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Abstract 1 

 2 

High co-morbidity and substantial overlap across psychiatric disorders encourage a transition 3 

in psychiatry research from categorical to dimensional approaches that integrate neuroscience 4 

and psychopathology. Cerebellum is involved in a wide range of nonmotor cognitive 5 

functions and mental disorders. An important question thus centers on the extent to which 6 

cerebellar function can be linked to transdiagnostic dimensions of psychopathology. Here, this 7 

question is investigated using partial least squares to identify latent dimensions linking 8 

cerebellar connectome properties as assessed by macroscale spatial gradients of connectivity 9 

to a large set of clinical and behavioral measures in 198 participants across diagnostic 10 

categories. This analysis reveals significant correlated patterns of cerebellar connectivity 11 

gradients and behavioral measures that could be represented into four latent dimensions: 12 

general psychopathology, general lack of attention regulation, internalizing symptoms, and 13 

dysfunctional memory. Each dimension is associated with a distinct spatial pattern of 14 

cerebellar connectivity gradients. These findings highlight the relevance of cerebellar 15 

connectivity as a necessity for the study and classification of transdiagnostic dimensions of 16 

psychopathology . 17 

 18 

Introduction 19 

 20 

Our understanding of cerebellar contributions to neurological function has changed from a 21 

traditional view focused on motor coordination, to a modern understanding that also 22 

implicates the cerebellum in a broad range of high-level cognitive and affective processes.1 23 

An increasing body of evidence also supports cerebellar involvement in a wide range of 24 

psychiatric disorders.2,3 Up to now, most psychiatric studies investigating the role of the 25 

cerebellum have been conducted based on categorical diagnostic criteria that view psychiatric 26 
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disorders as independent entities.4 It is increasingly recognized that existing clinical 1 

diagnostic categories might be suboptimal, as there is substantial overlap in symptoms, 2 

cognitive dysfunction and genetic factors across multiple psychiatric disorders.4,5 These 3 

overlaps can be reflected by shared neurobiological structure and function, and polymorphism 4 

abnormalities across psychiatric syndromes.6–9 The high rates of comorbidity between 5 

psychiatric disorders and heterogeneity within one diagnostic group further exacerbates this 6 

problem.10–12 This context has motivated transdiagnostic initiatives, such as the National 7 

Institute of Mental Health’s Research Domain Criteria,13 which encourages a transition in 8 

psychiatry research from categorical to dimensional approaches that integrate neuroscience 9 

and psychopathology.13 10 

Recent clinical neuroscience studies have begun to adopt transdiagnostic approaches to 11 

highlight the importance of altered cerebellar structure in broad risk for psychopathology.14–16 12 

Previous animal and human neuroimaging studies have provided converging evidence for the 13 

involvement of cerebellar function in a wide range of behaviors that are dependent on circuits 14 

connecting the cerebellum with multiple cerebral cortical regions.1,17–19 Accumulating 15 

evidence supports dysfunctional cerebellar connectivity in many psychiatric disorders, such as 16 

schizophrenia,20 bipolar disorder,21 major depression,22 attention-deficit/hyperactivity 17 

disorder23 and autism.24 Moreover, study of clinical high-risk subjects demonstrate that 18 

dysconnectivity of cerebellar circuits can serve as a state-independent neural signature for 19 

psychosis prediction and characterization.25 Within this context, an understudied area of 20 

investigation is the extent to which cerebellar function can be linked to transdiagnostic 21 

dimensions of psychopathology.  22 

Resting-state functional connectivity has been widely used to characterize disconnection 23 

mechanisms in many psychiatric disorders,26,27 and is a promising tool for deepening our 24 

understanding of transdiagnostic dimensions.28–30 However, previous studies investigating 25 

functional connectivity-informed dimensions of psychopathology often ignore the importance 26 
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of the cerebellum, e.g., by using a coarse delineation of the cerebellum with only a few 1 

regions of interest to represent the whole cerebellar information.29,30 Recent developments in 2 

cerebellar functional mapping indicate that cerebellar functional organization can be 3 

characterized using macroscale spatial gradients of connectivity, a low dimensional 4 

continuous space that reflects the overarching spatial patterns that underpin the observed 5 

neural data.31 The principal connectivity gradient of cerebellar cortex captures a progression 6 

from sensorimotor to cognitive processing areas,31 similar to the organization of the cerebral 7 

cortex.32,33 This low-dimensional representation of the principal axis of cerebellar macroscale 8 

functional organization thus provides a useful tool to characterize cerebellar function at the 9 

single-subject level which can then be correlated with single-subject behavioral measures. 10 

This approach offers an unprecedented opportunity to interrogate the relationship between 11 

cerebellar functional organization and behavioral measures of clinical phenomena, cognitive 12 

ability, and personality traits in mental health and disease.  13 

In this study, we analyzed UCLA Consortium for Neuropsychiatric Phenomics open access 14 

dataset, a large resting-state fMRI and behavioral dataset34 using gradient-based and partial 15 

least squares, a multivariate data-driven statistical techniques with the objective to discover 16 

the latent dimensions that link cerebellar functional organization to behavioral measures 17 

spanning clinical, cognitive, and personality trait domains (Table S1 and Table S2) across 18 

healthy controls (HC, n=92) and patients with attention-deficit/hyperactivity disorder (ADHD, 19 

n=35), bipolar disorder (BD, n=36) and schizophrenia (SZ, n=35). Table 1 shows a summary 20 

of demographic and clinical information of each group. This approach yielded dimensions 21 

that optimally linked co-varying cerebellar connectivity gradients and behavior in individuals 22 

across traditional diagnostic categories, in accordance with a transdiagnostic dimensional 23 

approach. Multiple control analyses were used to optimize the robustness of these latent 24 

dimensions. Furthermore, we performed 10-fold cross-validation to assess the generalization 25 

performance of latent dimensions to unseen test data. Importantly, cross-validation 26 
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approaches can help guard against overfitting that arises from high dimensional 1 

neurobiological data.35  2 

 3 

Results 4 

Pattern of the principal functional connectivity gradient in cerebellum 5 

 6 

The principal gradient (or principal gradient) explains as much of the variance in the data as 7 

possible (~30%, Figure 1), represents a well-understood motor-to-supramodal organizational 8 

principle in the cerebellar connectivity. The principal connectivity gradient of cerebellar 9 

cortex captureed a progression from sensorimotor to cognitive processing areas. Specifically, 10 

it extended bilaterally from lobules IV/V/VI and lobule VIII to posterior aspects of Crus I and 11 

