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Abstract 
 
Computational tools for the integration of single-cell transcriptomics data are designed to 

correct batch effects between technical replicates or different technologies applied to the same 

population of cells. However, they have inherent limitations when applied to heterogeneous 

sets of data with moderate overlap in cell states or sub-types. STACAS is a package for the 

identification of integration anchors in the Seurat environment, optimized for the integration of 

datasets that share only a subset of cell types. We demonstrate that by i) correcting batch 

effects while preserving relevant biological variability across datasets, ii) filtering aberrant 

integration anchors with a quantitative distance measure, and iii) constructing optimal guide 

trees for integration, STACAS can accurately align scRNA-seq datasets composed of only 

partially overlapping cell populations. We anticipate that the algorithm will be a useful tool for 

the construction of comprehensive single-cell atlases by integration of the growing amount of 

single-cell data becoming available in public repositories.  

 
Code availability – R package: https://github.com/carmonalab/STACAS 

   – Docker image: https://hub.docker.com/repository/docker/mandrea1/stacas_demo 
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1    Introduction 

Massively parallel single-cell transcriptomics (scRNA-seq) has emerged as a transformative 

technology that enables measuring molecular profiles at single-cell resolution.  However, 

despite the highly multiplexed technologies, single-cell data are produced separately for 

different tissues and organs and are affected by multiple batch effects, such as different 

sample processing and scRNA-seq protocols. As such, integration of single-cell data might be 

the ultimate challenge in the field towards the generation of single-cell atlases (1–3). 

Seurat (4) is currently one of the most popular and best performing algorithms for single-cell 

data integration, and can be effortlessly integrated into complex analysis pipelines (5). At the 

core of the Seurat integration algorithm is the identification of mutual nearest neighbors (MNN) 

across single cell datasets, named "anchors", in a reduced space obtained from canonical 

correlation analysis (CCA).  These anchors and their scores are used to compute correction 

vectors for each query cell, transforming (i.e. batch-correcting) its expression profile (6). 

Transformed cell profiles can then be jointly analyzed as part of an integrated space. To 

handle more than two datasets, a guide tree based on pairwise batch similarities is used to 

dictate the batch integration order. While Seurat has proven very powerful for the removal of 

technical artifacts between replicated experiments or even different sequencing technologies 

(5), it tends to overcorrect batch effects and performs poorly when integrating heterogeneous 

datasets (7), where only a fraction of cell types are shared between individual samples. This 

is crucial for the creation of reference cell type-specific single-cell atlases where the datasets 

to integrate were obtained from different tissues or experimental conditions (e.g. T cells from 

blood vs tumor-infiltrating T cells), and as a consequence are composed of different, partially 

overlapping cell states or sub-types. 

 
2 RESULTS 

STACAS is a package for determining integration anchors between heterogeneous 

datasets, and it is designed to be easily incorporated into Seurat dataset integration pipelines. 

STACAS employs a reciprocal principal component analysis (PCA) procedure to calculate 

anchors, where each dataset in a pair is projected onto the reduced PCA space of the other 

dataset; mutual nearest neighbors are then calculated in these reduced spaces. Crucially, and 

in contrast to the CCA reduction used by Seurat, the expression values of genes used in 

generating the PCA spaces are not rescaled to have zero mean and unit variance. When 

integrating heterogeneous datasets, for instance composed only of CD4+ or CD8+ cells, such 

rescaling can cancel out important biological differences between the datasets (Figure 1A). 
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A second innovation introduced in STACAS is the filtering of anchors based on anchor 

pairwise distance, which is calculated on the reduced PCA spaces used to determine the 

anchors. We observed that the distribution of anchor distances between datasets with shared 

cell subtypes (i.e. a CD4+CD8+ sample with a CD8+ sample) is centered on lower pairwise 

anchor distances compared with dataset pairs with limited or no overlap (e.g. a CD4+ sample 

and a CD8+ sample) (Figure 1B); anchor distance can then be used as a quantitative 

measure to filter spurious anchors and improve dataset integration. In STACAS, the anchor 

filtering threshold defaults to the 80th percentile of the distance distribution between the two 

most similar datasets. 

Finally, the anchors determined by STACAS can be used directly for dataset integration 

using the IntegrateData function in Seurat 3. STACAS suggests a guide tree to determine the 

order in which datasets are to be integrated. In contrast to the Seurat default guide tree, which 

favors datasets with the highest total number of cells in any given pair, STACAS prioritizes 

samples with the highest total number of anchors; the rationale being that datasets with many 

anchors are likely to contain more cell types and represent the “centroid” of the integrated 

map. 

In the example in Figure 1, we integrated four scRNA-seq datasets of mouse T cells from 

public repositories, composed of i) CD8+ tumor-infiltrating lymphocytes (TILs) (8); ii) CD4+ 

and CD8+ TILs (9); iii) CD4+ T cells from tumors (10); and iv) CD4+ T cells from draining 

lymph nodes (dLN) (10). There is an evident batch effect between the samples, with the cells 

of each sample clustering together regardless of their type (Figure 1C and 1F). Consistently 

with a recent benchmark (7), dataset alignment using Seurat 3 appears to overcorrect these 

batch effects, overlaying samples with little in common such as CD4+ dLN and CD8+ TILs 

(Figure 1D and 1G). In contrast, STACAS only aligns cells with similar states across samples, 

limiting the superposition of CD4+ with CD8+ cells (Figure 1E).  Supervised cell state 

classification using TILPRED (8) confirms that in most cases STACAS was able to cluster cell 

types across different, heterogeneous data sets (Figure 1H). We obtained similar results on 

larger scale integration tasks towards the construction of reference T cell maps in cancer and 

chronic infection [manuscript in preparation]. 

STACAS is available as an R package at https://github.com/carmonalab/STACAS and as a 

Docker image, and can be easily incorporated in Seurat 3 pipelines for data integration. A 

demo detailing the functions and usage of the package with sample data can be found at 

https://gitlab.unil.ch/carmona/STACAS.demo   
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Figure 1: Anchor finding and dataset integration using STACAS. A) Expression level (log [ normalized UMI 
counts + 1]) of Cd8a and Cd4 after integration with Seurat CCA (top) or STACAS (bottom); important biological 

differences between the samples are lost by data rescaling and sub-optimal anchoring by Seurat 3 CCA. B) Anchor 

distance distribution between pairs of samples prior to anchor filtering by STACAS; poor anchors with distance 
higher than threshold (represented with a vertical dashed line) are filtered out by STACAS. C-E) Low-dimensionality 

UMAP visualization of scRNA-seq data, colored by sample, without batch correction (C), using Seurat CCA anchors 

(D) and using STACAS anchors (E) for dataset alignment. F-H) UMAP visualization of scRNA-seq data, colored 

by TILPRED state prediction, without batch correction (F), using Seurat CCA anchors (G) and using STACAS 
anchors (H) for dataset alignment.  
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