
 1 

Genomic selection strategies for clonally propagated 1 

crops 2 

Christian R. Werner*, R. Chris Gaynor*, Daniel J. Sargent†, Alessandra Lillo‡, 3 

Gregor Gorjanc*, John M. Hickey* 4 

 5 

*The Roslin Institute and Royal (Dick) School of Veterinary Studies, University 6 

of Edinburgh, Easter Bush Research Centre, Midlothian EH25 9RG, UK 7 

†NIAB EMR, New Road, East Malling, Kent ME19 6BJ, UK 8 

‡Driscoll’s Genetics Ltd, East Mallig Enterprise Centre, New Road, East 9 

Malling, Kent ME19 6BJ, UK 10 

 11 

Corresponding author: Christian R Werner. Christian.werner@roslin.ed.ac.uk 12 

 13 

Key message: For genomic selection in clonal breeding programs to be 14 

effective, crossing parents should be selected based on genomic predicted cross 15 

performance unless dominance is negligible. Genomic prediction of cross performance 16 

enables a balanced exploitation of the additive and dominance value simultaneously. A 17 

two-part breeding program with parent selection based on genomic predicted cross 18 

performance to rapidly drive population improvement has great potential to improve 19 

breeding clonally propagated crops. 20 
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Abstract 21 

For genomic selection in clonal breeding programs to be effective, crossing 22 

parents should be selected based on genomic predicted cross performance unless 23 

dominance is negligible. Genomic prediction of cross performance enables a balanced 24 

exploitation of the additive and dominance value simultaneously. Here, we compared 25 

different strategies for the implementation of genomic selection in clonal plant breeding 26 

programs. We used stochastic simulations to evaluate six combinations of three 27 

breeding programs and two parent selection methods. The three breeding programs 28 

included i) a breeding program that introduced genomic selection in the first clonal 29 

testing stage, and ii) two variations of a two-part breeding program with one and three 30 

crossing cycles per year, respectively. The two parent selection methods were i) 31 

selection of parents based on genomic estimated breeding values, and ii) selection of 32 

parents based on genomic predicted cross performance. Selection of parents based on 33 

genomic predicted cross performance produced faster genetic gain than selection of 34 

parents based on genomic estimated breeding values because it substantially reduced 35 

inbreeding when the dominance degree increased. The two-part breeding programs 36 

with one and three crossing cycles per year using genomic prediction of cross 37 

performance always produced the most genetic gain unless dominance was negligible. 38 

We conclude that i) in clonal breeding programs with genomic selection, parents should 39 

be selected based on genomic predicted cross performance, and ii) a two-part breeding 40 

program with parent selection based on genomic predicted cross performance to rapidly 41 

drive population improvement has great potential to improve breeding clonally 42 

propagated crops.  43 
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Introduction 44 

In this paper we show that, for genomic selection in clonal breeding programs 45 

to be effective, crossing parents should be selected based on genomic predicted cross 46 

performance, unless dominance is negligible. In most plant and animal breeding 47 

programs which apply genomic selection, new parents are selected based on their 48 

genomic estimated breeding value (e.g. Meuwissen et al., 2016; Crossa et al., 2017). 49 

The genomic estimated breeding value (commonly referred to as GEBV) is by 50 

definition the sum of the average effects predicted for all marker alleles of a genotype, 51 

while dominance deviation, which cannot be directly passed on to the progeny, is  not 52 

considered (Goddard, 2009; Su et al., 2012). Selection based on the genomic estimated 53 

breeding value aids breeders in increasing the frequency of alleles with beneficial 54 

additive genetic effects in a given breeding population. As a result, heterozygosity is 55 

reduced. Although selection for the genomic estimated breeding value will increase the 56 

additive value over time, it may lead to a reduction of the dominance value, unless 57 

dominance is negligible. In the long term, using the genomic estimated breeding value 58 

to select new parents in breeding programs which deliver outbred varieties, such as in 59 

clonal plant breeding programs, might not be the optimal method to use in order to 60 

maximize the total genetic value of the breeding population in a sustainable fashion. 61 

Many major food crops, including nearly all types of fruit and all important 62 

roots and tubers, are clonally propagated (Grüneberg et al., 2009; Bradshaw, 2016). In 63 

clonal breeding programs, new genotypes are created by sexual reproduction and 64 

multiplied through clonal propagation (Bisognin, 2011; Gemenet and Khan, 2017). The 65 

new genotypes are first tested as seedlings in unreplicated trials during the initial phase 66 

of the breeding program. Clonal propagation creates genetically identical plants from 67 
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selected seedlings, which enables the testing of genotypes in clonal plots, using multiple 68 

replications, environments and years.  69 

Breeders use multiple stages of testing to identify and select the best genotypes 70 

in their breeding population. As the testing progresses, the number of genotypes is 71 

successively reduced and those remaining are tested more intensively at increasingly 72 

higher numbers. The selected genotypes are used to achieve two specific objectives: 73 

i) Generation of an improved offspring population via recombination of 74 

selected parents. 75 

ii) Release of the best performing genotypes as improved clonal varieties. 76 

The time from recombination to the release of an improved clonal variety spans 77 

several years. Traditionally, selection is based on phenotypic performance and the next 78 

generation’s parents are selected in the later testing stages of the breeding program, 79 

which results in a long generation interval (Bradshaw, 2016), even in species with short 80 

generational times, such as strawberry. 81 

Genomic selection offers great potential to optimize the process of 82 

identification of the best clones for varietal development, as well as the selection of 83 

new crossing parents. Genomic selection exploits associations between genomic 84 

markers and phenotypes to predict the value of genotypes based on their genomic 85 

marker profiles (Goddard and Hayes, 2007). The implementation of genomic selection 86 

provides three key advantages: 87 

i) The generation interval can be reduced, since new parents can be selected 88 

as soon as they are genotyped. 89 

ii) The selection accuracy can be increased, especially in early testing stages 90 
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of a breeding program where the number of replications and 91 

environments is low. 92 

iii) The selection intensity can be increased, for example by genotyping and 93 

predicting more genotypes than could be tested in the field. 94 

These advantages allow for several opportunities to reorganize conventional 95 

breeding programs. For example, in the context of breeding programs to develop inbred 96 

lines, Gaynor et al. (2017) presented a two-part breeding program employing genomic 97 

selection, which reorganized a plant breeding program into: 98 

i) A population improvement component to develop improved germplasm 99 

through rapid recurrent genomic selection, and 100 

ii) A product development component to identify the best performing 101 

genotypes for varietal development. 102 

In stochastic simulation, the two-part breeding program doubled the rate of 103 

genetic gain relative to a conventional breeding program without increasing cost. 104 

In a clonal breeding program, the reorganization in two parts combined with 105 

genomic selection would allow breeders to minimize the generation interval and could 106 

substantially increase selection accuracy at the seedling stage.  107 

The generation interval could be reduced to a year or even less since new parents 108 

can be selected as soon as the seedlings are genotyped. For example, the generation 109 

interval in conventional strawberry breeding programs can be four to five years due to 110 

the time it takes for testing to generate sufficient phenotypic records to accurately assess 111 

a genotype. Genomic selection applied in the seedling stage could result in up to five 112 

times the genetic gain achieved in a conventional strawberry breeding program in the 113 
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same amount of time if the impact of the three other factors in the breeder’s equation 114 

(i.e., selection intensity, diversity and selection accuracy) remained constant.  115 

The selection accuracy in the seedling stage could be increased since genomic 116 

selection allows seedlings to be selected based on their predicted performance as clones 117 

instead of their phenotypic performance per se. This is achieved when the genomic 118 

selection model to select seedlings is trained using clonal phenotypes. In clonal 119 

breeding programs, the seedling stage represents a severe genetic bottleneck; in 120 

conventional strawberry breeding programs only a few hundred genotypes among 121 

10,000 – 20,000 unreplicated seedlings are selected and tested as clones. Selection 122 

accuracy is extremely low at the seedling test stage for three reasons (Grüneberg et al., 123 

2009), which are: 124 

i) Seedlings and clones with the same genotype can differ in their morphology 125 

and performance. 126 

ii) Seedlings and clones are often grown in different environments. For example, 127 

in European strawberry breeding programs, seedlings are grown in matted 128 

rows on the soil and clones are grown as single pot plants on highly controlled 129 

table top systems.  130 

iii) Single plant assessment of mostly general appearance and/or a few key traits 131 

in the seedling stage shows low heritability and has low correlation with the 132 

breeding goal trait (e.g., yield). 133 

Replacing phenotypic selection in the seedling stage with genomic selection 134 

based on the predicted performance as clones eliminates all three challenges in one step. 135 

