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Subtitle: A semi-quantitative, high throughput, microscopy-based assay expands existing 34 

approaches to measure SARS-CoV-2 specific antibody levels in human sera 35 

Abstract 36 

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic 37 

spread presents numerous questions and challenges that demand immediate attention. Among 38 

these is the urgent need for a better understanding of humoral immune response against the 39 

virus as a basis for developing public health strategies to control viral spread. For this, sensitive, 40 

specific and quantitative serological assays are required. Here we describe the development of 41 

a semi-quantitative high-content microscopy-based assay for detection of three major classes 42 

(IgG, IgA and IgM) of SARS-CoV-2 specific antibodies in human samples. The possibility to 43 

detect antibodies against the entire viral proteome together with a robust semi-automated image 44 

analysis workflow resulted in specific, sensitive and unbiased assay which complements the 45 

portfolio of SARS-CoV-2 serological assays. The procedure described here has been used for 46 

clinical studies and provides a general framework for the application of quantitative high-47 

throughput microscopy to rapidly develop serological assays for emerging virus infections. 48 

 49 

Keywords: 50 

SARS-CoV-2, antibody, serological test, quantitative microscopy, immunofluorescence, 51 

machine learning image analysis 52 

 53 

1. Introduction 54 

The recent emergence of the novel pathogenic coronavirus SARS-CoV-2 [1–3] and the 55 

rapid pandemic spread of the virus has dramatic consequences in all affected countries. In the 56 

absence of a protective vaccine or a causative antiviral therapy for COVID-19 patients, testing 57 

for SARS-CoV-2 infection and tracking of transmission and outbreak events are of paramount 58 

importance to control viral spread and avoid the overload of healthcare systems. The sequence 59 

of the viral genome became publicly available only weeks after the initial reports on COVID-19 60 
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via the community online resource virological.org and allowed rapid development of reliable and 61 

standardized quantitative RT-PCR (qPCR) based tests for direct virus detection in 62 

nasopharyngeal swab specimens [4–6]. These tests are the key to identify acutely infected 63 

individuals and monitor virus load as a basis for the implementation of quarantine measures and 64 

treatment decisions. 65 

In response to the initial wave of COVID-19 infection many countries implemented more 66 

or less severe lockdown strategies, resulting in a gradual decrease in the rate of new infections 67 

and deaths [7]. With gradual release of these lockdown strategies, monitoring and tracking of 68 

SARS-CoV-2 specific antibody levels becomes highly important. Many critical aspects of the 69 

humoral immune response against SARS-CoV-2 are currently not well understood [8]. In addition, 70 

levels of infection in the general population in different areas remain largely unknown due to 71 

proportion of undocumented cases arising from asymptomatic individuals [9,10] which had not 72 

been subjected to RNA testing, or to limitations in testing capacity especially in areas of relatively 73 

high prevalence. Public health control strategies aiming at regulating human mobility and social 74 

behaviour in order to suppress the infection rate will have to take into account the proportion of 75 

seropositive individuals in the general population, or in specific population groups [11]. Information 76 

on the level of antiviral antibodies, as well as on the serological response against different viral 77 

proteins, is also a key element of understanding the nature, development and durability of the 78 

antiviral immune response. Therefore, specific, sensitive and reliable methods for the 79 

quantitative detection of virus specific antibodies in human specimens are urgently needed from 80 

the beginning of an emerging pandemic.  81 

Compared to approaches for direct virus diagnostics by PCR, development of test 82 

systems for detection of SARS-CoV-2 specific antibodies proved to be more challenging. In 83 

particular, cross reactivity of antibodies against circulating common cold coronaviruses (strains 84 

OC43, NL63, 229E and HKU1) are of concern in this respect as it was observed in case of 85 

serological tests developed for closely related SARS-CoV and MERS-CoV [12]. Developments in 86 

the past months yielded well validated, commercially available ELISA or 87 

(electro)chemoluminescence-based kits for SARS-CoV-2 serological diagnostics. However, 88 

initially marketed test kits underwent a very rapid development and approval process due to the 89 

emergency of the situation, with low numbers of samples used for validation; consequently, 90 

sensitivity and specificity of the test systems often failed to meet the practical requirements [13]. 91 

Furthermore, the disruption of supply chains and high demand for tests during pandemic 92 

situations can lead to shortage of commercially available test kits and/or required reagents, as 93 
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witnessed in the early phases of the ongoing SARS-CoV-2 pandemic. Thus, complementary 94 

strategies to test for antiviral antibodies that can be rapidly deployed in situations where 95 

commercially available kits are either not yet developed or not available are an important addition 96 

to the diagnostic toolkit.  97 

Immunofluorescence (IF) using virus infected cells as a specimen is a classical 98 

serological approach in virus diagnostics and has been applied to coronavirus infections, 99 

including the closely related virus SARS-CoV [14–16]. The advantages of IF are (i) that it does not 100 

depend on specific diagnostic reagent kits or instruments, (ii) that the specimen contains all viral 101 

antigens expressed in the cellular context and (iii) that the method has the potential to provide 102 

high information content (differentiation of staining patterns and intensities due to reactivity 103 

against various viral proteins). A mayor disadvantage of the IF approach as it is typically used in 104 

serological testing is its limited throughput capacity due to the involvement of manual microscopy 105 

handling steps and sample evaluation based on visual inspection of micrographs. Furthermore, 106 

visual classification is subjective and thus not well standardized and yields only binary results. 107 

Here, we address those limitations, making use of advanced automated microscopy and image 108 

analysis strategies developed for basic research. We present the establishment and validation 109 

of a semi-quantitative, semi-automated workflow for SARS-CoV-2 specific antibody detection. 110 

With its 96-well format, semi-automated microscopy and automated image analysis workflow it 111 

combines advantages of IF with a reliable and objective semi-quantitative readout and high 112 

throughput compatibility. The protocol described here was developed in response to the 113 

emergence of SARS-CoV-2, but it represents a general approach that can be adapted for the 114 

study of other viral infections and is suitable for rapid deployment to support diagnostics of 115 

emerging viral infections in the future. 116 

2. Results  117 

2.1 Setup of the IF assay for SARS-CoV-2 antibody detection 118 

We decided to use cells infected with SARS-CoV-2 as samples for our IF analyses, 119 

since this setup provides the best chance for detection of antibodies targeted at the different 120 

viral proteins expressed in the host cell context. African green monkey kidney epithelial cells 121 

(VeroE6 cell line) have been used for infection with SARS-CoV-2, virus production and IF[3,17]. 122 

In preparation for our analyses we compared different cell lines for use in infection and IF 123 
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experiments, but all tested cell lines were found to be inferior to VeroE6 cells for our purposes 124 

