (sexual + 

asexual) parasitemia, and expressed as percentage. Asexual and sexual parasites 

were quantified by flow cytometry at ~30-35 hpi or ~30-40 hpi (D1) of the cycle after 

drug treatment, in the absence of chemicals that inhibit asexual replication. When 460 
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using the NF54-10.3-Tom line, the sexual conversion rate was measured by dividing 

the gametocytemia on day 3 (D3) by the initial ring stage parasitemia on D0. In this 

case, cultures were treated with 50 mM N-acetyl-d-glucosamine (GlcNAc; Sigma-

Aldrich no. A8625) from D1 onwards to inhibit asexual replication. In experiments 

with the NF54-10.3-Tom line, gametocytemia was also measured on D0 to identify 465 

gametocytes already present in the culture at the beginning of the experiment, but it 

was found to be negligible. In any case, it was subtracted from D3 gametocytemia, 

such that only gametocytes newly formed during the assay were considered. In all 

cases, statistical analysis of differences in sexual conversion was performed using 

one-way ANOVA with Tukey HSD as the post hoc test. Variance was assumed to be 470 

homogenous because the sample size was the same for all groups, and they contain 

the same type of data. 

 

Flow cytometry  

Flow cytometry analysis to measure parasitemia at the cycle of drug exposure was 475 

measured using the nucleic acid stain SYTO 11 (0.016 μM) (Life Technologies no. 

S7573) and a BD FACSCalibur machine as previously described (Rovira-Graells et 

al, 2016). To measure asexual and tdTomato-positive sexual parasites, we used a 

BD LSRFortessa™ machine as previously described (Portugaliza et al, 2019), with 

small modifications after the addition of the mitochondrial membrane potential 480 

MitoTracker® Deep Red FM fluorescent dye (Invitrogen no.M22426) at 0.6 µM to 

identify live parasites (Supplementary Fig. 14 and 15) (Amaratunga et al, 2014). 

Briefly, the RBC population was defined using the side scatter area (SCC-A) versus 

the forward scatter area (FSC-A) plot, followed by singlet gating using the forward 

scatter height (FSC-H) versus FSC-A plot. From the singlet population, the parasites 485 

were simultaneously analysed for tdTomato fluorescence (laser: 561 nm; filter: 

582/15; power: 50 mW), SYTO 11 fluorescence (laser: 488 nm; Filter: 525/50-505LP; 

power: 50 mW), and MitoTracker fluorescence (laser: 640 nm; Filter: 670/14-A; 

power: 40 mW). Total gametocytes were quantified on the double positive gate of the 

tdTomato versus SYTO 11 plot. Total asexual stages were quantified on the 490 

tdTomato-negative but SYTO 11-positive gate, whereas viable asexual stages were 
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measured on the tdTomato-negative but MitoTracker-positive gate. Flowing Software 

version 2.5.1 (Perttu Terho) was used for downstream analysis. 

 

Immunofluorescence assay 495 

Immunofluorescence assays (IFA) were performed as previously described (Bancells 

et al, 2019; Portugaliza et al, 2019). Briefly, an aliquot of a culture was treated with 

80 nM ML10 (cGMP-dependent protein kinase inhibitor) (Baker et al., 2017), starting 

at ~30-35 hpi until ~48-53 hpi, to inhibit schizont rupture and allow maturation of 

gametocytes to the stage when all of them express Pfs16. Air-dried blood smears 500 

containing schizonts and stage I gametocytes (~48-53 hpi) were fixed with 1% 

paraformaldehyde in PBS, permeabilised with 0.1% Triton X-100 in PBS, and 

blocked with 3% BSA in PBS. The gametocyte-specific primary antibody mouse-anti-

PfS16 (1:400; 32F717:B02, a gift from R. Sauerwein, Radboud University) and the 

goat-anti-mouse IgG–Alexa Fluor 488 secondary antibody (1:1,000, Thermo Fisher 505 

no.A11029) were used to identify stage I gametocytes, whereas DAPI (5 μg/ml) was 

added to stain parasite DNA. IFA slides were mounted using Vectashield (Palex 

Medical) and viewed under an Olympus IX51 epifluorescence microscope for 

determination of sexual conversion rates. A minimum of 200 DAPI-positive cells 

were counted for each sample. 510 

 

Transcriptional analysis 

Trizol reagent (Invitrogen no. 15596026) was used to collect and preserve total RNA, 

followed by extraction using a protocol designed for samples with low RNA 

concentration (Mira-Martínez et al, 2017). Briefly, RNA from Trizol samples was 515 

purified using a commercial kit (RNeasy® Mini Kit, Qiagen no. 74104) with additional 

on-column DNAse treatment (Qiagen no. 79254). Next, cDNA synthesis was 

performed using the AMV Reverse Transcription System (Promega), with a 

combination of oligo (dT) and random primers. Quantitative PCR (qPCR) analysis of 

the cDNA was performed as previously described (Bancells et al, 2019). Transcript 520 

levels of pfap2-g and gexp02 were normalized against the housekeeping genes 

serine-tRNA ligase and ubiquitin-conjugating enzyme. All qPCR primers used have 

been previously described (Bancells et al, 2019; Portugaliza et al, 2019). Statistical 
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analysis of transcript levels was performed using one-way ANOVA with Tukey HSD 

as the post hoc test, as for the analysis of sexual conversion rates.  525 

 