It also allows for early evaluation of important traits that are typically not evaluated 136 

until later testing stages of the breeding program, e.g. flavour and shelf life.  137 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.152017doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152017
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

In clonally propagated crops, however, dominance may affect the performance 138 

of breeding programs which implement genomic selection. The genotypes in clonally 139 

propagated crops are typically heterozygous. The genetic value of heterozygous 140 

genotypes is a function of additive and non-additive gene action (Falconer and Mackay, 141 

1996). If, for the sake of simplicity, epistasis is ignored, the non-additive gene action is 142 

entirely defined by dominance. Whilst the differences in the genetic values between 143 

genotypes are based on both additive and non-additive genetic effects, the additive 144 

genetic variation is the crucial component which defines long-term genetic gain in a 145 

breeding population subjected to recurrent selection (Bradshaw 2016). Hence, breeders 146 

face the challenging task of having to increase the additive value over time while 147 

simultaneously maintaining the dominance value via selection and recombination of 148 

the best parents. The relative importance of these two targets is a function of the 149 

dominance degree at the loci affecting the trait under consideration, which is mostly 150 

unknown. 151 

We hypothesise that genomic prediction of cross performance is a better method 152 

to select new parents in a clonal breeding program than using the genomic estimated 153 

breeding value. When genomic prediction of cross performance is used, pairs of parents 154 

are selected based on the expectation of the total genetic value of their progeny. 155 

Genomic prediction of cross performance could allow breeders to simultaneously 156 

increase the frequency of alleles with beneficial additive effects and maintain 157 

heterozygosity in the population to exploit dominance effects. In the long term, using 158 

genomic prediction of cross performance to select new parents in a clonal breeding 159 

program could be an effective method to sustainably maximize the total genetic value 160 

of the breeding population. 161 
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To test our hypothesis, we used stochastic simulation to evaluate three breeding 162 

programs and two parent selection methods to deploy genomic selection in breeding 163 

clonally propagated crops under different dominance degrees. The three breeding 164 

programs included: 165 

i) A breeding program that introduced genomic selection in the first clonal 166 

testing stage, and 167 

ii) Two variations of a two-part breeding program (Gaynor et al., 2017) with 168 

one and three crossing cycles per year, respectively. 169 

The two parent parental selection methods were:  170 

i) Selection of parents based on genomic estimated breeding values, and 171 

ii) Selection of parents based on genomic predicted cross performance.  172 

The six combinations of breeding program and parent selection method were 173 

compared to a conventional breeding program using phenotypic selection.  174 

We observed that the breeding programs using selection of parents based on 175 

genomic predicted cross performance produced faster genetic gain than parent selection 176 

based on genomic estimated breeding values unless dominance was negligible. The 177 

highest rates of genetic gain were generated by the two-part breeding programs with 178 

parent selection based on genomic predicted cross performance. 179 

 180 

 181 

 182 
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Materials and methods 183 

Stochastic simulations were used to evaluate six combinations of three breeding 184 

programs and two parent selection methods to deploy genomic selection in breeding 185 

clonally propagated crops with diploid (-like) meiotic behaviour. Therefore, we 186 

simulated a quantitative trait representing yield under four different dominance degrees 187 

and evaluated the long-term efficacy of the six combinations of breeding programs and 188 

parent selection methods compared to a conventional breeding program using 189 

phenotypic selection. 190 

The material and methods are subdivided into two sections. The first section 191 

describes the simulation of the founder genotype population and the second section 192 

describes the simulation of the breeding programs. 193 

The simulation of the founder genotype population comprised: 194 

i) Genome simulation: a heterozygous genome sequence was simulated for a 195 

hypothetical diploid and clonally propagated crop species. 196 

ii) Simulation of founder genotypes: the simulated genome sequences were 197 

used to generate a base population of 60 diploid founder genotypes. 198 

iii) Simulation of genetic values: A single trait representing yield was 199 

simulated for all founder genotypes by summing the additive and 200 

dominance effects at 20,000 quantitative trait nucleotides. Four different 201 

dominance degrees were simulated including 0, 0.1, 0.3 and 0.9 202 

iv) Simulation of phenotypes: Phenotypes for yield were simulated for all 203 

founder genotypes by adding random error to the total genetic value of 204 

a genotype. 205 
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The simulation of the breeding programs comprised: 206 

i) Recent (burn-in) breeding phase: a conventional phenotypic selection 207 

breeding program for clonally propagated crops was simulated for a 208 

period of 20 years (burn-in) to provide a common starting point for the 209 

future breeding phase. 210 

ii) Future breeding phase: six combinations of three breeding programs and 211 

two parent selection methods to deploy genomic selection in clonally 212 

propagated crops were simulated and compared to the conventional 213 

breeding program for 20 years of breeding. In detail, we describe: 214 

a. The genomic selection model used for genomic prediction.  215 

b. The two parent selection methods including parent selection based on 216 

genomic estimated breeding values and parent selection based on 217 

genomic predicted cross performance. 218 

c. The three breeding programs with genomic selection including a 219 

breeding program which implemented genomic selection in the clonal 220 

testing stage 1, and two variations of a two-part breeding program 221 

which implemented genomic selection in the seedling stage with one 222 

and three crossing cycles per year, respectively. 223 

d. Comparison of the breeding programs based on the mean total genetic 224 

value in clonal testing stage 1. 225 

 226 

 227 

 228 
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Simulation of the founder genotype population 229 

Genome simulation 230 

A heterozygous genome sequence was simulated for each genotype of a 231 

hypothetical diploid and clonally propagated crop species. The simulated genome 232 

consisted of 20 chromosome pairs with a physical length of 108 base pairs and a genetic 233 

length of 100 centiMorgans (cM), resulting in a total genetic length of 2,000 cM 234 

comparable to that of the Fragaria × ananassa genome (Sargent et al., 2009, 2016; van 235 

Dijk et al., 2014; Bassil et al., 2015). The chromosome sequences were generated using 236 

the Markovian coalescent simulator (MaCS; Chen et al. 2009), which was deployed 237 

using AlphaSimR version 0.11.0 (Gaynor et al., 2019). Recombination rate was derived 238 

as ratio between genetic length and physical genome length (i.e., 100 cM / 108 base 239 

pairs = 10-8). The per-site mutation rate was set to 2.5 x 10-8 mutations per base pair. 240 

Effective population size (Ne) was set to 100 and resulted from a simulated coalescence 241 

process with an effective population size of 500, 1,250, 1,500, 3,500, 6,000, 12,000 and 242 

100,000 set for 100, 500, 1,000, 5,000, 10,000, and 100,000 generations ago. 243 

Successive reduction of the effective population size was used to reflect a progressive 244 

restriction of genetic variation due natural and artificial selection. 245 

 246 

Simulation of founder genotypes 247 

The simulated genome sequences were used to generate a base population of 60 248 

diploid founder genotypes in Hardy-Weinberg equilibrium. These genotypes were 249 

formed by randomly sampling 20 chromosome pairs per genotype and served as initial 250 

parents in the burn-in phase.  A set of 1,000 biallelic quantitative trait nucleotides 251 
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(QTN) and 1,000 single nucleotide polymorphisms (SNP) were randomly sampled 252 

along each chromosome to simulate a quantitative trait that was controlled by 20,000 253 

QTN and a SNP marker array with 20,000 markers. 254 

 255 

Simulation of genetic values 256 

Genetic values for a single trait representing yield were simulated by summing 257 

the genetic effects at the 20,000 randomly sampled QTN. Three types of biological 258 

effects were modelled at each QTN to simulate genetic values: additive effects, 259 

dominance effects and genotype-by-environment effects. Under the AlphaSimR 260 

framework, this is referred to as an ADG trait. We will give only a brief summary of 261 

the modelling procedure, while a detailed description can be found in the vignette of 262 

the AlphaSimR package (Gaynor et al., 2019).  263 

Additive effects (a) were sampled from a standard normal distribution and 264 

scaled to obtain an additive variance of 𝜎𝐴
2 = 1 in the founder population. Genotype-265 

by-environment effects were modelled using an environmental covariate and a 266 

genotype-specific slope. The environmental covariate represented the environmental 267 

component of the genotype-by-environment interaction and was sampled for each year 268 

of the simulation from a standard normal distribution. The genotype-specific slope 269 

represented the genetic component of the genotype-by-environment interaction. The 270 

effects for the genotype specific slope were sampled from a standard normal 271 

distribution and scaled to obtain a genotype-by-environment interaction variance of 272 