(see Materials and Methods and Fig. S1). All following experiments were thus carried out using 125 

the VeroE6 cell line.  126 

In order to allow for clear identification of positive reactivity in spite of a variable and 127 

sometimes high nonspecific background from human sera, our strategy involves a direct 128 

comparison of the IF signal from infected and non-infected cells in the same sample. Preferential 129 

antibody binding to infected compared to non-infected cells indicates the presence of specific 130 

SARS-CoV-2 antibodies in the examined serum. Under our conditions, infection rates of ~40-131 

80% of the cell population were achieved, allowing for a comparison of infected and non-infected 132 

cells in the same well of the test plate. An antibody that detects dsRNA produced during viral 133 

replication was used to distinguish infected from non-infected cells within the same field of view 134 

(Fig. 1A). 135 

In order to define the conditions for immunostaining using human serum, we selected a 136 

small panel of negative and positive control sera. Four sera from healthy donors collected before 137 

November 2019 were chosen as negative controls, and eight sera from PCR confirmed COVID-138 

19 inpatients collected at day 14 or later post symptom onset were employed as positive controls. 139 

Sera from this test cohort were used for primary staining, and bound antibodies were detected 140 

using fluorophore-coupled secondary antibodies against human IgG, IgA or IgM.  141 

No difference between infected and non-infected cells in serum IgG antibody binding was 142 

observed when sera collected before the onset of the SARS-CoV-2 pandemic were examined 143 

(Fig. 1B, Fig. S2). In contrast, COVID-19 patient sera were clearly characterized by higher serum 144 

IgG antibody binding to infected compared to non-infected cells (Fig. 1B). All eight COVID-19 145 

patient serum samples yielded higher IgG binding to infected compared to non-infected cells as 146 

assessed by visual inspection (Fig. S2). Similar results were obtained when an IgA or IgM 147 

specific secondary antibody was used for detection (Fig. S3). In order to allow for the parallel 148 

assessment of IgG and IgA or IgM antibodies, we established conditions for the parallel detection 149 

of anti-IgG coupled to AlexaFluor488 and anti-IgA or anti-IgM coupled to DyLight650 or 150 

AlexaFluor647 secondary antibodies, respectively, without signal bleedthrough. Using this 151 

approach, it was possible to implement detection of SARS-CoV-2 specific IgG and IgA or IgM 152 

antibodies in a single experimental setup (Fig. S4). 153 
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Titration experiments were performed with positive control sera to determine the optimal 154 

range of serum concentration in the IF experiments. All eight positive control samples showed 155 

visually detectable specific labelling of infected cells over the range of 1:102 and 1:105, 156 

demonstrating robustness of the assay (Fig. S5). Serum concentrations of less than 1:105 did 157 

not yield detectable signals in all cases. We decided to employ a dilution of 1:102 in the further 158 

experiments 159 

2.2 Image analysis 160 

Our next aim was to establish a semi-automated analysis workflow for image acquisition and 161 

analysis for a medium to high throughput setting. VeroE6 cells were seeded into 96-well plates 162 

infected and immunostained using anti-dsRNA antibody and patient serum, followed by indirect 163 

detection using a mixture of anti-IgG and anti-IgA/IgM secondary antibodies. Images were 164 

acquired using an automated widefield microscope (see Materials and Methods section for more 165 

detail).  166 

To obtain a measure for specific antibody binding we performed automated 167 

segmentation of cells and classified them into infected and non-infected cells based on the 168 

dsRNA staining. We then measured fluorescence intensities in the serum channel per cell as a 169 

proxy for the amount of bound antibodies for both infected and non-infected cells and calculated 170 

the ratio between these values for infected and non-infected cells in a given specimen. To enable 171 

training of a machine learning approach for cell segmentation and to directly evaluate infected 172 

cell classification, we manually labelled cells and annotated them as infected/non-infected in 10 173 

images chosen from 5 positive and 5 control specimens. Fig. 2 presents a graphical overview of 174 

all analysis steps; the full description of every step can be found in Materials and Methods. 175 

Briefly, our approach works as follows: 176 

First, we manually discarded all images that contained obvious artefacts such as large 177 

dust particles or dirt and out-of-focus images. Then, images were processed to correct for the 178 

uneven illumination profile in each channel. Next, we segmented individual cells with a seeded 179 

watershed algorithm [18], using nuclei segmented via StarDist [19] as seeds and boundary 180 

predictions from a U-Net [20,21] as a heightmap. We evaluated this approach using leave-one-181 

image-out cross-validation on the manual annotations and measured an average precision[22] of 182 

0.77 +- 0.08 (i.e., on average 77% of segmented cells are matched correctly to the 183 

corresponding cell in the annotations). Combined with extensive automatic quality control which 184 
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discards outliers in the results, the segmentation was found to be of sufficient quality for our 185 

analysis, especially since robust intensity measurements were used to reduce the effect of 186 

remaining errors. 187 

We then classified the segmented cells into infected and non-infected, by measuring 188 

the 95th percentile intensities in the dsRNA channel and classifying cells as infected if this value 189 

exceeded 4.8 times the noise level, determined by the mean absolute deviation. This factor and 190 

the percentile were determined empirically using grid search on the manually annotated images 191 

(see above). Using leave-one-out cross validation on the image level, we found that this 192 

approach yields an average F1-score of 84.3%. 193 

In order to make our final measurement more reliable, we then discarded whole wells, 194 

images or individual segmented cells based on quality control criteria that were determined by 195 

inspection of initial results. Those criteria include a minimal number of non-infected cells per 196 

well; minimal and maximal number of cells per image; minimal cell intensities for images; and 197 

minimal and maximal sizes of individual cells (see Materials and Methods for full details). 198 