Crus II as well as medial regions of lobule IX. This observed spatial distribution was similar 12 

to previous reports of the principal functional conectivity gradient of the cerebellar cortex in 13 

healthy humans.31 14 

 15 

Figure 1. (A) The principal cerebellar connectivity gradient. (B) Covariance explained by 16 

each gradient. Red circles correspond to the gradients that explained at least a variance of 1%. 17 

Four Robust LVs Linking Cerebellar Gradients and Behavior 18 
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PLS correlation analysis revealed five significant latent variables (LVs) that reflect the direct 1 

covariant mapping between cerebellar connectivity gradients and behavioral measures. Since 2 

the fifth LV did not show robustness in control analyses as detailed in Table S3, we only 3 

focused on the first four LVs (LV1: r=0.62, permuted p=2.0x10-2; LV2: r=0.56, permuted 4 

p=2.0x10-3; LV3: r=0.61, permuted p=3.0x10-2; LV4: r=0.60, permuted p=1.2x10-2; Figures 2, 5 

3, 4, 5A). The variance explained by each LV was 19.5%, 13.7%, 8.8% and 6.0%, 6 

respectively (Figure S1). Importantly, 10-fold cross-validation confirmed generalizability (i.e. 7 

robustness of results in new data) of the first four LVs, as indicated by significant correlation 8 

between cerebellar gradient and behavioral composite scores in the test folds (LV1, r=0.21, 9 

p=2.5x10-3; LV2, r=0.27, p=2.1x10-3; LV3, r=0.22, p=2.3x10-3; LV4, r=0.16, p=2.5x10-3). 10 

Furthermore, the four LVs were robust to GSR and total cerebellar grey matter volume 11 

regression, as indicated by the high correlation (r>0.83) between saliences of original PLS 12 

and PLS with GSR or total cerebellar grey matter volume regression. In addition, each 13 

diagnostic group contributed similarly to the overall composite correlations of these four LVs 14 

(FDR q > 0.05 for all pairwise comparisons, see Table S4). We also found that age, sex, 15 

education, site, or FD were not associated with any LV (Table S5). 16 

LV1: general psychopathology 17 

The main contributors of behavior to LV1 were overall associated with greater 18 

psychopathology, e.g., higher impulsiveness, mood lability, dysfunctional impulsivity, 19 

anxiety, depression, somatization, social/physical anhedonia (Figure 2B) and psychotic 20 

symptoms (Table S6) including mania, delusions and hallucinations; in addition to worse 21 

high-order cognitive control (e.g., working memory). LV1 included positive weight in 22 

cerebellar lobules V, VI, VIIIA and VIIIB and negative weight in Crus I and II (Figure 2C). 23 

Notably, both cerebellar gradient and behavioral composite scores were higher in all 24 

diagnostic groups when compared with HCs (Figure 2D; all differences were statistically 25 

significant except for ADHD). Exploratory analyses indicated that higher cerebellar gradient 26 
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and behavioral composite scores in LV1 were associated with greater medication load. There 1 

was no significant association between LV1 composite scores and substance use (Table S5). 2 

Our interpretation is that LV1 is associated mainly with general psychopathology and high-3 

order cognitive control deficits (see discussion). 4 

 5 

Figure 2. Latent variable 1: general psychopathology. (A) Correlation between cerebellar 6 

connectivity gradient and behavioral composite scores of participants. (B) Significant 7 
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behavioral features associated with LV1. The contribution of each behavior is measured by 1 

correlations between participants’ behavioral scores and the corresponding behavioral 2 

composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant 3 

gradient pattern associated with LV1. The contribution of each voxel is measured by 4 

correlation between participants’ cerebellar gradient scores and the corresponding cerebellar 5 

gradient composite scores (FDR correction, q<0.05). Gradient pattern displayed on cerebellar 6 

flat maps were generated using the SUIT toolbox 7 

(http://www.diedrichsenlab.org/imaging/suit.htm). (D) Group differences in cerebellar 8 

connectivity gradient and behavioral composite scores. Significant differences are indicated 9 

by asterisks (FDR correction, q < 0.05). 10 

LV2: general lack of attention regulation 11 

The main contributors of behavior to LV2 were mainly involved in a general lack of attention 12 

regulation, e.g., higher ADHD symptoms, attention impulsivity, depression, mood lability, 13 

interpersonal sensitivity, daydreaming and social anxiety, and lower control ability and 14 

persistence (Figure 3B). LV2 included positive weight in cerebellar Crus I, II and lobule IX 15 

and negative weight in lobules VI, VIIB and VIIIA (Figure 3C). Notably, patients with 16 

ADHD had the highest cerebellar gradient scores for LV2 (Figure 3D). Behavioral composite 17 

scores were significantly higher in patients with ADHD or BD than in HC and patients with 18 

SZ. There was no significant association between composite scores and medication load or 19 

substance use (Table S5). Our interpretation is that LV2 is associated mainly with inadequate 20 

attention regulation (see discussion). 21 
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 1 

Figure 3. Latent variable 2: general lack of attention regulation. (A) Correlation between 2 

cerebellar connectivity gradient and behavioral composite scores of participants. (B) 3 

Significant behavioral features associated with LV2. The contribution of each behavior is 4 

measured by correlations between participants’ behavioral scores and the corresponding 5 

behavioral composite scores. Error bars indicate bootstrapped standard deviations. (C) 6 

Significant gradient pattern associated with LV2. The contribution of each voxel is measured 7 

by correlations between participants’ cerebellar gradient scores and the corresponding 8 
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cerebellar gradient composite scores (FDR correction, q<0.05). (D) Group differences in 1 

cerebellar connectivity gradient and behavioral composite scores. Significant differences are 2 

indicated by asterisks (FDR correction, q < 0.05).  3 

LV3: internalizing symptoms 4 

The main contributors of behavior to LV3 were mainly correlated with behavioral measures 5 

related to internalizing symptoms, e.g., higher harm avoidance, social anxiety, control, 6 

anhedonia, and somatization, and less externalizing symptoms, e.g., functional and motor 7 

impulsivity as well as novelty seeking (Figure 4B). LV3 included positive weight in 8 

cerebellar anterior vermis (I-VI) and negative weight in left Crus I, II, as well as lobules 9 