𝜎𝐺𝑥𝑌
2 = 2𝜎𝐴

2 = 2 in the founder population. 273 
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Dominance effects (d) for all QTN were calculated by multiplying the absolute 274 

value of its additive effect 𝑎𝑖 by a locus-specific dominance degree 𝛿𝑖. A dominance 275 

degree of 0 represents no dominance and a dominance degree of 1 represents complete 276 

dominance. Dominance degrees between 0 and 1 correspond to partial dominance, and 277 

values above 1 correspond to over-dominance. Dominance degrees were sampled from 278 

a normal distribution with mean dominance coefficient 𝜇𝛿  and variance 𝜎𝛿
2: 279 

𝛿𝑖  ~𝑁( 𝜇𝛿, 𝜎𝛿
2 ) 280 

The dominance effect of QTN 𝑖 was calculated as: 281 

𝑑𝑖 =  {
0

𝛿𝑖 ∗ | 𝑎𝑖|
       

𝑖𝑓 𝑄𝑇𝑁 𝑖𝑠 ℎ𝑜𝑚𝑜𝑧𝑦𝑔𝑜𝑢𝑠

 𝑖𝑓 𝑄𝑇𝑁 𝑖𝑠 ℎ𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑢𝑠
 282 

Three levels of average dominance degrees, 0.1, 0.3 and 0.9, were used to 283 

simulate positive directional dominance and compared to zero dominance (i.e., additive 284 

genetic control). The variance 𝜎𝛿
2 was set to 0.2. The dominance variance (𝜎𝐷

2) was then 285 

calculated based on the simulated dominance effects. 286 

 287 

Simulation of phenotypes 288 

Phenotypes for yield were generated by adding random error to the genetic 289 

value of a genotype. The random error was sampled from a normal distribution with 290 

mean zero and an error variance 𝜎𝑒
2 defined by the target level of heritability at each 291 

testing stage of the breeding program. In the founder population, entry-mean values for 292 

narrow-sense heritability (ℎ2) were set to 0.1 in the seedling stage and to 0.3 in clonal 293 

testing stage 1 of the breeding program, with 𝜎𝐺𝑥𝑌
2  set to 0. Entry-mean levels for 294 
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narrow-sense heritabilities in later testing stages increased as a result of an increased 295 

number of replicates per genotype and are shown in Table 1. Narrow-sense heritabilities 296 

were calculated using the following equation:  297 

ℎ2 =
𝜎𝐴

2

𝜎𝑃
2 =

𝜎𝐴
2

𝜎𝐴
2 + 𝜎𝐷

2 +
𝜎𝑒

2

𝑛⁄
 298 

 299 

Simulation of the breeding programs 300 

Recent (burn-in) breeding phase 301 

A conventional breeding program for clonally propagated crops employing 302 

phenotypic selection was simulated for a period of 20 years (burn-in) to provide a 303 

common starting point for the future breeding phase. Each year of the conventional 304 

breeding program started with a crossing block of 60 parental genotypes. These 305 

genotypes were crossed to generate new seedlings, followed by a six year evaluation 306 

period that involved six stages of testing. Selection of new parents and selection of the 307 

best clones in each testing stage were based on phenotypic records. The structure and 308 

the values for key parameters of the conventional breeding program were guided by a 309 

commercial strawberry breeding program in the United Kingdom. Table 1 presents the 310 

number of tested genotypes and replications for each testing stage of the conventional 311 

breeding program as shown in Figure. 1. 312 

In order to fill the breeding pipeline and generate a starting point for the burn-313 

in phase, six cycles of crossing and selection were conducted prior to the burn-in phase. 314 

Each of these six cycles started with the same 60 founder genotypes to generate 150 F1-315 
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families with 100 seedlings each, using random sampling of bi-parental crosses without 316 

replacement. Starting from the set of 15,000 seedlings after the first crossing cycle, the 317 

best genotypes were advanced one stage per cycle using phenotypic selection until each 318 

testing stage was filled with a set of genotypes. Replacement of parents was omitted 319 

during the filling of the breeding pipeline. This was done to ensure that total genetic 320 

variance in the founder genotypes remained unchanged until the actual burn-in phase 321 

started. 322 

Table 1 Number of tested genotypes, replications and heritabilities used in the 323 

conventional breeding program 324 

Year Stage Tested genotypes Reps Narrow-sense 

heritability (h2)* 

1 Seedlings 15,000 1 0.10 

2 Clonal stage 1 1,000 1 0.30 

3 Clonal stage 2 100 2 0.46 

4 Clonal stage 3 20 4 0.63 

5 Clonal stage 4 5 6 0.72 

6 Clonal stage 5 5 6 0.72 

*entry-mean values based on the 𝜎𝐴
2: 𝜎𝑃

2 ratio in the founder population 325 

 326 

In the burn-in phase, selection of new parents was carried out in the clonal 327 

testing stages 2, 3, 4 and 5. Each year, the 30 genotypes in the crossing block with the 328 

poorest per se performance were replaced by new parents. At first, all 30 genotypes in 329 

the clonal testing stages 3, 4 and 5 were added to the crossing block as new parents if 330 
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they were not already represented. The remaining free slots in the crossing block were 331 

filled with the best genotypes from the clonal testing stage 2.  332 

 333 

Future Breeding Phase 334 

The future breeding phase was used to evaluate six combinations of two 335 

breeding programs and two parent selection methods to deploy genomic selection in 336 

clonally propagated crops under different dominance degrees. These six combinations 337 

were simulated for an additional 20 years of breeding and compared to the conventional 338 

breeding program. The two genomic selection breeding programs included a 339 

conventional breeding program with genomic selection which introduced genomic 340 

selection in clonal testing stage 1 (Fig. 1), and two variations of a two-part breeding 341 

program which introduced genomic selection in the seedling stage with one and three 342 

crossing cycles per year, respectively (Fig. 2). The two parent selection methods were 343 

selection of new parents based on genomic estimated breeding values, and selection of 344 

new parents based on genomic predicted of cross performance. In order to obtain 345 

approximately equal annual operating costs, the number of seedlings was reduced in 346 

the two breeding programs with genomic selection to compensate for the additional 347 

costs of genotyping. Estimated costs were set to $20 for phenotypic evaluation and $25 348 

for array genotyping per genotype after consultation with strawberry breeders. Table 2 349 

shows the number of crosses and seedlings per year for the conventional breeding 350 

program and the three breeding programs with genomic selection. 351 

 352 

 353 
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Table 2 Number of crosses per year and seedlings per cross, total number of 354 

seedlings and annual costs of the simulated breeding programs (Conv, conventional 355 

breeding program; Conv GS, conventional breeding program with genomic selection; 356 

2Part, two-part breeding program) 357 

Breeding Program  Crosses / 

year 

Seedlings / 

cross 

Seedlings 

(total) 

Costs ($) 

Conv 150 100 15,000 300,000 

Conv GS 150 91 13,650 298,000 

2Part 130 84 11,960 299,000 

2Part with 3 cycles 100 x 3 40 x 3 12,000 300,000 

 358 

Genomic Selection Model 359 

Genomic predictions were calculated using a ridge regression model (RR-360 

BLUP) including year as a fixed effect, additive and dominance SNP effects, and a 361 

covariate accounting for directional dominance (or inbreeding depression) based on 362 

average individual heterozygosity as described in detail by Xiang et al. (2016). The 363 

effect estimated for the covariate accounting for directional dominance was divided by 364 

the number of SNPs and added to the SNP-specific dominance effects. To obtain 365 

genomic estimated breeding values, the predicted additive and dominance SNP effects 366 

at each marker locus were used to calculate the average effect of an allele substitution 367 

for each SNP (Varona et al., 2018), and all the substitution effects were summed. To 368 

obtain genomic estimated genetic values, the predicted additive and dominance SNP 369 

effects at each marker locus were summed. The initial training population at the start 370 
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of the future breeding phase consisted of all the genotypes from clonal testing stage 1 371 

of the last three years of the burn-in phase. The training population included 3,000 372 

genotypes and 3,220 phenotypic records. In every year of the future breeding phase, 373 