To score each sample, we computed the intensity ratio 𝑟 : 199 

𝑟 =
𝑚𝐼

𝑚𝑁
 Eq. 1 

Here, 𝑚𝐼 is the median serum intensity of infected cells and 𝑚𝑁 the median serum intensity of 200 

non-infected cells. For each cell, we compute its intensity by computing the mean pixel intensity 201 

in the serum channel (excluding the nucleus area where we typically did not observe serum 202 

binding) and then subtracting the background intensity, which is measured on two control wells 203 

that did not contain any serum. 204 

We used efficient implementations for all processing steps and deployed the analysis 205 

software on a computer cluster in order to enhance the speed of imaging data processing. For 206 

visual inspection, we have further developed an open-source software tool (PlateViewer) for 207 

interactive visualization of high-throughput microscopy data [23]. PlateViewer was used in a final 208 

quality control step to visually inspect positive hits. For example, PlateViewer inspection allowed 209 

identifying a characteristic spotted pattern co-localizing with the dsRNA staining (Fig. S6) that 210 

was sometimes observed in the IgA channel upon staining with negative control serum. In 211 

contrast, sera from COVID-19 patients typically displayed cytosol, ER-like and plasma 212 

membrane staining patterns in this channel (Fig. 1B, Fig. S3). The dsRNA co-localizing pattern 213 
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observed for sera from the negative control cohort is by definition non-specific for SARS-CoV-2, 214 

but would be classified as a positive hit based on staining intensity alone. Using PlateViewer, 215 

we performed a quality control on all IgA positive hits and removed those displaying the spotted 216 

pattern colocalising with the dsRNA signal from further analysis.  217 

2.3 Assay characterization and validation 218 

With the immunofluorescence protocol and automated image analysis in place we 219 

proceeded to test a larger number of control samples in a high throughput compatible manner 220 

for assay validation. All samples were processed for IF as described above, and in parallel 221 

analysed by a commercially available semi-quantitative SARS-CoV-2 ELISA approved for 222 

diagnostic use (Euroimmun, Lübeck, Germany) for the presence of SARS-CoV-2 specific IgG 223 

and IgA antibodies. 224 

As outlined above, a main concern regarding serological assays for SARS-CoV-2 225 

antibody detection is the occurrence of false positive results. A particular concern in this case is 226 

cross-reactivity of antibodies that originated from infection with any of the four types of common 227 

cold Corona viruses (ccCoV) circulating in the population. The highly immunogenic major 228 

structural proteins of SARS-CoV-2 nucleocapsid (N) and spike (S) protein, have an overall 229 

homology of ~30% [3] to their counterparts in ccCoV and subdomains of these proteins display a 230 

higher degree homology; cross-reactivity with ccCoV has been discussed as the major reason 231 

for false positive detection in serological tests for closely related SARS-CoV and MERS-CoV [12]. 232 

Also, acute infection with Epstein-Barr virus (EBV) or cytomegalovirus (CMV) may result in 233 

unspecific reactivity of human sera [24,25]. We therefore selected a negative control panel 234 

consisting of 218 sera collected before the fall of 2019, comprising samples from healthy donors 235 

(n=105, cohort B), patients that tested positive for ccCoV several months before the blood 236 

sample was taken (n=34, all four types of ccCoV represented; cohort A), as well as patients with 237 

diagnosed Mycoplasma pneumoniae (n=22; cohort Z), EBV or CMV infection (n=57, cohort E). 238 

We further selected a panel of 57 sera from 29 RT-PCR confirmed COVID-19 patients collected 239 

at different days post symptom onset as a positive sample set (cohort C, see below). 240 

Sera were employed as primary antisera for IF staining using IgM, IgA or IgG specific 241 

secondary antibodies, and samples were imaged and analysed as described above. This 242 

procedure yielded a ratiometric intensity score for each serum sample. Based on the scores 243 

obtained for the negative control cohort and the patient sera, we defined the threshold separating 244 
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negative from positive scores for each of the antibody channels. For this, we performed ROC 245 

curve analysis [26–28] on a subset of the data (cohorts A, B, C, Z). Using this approach, it is 246 

possible to take the relative importance of sensitivity versus specificity as well as seroprevalence 247 

in the population (if known) into account for optimal threshold definition. By giving more weight 248 

to false positive or false negative results, one can adjust the threshold dependent on the context 249 

of the study. Whereas high sensitivity is of importance for e.g. monitoring seroconversion of a 250 

patient known to be infected, high specificity is crucial for population based screening 251 

approaches, where large study cohorts characterized by low seroprevalence are tested. Since 252 

we envision the use of the assay for screening approaches, we decided to assign more weight 253 

to specificity at the cost of sensitivity for our analyses (see Materials and Methods for an in-depth 254 

description of the analysis). Optimal separation in this case was given using threshold values of 255 

1.39, 1.31 and 1.27 for IgA, IgG and IgM channels respectively (Fig. S7). We validated the 256 

classification performance on negative control cohort E (n=57) which was not seen during 257 

threshold selection, and detected no positive scores. Results from the analysis of the negative 258 

control sera are presented in Fig. 4 and Table 1. 259 

While the majority of these samples tested negative in ELISA measurements as well 260 

as in the IF analyses, some positive readings were obtained in each of the assays, in particular 261 

in the IgA specific analyses (Fig. 4 and Table 1). Since samples from these cohorts were 262 

collected between 2015 and 2019, and donors were therefore not exposed to SARS-CoV-2 263 

before sampling, these readings represent false positives. Of note, negative control cohort E 264 

displayed a particularly high rate of false positives in ELISA measurements, but not in IF (Table 265 

1). We conclude that the threshold values determined achieve our goal of yielding highly specific 266 

IF results (at the cost of sub-maximal sensitivity). 267 

Roughly 10.6% (IgA) or 3% (IgG) of the samples were classified as positive or 268 

potentially positive by ELISA (Table 1). The notably lower specificity of the IgA determination in 269 

a seronegative cohort observed here is in accordance with findings in other studies [29,30] and 270 

information provided by the manufacturer of the test (90,5% for IgA vs. 99,3% for IgG; 271 

Euroimmun SARS-CoV-2 data sheet, April 24, 2020; in response to these findings, an improved 272 

version of the test has been recently developed). The respective proportion of false-positives 273 

obtained based on IF, 0% for IgA and 0,9% for IgG, were lower, indicating higher specificity of 274 

the IF readout compared to the ELISA measurements. Importantly, however, false positive 275 

readings did not correlate between ELISA and IF (Fig. 4). Thus, classifying only samples that 276 

test positive in both assays as true positives resulted in the elimination of false positive results 277 
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(0 of 218 positives detected). We conclude that applying both methods in parallel and using the 278 

‘double positive’ definition for classification notably improves specificity of SARS-CoV-2 antibody 279 

detection. 280 

In order to determine the sensitivity of our IF assay, we employed 57 sera from 29 281 

symptomatic COVID-19 patients that had been RT-PCR confirmed for SARS-CoV-2 infection. 282 

Archived sera from these patients had been collected in the range between day 5 and 27 post 283 

symptom onset. Again, samples were measured both in IF and ELISA, and the correlation 284 

between the semi-quantitative values was assessed as shown in Fig. 5. While there were 285 

deviations in the height of the values, positive correlation was evident in both cases, with values 286 

for the IgG readout being more congruent than those for the less specific IgA determination 287 