VIIIA and VIIIB (Figure 4C). Cerebellar gradient and behavioral composite scores were 10 

significantly higher in patients with BD or SZ when compared with patients with ADHD 11 

(Figure 4D). Higher cerebellar gradient and behavioral composite scores were associated with 12 

greater medication load (Table S5). There was no significant association between LV3 13 

composite scores and substance use (Table S5). Our interpretation is that LV3 is associated 14 

mainly with higher internalizing symptoms and lower externalizing behavior (see discussion). 15 
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 1 

Figure 4. Latent variable 3: internalizing symptoms. (A) Correlation between cerebellar 2 

connectivity gradient and behavioral composite scores of participants. (B) Significant 3 

behavioral features associated with LV3. The contribution of each behavior is measured by 4 

correlations between participants’ behavioral scores and the corresponding behavioral 5 

composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant 6 

gradient pattern associated with LV3. The contribution of each voxel is measured by 7 
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correlations between participants’ cerebellar gradient scores and the corresponding cerebellar 1 

gradient composite scores (FDR correction, q<0.05).  (D) Group differences in cerebellar 2 

connectivity gradient and behavioral composite scores. Significant differences are indicated 3 

by asterisks (FDR correction, q < 0.05).  4 

LV4: dysfunctional memory 5 

The main contributors of behavior to LV4 included worse performance in multiple memory 6 

domains, as well as with less somatization, interpersonal sensitivity and depression (Figure 7 

5B). LV4 included positive weight in Crus I, II and lobules IX and negative weight in lobule 8 

VI (Figure 5C). There was no significant difference among diagnostic groups (Figure 5D). 9 

There was no significant association between composite scores and medication load or 10 

substance use (Table S5). Our interpretation is that LV4 is associated mainly with 11 

dysfunctional memory (see discussion). 12 
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 1 

Figure 5. Latent variable 4: dysfunctional memory. (A) Correlation between cerebellar 2 

connectivity gradient and behavioral composite scores of participants. (B) Significant 3 

behavioral features associated with LV4. The contribution of each behavior is measured by 4 

correlations between participants’ behavioral scores and the corresponding behavioral 5 

composite scores. Error bars indicate bootstrapped standard deviations. (C) Significant 6 

gradient pattern associated with LV4. The contribution of each voxel is measured by 7 
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correlations between participants’ cerebellar gradient scores and the corresponding cerebellar 1 

gradient composite scores (FDR correction, q<0.05). (D) Group differences in cerebellar 2 

connectivity gradient and behavioral composite scores. There were no significant differences 3 

among diagnostic groups in LV4 (FDR correction, q<0.05).   4 

Control Analyses  5 

Additional control analyses ensured the robustness of the first four LVs to cerebellar gradients 6 

based on cerebellar-cerebral FC, confounding variables, non-Gaussian distributions of the 7 

behavioral data, diagnostic factors (HCs and patients separately), and site factors (each site 8 

separately) (see Supporting Information and Table S3). Results of PLS using only control 9 

individuals or only patients demonstrated moderate to high correlations with original saliences 10 

for the first four LVs. However, correlations dropped to 0.14 and 0.22 for LV5 (Table S3); 11 

hence we did not describe LV5.  12 

 13 

Discussion 14 

 15 

Although the importance of cerebellar function in mental health and disease is increasingly 16 

recognized, the degree to which cerebellar connectivity is associated with transdiagnostic 17 

behavioral dimensions of psychopathology remains largely unknown. Leveraging a unique 18 

dataset including resting-state fMRI and behavioral assessments spanning clinical, cognitive, 19 

and personality traits, we found robust correlated patterns of cerebellar connectivity gradients 20 

and behavioral measures that could be represented in four transdiagnostic dimensions. Each 21 

dimension was associated with a unique spatial pattern of cerebellar connectivity gradients, 22 

and linked to different clusters of behavioral measures, supporting that individual variability 23 

in cerebellar functional connectivity can capture variability along multiple behavioral 24 

dimensions across psychiatric diagnoses. Our findings highlight the relevance of cerebellar 25 

neuroscience as a central piece for the study and classification of transdiagnostic dimensions 26 
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of psychopathology – and ultimately for the diagnosis, prognosis, treatment, and prevention of 1 

mental illness.  2 

A large body of literature has shown cerebellar functional abnormalities in mental disorders.2,3 3 

New trends in psychiatry focus on transdiagnostic dimensions of psychopathology.4,36 The 4 

present study is the first to link both approaches. Adopting a transdiagnostic approach, three 5 

influential studies analyzing brain structure showed that alterations in cerebellar structure is 6 

associated with broad risk for psychopathology.14–16 However, these studies focused on 7 

clinical symptoms or cognitive function. The broader set of behavioral phenotypes in the 8 

present study allowed us to explore other dimensions of psychopathology, not constrained 9 

within the limits of clinical symptoms commonly investigated in many transdiagnostic 10 

studies.15,16,28,30,37–39 Prior cerebellar structure studies using factor analyses suggested the 11 

presence of latent dimensions of psychopathology such as internalizing symptoms, 12 

externalizing symptoms, and psychosis symptoms,40 as well as a general psychopathology (or 13 

p) factor.41 While these dimensions are reliable and reproducible, they are entirely derived 14 

from clinical assessments, not informed by brain-based data such as fMRI functional 15 

connectivity. More broadly, previous studies investigating functional connectivity-informed 16 

dimensions of psychopathology often ignore the importance of the cerebellum, e.g., by using 17 

a coarse delineation of the cerebellum with only a few regions of interest to represent the 18 

whole cerebellar information.29,30 These limitations were overcome in the present 19 

investigation. Further, compared to methods that focus on a single view (such as factor 20 

analysis applied on clinical data), the present study derived behavioral dimensions from co-21 

varying individual differences in connectivity gradients and behavioral measures. This 22 

approach resonates with the Research Domain Criteria research framework that encourages 23 

the integration of many levels of information.36 24 

Our study indicates that individual variability in cerebellar functional connectivity gradient 25 

organization captures variability along multiple behavioral dimensions across mental health 26 
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and disease. The associations with diverse dimensions of psychopathology were expected 1 

based on the consensus that the cerebellum is involved in virtually all aspects of behavior in 2 

health and disease.1 In 1998, Mesulam proposed that brain regions can be organized along a 3 