1,000 new genotypes from clonal testing stage 1 were added to the training population.  374 

 375 

Parent selection methods 376 

Two parent selection methods were compared for the selection and crossing of 377 

new parents in the two breeding programs with genomic selection. The first parent 378 

selection method will be referred to as parent selection based on genomic estimated 379 

breeding values. This method represented a conventional “good by good” crossing 380 

scheme. The genotypes with the highest genomic estimated breeding values were 381 

selected as new parents and used to completely replace the previous year’s crossing 382 

block. Crossing was implemented as random sampling of bi-parental combinations 383 

without replacement. The second parent selection method will be referred to as parent 384 

selection based on genomic predicted cross performance. This method implemented 385 

systematic selection of bi-parental crosses. The best bi-parental crosses were selected 386 

based on the predicted mean genetic values of the F1 of a cross. In this way, the average 387 

amount of heterosis predicted for the F1 due to complementarity between two parents 388 

was directly considered in the parent selection process. The mean genetic value of the 389 

F1 of a cross was predicted using the following equation given by Falconer & Mackay 390 

(1996): 391 

𝑀𝐹1
= 𝑎(𝑝 − 𝑞 − 𝑦) + 𝑑[2𝑝𝑞 + 𝑦(𝑝 − 𝑞)] 392 
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with 𝑀𝐹1
being the predicted mean genotypic value of the F1, a and d being the 393 

additive and dominance effects of the SNP markers, p and q being the marker allele 394 

frequencies of one parent and y representing the difference of gene frequency between 395 

the two parents. The concept of the crossing block was abandoned.  396 

 397 

Conventional breeding program with genomic selection 398 

The conventional breeding program with genomic selection introduced 399 

genomic selection in clonal testing stage 1. The structure of the conventional breeding 400 

program with genomic selection is shown in Figure 1. All 1,000 genotypes in clonal 401 

testing stage 1 were genotyped and phenotyped to serve as the training population for 402 

the genomic selection model. When parents were selected based on genomic estimated 403 

breeding values, each year the best 60 genotypes in clonal testing stage 1 were used to 404 

replace the whole crossing block. When parents were selected based on genomic 405 

predicted cross performance, bi-parental cross performance was predicted for all 406 

pairwise combinations between the genotypes in clonal testing stage 1. The generation 407 

interval was two years. Genomic selection was also used to advance the best 100 clones 408 

from clonal testing stage 1 to clonal testing stage 2 based on their genomic estimated 409 

genetic value. 410 

 411 

Two-part breeding programs 412 

The two-part breeding programs reorganized the conventional breeding 413 

program into a population improvement component to develop improved germplasm 414 
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through rapid recurrent genomic selection, and a product development component to 415 

identify the best performing genotypes. Two variations of the two-part breeding 416 

program with one and three crossing cycles per year respectively were simulated. The 417 

structure of the two-part breeding programs is shown in Figure 2. Genomic selection 418 

was introduced in the seedling stage. All seedlings were genotyped and phenotypic 419 

selection in the seedling stage was entirely replaced by genomic selection. All 1,000 420 

genotypes in clonal testing stage 1 were genotyped and phenotyped to serve as the 421 

training population for the genomic selection model. Thus, a key feature of the two-422 

part breeding program is that seedlings were selected using a prediction model that was 423 

trained with phenotypic records from clones. When parents were selected based on 424 

genomic estimated breeding values, in each crossing cycle the best 60 seedlings were 425 

used to replace the whole crossing block. When parents were selected based on genomic 426 

predicted cross performance, bi-parental cross performance was predicted for all 427 

pairwise combinations between the seedlings. The generation interval was one year 428 

with one crossing cycle per year and 1/3 year with 3 crossing cycles per year. Genomic 429 

selection was also used to advance the best 1,000 seedlings to clonal testing stage 1 and 430 

the best 100 clones from clonal testing stage 1 to clonal testing stage 2 based on their 431 

genomic estimated genetic value. 432 

 433 

Comparison of the breeding programs 434 

The performance of the three breeding programs and the two parent selection 435 

methods in comparison to the conventional breeding program was evaluated by 436 

measuring the mean total genetic value in clonal testing stage 1. Each evaluation 437 
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included ten simulation runs. The mean total genetic value was measured in clonal 438 

testing stage 1 for two reasons: 439 

i) It was the earliest testing stage in which clones were evaluated.  440 

ii) The general trends observed for genetic gain in clonal testing stage 1 were 441 

representative for genetic gain in the seedling stage and genetic gain in 442 

later testing stages of the breeding programs. 443 

The additive value, the dominance value and the genomic inbreeding coefficient 444 

over time were also measured in clonal testing stage 1. The genomic inbreeding 445 

coefficient was calculated as the percentage increase of homozygosity at all quantitative 446 

trait nucleotides relative to the average homozygosity observed in the founder 447 

population.  448 

All breeding programs were compared for total genetic variance, additive 449 

variance and dominance variance over time, results are shown in the supplementary 450 

material (Fig. S1-S3).  451 

Prediction accuracy was assessed as the Pearson correlation coefficient in two 452 

different ways:  453 

i) Prediction accuracy was assessed in the three breeding programs with 454 

genomic selection as the accuracy of the parent selection method 455 

including parent selection based on genomic estimated breeding values 456 

and parent selection based on genomic predicted cross performance.  457 

ii) Prediction accuracy was assessed as the prediction accuracy of the total 458 

genetic value in the seedling stage, which was used to advance seedlings 459 

to clonal testing stage 1.  460 
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Results 461 

The results show that for genomic selection in a clonal breeding program to be 462 

effective, crossing parents should be selected based on genomic predicted cross 463 

performance unless dominance is negligible. Selection of parents based on genomic 464 

predicted cross performance produced faster genetic gain than selection of parents 465 

based on genomic estimated breeding values when the dominance degree was greater 466 

than zero (Fig. 3). As the dominance degree increased, selection of parents using 467 

genomic prediction of cross performance also produced increasingly more genetic gain 468 

than selection based on genomic estimated breeding values. The two variations of the 469 

two-part breeding program using genomic prediction of cross performance always 470 

produced the most genetic gain unless dominance was negligible. However, while the 471 

two-part breeding program with three crossing cycles per year produced the most 472 

genetic gain when the dominance degree was low, the two-part breeding program with 473 

one crossing cycle per year produced the most genetic gain when the dominance degree 474 

was high. The breeding programs using selection of parents based on genomic 475 

estimated breeding values on the other hand, produced negative genetic gain when the 476 

dominance degree was high. Selection of parents based on genomic prediction of cross 477 

performance was advantageous over selection of parents based on genomic estimated 478 

breeding values because it substantially reduced inbreeding in the breeding population 479 

when the dominance degree increased (Fig. 4). This enabled a better exploitation of the 480 

additive value and the dominance value simultaneously, which became more important 481 

as the dominance degree increased (Fig. 5). Additionally, selection of parents based on 482 

genomic prediction of cross performance became more accurate and selection of 483 
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parents based on genomic estimated breeding values became less accurate at higher 484 

dominance degrees (Fig. 6). 485 

 486 

Genetic gain 487 

Selection of parents based on genomic predicted cross performance produced 488 

faster genetic gain than selection of parents based on genomic estimated breeding 489 

values unless dominance was negligible. This is shown in Figure 3, which plots genetic 490 

gain as the mean genetic value against time in clonal testing stage 1. The four panels 491 

show genetic gain under the different simulated dominance degrees for four types of 492 

breeding programs and two types of parent selection. As the dominance degree 493 

increased, selection of parents based on genomic prediction of cross performance 494 

produced increasingly more genetic gain than selection based on genomic estimated 495 

breeding values.  496 

The three genomic selection breeding programs using genomic prediction of 497 

cross performance always produced more genetic gain than the conventional breeding 498 

program. The two variations of the two-part breeding program using genomic 499 

prediction of cross performance always produced the most genetic gain unless 500 

dominance was negligible (Fig. 3). However, while the two-part breeding program with 501 

three crossing cycles per year produced the most genetic gain when the dominance 502 

degree was 0.1 and 0.3, the two-part breeding program with one crossing cycle per year 503 

produced the most genetic gain when the dominance degree was 0.9. When the 504 

dominance degree was 0.1, the two-part breeding program gave 2.8 times the genetic 505 