(Pearson r: 0,847 for IgG; 0,655 for IgA).   288 

For an assessment of sensitivity, we stratified the samples according to the day post 289 

symptom onset, as shown in Fig. 6. and Table 2. For both methods, and for all antibody classes, 290 

mean values and the proportion of positive samples increased over time. In all cases, only 291 

positive values were obtained for samples collected later than day 14 post symptom onset, in 292 

accordance with other reports [30–32]. Consistent with other reports [32], SARS-CoV-2 specific IgM 293 

was not detected notably earlier than the two other antibody classes in our measurements. At 294 

the earlier time points (up to day 14), a similar or higher proportion of positive samples was 295 

detected by IF compared to ELISA for IgG. Although the sample size used here is too small to 296 

allow a firm conclusion, these results suggest that the sensitivity of IgG detection by the semi-297 

quantitative IF approach is higher than that of an approved semi-quantitative ELISA assay 298 

routinely used in diagnostic labs. In the case of IgA detection at earlier time points (< day 11) 299 

ELISA performed slightly better (11/17 samples scored positive) compared to IF (9/17 scored 300 

positive) however that came with the price of a very low specificity of ELISA IgA assay (10.6% 301 

false negative detection) compared to IF (0.5%).  302 
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3. Discussion 303 

 304 

Here, we describe the development of a semi-quantitative IF based assay for detection 305 

of SARS-CoV-2 specific antibodies in human samples that complements available ELISA-based 306 

testing systems [33,34]. Alternatives to ELISA-based commercial test kits are important in 307 

situations where those kits are not available either because they are not yet developed in early 308 

days of the pandemic or due to high global demands for tests and required reagents. The 309 

microscopy-based assay described here has been developed during the early phase of the 310 

COVID-19 pandemic to support the serological testing needs of the University Hospital 311 

Heidelberg, Germany and is employed as a confirmatory assay in clinical studies [35] and ongoing 312 

studies]. The assay displayed comparable or slightly better sensitivity and specificity than a 313 

commercially available semi-quantitative SARS-CoV-2 ELISA approved for diagnostic use at the 314 

time. More importantly, combining two technically different serological assays, IF and ELISA, 315 

and classifying as “positive hits” only those that scored positive in both assays was instrumental 316 

to minimize false positive results while maintaining high sensitivity, and thus serves as a principle 317 

for serological studies or diagnostics where specificity of detection is of critical importance. 318 

Specificity of detection is essential in settings of relatively low SARS-CoV-2 antibody prevalence 319 

[36–38] in conjunction with high prevalence of potentially cross-reactive anti-ccCoV antibodies in a 320 

global population [39].  321 

One advantage of the IF based assay presented here is that the specimens used for 322 

detection present the entire viral proteome, while ELISA or chemiluminescent approaches use 323 

a single recombinantly expressed antigen. Both the N and S protein of coronaviruses are highly 324 

immunogenic, and antibodies binding to the receptor binding domain on the S1 subunit are 325 

considered most relevant for neutralization. However, the relative importance of antibodies 326 

directed against the N protein for potential protective immunity against SARS-CoV-2 and the 327 

possible relevance of the overall breadth of the antibody response is currently unclear. Other 328 

SARS-CoV-2 structural and non-structural proteins might play a role in immune response as it 329 

was shown for proteins 3a and 9b of the closely related SARS-CoV [40]. In addition, expression 330 

of the viral proteome in permissive cells ensures correct protein folding and post-translational 331 

modification patterns. Alterations in post-translational modifications are likely to influence the 332 

ability of serum antibodies to bind to different viral epitopes as it was shown for other viruses 333 

such as HIV-1 [41]. It has to be noted that the detection of viral RNA requires fixation and 334 

permeabilization of cells, which has the potential to affect epitope preservation. However, based 335 
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on the high sensitivity of antibody detection and the good correlation to ELISA measurements 336 

observed we conclude that this was no major concern in this case.  337 

Two major disadvantages of typical IF-based serological assays as applied in the past 338 

are manual microscopy acquisition steps and evaluation of samples based on a visual 339 

inspection. This procedure is incompatible with high throughput approaches and results are 340 

subjective, not quantitative and difficult to standardize. We have addressed these disadvantages 341 

by implementing automated microscopy acquisition and developing a robust software platform 342 

that is able to identify individual cells, classify infected and non-infected cells and take into 343 

account specific and non-specific background in order to generate semi-quantitative results. 344 

Depending on the context of a study and the questions to be addressed, sensitivity or specificity 345 

may be of higher importance. The automated image analysis protocol developed here allows the 346 

user to adapt the classification according to the study needs, putting more weight on either one 347 

of the parameters.  348 

Automated image acquisition and image analysis presented here are compatible with a 349 

high throughput approach. Plates with fixed samples of infected cells can be prepared in 350 

advance and stored at 4°C for several weeks. In the manual workflow used here, four 96-well 351 

plates (384 samples) could easily be analysed within a typical work day (1.5 h for 352 

immunofluorescence, 1.5 h for image acquisition, 2 h of image analysis). This is already the 353 

throughput in the range of some ELISA-based automated systems used in diagnostics and is 354 

sufficient for urgent applications in an early phase of disease response. The major disadvantage 355 

of the procedure described here for a virus like SARS-CoV-2 is the requirement of a BSL3 356 

containment area to generate virus stocks and produce infected cell specimens. Recombinant 357 

cell lines expressing key viral antigens can address this drawback and also allows to easily 358 

implement already established automated cell seeding and immunostaining pipelines for a true 359 

high-throughput application [42,43]. Combining such cell lines with spectral unmixing microscopy 360 

[44] would not only enable simultaneous determination of levels of all three major classes of 361 

antibodies (IgM, IgG and IgA), but also identification of the viral antigens recognized, in a single 362 

multiplexed approach. The high information content of the IF data (differential staining patterns) 363 

together with a machine learning-based approach [45] and the implementation of stable cell lines 364 

expressing selected viral antigens in the IF assay will provide additional parameters for 365 

classification of patient sera and further improve sensitivity and specificity of the presented IF 366 

assay.  367 

The described analysis pipeline can be readily applied for serological analysis of other 368 

virus infections, provided that an infectable cell line and a staining procedure that allows 369 
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differentiating between infected and non-infected cells are available. The assay described here 370 

thus offers potential as an immediate response to any future virus pandemic, as it can be rapidly 371 

deployed from the moment the first isolate of the pathogen has been obtained without requiring 372 

information on the expression of immunogenicity of viral proteins. 373 

 374 

4. Materials and Methods 375 

4.1 Human material 376 

Negative control serum samples (n=218) were collected for various serological testing in the 377 

routine laboratory of the Center of Infectious Diseases, University Hospital Heidelberg between 378 

2015 and 2019, before the start of the SARS-CoV-2 outbreak. Samples used corresponded to 379 

pseudonymized remaining material from the archive of the Center of Infectious Diseases 380 