gradient ranging from sensory-motor to higher-order brain processes.33 In line with Mesulam, 4 

most of the variance of cerebellar RSFC resembles a gradient that spans from primary 5 

sensory-motor cortices to high–order transmodal regions of the default-mode network.31 This 6 

principal gradient may thus represent one fundamental principle driving a hierarchical 7 

organization of cerebellar motor, cognitive, and affective functions. Here we show for the first 8 

time that there is a link between this principal gradient of cerebellar organization and 9 

behavioral measures across individuals with and without diagnoses of cognitive or affective 10 

disease.  11 

Functional gradient organizations in the brain have been proposed to reflect an architecture 12 

that optimizes the balance of externally and internally oriented functioning, which is critical 13 

for flexibility of human cognition.33 In this gradient organization, association areas are located 14 

at maximal distance from regions of primary areas that are functionally specialized for 15 

perceiving and acting in the here and now, supporting cognition and behavior not constrained 16 

by the immediate environment.33,42–44 The intricate neuronal circuitry of the cerebellum has 17 

been hypothesized to function as a “forward controller,” creating internal models of how a 18 

given behavioral output will dynamically fit with contextual information,45 which is critical 19 

for monitoring and coordinating information processing in the service of mental 20 

processes.1,46,47 Thus, information processing in cerebellar circuits associated with multiple 21 

transdiagnostic dimensions of psychopathology shown here may reflect impaired monitoring 22 

and coordination of information—including one’s own thoughts and emotions—necessary to 23 

guide behavior, reflecting an imbalance of externally and internally oriented functioning, 24 

which may serve as possible intermediate phenotypes across mental health and diseases. 25 
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The most significant finding of the present investigation is the demonstration of an association 1 

between individual variations in cerebellar functional gradient values and multiple behavioral 2 

measures across mental health and diseases. Most behavior indicators were related to more 3 

than one dimension (Figure 2-5C). However, we noticed that the loadings of each behavior to 4 

each dimension can vary greatly, which highlighted the unique and different clusters of 5 

behavioral measures contributing to each dimension. As other brain-behavior association 6 

studies using multivariate analysis based on machine learnig,48 while it is not possible to 7 

provide a definitive characterization of the functional significance of each LV based on the 8 

analyses presented here, we here present one possible line of interpretation.  9 

In LV1, greater behavioral composite score was associated with greater behavioral measures 10 

that we interpreted as general psychopathology and higher-cognitive control disabilities 11 

(including impulsiveness, mood lability, dysfunctional impulsivity, anxiety, depression, 12 

somatization, social/physical anhedonia and psychotic symptoms including mania, delusions 13 

and hallucinations). In line with the interpretation of LV1 as general psychopathology, both 14 

cerebellar gradient and behavioral composite scores were higher in all diagnostic groups when 15 

compared with HCs. Factor-analytic studies of multiple symptoms and diagnoses suggest that 16 

the structure of mental disorders can be summarized by three factors: internalizing, 17 

externalizing, and thought disorders.40 The empirical observation that even these three 18 

transdiagnostic latent factors are positively correlated49 has given rise to a more radical 19 

hypothesis, which is that there is the general psychopathology (or p) factor,41 which is thought 20 

to reflect individuals’ susceptibility to develop “any and all forms of common 21 

psychopathologies”.50 The p factor has been extended to index functional impairment, 22 

negative affect, emotion dysregulation, and cognitive deficits (e.g., attention and memory 23 

problems) (for a review see4). LV1 may thus reflect the p factor widely discussed in 24 

transdiagnostic cohorts.41  25 
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In LV2, greater behavioral composite scores were predominantly correlated with greater 1 

scores in areas related to a general lack of attention regulation including ADHD symptoms 2 

and attention impulsivity. Importantly, patients with ADHD had the highest gradient 3 

composite scores. LV2 might thus capture inattention and impulsivity/hyperactivity 4 

symptoms which characterize ADHD. However, other dimensions such as depression and 5 

schizoid personality were also included in LV2, arguing against a purely inattention-related 6 

nature of LV2. 7 

In LV3, greater behavioral composite scores were dominantly correlated with greater 8 

behavioral measures related to internalizing symptoms (including harm avoidance, social 9 

anxiety, control, and anhedonia) and lower externalizing symptoms (including functional and 10 

motor impulsivity,  novelty seeking, and  hypomanic personality). LV3 may thus reflect an 11 

internalizing vs. externalizing factor.40,49 12 

LV4 was predominantly associated with negative correlations with behavioral measures, most 13 

strongly in the memory domain (long delay free recall, short delay cued recall, long delay 14 

cued recall, short delay free recall, and visual reproduction delayed recall). LV4 might thus 15 

dominantly reflect dysfunctional memory, although other behavioral domains also played a 16 

significant role in the behavioral composition of LV4 including restlessness, somatization, 17 

and persistence.  18 

Notably, Kebets and colleagues investigated RSFC-informed dimensions of psychopathology 19 

in the CNP dataset,29 focusing on connectivity within and between cerebral and subcortical 20 

areas and derived a general psychopathology variable similar to LV1 in our study (other LVs 21 

were different), indicating that cerebral and cerebellar analyses might offer complementary 22 

information regarding the relationship between brain activity and behavioral measures. Future 23 

studies analyzing both cerebral and cerebellar data might determine whether cerebellar data 24 

offers similar or distinct information regarding the relationship between brain activity and 25 

behavioral measures when compared to analyses of cerebral data. 26 
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While providing novel evidence for associations between cerebellar hierarchical organization 1 

shown by fMRI and different dimensions of psychopathology, our analyses can provide only 2 

correlational – not causal – inferences between cerebellar function and behavior; future 3 

interventional experiments such as brain stimulation studies may be able to demonstrate not 4 

only an association but also a causal link between cerebellar function as indexed by functional 5 

gradients and behavioral measures. Another limitation that can be addressed in future research 6 

includes the relatively limited range of diagnostic categories in the patient population (ADHD, 7 