gain of the conventional breeding program with one crossing cycle per year, and more 506 
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than three times the genetic gain with three crossing cycles per year. When the 507 

dominance degree was 0.9, it gave almost 7 times the genetic gain of the conventional 508 

breeding program with one crossing cycle per year, and more than five times the genetic 509 

gain with three crossing cycles per year.  510 

Figure 3 also shows that the two-part breeding program with parent selection 511 

based on genomic estimated breeding values and three crossing cycles per year 512 

generated the most genetic gain when the dominance degree was zero. However, after 513 

a sharp increase in the first few years, the rate of genetic gain drastically decreased and 514 

started to approach a plateau. The two-part breeding program with parent selection 515 

based on genomic estimated breeding values and one crossing cycle per year generated 516 

the second most genetic gain. In the first few years it showed a lower rate of genetic 517 

gain than both variations of the two-part breeding program using genomic prediction 518 

of cross performance. In the long term, however, both two-part breeding programs 519 

using genomic prediction of cross performance started to plateau and were 520 

outperformed by the two-part breeding program with parent selection based on genomic 521 

estimated breeding values and one crossing cycle per year. 522 

Figure 3 also shows that selection of parents based on genomic estimated 523 

breeding values produced negative genetic gain over time when the dominance degree 524 

was high. All breeding programs showed a reduced rate of genetic gain when the 525 

dominance degree increased. However, this reduction was stronger when new parents 526 

were selected based on genomic estimated breeding values. Both variations of the two-527 

part breeding program with parent selection based on genomic estimated breeding 528 

values produced even less genetic gain than the conventional breeding program when 529 

the dominance degree was 0.3 and 0.9. These results were not surprising as selection of 530 
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parents based on genomic estimated breeding values gave a faster increase in the 531 

inbreeding coefficient than selection of parents based on genomic predicted cross 532 

performance when the dominance degree was high, which resulted in inbreeding 533 

depression. 534 

 535 

Genomic inbreeding coefficient 536 

Selection of parents based on genomic predicted cross performance 537 

substantially reduced inbreeding when the dominance degree increased. This is shown 538 

in Figure 4, which plots the genomic inbreeding coefficient against time in clonal 539 

testing stage 1. The four panels show the inbreeding coefficient under the different 540 

simulated dominance degrees. As the dominance degree increased, all breeding 541 

programs showed a decreased growth rate of the genomic inbreeding coefficient. 542 

However, this decrease was much stronger when parents were selected based on 543 

genomic predicted cross performance compared to when genomic estimated breeding 544 

values were used.  545 

Figure 4 also shows that the two-part breeding programs with selection of 546 

parents based on genomic predicted cross performance gave the strongest reduction in 547 

the genomic inbreeding coefficient as the dominance degree increased. When the 548 

dominance degree was zero, both breeding programs had almost approached complete 549 

inbreeding at the end of the future breeding phase. However, when the dominance 550 

degree was 0.9, the two-part breeding program with parent selection based on genomic 551 

predicted cross performance and one crossing cycle per year gave the lowest inbreeding 552 

coefficient, which was negative during the entire future breeding phase. The two-part 553 
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breeding program with parent selection based on genomic predicted cross performance 554 

and three crossing cycles per year was also negative in the first half of the future 555 

breeding phase, but showed a slightly faster increase and became positive during the 556 

second half. By reducing the growth rate of the inbreeding coefficient when the 557 

dominance degree increased, selection of cross performance directly took the 558 

increasing importance of dominance effects to the total genetic value into account. 559 

 560 

Additive values and dominance values 561 

Selection of parents based on genomic predicted cross performance enabled a 562 

better exploitation of the combined additive and dominance values than did selection 563 

of parents based on genomic estimated breeding values. This is shown in Figure 5, 564 

which plots the additive values and the dominance values against time in clonal testing 565 

stage 1. The three upper panels (a-c) show the additive values and the three lower panels 566 

(d-f) show the dominance values.  567 

The two-part breeding program with parent selection based on genomic 568 

predicted cross performance and three crossing cycles per year gave the highest 569 

increase of the additive value over time when the dominance degree was 0.1 and 0.3 570 

(Fig. 5a-c). The two-part breeding program with parent selection based on genomic 571 

estimated breeding values and three crossing cycles per year gave a lower additive 572 

value, as growth rate showed a stronger reduction over time and approached a plateau 573 

towards the end of the future breeding phase. However, when the dominance degree 574 

was 0.9, it gave the highest increase of the additive value.  575 
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Figure 5 a-c also shows that the rate of increase of the additive value over time 576 

was reduced as the dominance degree increased. All breeding programs gave a lower 577 

additive value under high dominance degrees compared to when the dominance degree 578 

was low. The conventional breeding program always gave the lowest increase of the 579 

additive value. 580 

Selection of parents using genomic prediction of cross performance generated 581 

increased dominance values as the dominance degree increased (Fig. 5d-f). It gave a 582 

reduction of the dominance value when the dominance degree was 0.1, but a strong 583 

initial increase when the dominance degree was 0.9. The increase of the dominance 584 

value compensated for the reduced rate of increase of the additive value as the 585 

dominance degree increased. The two-part breeding program with parent selection 586 

based on genomic predicted cross performance and one crossing cycle per year gave 587 

the strongest increase. When the dominance degree was high, the two-part breeding 588 

program with one crossing cycle per year and the conventional breeding program with 589 

genomic selection maintained a relatively stable, positive dominance value over the 590 

entire future breeding phase. The two-part breeding program with three crossing cycles 591 

per year, however, showed a continuous reduction of the dominance value over time. It 592 

also showed a faster reduction than the other two breeding programs when the 593 

dominance degree was 0.1 and 0.3. 594 

Selection of parents based on genomic estimated breeding values did not 595 

effectively exploit the dominance value as the dominance degree increased. This is also 596 

shown in Figure 5 d-f. Both variations of the two-part breeding program with parent 597 

selection based on genomic estimated breeding values generated reduced dominance 598 

values as the dominance degree increased. This reduction in the dominance value over 599 
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time became more extreme as the dominance degree increased, and was greater than 600 

the increase in the additive value over time when the dominance degree was high.  601 

 602 

Prediction accuracy of the parent selection method 603 

The advantage of using genomic predicted cross performance to select parents 604 

over using genomic estimated breeding values was not only due to a better simultaneous 605 

exploitation of the additive value and the dominance value, but also resulted from a 606 

substantially higher prediction accuracy when the dominance degree was high. At 607 

higher dominance degrees, selection of parents based on genomic predicted cross 608 

performance became more accurate and selection of parents based on genomic 609 

estimated breeding values became less accurate. This is shown in Figure 6, which plots 610 

the prediction accuracy of the parent selection methods against time. The two panels 611 

show prediction accuracy under the dominance degrees of 0.1 and 0.9 for the three 612 

types of genomic selection breeding programs and two types of parent selection 613 

method. Prediction accuracy of the parent selection method was measured in the 614 

seedling stage for the two-part breeding programs and in clonal testing stage 1 for the 615 

conventional breeding program with genomic selection. Prediction accuracy of 616 

genomic predicted cross performance became more similar in the three genomic 617 

selection breeding programs when the dominance degree increased.  618 

 619 

Prediction accuracy of the genetic value in the seedling stage 620 
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Prediction accuracy of the genetic value of the seedlings increased when the 621 

dominance degree was increased. Figure 7 plots the prediction accuracy of the genetic 622 

value in the seedling stage over time. The two panels show prediction accuracy under 623 

the dominance degrees of 0.1 and 0.9. The two-part breeding program with parent 624 

selection based on genomic estimated breeding values and one crossing cycle per year 625 

always showed the highest prediction accuracy. Prediction accuracy was lower when 626 

parents were selected based on genomic predicted cross performance compared to 627 

genomic estimated breeding values. It also was lower when three crossing cycles per 628 

year were used compared to one crossing cycle. The difference in prediction accuracy 629 

due to the number of crossing cycles per year, however, became smaller as the 630 

dominance degree increased. The conventional breeding program with genomic 631 

selection using genomic predicted cross performance to select parents showed the 632 

lowest prediction accuracies under all dominance degrees. 633 

 634 

Discussion 635 

For genomic selection in clonal breeding programs to be effective, crossing 636 

parents should be selected based on genomic predicted cross performance unless 637 

dominance is negligible. To discuss this result, we first describe how genomic selection 638 

can improve clonal breeding programs under the assumption of additive genetic control. 639 