Production of mature gametocytes and mosquito feeding 

Cultures maintained in medium containing 0.5% Albumax and supplemented with 2 

mM choline were synchronised for ring stages by D-Sorbitol treatment and diluted to 

a final parasitemia of 1.5%. At 22 h after synchronisation, DHA (5 nM) was added to 530 

the cultures for 3 h, and 24 h later (i.e., after reinvasion) culture conditions were 

changed to medium with 10% human serum instead of Albumax and choline, and 

GlcNac (50mM) was added to kill asexual stages. GlcNac was maintained for 4 

days. Gametocyte cultures were followed during 9-13 days after DHA-treatment with 

medium changes twice a day, but without replenishing with fresh RBCs. At days 9-13 535 

gametocyte development was analysed in Giemsa stained blood smears and 

exflagellation was monitored after activation as described (Marin-Mogollon et al, 

2018). Gametocytes (day 11 or 13) were fed to Anopheles stephensi mosquitoes 

using the standard membrane feeding assay (SMFA) (Marin-Mogollon et al, 2018; 

Ponnudurai et al, 1989). Oocysts (day 7 and 14) and salivary gland sporozoites (day 540 

14) were counted as described (Marin-Mogollon et al, 2018). 
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FIGURES 

 870 

Figure 1. Effect of a dihydroartemisinin (DHA) pulse at the trophozoite stage 

on sexual conversion. (A) Schematic representation of the assay. Tightly 

synchronized cultures of the NF54-gexp02-Tom line maintained under non-inducing 

(+ choline) or inducing (- choline) conditions were exposed to a 3 h DHA pulse at 

subcurative doses at the trophozoite stage (25-30 hpi). Sexual conversion was 875 

measured by flow cytometry (FACS) after reinvasion (~30-35 hpi of the next 

multiplication cycle). (B) Survival rate of cultures exposed to the different drug doses, 

using total parasitemia values (asexual + sexual parasites). For each choline 

condition, values are presented relative to the parasitemia in the control cultures (no 

drug). (C) Representative SYTO 11 (stains parasite DNA) vs TdTomato (marks 880 

gametocytes) flow cytometry plots. (D) Sexual conversion rate determined by flow 

cytometry. The p value is indicated only for treatment vs control (no drug) significant 

differences (p<0.05). (E) Distribution of absolute parasitemia of asexual and sexual 

parasites. In all panels, data are presented as the average and s.e.m. of 4 

independent biological replicates.  885 
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Figure 2. Effect of a dihydroartemisinin (DHA) pulse at the ring stage on sexual 

conversion. (A) Schematic representation of the assay. Tightly synchronized 

cultures of the NF54-gexp02-Tom line maintained under non-inducing (+ choline) or 890 

inducing (- choline) conditions were exposed to a 3 h DHA pulse at subcurative 

doses at the early ring stage (0-10 hpi). Sexual conversion was measured by flow 

cytometry (FACS) after reinvasion (~30-40 hpi of the next multiplication cycle). (B) 

Survival rate of cultures exposed to the different drug doses, using total parasitemia 

values (asexual + sexual parasites). For each choline condition, values are 895 

presented relative to the parasitemia in the control cultures (no drug). (C) 

Representative SYTO 11 (stains parasite DNA) vs TdTomato (marks gametocytes) 

flow cytometry plots. (D) Sexual conversion rate determined by flow cytometry. The p 

value is indicated only for treatment vs control (no drug) significant differences 

(p<0.05). (E) Distribution of absolute parasitemia of asexual and sexual parasites. In 900 

all panels, data are presented as the average and s.e.m. of 4 independent biological 

replicates. 

A B
Generation 1Generation 0

+/- Choline

FACSDHA (3h)

S
u
rv

iv
a
l 
(%

)

20

0

40

60

80

100

120

+Choline -Choline
C

T
L

D
H

A
 5

n
M

D
H

A
 1

0
n

M

0

20

40

60

80

100

120

+Choline

S
u

rv
iv

a
l 
R

a
te

 (
%

)

C
T

L

D
H

A
 5

n
M

D
H

A
 1

0
n

M

0

20

40

60

80

100

120

-Choline

S
u

rv
iv

a
l 
R

a
te

 (
%

)

102 103 104 105

102

103

104

105

102

103

104

105

102

103

104

105

101
101 101

102 103 104 105 102 103 104 105

102

103

104

105

101
102 103 104 105

102

103

104

105

101
102 103 104 105

102

103

104

105

101
102 103 104 105

td
T

o
m

a
to

SYTO 11

td
T

o
m

a
to

SYTO 11

+Choline CTL +Choline DHA 5nM +Choline DHA 10nM

-Choline CTL -Choline DHA 5nM -Choline DHA 10nM

C

C
T

L

D
H

A
 5

n
M

D
H

A
 1

0
n

M

C
T

L

D
H

A
 5

n
M

D
H

A
 1

0
n

M

0

20

40

60

80

+Choline -Choline

S
e

x
u

a
l 
C

o
n

v
e

rs
io

n
 (

%
)