SZ, and BD); future research may extend our analyses to include additional patient 8 

populations. The analyses on the impact of medication and substance use were exploratory in 9 

our study; future studies with higher statistical power might adopt stronger statistical 10 

thresholds to study medication and substance use effects.  11 

In summary, our results support an association between cerebellar functional connectivity 12 

gradients and multiple behavioral dimensions of psychopathology (general psychopathology, 13 

general lack of attention regulation, internalizing symptoms and dysfunctional memory) 14 

across healthy subjects and patients diagnosed with a variety of mental disorders. These 15 

findings highlight the importance of cerebellar function in transdiagnostic behavioral 16 

dimensions of psychopathology, and contribute to the development of cerebellar neuroscience 17 

as a tool that may significantly contribute to the diagnosis, prognosis, treatment, and 18 

prevention of cognitive and affective illness. 19 

 20 

Methods 21 

Participants  22 

Data from the UCLA Consortium for Neuropsychiatric Phenomics (CNP) dataset 34 were 23 

downloaded from OpenNeuro (https://openneuro.org/datasets/ds000030/versions/00001). This 24 

dataset consists of neuroimaging and behavioral data from 272 right-handed participants, 25 

including both HC (n=130) and individuals with neuropsychiatric disorders including SZ 26 
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(n=50), BD (n=49), and ADHD (n=43). Details about participant recruitment can be found in 1 

the original publication.34 Written informed consent was obtained from all participants and 2 

related procedures were approved by the Institutional Review Boards at UCLA and the Los 3 

Angeles County Department of Mental Health. Table 1 shows a summary of demographic and 4 

clinical information of the 198 participants who survived image preprocessing quality controls 5 

(see below). 6 

Behavioral assessment 7 

The CNP behavioral measures encompass an extensive set of clinical, personality traits, 8 

neurocognitive and neuropsychological scores (Table S1). Behavioral measures were 9 

excluded from the partial least squares (PLS) analysis when data was missing for at least 1 10 

participant among the 198 participants. As a result, we included a set of 55 behavioral and 11 

self-report measures from 19 clinical, personality traits, neurocognitive and 12 

neuropsychological tests in the PLS analysis. Table S2 summarized the behavioral measures 13 

for each group. Excluded behavioral measures were considered in post-hoc analyses (Table 14 

S6). 15 

Data Acquisition and Image Preprocessing 16 

Resting-state functional and structural MRI data were collected on two 3T Siemens Trio 17 

scanners at UCLA using the same acquisition parameters. Resting-state functional MRI data 18 

were collected using a T2*-weighted echoplanar imaging sequence with the following scan 19 

parameters: TR/TE=2000ms/30 ms, flip angle = 90°, matrix 64 × 64, field of view (FOV) 20 

=192*192 mm2, 34 interleaved slices, slice thickness =4 mm, and oblique slice orientation.  21 

The resting fMRI scan lasted 304 s for each participant, and 157 volumes were acquired. 22 

During scanning, all participants were instructed to keep relaxed and keep their eyes open. 23 

Additionally, T1-weighted high-resolution anatomical data were acquired for each participant 24 

using an MPRAGE sequence (scan parameters: TR/TE= 1900 ms/2.26 ms, matrix=256 × 256, 25 
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FOV=250*250 mm2, sagittal plane, slice thickness =1 mm, 176 slices). The anatomical data 1 

were used to normalize functional data. See Supporting Information for details.  2 

Among the 272 participants, there were seven participants with missing T1 weighted scans, 3 

four participants were missing resting-state functional MRI data scans, and 1 participant had 4 

signal dropout in the cerebellum,51 thus only data from 260 participants were preprocessed. 5 

All preprocessing steps were consistent with our previous study.52,53 In brief, the 6 

preprocessing steps included slice timing, realignment, normalization, wavelet despiking of 7 

head motion artifacts, regression of linear trend, Friston 24 head motion parameters, white 8 

matter and CSF signal, and filtering (0.01-0.1 Hz) (see Supporting Information for details). 9 

Because global signal may be an important neuroimaging feature in clinical populations,54 we 10 

did not conduct global signal regression (GSR) in our main analyses, but GSR was considered 11 

in control analysis. In addition, we excluded 42 participants due to head motion exceeding 1.5 12 

mm or 1.5° rotation or with >10% images showing framewise displacements>0.5mm55 or 13 

mean FD>0.20mm during MRI acquisition. Further, we further excluded 20 participants 14 

because of incomplete coverage of the cerebellum. This process left 198 participants as a final 15 

sample for our study, among which there were 35 ADHD, 36 BD, 92 HC and 35 SZ 16 

participants.  17 

Cerebellar connectivity gradient extraction 18 

We used diffusion map embedding 56 to identify a low-dimensional embedding gradient from 19 

a high-dimensional intra-cerebellar cortex connectivity matrix. Diffusion embedding results in 20 

multiple, continuous maps (“gradients”), which capture the similarity of each voxel’s 21 

functional connections along a continuous space. In other words, this data-driven analysis 22 

results in connectivity gradients that provide a description of the connectome where each 23 

voxel is located along a gradient according to its connectivity pattern. In order to maximize 24 

reliability, reproducibility, and interpretability, we only used the first gradient component in 25 

our analyses. The first gradient (or principal gradient) explains as much of the variance in the 26 
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data as possible (~30%, Figure 1), represents a well-understood motor-to-supramodal 1 

organizational principle in the cerebellar and cerebro-cerebral connections, and has been 2 

shown to be reproducible at the single subject level.31 (Guell et al., 2018; note that gradient 2 3 

could not be reproduced as successfully as the principal gradient at the single-subject level) 4 

See Supporting Information for more details. We reported the intra-cerebellar FC gradient 5 

(6242 voxels) as the main result, but also included cerebellar-cerebral FC gradients in control 6 

analyses.  7 

Partial Least Squares analysis  8 

We applied PLS to investigate the relationship between cerebellar connectivity gradient and 9 

behavioral measures across diagnostic categories. PLS is a multivariate statistical technique 10 

that derives latent variables (LVs), by finding weighted patterns of variables from two given 11 

data sets that maximally covary with each other.57,58 Each LV is comprised of a cerebellar 12 

connectivity gradient pattern at voxel level (“gradient saliences”) and a behavioral profile 13 