We show that the two-part breeding program enables effective exploitation of genomic 640 

selection in breeding clonally propagated crops. We also explain that under additive 641 

genetic control, differences in genetic gain between the two parent selection methods 642 

mainly resulted from an increased selection intensity when parents were selected based 643 
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on genomic predicted cross performance compared to selection of parents based on 644 

genomic estimated breeding values. After the discussion of results when traits were 645 

under additive genetic control, we explain why genomic selection of new parents 646 

requires consideration of dominance effects unless dominance is negligible. We show 647 

that selection of parents based on genomic predicted cross performance enables 648 

efficient simultaneous exploitation of additive and dominance effects, which facilitates 649 

exploitation of pseudo-overdominance in the progeny of a cross when the dominance 650 

degree is high. We also show that multiple crossing cycles per year can have an adverse 651 

effect on long-term genetic gain, especially when the dominance degree is high. We 652 

then explain that, at higher dominance degrees, heterozygosity becomes a reliable 653 

predictor of the dominance value when parents are selected based on genomic predicted 654 

cross performance. Finally, we conclude that genomic prediction of cross performance 655 

could be an efficient method to select parents not only in clonal plant breeding 656 

programs, but also in other breeding programs for outbred individuals including animal 657 

breeding programs.  658 

 659 

Genomic selection of new parents improved genetic gain under additive 660 

genetic control 661 

Under additive genetic control, genomic selection of new parents always 662 

produced faster genetic gain than phenotypic selection of new parents. This was 663 

observed regardless of whether parents were selected based on genomic estimated 664 

breeding values or based on genomic predicted cross performance.  665 
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As expected, the implementation of genomic selection improved the conversion 666 

of genetic variance into genetic gain in both variations of the two-part breeding program 667 

with one and three crossing cycles per year, respectively, and in the conventional 668 

breeding program with genomic selection. This improvement resulted from a shortened 669 

generation interval and an increased selection accuracy in early selection stages. As a 670 

consequence, the breeding programs with genomic selection also showed an 671 

accelerated depletion of genetic variance over time compared to the conventional 672 

breeding program (Fig. S1). This depletion was most severe when three crossing cycles 673 

per year were used, and it caused genetic gain to approach a plateau in the second half 674 

of the future breeding phase.  675 

Our findings under additive genetic control were consistent with those of 676 

Gaynor et al. (2017) who used stochastic simulations to evaluate genomic selection 677 

strategies in plant breeding programs for developing inbred lines. We refer the reader 678 

to this study for a detailed description of the relationship between the generation 679 

interval, prediction accuracy and genetic variance when additive genetic control is 680 

assumed. 681 

 682 

A two-part breeding programs better exploit genomic selection than the 683 

conventional breeding program with genomic selection under additive genetic 684 

control 685 

The two-part breeding programs enabled the best possible exploitation of 686 

genomic selection under additive genetic control. They produced between 2.3 times the 687 

genetic gain of the conventional breeding program when used with parent selection 688 
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based genomic predicted cross performance and three crossing cycles per year, and 689 

three times the genetic gain of the conventional breeding program when used with 690 

parent selection based genomic estimated breeding values and three crossing cycles per 691 

year. The increased rates of genetic gain compared to the conventional breeding 692 

program resulted from a very short generation interval and an improved selection 693 

accuracy in the seedling stage.  694 

Selection in the seedling stage poses a major challenge in clonal breeding 695 

programs due to a high selection intensity combined with low selection accuracy 696 

(Grüneberg et al., 2009; Bradshaw, 2016). The two-part breeding programs improved 697 

selection accuracy by replacing phenotypic selection with genomic selection, which 698 

enabled improvements in the selection criterion for seedlings. When phenotypic 699 

selection was used, seedlings were selected based on their observed per se performance. 700 

When genomic selection was used, seedlings were selected based on their predicted 701 

performance as clones because the genomic selection model was trained using data 702 

from the clonal testing stages.  703 

Using genomic selection in the seedling stage improved selection accuracy for 704 

two reasons:  705 

i) The phenotypic records in the clonal stages which were used to train the 706 

selection model had a higher heritability than the phenotypic records of 707 

the unreplicated seedlings. 708 

ii) Marker alleles were replicated within and across years.  709 
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This increase of the selection accuracy also laid the foundation for the selection 710 

of new parents in the seedling stage, allowing for one or multiple cycles of crossing per 711 

year to minimize the length of the breeding cycle. 712 

The conventional breeding program with genomic selection gave 1.7 times the 713 

genetic gain of the conventional breeding program when parents were selected based 714 

on genomic estimated breeding values and 1.9 times the genetic gain when parents were 715 

selected based on genomic predicted cross performance. Genomic selection was 716 

applied in clonal testing stage 1 and selection in the seedling stage was based on 717 

phenotypic per se performance. Hence, selection accuracy in the seedling stage was not 718 

improved compared to the conventional breeding program. The increased rate of 719 

genetic gain mainly resulted from a shortened generation interval and an improved 720 

selection accuracy in clonal testing stage 1. 721 

 722 

Selection of parents based on genomic predicted cross performance 723 

increased selection intensity compared to selection of parents based on genomic 724 

estimated breeding values under additive genetic control 725 

Under additive genetic control, differences in genetic gain between the two 726 

parent selection methods mainly resulted from an increased selection intensity when 727 

parents were selected based on genomic predicted cross performance compared to 728 

selection of parents based on genomic estimated breeding values. 729 

When genomic estimated breeding values were used, the 30 best genotypes 730 

were selected and randomly crossed to mimic a “good by good” crossing scheme. When 731 

genomic predicted cross performance was used, parents were selected based on the 732 
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predicted mean genetic values of the F1 of a bi-parental cross. Under additive genetic 733 

control, the predicted mean genetic value of the F1 is equal to the mean genomic 734 

estimated breeding value of both parents. Selection of parents based on genomic 735 

predicted cross performance resulted in the excessive use of a few very good parents in 736 

many crosses. As a consequence, the selection intensity for parents was higher 737 

compared to when parents were selected based on genomic estimated breeding values 738 

and randomly crossed.  739 

In the conventional breeding program with genomic selection, this increase in 740 

selection intensity resulted in more genetic gain over time compared to when parents 741 

were selected based on genomic estimated breeding values. In the two-part breeding 742 

programs, it resulted in more genetic gain in the first years, but thereafter genetic gain 743 

reached a plateau due to a depletion of genetic variance. This depletion of genetic 744 

variance was more severe when three crossing cycles per year were used. 745 

A crossing strategy in a practical breeding program would probably lie 746 

somewhere in between the two simulated parent selection methods. A breeder would 747 

not randomly select crosses, but rather combine parents that are expected to generate 748 

improved progeny. Although very good genotypes may be used at high frequency, a 749 

breeder would make sure that an overly excessive use did not restrict the genetic 750 

variation in long-term. 751 

 752 

Genomic selection of new parents requires consideration of dominance 753 

effects unless dominance is negligible 754 
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If dominance is appreciable, genetic gain becomes a function of combined 755 

additive and non-additive gene action. If epistasis is ignored, the non-additive gene 756 

action is entirely determined by dominance. Achieving a high rate of genetic gain then 757 

depends on an efficiently balanced exploitation of the additive and dominance effects 758 

(Bradshaw, 2016). 759 

In particular, this requires two opposed actions:  760 

i) The frequency of alleles with beneficial additive genetic effects in 761 

homozygous state has to be increased to improve the additive value in 762 

the breeding population. 763 

ii) Heterozygosity has to be maintained to exploit dominance effects and keep 764 

the dominance value at a high level in the breeding population. 765 

While inbreeding can be deliberately used to increase the frequency of 766 

beneficial alleles in homozygous state and hence to improve the additive value, it also 767 

results in a reduction of heterozygosity and the dominance value. In the worst case 768 

scenario, the decrease in the dominance value over time will exceed the increase in the 769 

additive value, and the rate of genetic gain will become negative due to inbreeding 770 

depression. Hence, it is obvious that both the contribution of the additive value and the 771 

contribution of the dominance value to genetic gain must be taken into account when 772 

selecting the crossing parents of the next generation.  773 

More specifically, this selection process requires a balanced exploitation of the 774 

additive value and the dominance value based on the dominance degree. As the 775 

dominance degree increases, the importance of the dominance value relative to the 776 

additive value also increases, indicating that heterozygosity should be conserved more 777 
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effectively. Optimally, a method to select new parents would automatically balance the 778 

contribution of the additive and dominance components to sustain long-term genetic 779 

gain without any prior knowledge about the dominance degree. 780 

 781 

Selection of parents based on genomic predicted cross performance 782 

enabled an efficient simultaneous exploitation of additive effects and dominance 783 

effects 784 

Selection of parents based on genomic prediction of cross performance enabled 785 

an efficient simultaneous exploitation of additive effects and dominance effects by 786 

reducing the increase in inbreeding over time when the dominance degree increased. 787 