Heidelberg. SARS-CoV-2 positive sera were collected from 29 PCR confirmed symptomatic 381 

COVID-19 inpatients (n=17) or outpatients (n=12) treated at the University Hospital Heidelberg 382 

under general informed consent (ethics votum no S-148/2020, University Hospital Heidelberg). 383 

Days post symptom onset were defined based on the anamnesis carried out upon admission. 384 

Serum samples were stored at -20°C until use.  385 

4.2 Virus stock production  386 

VeroE6 cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Life Technologies) 387 

containing 10% fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 1% non-388 

essential amino acids (complete medium). 389 

SARS-CoV-2 virus stocks were produced by amplification of the BavPat1/2020 strain (European 390 

Virus Archive) in VeroE6 cells. To generate the seed virus (passage 3), VeroE6 cells were 391 

infected with the original virus isolate, received as passage 2, at an MOI of 0.01. At 48 h post 392 

infection (p.i.), the supernatant was harvested and cell debris was removed by centrifugation at 393 

800xg for 10 min. For production of virus stocks (passage 4), 500µl of the seed virus was used 394 

to infect 9x106 VeroE6 cells. The resulting supernatant was harvested 48h later as described 395 

above. Virus titers were determined by plaque assay. Briefly, 2.5x106 VeroE6 cells were plated 396 

into 24 well plates. 24 h later, cells were infected with serial dilutions of SARS-CoV-2 for 1 h. 397 

Inoculum was then removed and the cells were overlaid with serum free DMEM containing 0.8% 398 
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carboxymethylcellulose. At 72 h. p.i., cells were fixed with 5% formaldehyde for 1 h followed by 399 

staining with 1% Crystal violet solution. Plaque forming units per ml (PFU/ml) were estimated by 400 

manual counting of the viral plaques. Stock solutions were stored in aliquots at -80°C until use 401 

for infection experiments. 402 

4.3 Infection of cells and immunofluorescence staining  403 

In order to find a suitable cell line for our application, we performed pre-experiments comparing 404 

different cell lines with respect to their susceptibility to SARS-CoV-2 infection. Cells were seeded 405 

on glass coverslips and infected on the following day with SARS-CoV-2 strain BavPat1/2020 for 406 

16h at MOI 0.01. Cells were fixed with 6%PFA in PBS, followed by permeabilisation with 0.5% 407 

Triton X100 in PBS and then subjected to a standard immunofluorescence staining protocol as 408 

described in materials and methods. Only very few infected calls were detected in the case of 409 

hepatocyte-derived carcinoma cells (HUH-7), human embryonic kidney (HEK293T) and human 410 

alveolar basal epithelial (A549) cells (Fig. S1). Calu-3 cells grew in small clumps, often on top of 411 

each other which impacted our microscopy-based readout. In contrast, VeroE6 cells grew as a 412 

monolayer and were viable for at least 24 h p.i. Based on these results, VeroE6 cells were 413 

chosen for all experiments in this manuscript.  414 

For serum screening by IF microscopy, VeroE6 cells were seeded at a density of 7,000 cells per 415 

well into a black-wall glass-bottom 96 well plates (Corning, Product Number 353219) or on glass 416 

coverslips placed in a 24-well plate. 24 h after seeding, cells were infected with SARS-CoV-2 at 417 

an MOI of 0.01 for 16 h. Cells were then fixed with 6% Formaldehyde for 1 h followed by washing 418 

3x with phosphate buffered saline (PBS) under biosafety level 3. Afterwards, samples were 419 

handled under biosafety level 2. Cells were washed once in PBS containing 0,02% Tween 20 420 

(Sigma) and permeabilised using 0,5% Triton X100 (Sigma) for 10 minutes. Samples were 421 

washed again and blocked using 2% powdered milk (Roth) in PBS for 20 min followed by two 422 

additional washing steps. All washing steps in a 96-well format were performed using the 423 

HydroFlex microplate washer (Tecan). Next, cells were incubated with patient serum (prediluted 424 

1:1 in 0,4% Triton-X100 in PBS; further dilution 1:50 in PBS if not stated otherwise) and anti-ds-425 

RNA mouse monoclonal J2 antibody (Scicons, 1:4000) in PBS for 30 min at room temperature. 426 

After 3 washing steps, cognate secondary antibodies were applied for 20 min at room 427 

temperature. Goat anti-human IgG-AlexaFluor 488 (Invitrogen, Thermofisher Scientific), goat 428 

anti-human IgA DyLight 650 (Abcam), goat anti-human IgM u chain (Invitrogen, Thermofisher 429 

Scientific), for detecting immunoglobulins in human serum together with goat anti-mouse IgG-430 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.06.15.152587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152587
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

AlexaFluor 568 (Invitrogen, Thermofisher Scientific) for dsRNA detection, all at 1:2000 dilution 431 

in PBS, have been used. After incubation with secondary antibodies cells were washed twice, 432 

stained with Hoechst (0,002µg/ml in PBS) for 3 minutes, washed again twice and stored at +4°C 433 

until imaging. 434 

4.4 Microscopy 435 

Samples were imaged on motorized Nikon Ti2 widefield microscope using a Plan Apo lambda 436 

20x/0.75 air objective and a back-illuminated EM-CCD camera (Andor iXon DU-888). To 437 

automatically acquire images in 96-well format, the JOBS module was used. The system was 438 

configured to acquire 9 images per well (in a regular 3 x 3 pattern centered in the middle of each 439 

well). The Perfect Focus System was used for autofocusing followed by a software-based fine 440 

focusing using the Hoechst signal in an axial range of 40um. Images were acquired in 4 channels 441 

using the following excitation/emission settings: Ex 377/50, Em 447/60 (Hoechst); Ex 482/35, 442 

Em 536/40 (AlexaFluor 488); Ex 562/40, Em 624/40 (AlexaFluor 568) and Ex 628/40, Em 692/40 443 

(AlexaFluor 647 and DyLight 650). Exposure times were in the range between 50 and 100ms 444 

with EM gain between 50 and 150. 445 

 446 

4.5 Enzyme linked immuno- sorbent assay (ELISA) 447 

ELISA measurements for determination of reactivity against the S1 domain of the viral spike 448 

protein were carried out using the Euroimmun Anti-SARS-CoV-2-ELISA (IgA) and Anti-SARS-449 

CoV-2-ELISA (IgG) test kits (Euroimmun, Lübeck, Germany; EI 2606-9601 A and EI 2606-9601 450 

G) run on an Euroimmun Analyzer I instrument according to the manufacturer’s instructions. 451 

Optical densities measured for the samples were normalized using the value obtained for a 452 

calibrator sample provided in the test kit. The interpretation of the semi-quantitative ratiometric 453 

values obtained followed the manufacturer’s protocol: values <0.8 were classified as negative, 454 