(“behavioral saliences”). Individual-specific cerebellar gradient and behavioral composite 14 

scores for each LV were obtained by linearly projecting the gradient and behavioral measures 15 

of each participant onto their respective saliences. See Supporting Information for 16 

mathematical details. Because mean framewise displacement (FD) was negatively correlated 17 

with several behavioral measures and there were significant differences in age, sex, education, 18 

site, and mean FD across groups (Table 1), we regressed out these confounding effects from 19 

both behavioral and cerebellar gradient data before PLS analysis.  20 

In order to evaluate the significance of the LVs, we applied permutation testing using 1000 21 

permutations to determine the null distribution of the singular values. Considering significant 22 

group differences in various behavioral measures (Table S2), the permutation procedure was 23 

performed within each primary diagnostic group. Our results of interest were the top five LVs 24 

which explained at least 5% of covariance between cerebellar gradients and behavioral 25 
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measures (see below). We applied a false discovery rate (FDR) correction of q < 0.05 on the 1 

permuted p-values of the five LVs to control for multiple comparisons.  2 

To assess the contribution of a given gradient voxel or behavior to a given LV, we computed 3 

correlations between the original measure (gradient voxel or behavior) and the corresponding 4 

composite scores 59,60. A large correlation (i.e., large weight, positive or negative) for a given 5 

measure (behavioral or gradient voxel) for a given LV indicates greater contribution of the 6 

behavior or gradient voxel to the LV. Then, the confidence intervals for these correlations 7 

were determined a by bootstrapping procedure that generated 500 samples with replacement 8 

from the original gradient and behavioral data. Considering significant diagnostic differences 9 

in many behavioral measures (Table S2), we took diagnostic groups into account within each 10 

bootstrap sample. To identify variables (gradient voxels or clinical measures) that make a 11 

significant contribution to the overall pattern, we calculated Bootstrapped Z scores as the ratio 12 

of each variable’s correlation coefficient (i.e., weight) to its bootstrap-estimated standard error. 13 

Then, we converted the Z scores to p values, which were FDR corrected (q<0.05).  14 

To test the generalizability of each LV, we used a 10-fold cross-validation of the PLS analysis 15 

with 200 repetitions. Importantly, the cross-validation approach can help to guard against 16 

overfitting that arises from high dimensional neurobiological data.35 Specifically, first, we 17 

assigned 90% of the participants (within each primary diagnostic group) to the training set 18 

and the remaining 10% of participants (within each primary diagnostic group) to the test set. 19 

For each training set, PLS was used to estimate gradient and behavioral saliences (i.e., Utrain 20 

and Vtrain). Next, the test data were projected onto the gradient and behavioral patterns derived 21 

from the training set. This allowed us to estimate individual-specific gradient and behavior 22 

composite scores and their correlation for the test sample (i.e. corr(XtestUtrain, YtestVtrain)) for 23 

LVs 1-4. This procedure was repeated 200 times to make sure the results are not biased by the 24 

initial split. Finally, we used a permutation test (behavioral data shuffled 1000 times within 25 

each diagnostic group) to assess the significance of these correlation coefficients. 26 
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Considering significant group differences in many behavioral measures (Table S2), we took 1 

diagnostic groups into account for the permutation procedure, bootstrapping procedure and 2 

cross-validation in the main text. However, when ignoring diagnostic groups (regarding all 3 

participants as one group), the results remained almost unchanged. See supplementary results 4 

for details. 5 

If a given LV was statistically significant, we performed one-way ANOVA to test whether 6 

cerebellar gradient and behavioral composite scores of this LV were different among different 7 

diagnoses, if significant, least significant difference (LSD, in SPSS) post hoc tests were 8 

performed, which would help interpret the significant function of this LV. In addition, we 9 

furthermore tested whether the composite scores for significant LVs were correlated with 10 

confounding factors including age, sex, years of education, head motion, acquisition site, 11 

medication load (number of medications current use) and substance use(number of substances 12 

use, including nicotine, alcohol, cannabis and other psychotropic substances). T tests were 13 

performed for categorical variables, and Pearson’s correlations were performed for continuous 14 

measures. Given the exploratory nature of medication and substance use effect analysis in our 15 

study, we only consider the number of medications or substance current use, it should keep 16 

caution when interpreting these results. For binary measures, we used T tests, and for 17 

continuous measures, we used Pearson’s correlations.  18 

False discovery rate (FDR) correction (q<0.05) was applied to all analyses. 19 

Control Analyses 20 

We tested whether LVs were robust to global signal regression, total cerebellar grey matter 21 

volume regression, cerebellar gradients based on cerebellar-cerebral FC, adding confounding 22 

variables (age, sex, education, site, and head motion) into the behavioral data for the PLS 23 

analysis, non-Gaussian distributions of the behavioral data, diagnostic factors (HCs and 24 

patients separately), and site factors (each site separately). To assess the robustness of each 25 

LV, we computed Pearson’s correlations between cerebellar gradient (or behavioral) saliences 26 
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obtained in each control analysis and cerebellar gradient (or behavioral) saliences from the 1 

original PLS analysis. Finally, to confirm that each diagnostic group contributed the same 2 

amount to the overall composite correlations, we used the Fisher r-to-z transformation to 3 

compare the pairwise r-values.61 See Supporting Information for details.  4 

Data and code availability 5 

All data are freely provided by from the UCLA Consortium for Neuropsychiatric Phenomics 6 

(CNP) 34 available from OpenNeuro 7 

(https://openneuro.org/datasets/ds000030/versions/00001). Cerebellar connectivity gradients 8 

were constructed by BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace).62 We 9 

used the Matlab code from https://github.com/danizoeller/myPLS 63 and 10 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/disorder_subtypes/Kebe11 

ts2019_TransdiagnosticComponents,29 based on Krishnan et al. (2011)58 to implement the 12 

PLS calculating. 13 
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Table 1. Demographic characteristics of the each diagnostic group 1 

 2 

 3 

  4 

Variables ADHD BD HC  SZ  F or 
X2 

P value 

Sample size 35 36 92 35   
Age (years, 
mean(SD)) 

31.40(10.50) 34.44(8.91) 30.50(8.50) 35.54(8.97) 3.51 1.6 X 10-2 

Male sex, n(%) 18(51.4) 19(52.8) 51(55.4) 27(77.1) 6.54 8.8 X 10-2 
Education (years, 
mean(SD)) 

14.43(1.79) 14.64(1.94) 15.26(1.62) 12.71(1.64) 18.75 1.0 X 10-10 

Site 1, n(%)  17(48.6) 18(50) 73(79.3) 14(40) 23.72 2.9 X 10-5 
Head motion, mean 
FD, mean(SD) 

0.069(0.04) 0.083(0.05) 0.066(0.03) 0.096(0.04) 6.16 5.1 X 10-4 

Number of current 
medication use 
(mean(SD)) 