This became a crucial feature to increase genetic gain over time when the dominance 788 

degree was high.  789 

As the dominance degree increased, selection of parents based on genomic 790 

prediction of cross performance produced increasingly more genetic gain than selection 791 

based on genomic estimated breeding values. By definition, the genomic estimated 792 

breeding value is the sum of the average effects of the marker alleles of a genotype. 793 

These average effects are predicted for all markers simultaneously by performing a 794 

linear regression of the phenotypes in the training population on the marker genotypes, 795 

the concept described by Falconer (1985) for a one-locus model. Although the genomic 796 

estimated breeding value thereby generally captures a large part of the dominance 797 

interaction (Falconer and Mackay, 1996; Hill et al., 2008), this population-based 798 

predictor of the value of an individual parent for the progeny generation ignores 799 

dominance deviation.  800 
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In contrast, selection of parents based on genomic predicted cross performance 801 

fully captures both additive and dominance marker effects. It thereby enables prediction 802 

of the expected genetic value of the progeny of a certain cross rather than prediction of 803 

the value of an individual parent. The inclusion of non-additive effects can facilitate an 804 

enhancement and an improved exploitation of non-additive genetic variation compared 805 

to parent selection based on genomic estimated breeding values (Varona et al., 2018). 806 

When parents were selected based on genomic predicted cross performance, the 807 

enhancement of non-additive genetic variation was a direct outcome of the reduced 808 

increase in inbreeding over time. The improved exploitation of non-additive genetic 809 

variation resulted from the efficiently balanced exploitation of the additive and 810 

dominance value when dominance was appreciable.  811 

Interestingly, the genomic prediction model for cross prediction autonomously 812 

assigned more weight to the dominance value as dominance increased without any prior 813 

knowledge about the dominance degree. This was achieved by including a covariate 814 

associated with genomic inbreeding (heterozygosity) in the model, which accounted for 815 

directional dominance, and can be seen as an estimator for inbreeding depression 816 

caused by genomic inbreeding (Xiang et al., 2016; Varona et al., 2018). As the 817 

dominance degree increased, the value of crosses which maintained heterozygosity in 818 

the population increased, and genomic prediction of cross performance accurately 819 

predicted those crosses. 820 

 821 
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Selection of parents based on genomic predicted cross performance 822 

enabled exploitation of pseudo-overdominance in the progeny of a cross when the 823 

dominance degree was high 824 

The two-part breeding programs with parent selection based on genomic 825 

estimated breeding values gave negative genetic gain due to severe inbreeding 826 

depression when the dominance degree was high. After the first year of future breeding, 827 

the decrease in the dominance value over time was consistently higher than the increase 828 

in the additive value. 829 

At first sight, this might seem surprising as we did not simulate overdominance. 830 

Under the one-locus model with a dominance degree < 1, the allelic combination with 831 

the beneficial allele in homozygous state will result in the highest genetic value of all 832 

pairwise allelic combinations. In this case, selection of parents based on the genomic 833 

estimated breeding value would be an efficient strategy to increase the frequency of the 834 

beneficial allele in the population over time, and hence to increase genetic gain. Only 835 

under overdominance does the heterozygote become superior to both homozygotes and 836 

therefore the fixation of the allele with the higher additive value would result in a 837 

reduction of the genetic value (Falconer and Mackay, 1996)  838 

Overdominance seems to be an extremely rare phenomenon in nature. However, 839 

due to linkage disequilibrium (LD), haplotype blocks are the units of genetic 840 

transmission rather than single loci. When haplotype blocks with favourable alleles in 841 

repulsion phase are combined during sexual recombination, the cumulative effect of 842 

these loci can create pseudo-overdominance although the dominance degree at each 843 

locus is < 1 (Bingham et al., 1994; Bingham, 1998).  844 
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Selection of parents based on the genomic estimated breeding value will drive 845 

an increase in the frequency of the haplotype blocks with the highest sum of average 846 

effects. The heterotic effects due to pseudo-overdominance, however, are reduced, or 847 

get lost, from one generation to the next. Furthermore, even haplotype blocks with 848 

lower genomic estimated breeding values may contain beneficial alleles, which are 849 

removed from the population through selection. As a result, genetic variance is reduced, 850 

restricting long-term additive genetic gain. 851 

Selection of parents based on genomic predicted cross performance, on the other 852 

hand, included the heterotic potential of a cross when predicting the performance of the 853 

progeny. In this way, non-additive effects due to complementation of haplotype blocks 854 

can be maintained in the population over several generations when their contribution to 855 

the genetic value is high. Furthermore, by preserving haplotype blocks with lower 856 

genomic estimated breeding values for a few generations, recombination will make the 857 

beneficial alleles that they contain available for sustainable long-term genetic gain. 858 

 859 

Multiple crossing cycles per year using genomic prediction of cross 860 

performance without updating the prediction model can have an adverse effect on 861 

long-term genetic gain especially when the dominance degree is high 862 

In the two-part breeding programs with parent selection based on genomic 863 

predicted cross performance, genomic inbreeding increased faster with three crossing 864 

cycles per year compared to one crossing cycle per year. While using three crossing 865 

cycles per year gave more genetic gain than one crossing cycle when the dominance 866 

degree was low, it gave less genetic gain when the dominance degree was high.  867 
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As the dominance degree increased, maintaining a low level of inbreeding 868 

became crucial to ensure a sustainable, long-term exploitation of dominance effects. 869 

We hypothesize that two factors caused the regulation of the inbreeding coefficient to 870 

be less efficient with three crossing cycles per year compared to one crossing cycle per 871 

year: 872 

i) A reduced number of seedlings per crossing cycle. 873 

ii) An irregular updating of the prediction model for selection of new parents. 874 

The increased number of crossing cycles per year in combination with a reduced 875 

number of crosses and seedlings per cross resulted in an accelerated removal of 876 

haplotype block diversity from the breeding population. To equalize annual costs, the 877 

size of the seedling population was reduced from 12,000 to 4,000 seedlings per cross 878 

with three crossing cycles per year. Hence, the population became more susceptible to 879 

genetic drift and dominance effects due to complementation of haplotype blocks could 880 

not be maintained over multiple generations. 881 

The irregular updating of the prediction model for the selection of new parents 882 

resulted in a less efficiently balanced exploitation of additive and dominance effects. 883 

Although multiple cycles of crossing and selection per year effectively reduced the 884 

generation interval, the genomic prediction model was updated only once a year, and 885 

selection of new crosses became increasingly less efficient. Assuming purely additive 886 

gene action in a simulation of a line breeding program, Gaynor et al. (2017) found that 887 

the increased genetic distance between the training and prediction population caused 888 

selection accuracy to drop with every additional crossing cycle. Although we also 889 

observed a reduction in prediction accuracy with an increased number of cycles (Fig. 890 

S4), the unchanged weights assigned to additive and dominance effects by the 891 
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prediction model contributed more strongly to the accelerated reduction of 892 

heterozygosity. While inbreeding increased with every crossing cycle, the covariate 893 

associated with genomic inbreeding in the prediction model remained unchanged for 894 

two more cycles and could not sufficiently counteract inbreeding. When the model was 895 

then updated again in the following year, the loss of heterozygosity could not be 896 

completely reversed, which became especially problematic at a high dominance degree. 897 