0.8-1.1 as borderline, and values of 1.1 or higher as positive.  455 

4.6 Image Analysis 456 

Manual Annotations 457 

Two of our processing steps require manually annotated data: in order to train the convolutional 458 

neural network used for boundary and foreground prediction, we needed label masks for the 459 

individual cells. To determine suitable parameters for the infected cell classification, we needed 460 

a set of cells classified as being infected or non-infected. We have produced these annotations 461 
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for 10 images with the following steps. First, we created an initial segmentation following the 462 

approach outlined in the Segmentation subsection, using boundary and foreground predictions 463 

from the ilastik [46] pixel classification workflow, which can be obtained from a few sparse 464 

annotations. We then corrected this segmentation using the annotation tool BigCat 465 

(https://github.com/saalfeldlab/bigcat). After correction, we manually annotated these cells as 466 

infected or non-infected. Note that this mode of annotations can introduce two types of bias: the 467 

segmentation labels are derived from an initial segmentation. Small systematic errors in the 468 

initial segmentation that were not found during correction, could influence the boundary 469 

prediction network. More importantly, when annotating the infected / non-infected cells, both the 470 

serum channel and the virus marker channel have to be available to the annotators, in order to 471 

visually delineate the cells. This may result in subconscious bias, with the observed intensity in 472 

the serum channel influencing the decision on the infection status of a cell. 473 

 474 

Preprocessing 475 

On all acquired images, we performed minimal preprocessing (i.e., flat-field correction) in order 476 

compensate for uneven illumination of the microscope system [47]. First, we subtract a constant 477 

CCD camera offset (ccd_offset). Secondly, we correct uneven illumination by dividing each 478 

channel by a corresponding corrector image (flatfield(𝑥, 𝑦)), which was obtained as a normalized 479 

average of all images of that channel, smoothed by a normalized convolution with a Gaussian 480 

filter with a bandwidth of 30 pixels. 481 

processed(𝑥, 𝑦) =
raw(𝑥, 𝑦) − ccd_offset

flatfield(𝑥, 𝑦) − ccd_offset
 Eq. 2 

This corrector image was obtained for all images of a given microscope set-up. Full background 482 

subtraction is performed later in the pipeline using either the background measured on wells that 483 

(deliberately) do not contain any serum or, if not available, using a fixed value that was 484 

determined manually. 485 

 486 

Segmentation 487 

Cell segmentation forms the basis of our analysis method. In order to obtain an accurate 488 

segmentation, we make use of both the DAPI and the serum channel. First, we segment the 489 

nuclei on the DAPI channel using the StarDist method [19] trained on data from Caicedo et al. 490 

2019 [48]. Note that this method yields an instance segmentation: each nucleus in the image is 491 

assigned a unique ID. In addition, we predict per pixel probabilities for the boundaries between 492 
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cells and for the foreground (i.e. whether a given pixel is part of a cell) using a 2D U-Net [20] 493 

based on the implementation of Wolny et al. 2020 [21]. This method was trained using the 9 494 

annotated images, see above. The cells are then segmented by the seeded watershed algorithm 495 

[18]. We use the nucleus segmentation, dilated by 3 pixels, as seeds and the boundary predictions 496 

as the height map. In addition, we threshold the foreground predictions, erode the resulting 497 

binary image by 20 pixels and intersect it with the binarised seeds. The result is used as a 498 

foreground mask for the watershed. The dilation / erosion is performed to alleviate issues with 499 

very small nucleus segments / imprecise foreground predictions. In order to evaluate this 500 

segmentation method, we train 9 different networks using leave-one-out cross-validation, 501 

training each network on 8 of the manually annotated images and evaluating it on the remaining 502 

one. We measure the segmentation quality using average precision [22] at an intersection over 503 

union (IoU) threshold of 0.5 as described in https://www.kaggle.com/c/data-science-bowl-504 

2018/overview/evaluation. We measure a value of 0.77 +- 0.08 with the optimum value being 505 

1.0.  506 

 507 

Quantitation and Scoring 508 

Infection classification 509 

To distinguish infected cells from control cells we use the dsRNA virus marker channel: infected 510 

cells show a signal in this channel while the non-infected control cells should ideally be invisible 511 

(see Fig. 3). We classified each cell in the cell segmentation (see above) individually, using the 512 

following procedure. First, we denoised the marker channel using a white tophat filter with a 513 

radius of 20 pixels. To account for inaccuracies in the cell segmentation (the exact position of 514 

cell borders is not always clear), we then eroded all cell masks with a radius of 5 pixels and 515 

thereby discard pixels close to segment boundaries. This step does not lead to information loss, 516 

since the virus marker is mostly concentrated around the nuclei. On the remaining pixels of each 517 

cell, we compute the 0.95 quantile (𝑞) of the intensity in the marker channel. For the pixels that 518 

the neural network predicts to belong to the background (𝑏), we compute the median intensity 519 

of the virus marker channel across all images in the current plate. Finally, we classify the cell as 520 

infected if the 0.95 quantile of its intensity exceeds the median background by more than a given 521 

threshold: 522 

𝑞 −median(𝑏) > 𝑡 Eq. 3 
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For additional robustness against intensity variations we adapt the threshold based on the 523 

variation in the background in the plate. Hence, we define it as a multiple of the mean absolute 524 

deviation of all background pixels of that plate with N=4.8:  525 

𝑡 = 𝑁 ∙ mad(𝑏) Eq. 4 

To determine the optimal values of the parameters used in our procedure, we used the cells 526 

manually annotated as infected / non-infected (see above). We performed grid search over the 527 

following parameter ranges:  528 

 Quantile: 0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995 529 

 𝑁: 0 to 10 in intervals of 0.1 530 

To estimate the validation accuracy, we performed leave-one-out cross-validation on the image 531 

level. This yields an average validation F1 score of 84.3%, precision of 84.3% and recall of 532 

84.8%. These values are the arithmetic means of the individual results per split. 533 

 534 

Immunoglobulin intensity measurements 535 

 536 

In order to obtain a relative measure of antibody binding, we determined the mean intensity and 537 

the integrated intensity in each segmented cell from images recorded in the IgG, IgA or IgM 538 

channel. A comparative analysis revealed that the mean intensity was more robust against the 539 

variability of cell sizes, whereas using the integrated intensity as a proxy yielded a higher 540 

variance in non-infected cells. Thus, mean intensity per cell was chosen as a proxy for the 541 

amount of antibody bound. Non-specific auto-fluorescence signals required a background 542 

correction of the measured average serum channel intensities. For background normalization, 543 

we used cells (one well per plate) which were not immunostained with primary antiserum. From 544 

this we computed the background to be the median serum intensity of all pixels of images taken 545 

from this well. This value was subtracted from all images recorded from the respective plate. In 546 

case this control well was not available, background was subtracted manually by selecting the 547 

area outside of cells in randomly selected wells and measuring the median intensity. 548 