0.57(1.14) 2.50(1.93) 0(0) 2.20(1.57) 57.19 1.6X10-26 

Number of substance 
use (mean(SD)) 

1.31(1.68) 2.58(2.09) 0.62(1.10) 2.46(2.23) 17.89 2.7X10-10 

Notes: Group differences were determined by either one-way ANOVA for continuous variables or chi-
square tests for categorical variables. FD, framewise displacement; Number of substances use, 
including nicotine, alcohol, cannabis and other psychotropic substances 
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Supporting Information 1 
 2 

Linking Cerebellar Functional Gradients to Transdiagnostic Behavioral 3 

Dimensions of Psychopathology 4 

Debo Dong, Xavier Guell, Sarah Genon, Yulin Wang, Ji Chen, Simon B. Eickhoff, Cheng 5 
Luo*, Dezhong Yao 6 

Supplemental Methods 7 

Data acquisition and image preprocessing 8 

MRI data were acquired two 3T Siemens Trio scanners, located at the Ahmanson-Lovelace 9 

Brain Mapping Center (Siemens version syngo MR B15) and the Staglin Center for Cognitive 10 

Neuroscience (Siemens version syngo MR B17) at UCLA. Resting-state functional MRI data 11 

were collected using a T2*-weighted echoplanar imaging (EPI) sequence with the following 12 

parameters: TR/TE=2000ms/30 ms, flip angle = 90°, matrix 64 × 64, field of view =192*192 13 

mm2, 34 interleaved slices, slice thickness =4 mm, and oblique slice orientation. The resting 14 

fMRI scan lasted 304 s for each participant, and 157 volumes were acquired. Participants 15 

were asked to remain relaxed and keep their eyes open; they were not presented any stimuli or 16 

asked to respond during the scan. Additionally, T1-weighted high-resolution anatomical data 17 

were acquired for each participant using an MPRAGE sequence (scan parameters: TR/TE= 18 

1900 ms/2.26 ms, matrix=256 × 256, FOV=250*250 mm2, sagittal plane, slice thickness =1 19 

mm, 176 slices). The anatomical data were used to normalize functional data. 20 

Among the 272 participants, there were seven participants with missing T1 weighted scans, 21 

four participants were missing resting-state functional MRI data scans, and 1 participant had 22 

signal dropout in the cerebellum,[1] thus only data from 260 participants were preprocessed. 23 

All preprocessing steps were carried out using the Data Processing & Analysis for (Resting-24 

State) Brain Imaging (DPABI v4.1[2]) and Matlab scripts. Consistent with our previous study, 25 

[3,4] functional images were (1) discarded in the first five volumes, (2) slice-time corrected, (3) 26 

realigned, (4) co-registered to the high-resolution 3D anatomic volume, (5) warped into 27 
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MNI152 standard space (resampling the voxel size into 3×3×3 mm3), (6) underwent wavelet 1 

despiking of head motion artifacts[5]), (7) underwent regression of motion and non-relevant 2 

signals, including linear trend, Friston 24 head motion parameters,[6,7] white matter (CompCor, 3 

5 principal components), and CSF signal (CompCor, 5 principal components[8]), and (8) were 4 

filtered using a band-pass filter (0.01-0.1 Hz). Because global signal may be an important 5 

neuroimaging feature in clinical populations,[9] and global signal regression has been shown to 6 

induce anticorrelations in resting-state data,[10] we did not conduct global signal regression in 7 

our main analyses. Because the topic of global signal regression (GSR) is still controversial, 8 

we considered GSR in a separate control analysis. In addition, we excluded 48 participants 9 

due to head motion exceeding 1.5 mm or 1.5° rotation or with >10% frame-to-frame motion 10 

quantified by framewise displacements (FD>0.5mm, [11])) or mean FD > 0.20 mm during MRI 11 

acquisition. Further, we excluded 20 participants because of not full coverage of cerebellum. 12 

This process left 198 participants as a final sample of our study.  13 

Connectivity gradient analyses 14 

In detail, the voxel-level connectivity matrix within cerebellar cortex for each subject was 15 

computed using Fisher Z-transformed Pearson correlations. Based on previous studies,[12–15] 16 

we thresholded the rsFC matrix with the top 10% of connections per row retained, whereas all 17 

others were zeroed. The negative connections were zeroed as well. Then, we used cosine 18 

distance to generate a similarity matrix that reflected the similarity of connectivity profiles 19 

between each pair of voxels.  20 

 21 

Then, we used diffusion map embedding[16] to identify a low-dimensional embedding from a 22 

high-dimensional connectivity matrix. This methodological strategy has been able to 23 

successfully identify relevant aspects of functional organization in cerebral cortex and 24 

cerebellum in previous studies.[12,14] Similar to Principal Component Analysis (PCA), 25 

diffusion map embedding can identify principal gradient components accounting for the 26 
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variance in descending order. If we applied PCA to the connectivity matrix, each voxel in 1 

cerebellar cortex would be assigned to a particular network with discrete borders. In contrast, 2 

diffusion map embedding allowed us to identify gradients of connectivity patterns from the 3 

similarity matrix. In this way, the result of diffusion embedding is not one single mosaic of 4 

discrete networks, but multiple, continuous maps (gradients), which capture the similarity of 5 

each voxel’s functional connections along a continuous space. In other words, this data-driven 6 

analysis results in connectivity gradients that provide a description of the connectome where 7 

each voxel is located along a gradient according to its connectivity pattern. Voxels with 8 

similar connectivity patterns are located close to one another along a given connectivity 9 

gradient. All gradients are orthogonal to each other and capture a portion of data variability in 10 

descending order.  11 

 12 

There is a single parameter αto control how the density of sampling points affects the 13 

underlying manifold (α = 0, the maximal influence of sampling density; α = 1, no influence of 14 

sampling density) in the diffusion map embedding algorithm. Following previous studies,[12–15 

14] we set α = 0.5, which can help retain the global relations between data points in the 16 

embedded space. Then, we used an average connectivity matrix calculated from all 17 

participants to produce a group-level gradient component template. We then performed 18 

Procrustes rotation to align the gradients of each participant to this template, following the 19 

strategy of previous analyses.[17] In order to maximize reliability, reproducibility, and 20 

interpretability, we only used the first gradient component in our analyses. The first gradient 21 

(or principal gradient) explains as much of the variance in the data as possible (~30%, Figure 22 