These results indicate that genomic prediction of cross performance to 898 

maximize genetic gain in the progeny generation might not be the best method to select 899 

new parents when multiple cycles of crossing and selection per year are used. To solve 900 

this problem, we hypothesize that a strategy such as optimal contribution selection 901 

could be useful to maximize long-term genetic gain as shown by Gorjanc et al. (2017) 902 

in a two-part line breeding program with multiple crossing cycles per year. 903 

 904 

Heterozygosity became a reliable predictor of the dominance value when 905 

the dominance degree was high 906 

Prediction accuracy of genomic predicted cross performance increased as the 907 

dominance degree increased. Furthermore, prediction accuracy of the genetic value of 908 

the seedling genotypes increased as the dominance degree increased. Both prediction 909 

criteria included a non-additive term in the prediction model to capture dominance 910 

effects.  911 

We infer that marker-based heterozygosity became an accurate predictor of non-912 

additive genetic effects for selection of new parents especially when the dominance 913 

degree was high. This was mostly driven by including the covariate associated with 914 
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genomic inbreeding (heterozygosity) in the model, which accounted for directional 915 

dominance. The two-part breeding programs especially benefited from the increase in 916 

prediction accuracy when the dominance degree increased.  917 

Not only could cross performance be predicted more accurately, but selection 918 

accuracy in the seedlings also was significantly increased under high dominance 919 

degrees. Both factors contributed to the two-part breeding programs with genomic 920 

predicted cross performance generating the most genetic gain over time when 921 

dominance was appreciable. 922 

 923 

Implications for other breeding programs for outbred individuals 924 

We expect genomic predicted cross performance could be used in other 925 

breeding programs for outbred individuals, such as animal breeding programs, to 926 

increase rates of genetic gain. As with clonal crops, animal breeding programs must 927 

also account for the detrimental effects of inbreeding depression. Animal breeders use 928 

various strategies to accomplish this ranging from rule-of-thumb recommendations to 929 

avoid matings between close relatives to optimal contribution selection, a numeric 930 

technique for limiting population level inbreeding (Woolliams et al., 2015). We expect 931 

genomic predicted cross performance to outperform these techniques by directly 932 

estimating progeny performance and thereby accounting for inbreeding depression in a 933 

purely data-driven manner, given the prediction model is constantly updated. However, 934 

when multiple cycles of crossing and selection per year are used without updating the 935 

prediction model, genomic prediction of cross performance to maximize genetic gain 936 

in the progeny generation might not be the best method to select new parents. In this 937 
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case, implementing a strategy like optimal contribution selection might be useful to 938 

maximize long-term genetic gain, outlining an important topic for further research. 939 
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Figures 955 

 956 

Figure 1 Schematic overview of the conventional breeding program and 957 

the conventional breeding program with genomic selection. The conventional 958 

breeding program (Conv) was used in the burn-in breeding phase and served as a 959 

control in the future breeding phase. In the conventional breeding program, parents 960 

were selected in clonal stages 2-5. The conventional breeding program with genomic 961 

selection reduced the generation interval to two years by selecting parents in clonal 962 

stage 1 based on either genomic estimated breeding values or genomic predicted cross 963 

performance. The genotypes in clonal stage 1 served as training population.  964 

 965 
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 966 

Figure 2 Schematic overview of the two-part breeding program. The two-967 

part breeding program reorganized the conventional breeding program into i) a 968 

population improvement component to develop improved germplasm through rapid 969 

recurrent genomic selection; and ii) a product development component to identify the 970 

best performing genotypes. The population improvement component allows to have 971 

multiple cycles of crossing and selection per year before the seedlings are advanced to 972 

the product development component based on their genomic estimated genetic values. 973 

New parents during population improvement were selected based on either genomic 974 

estimated breeding values or genomic predicted cross performance. 975 
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 976 

Figure 3 Genetic gain of the simulated breeding programs under different 977 

dominance degrees (d/a). In each panel, genetic gain is plotted as mean genetic value 978 

in clonal stage 1 for the entire burn-in breeding phase and the future breeding phase. 979 

Each line shows the mean genetic value for the 10 simulated replications and the 980 

shading shows the 95% confidence intervals. The different types of breeding program 981 

are shown in different colours. The conventional breeding program (Conv) is gray. The 982 

conventional breeding program with genomic selection (Conv GS) is yellow. The two-983 

part breeding program with genomic selection (2Part) is shown in blue with one 984 

crossing cycle per year and in purple with three crossing cycles per year. The two types 985 

of parent selection were shown in different line-styles. Selection based on Genomic 986 

Estimated Breeding Value (GEBV) is shown by continuous lines. Selection based on 987 

Genomic Prediction of Cross Performance (GPCP) is shown by dashed lines.  988 

 989 

 990 

 991 
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 992 

Figure 4 Genomic inbreeding coefficient of the simulated breeding 993 

programs under different dominance degrees (d/a). In each panel, the genomic 994 

inbreeding coefficient is plotted in clonal stage 1 for the entire burn-in breeding phase 995 

and the future breeding phase. Each line shows the mean genomic inbreeding 996 

coefficient for the 10 simulated replications. The different types of breeding program 997 

are shown in different colours. The conventional breeding program (Conv) is gray. The 998 

conventional breeding program with genomic selection (Conv GS) is yellow. The two-999 

part breeding program with genomic selection (2Part) is shown in blue with one 1000 

crossing cycle per year and in purple with three crossing cycles per year. The two types 1001 

of parent selection were shown in different line-styles. Selection based on Genomic 1002 

Estimated Breeding Value (GEBV) is shown by continuous lines. Selection based on 1003 

Genomic Prediction of Cross Performance (GPCP) is shown by dashed lines. 1004 

 1005 

 1006 

 1007 
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 1008 

Figure 5 Additive values and the dominance values of the simulated 1009 

breeding programs under different dominance degrees (d/a). In each of the upper 1010 

panels (a-c), the additive values are plotted in clonal stage 1 for the future breeding 1011 

phase. The lower panels (d-f) plot the dominance values. Each line shows the mean 1012 

value for the 10 simulated replications. The different types of breeding program are 1013 

shown in different colours. The conventional breeding program (Conv) is gray. The 1014 

conventional breeding program with genomic selection (Conv GS) is yellow. The two-1015 

part breeding program with genomic selection (2Part) is shown in blue with one 1016 
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crossing cycle per year and in purple with three crossing cycles per year. The two types 1017 

of parent selection were shown in different line-styles. Selection based on Genomic 1018 

Estimated Breeding Value (GEBV) is shown by continuous lines. Selection based on 1019 

Genomic Prediction of Cross Performance (GPCP) is shown by dashed lines. Additive 1020 

values and dominance values at the beginning of the future breeding phase (year 0) 1021 

were centred at zero. 1022 

 1023 

 1024 

Figure 6 Prediction accuracy for selection of new parents under different 1025 

dominance degrees (d/a). In each panel, prediction accuracy is plotted for the future 1026 

breeding phase of the breeding programs with genomic selection. Each line shows the 1027 

mean prediction accuracy for the 10 simulated replications. The different types of 1028 

breeding program are shown in different colours. The conventional breeding program 1029 

with genomic selection (Conv GS) is yellow. The two-part breeding program with 1030 

genomic selection (2Part) is shown in blue with one crossing cycle per year and in 1031 

purple with three crossing cycles per year. The two types of parent selection were 1032 

shown in different line-styles. Selection based on Genomic Estimated Breeding Value 1033 

(GEBV) is shown by continuous lines. Selection based on Genomic Prediction of Cross 1034 

Performance (GPCP) is shown by dashed lines. Prediction accuracy was measured in 1035 
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the seedling stage for the two-part breeding programs and in clonal stage 1 for the 1036 

conventional breeding program with genomic selection. 1037 

 1038 

 1039 

Figure 7 Prediction accuracy for the total genetic value of the seedlings 1040 

under different dominance degrees (d/a). In each panel, prediction accuracy is 1041 

plotted in the seedling stage for the entire burn-in breeding phase and the future 1042 

breeding phase. Each line shows the mean prediction accuracy for the 10 simulated 1043 

replications. The different types of breeding program are shown in different colours. 1044 

The conventional breeding program (Conv) is gray. The conventional breeding 1045 

program with genomic selection (Conv GS) is yellow. The two-part breeding program 1046 

with genomic selection (2Part) is shown in blue with one crossing cycle per year and 1047 

in purple with three crossing cycles per year. The two types of parent selection were 1048 

shown in different line-styles. Selection based on Genomic Estimated Breeding Value 1049 

(GEBV) is shown by continuous lines. Selection based on Genomic Prediction of Cross 1050 

Performance (GPCP) is shown by dashed lines.  1051 

 1052 
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