 549 

Scoring 550 

The core interest of the assay is to measure the difference of antibody binding to cells infected 551 

with the coronavirus in comparison to non-infected control cells. To this end, utilizing the results 552 

of the image analysis, we compute the following summary statistics of the background corrected 553 

antibody binding of infected cells, 𝐼, and of non-infected cells, 𝑁: 554 
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𝑚𝐼 = median(𝐼) Eq. 5 

𝑚𝑁 = median(𝑁) Eq. 6 

𝜎𝑁 = mad(𝑁) Eq. 7 

Using these, the ratio 𝑟, difference 𝑑 and robust z score 𝑧 are computed: 𝑟 =
𝑚𝐼

𝑚𝑁
 Eq. 8 

𝑑 = 𝑚𝐼 −𝑚𝑁 Eq. 9 

𝑧 =
𝑚𝐼 −𝑚𝑁

𝜎𝑁
 Eq. 10 

We compute above scores for each well and each image, taking into account only the cells that 555 

passed all quality control criteria (see below). While the final readout of the assay is well-based, 556 

image scores are useful for quality control. 557 

 558 

Decision threshold selection 559 

In order to determine the presence of SARS-CoV-2 specific antibodies in patient sera, it was 560 

necessary to define a decision threshold r*. If a measured intensity ratio r is above a decision 561 

threshold r* than the serum would be characterized as positive for SARS-CoV-2 antibodies. For 562 

this an ROC analysis was performed [28]. Each possible choice of r* for a test corresponds to a 563 

particular sensitivity/specificity pair. By continuously varying the decision threshold, we 564 

measured all possible sensitivity/specificity pairs, known as ROC curves (Fig. S7). To determine 565 

the appropriate r* we considered two factors [26]: 566 

 567 

● The undesirability of errors or relative cost of false-positive and false-negative 568 

classifications 569 

● The prevalence, or prior probability of disease 570 

 571 

These factors can be combined to calculate a slope in the ROC plot[26–28] 572 

𝑚 =
(𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑜𝑠𝑡)

(𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑐𝑜𝑠𝑡)

(1 − 𝑃)

𝑃
 Eq. 11 

where 𝑃 is the prevalence or prior probability of disease. 573 

 574 

The optimal decision threshold r*, given the false-positive/false-negative cost ratio and 575 

prevalence, is the point on the ROC curve where a line with slope m touches the curve. As 576 
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discussed in the main text, a major concern regarding serological assays for SARS-CoV-2 577 

antibody detection is the occurrence of false-positive results. Therefore, we choose m to be 578 

larger than one in our analysis. In particular, we determine r* for the choice of m=10 (see Fig. 579 

S7). 580 

Quality control 581 

We performed quality control of the images and analysis results at the level of wells, images and 582 

cells. The entities that did not pass quality control are not taken into account when computing 583 

the score during final analysis. We exclude wells that contain less than 100 non-infected cells, 584 

that have a median serum intensity of infected cells smaller than 3 times the noise level 585 

(measured by the median absolute deviation), or that have negative intensity ratios, which can 586 

happen due to the background subtraction. Out of 1.736 wells, 94 did not pass the quality control, 587 

corresponding to 5.4 % of wells. At the image level, we visually inspect all images and mark 588 

those that contain imaging artifacts using a viewer based on napari [49]. We distinguish the 589 

following types of artifacts during the visual inspection: empty, unstained or over-saturated 590 

images, as well as images covered by a large bright object. In addition, we automatically exclude 591 

images that contain less than 10 or more than 1000 cells. These thresholds are motivated by 592 

the observation that too few or too many cells often result from a problem in the assay. Thus, 593 

296 of the total 15.624 images were excluded from further analysis, corresponding to 1.9 % of 594 

images. Out of these, 295 were manually marked as outliers and only a single one did not pass 595 

the subsequent automatic quality control. Finally, we automatically exclude segmented cells with 596 

a size smaller than 250 pixels or larger than 12.500 pixels that most likely correspond to 597 

segmentation errors. These limits were derived by the histogram of cell sizes investigated for 598 

several plates. Two percent of the approximate 5.5 million segmented cells did not pass this 599 

quality control. In addition, we have also inspected all samples scored as positives. For the IgA 600 

channel, we have found a dotty staining pattern in ten cases that produced positive hits based 601 

on intensity ratio in negative control cohorts, but does not appear to indicate a specific antibody 602 

response. We have also excluded these samples from further analysis. 603 

Implementation 604 

In order to scale the analysis workflow to the large number of images produced by the assay, 605 

we implemented an open-source python library to run the individual analysis steps. This library 606 

allows rerunning experiments for a given plate for newly added data on demand and caches 607 

intermediate results in order to rerun the analysis from checkpoints in case of errors in one of 608 
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the processing steps. To this end, we use a file layout based on hdf5 [50] to store multi-resolution 609 

image data and tabular data. The processing steps are parallelized over the images of a plate if 610 

possible. We use efficient implementations for the U-Net [21], StarDist [19] and the watershed 611 

algorithm (http://ukoethe.github.io/vigra/) as well as other image processing algorithms [51]. We 612 

use pytorch (https://pytorch.org/) to implement  GPU-accelerated cell feature extraction. The 613 

total processing time for a plate (containing around 800 images) is about two hours and thirty 614 

minutes using a single GPU and 8 CPU cores. In addition, the results of the analysis as well as 615 

meta-data associated with individual plates are automatically saved in a centralized MongoDB 616 

database (https://www.mongodb.com) at the end of the workflow execution. Apart from keeping 617 

track of the analysis outcome and meta-data, a user can save additional information about a 618 

given plate/well/image in the database conveniently using the PlateViewer (see below). All 619 

source code is available open source under the permissive MIT license at https://github.com/hci-620 

unihd/batchlib. 621 

 622 

Data visualization 623 

In order to explore the numerical results of our analysis together with the underlying image data 624 

we further developed a Fiji [52] based open-source software tool for interactive visualization of 625 

high-throughput microscopy data [23]. The PlateViewer links interactive results tables and 626 

configurable scatter plots (image and well based) with a plate view of all raw, processed and 627 

segmentation images. The PlateViewer is connected to the centralised database such that also 628 

image and well based metadata can be accessed. The viewer thus enables efficient visual 629 

inspection and scientific exploration of all relevant data of the presented assay. 630 