E

0

20

40

60

80

S
e
x
u
a
l 
C

o
n
v
e
rs

io
n
 (

%
)

+Choline -Choline

D

+Choline

0

5

10

P
a
ra

s
it
e
m

ia
 (

%
)

15

-Choline

C
TL

D
H
A
 5

nM

D
H
A
 1

0n
M

0%

2%

4%

6%

8%

Gametocytes

AsexualsAsexual

Gametocytes

p = 0.006

p < 0.000

C
TL

D
H
A
 5

nM

D
H
A
 1

0n
M

0%

5%

10%

15%

Gametocytes

Asexuals

C
TL

D
H
A
 5

nM

D
H
A
 1

0n
M

0%

5%

10%

15%

Gametocytes

Asexuals

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.151746doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151746


28 
 

 

Figure 3. Effect of a dihydroartemisinin (DHA) pulse at the ring stage on sexual 

conversion by the same cycle conversion (SCC) route. (A) Schematic 905 

representation of the assay. Tightly synchronized cultures of the NF54-gexp02-Tom 

line maintained under non-inducing (+ choline) or inducing (- choline) conditions 

were exposed to a 3 h DHA pulse at subcurative doses at the early ring stage (0-10 

hpi). Sexual conversion was measured by flow cytometry (FACS) within the same 

multiplication cycle (~30-40 hpi) to determine the effect of the drug pulse only on 910 

production of new gametocytes by the SSC route. (B) Sexual conversion rate 

determined by flow cytometry. No significant difference (p<0.05) with the control (no 

drug) was observed for any treatment condition. (C) Distribution of absolute 

parasitemia of asexual and sexual parasites. In all panels, data are presented as the 

average and s.e.m. of 3 independent biological replicates. 915 
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Figure 4. Changes in sexual conversion rates after choline depletion at 

different parasite stages. (A) Schematic representation of the assay. Choline was 

removed from tightly synchronized cultures of the NF54-gexp02-Tom line for the 920 

periods indicated, and sexual conversion rates measured after reinvasion by flow 

cytometry (FACS; ~24-29 hpi of the following multiplication cycle) or by light 

microscopy analysis of Giemsa-stained smears (Giemsa; ~96 hpi) in cultures treated 

with GlcNac. Control (CTL) cultures were maintained with choline all the time. (B) 

Sexual conversion rate for cultures under different conditions. The p value is 925 

indicated only for choline depletion vs control significant differences (p<0.05). (C) 

Distribution of absolute parasitemia of asexual and sexual parasites, determined by 

flow cytometry. In all panels, data are presented as the average and s.e.m. of 2 

independent biological replicates. 
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Figure 5. Effect of a chloroquine (CQ) pulse at the trophozoite stage on sexual 

conversion. (A) Schematic representation of the assay. Tightly synchronized 

cultures of the NF54-gexp02-Tom line maintained under non-inducing (+ choline) or 

inducing (- choline) conditions were exposed to a 3 h CQ pulse at subcurative doses 

at the trophozoite stage (25-30 hpi). Sexual conversion was measured by flow 935 

cytometry (FACS) after reinvasion (~30-35 hpi of the next multiplication cycle). (B) 

Survival rate of cultures exposed to the different drug doses, using total parasitemia 

values (asexual + sexual parasites). For each choline condition, values are 

presented relative to the parasitemia in the control cultures (no drug). (C) Sexual 

conversion rate determined by flow cytometry. The p value is indicated only for 940 

treatment vs control (no drug) significant differences (p<0.05). (D) Distribution of 

absolute parasitemia of asexual and sexual parasites. In all panels, data are 

presented as the average and s.e.m. of 3 independent biological replicates. 
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945 
Figure 6. Changes in the expression of pfap2-g and gexp02 after a 

dihydroartemisinin (DHA) pulse. (A) Schematic representation of the assay. 

Tightly synchronized cultures of the NF54-gexp02-Tom line maintained under non-

inducing (+ choline) or inducing (- choline) conditions were exposed to a 3 h DHA 

pulse at subcurative doses at the trophozoite stage (25-30 hpi). RNA for 950 

transcriptional analysis was collected from ML10-treated cultures at the mature 

schizont stage (48-53 hpi) and, after reinvasion, from cultures at the early ring stage 

(cultures not treated with ML10, ~5 hpi). (B-C) Transcript levels of pfap2-g (b) or 

gexp02 (c) normalised against the serine-tRNA ligase (serrs) gene. (D-F) Same as 

panels A-C, but cultures were exposed to DHA at the ring stage (0-10 hpi). (G-I) 955 

Same as panels D-F, but RNA for transcriptional analysis was collected only 2h after 
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completing the drug pulse. Data are presented as the average and s.e.m. of 4 

(panels B-C, rings) or 2 (other panels) independent biological replicates. The p value 

is indicated only for treatment vs control (no drug) significant differences (p<0.05). 
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