 631 

Data availability 632 

The data from the IF assay are available in the BioImage Archive 633 

(http://www.ebi.ac.uk/bioimage-archive) under accession number S-BIAD24. This includes raw 634 

microscopy images, intermediate segmentation and infected cell classification results as well as 635 

quality control and final score results. 636 
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Figures and tables 823 

 824 

Negative 

cohort 

IF IgM IF IgA IF IgG ELISA IgA ELISA IgG 

            

B (n=105) 1 0 1 7 5 

A (n=34) 0 0 1 3 1 

Z (n=22) 0 0 0 2 0 

E (n=57) 0 0 0 11 1 

            

Total 

(n=218) 

1 (0,5%) 0 (0,0%) 2 (0,9%) 23a (10,6%) 7a (3,2%) 

Table 1: Summary of positive results for the negative control samples obtained by ELISA 825 

and IF. The classification of positive or borderline results in ELISA followed the definition of the 826 

test manufacturer. The classification in IF is described in materials and methods. Positive IgA 827 

and IgG ELISA readings were derived from the same sample. Cohort B = healthy donors, cohort 828 

A = patients that tested positive for ccCoV (all four types of ccCoV represented), cohort Z = 829 

patients with diagnosed Mycoplasma pneumoniae, cohort E = patient with diagnosed EBV or 830 

CMV infection. a – borderline values were considered positive. 831 
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days post 

symptom 

onset 

IF IgM IF IgA IF IgG ELISA IgA ELISA IgG 

< 11 (n=17) 7 (41%) 9 (53%) 7 (41%) 11 (65%) 3 (18%) 

11-14 

(n=24) 

18 (75%) 19 (79%) 19 (79%) 19 (79%) 16 (67%) 

>14 (n=16) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 

            

Total (n=57) 42 (73%) 44 (77%) 42 (73%) 46 (80%) 34 (60%) 

            

Table 2: Positive results obtained for sera from COVID-19 patients collected at the 833 

indicated days post symptom onset.  834 
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Figure 1. 835 

 836 
 837 

Figure 1: Principle of the immunofluorescence assay for SARS-CoV-2 antibody detection. 838 

(A) Scheme of the IF workflow and the concept for SARS-CoV-2 antibody detection. (B) 839 

Representative images showing immunofluorescence results using a COVID-19 patient serum 840 

(positive control, upper panels) and a negative control serum (lower panels), followed by staining 841 

with an AlexaFluor488-coupled anti-IgG secondary antibody. Nuclei (grey), IgG (green), dsRNA 842 

(magenta) channels and a composite image are shown. White boxes mark the zoomed areas. 843 
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Dashed lines mark borders of non-infected cells which are not visible at the chosen contrast 844 

setting. Note that the upper and lower panels are not recorded and displayed with the same 845 

brightness and contrast settings. In the lower panels the brightness and contrast scales have 846 

been expanded in order to visualize cells in the IgG serum channel where only background 847 

staining was detected. Scale bar is 20 µm in overview and 10 µm in the insets.  848 
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Figure 2. 849 

 850 

 851 

Figure 2: Schematic overview of the image processing pipeline. Initially, images are 852 

subjected to the first manual quality control, where images with acquisition defects are 853 

discarded. A pre-processing step is then applied to correct for barrel artifacts. Subsequently, 854 

segmentation is obtained via seeded watershed, this algorithm requires seeds obtained from 855 

StarDist segmentation of the nuclei and boundary evidence computed using a neural network. 856 

Lastly, using the virus marker channel we classify each cell as infected or not infected and we 857 

computed the scoring. A final automated quality control identifies and automatically discards 858 

non-conform results. All intermediate results are saved in a database for ensuring fully 859 

reproducibility of the results.  860 
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Figure 3. 861 

 862 

 863 

Figure 3: Examples of results from the automated image analysis pipeline. Panels display 864 

images that correspond to three different ratio scores (ratio score is indicated above the image) 865 

determined from samples stained with three different human sera, followed by staining with an 866 

anit-IgG secondary antibody coupled to AlexaFluore488. Images represent overlays of three 867 

channels - nuclei (blue), IgG (green) and dsRNA (red). White boxes mark the zoomed area. 868 

Cells in the insets are highlighted with yellow or cyan boundaries, indicating infected and non-869 

infected cells, respectively. Scale bar = 10 m.  870 
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Figure 4. 871 

 872 

 873 

Figure 4: Correlation between SARS-CoV-2 specific IF and ELISA results for the negative 874 

control panel obtained in IgA (A) or IgG (B) measurements. Each dot represents one serum 875 

sample. Blue, healthy donors; red, ccCoV positive; green, CMV positive; orange, EBV positive; 876 

black, mycoplasma positive. Bottom panels represent zoomed-in versions of the respective top 877 

panel to illustrate the borderline region. (C) IgM values for the indicated negative control cohorts 878 

determined by IF. Since a corresponding IgM specific ELISA kit from Euroimmun was not 879 

available, correlation was not analysed in this case. In some cases, antibody binding above 880 

background was undetectable by IF in non-infected as well as in infected cells, indicating low 881 

unspecific cross-reactivity and lack of specific reactivity of the respective serum. In order to allow 882 

for inclusion of these data points in the graph, the IF ratio was set to 1,0. Dotted lines indicate 883 

the optimal separation cut-off values defined for sample classification, grey areas indicate 884 

borderline results in ELISA. 885 

  886 
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Figure 5. 887 

 888 

 889 

Figure 5: Correlation between IgA or IgG values obtained by ELISA and IF for sera from 890 

29 COVID-19 patients collected at different days post infection. In some cases, antibody 891 

binding above background was undetectable by IF in non-infected as well as in infected cells, 892 

indicating low unspecific cross-reactivity and lack of specific reactivity of the respective serum. 893 

In order to allow for inclusion of these data points in the graph, the IF ratio was set to 1,0. Dotted 894 

lines indicate the cut-off values defined for classification of readouts, grey areas indicate 895 

borderline values. 896 

  897 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.06.15.152587doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152587
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Figure 6. 898 

 899 

 900 

Figure 6: Detection of SARS-CoV-2 specific antibodies in sera from COVID-19 patients. 901 

(A) Fifty-seven serum samples from 29 PCR confirmed patients collected at the indicated times 902 

post symptom onset were analysed by the IF workflow for the presence of SARS-CoV-2 specific 903 

IgM, IgA and IgG antibodies. Each dot represents one serum sample. Red line: mean value; 904 

dotted line: cut-off between negative and positive values. (B) The same samples as in A were 905 

analysed by ELISA for the presence of SARS-CoV-2 specific IgA and IgG antibodies. Each dot 906 

represents one serum sample. Red line: mean value; dotted lines: cut-off; grey zone: borderline. 907 

 908 
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