1), represents a well-understood motor-to-supramodal organizational principle in the 23 

cerebellar and cerebro-cerebral connections[14] and has been shown to be reproducible at the 24 

single subject level in the cerebellum (Guell et al., 2018; note that gradient 2 could not be 25 

reproduced as successfully as the principal gradient at the single-subject level). The explained 26 
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variance of principle gradient (30%) was similar to recent reports using diffusion map 1 

embedding analyses in functional connectivity.[12–14,18] 2 

  3 

We reported the intra-cerebellar FC gradient (6242 voxels) as the main results, but also we 4 

included the cerebellar-cerebral FC gradients in control analyses. The same calculation 5 

procedures used in intra-cerebellar functional connectivity gradient analysis were performed 6 

for cerebellar-cerebral cortical gradient analysis (cerebellar-cerebral cortical FC matrix). 7 

Partial least squares analysis 8 

PLS is a multivariate procedure that seeks maximal correlations between two matrices by 9 

deriving LVs, which are optimal linear combinations of the original matrices.[19,20] We applied 10 

PLS to the cerebellar gradient and behavioral measures across diagnostic categories. Given 11 

two matrices, Xn*p and Yn×q, where n is the number of observations (e.g., participants, here 12 

n=198), p and q are the number of variables (e.g., cerebellar gradient (p=6242) and behavioral 13 

features (q=55), respectively), after z-scoring X and Y (across participants), we calculated the 14 

covariance matrix R=YTX. Then, singular value decomposition (SVD) of R=USVT produced 15 

in three low-dimensional latent variables: U and V are the singular vectors (called behavioral 16 

and cerebellar gradient saliences, similar to loadings in principal components analysis), while 17 

S is a diagonal matrix containing the singular values. After that, by linearly projecting the 18 

cerebellar gradient and behavioral measures of each participant onto their respective saliences, 19 

we obtained individual-specific cerebellar gradient and behavioral composite scores for each 20 

LV, which reflect the participants’ individual cerebellar gradient and behavioral contribution 21 

to each LV (similar to factor scores in principal components analysis). PLS seeks to find 22 

saliences that maximize the covariance between cerebellar gradient and behavioral composite 23 

scores. The covariance explained by each LV is estimated by dividing the squared singular 24 

value by the sum of all squared singular values. Because FD was negatively correlated with 25 

several behavioral measures mainly involving memory function (false discovery rate (FDR), 26 
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q<0.05, including long delay free recall, visual reproduction immediate recall, delayed recall 1 

and recognition, matrix reasoning, and letter fluency) and there were significant differences in 2 

age, sex, education, site, and head motion (mean FD) across groups (Table 1), we regressed 3 

them out from both the behavioral and cerebellar gradient data before PLS analysis.  4 

 5 

Control Analyses 6 

Global signal regression 7 

 8 

Given global signal regression is still the controversial issue in the rsfMRI field, in control 9 

analysis, we conducted global signal regression in the rsfMRI preprocessing to check whether 10 

the GSR significantly affects the four LVs. 11 

 12 

Regressing out cerebellar grey matter volume 13 

 14 

To test whether the total cerebellar grey matter volume significantly affect the robustness of 15 

the four LVs, we re-computed PLS after regressing out total cerebellar grey matter volume 16 

from gradient features. We used the SUIT to calculate the total cerebellar grey matter 17 

volume.[24] Briefly, SUIT isolates the cerebellum and brainstem, then segments images into 18 

grey matter maps and normalizes these maps to a cerebellar template, ensuring superior 19 

cerebellar alignment across subjects. Normalized cerebellar grey matter maps were modulated 20 

by the Jacobian of the transformation matrix to preserve absolute grey matter volume. We 21 

extracted the summed modulated grey matter value (i.e., a measure of regional volume) for 28 22 

cerebellar lobules defined in the probabilistic SUIT Atlas, and regarded resulting value as 23 

total cerebellar grey matter volume.[25] 24 

 25 

Cerebellar gradient based on cerebellar-cerebral FC 26 
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 1 

Given the cerebellar functional gradients can be similarly constructed based on intra-2 

cerebellar FC or cerebellar-cerebral FC in the literature, we also tested cerebellar gradient 3 

based on cerebellar-cerebral FC. Intra-cerebellar connectivity gradient analysis focuses on 4 

exploring the intrinsic organization of the cerebellum without involving its connectivity 5 

profiles with the cerebral hemispheres or other brain structures. The cerebellar-cerebral 6 

cortical gradients emphasize the communication between cerebellar and cerebral cortex [14]. 7 

 8 

Including confounds   9 

 10 

Instead of regressing age, sex, education, site, and head motion (mean FD) out from the data 11 

prior to PLS analysis, we added them to the behavioral data for the new PLS analysis. 12 

 13 

Quantile normalization 14 

 15 

Because many behavioral measures included in the PLS analysis were non-Gaussian 16 

distribution, to exclude the potential effect on the robustness of LVs, we used quantile 17 

normalization to improve the Gaussian distributions of the behavioral data and re-computed 18 

PLS between the normalized behavioral and cerebellar gradient data.  19 

 20 

Patients and sites factor 21 

 22 

Furthermore, to ensure that our results were not separately driven by the HCs or by patients, 23 

we recomputed PLS using only control individuals or only patients. Finally, to ensure that 24 

results were not mainly driven by a single site, we recomputed PLS using data of each site 25 

separately. 26 
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 1 

Contribution of each diagnostic group to the overall composite correlations 2 

 3 

To confirm each diagnostic group contributes the same amount to the overall composite 4 

correlations, we used the Fisher r-to-z transformation to compare the pairwise r-values, i.e., 5 

correlation value between behavioral and gradient composite scores within each diagnostic 6 

group.[26] 7 

Supplemental Results 8 

When ignoring diagnostic groups, i.e., regarding all participants as one group, the results 9 

remained almost unchanged. Specifically, the first four LVs were still significant (LV1: 10 

r=0.62, permuted p=0.008; LV2: r=0.56, permuted p=0.005; LV3: r=0.61, permuted p=0.038; 11 

LV4: r=0.60, permuted p=0.01). The significant behavioral and cerebral connectivity gradient 12 

features associated with each LV remained almost unchanged, see figure S2-S5. The 10-fold 13 

cross-validation for the first four LVs was still successful as indicated by significant 14 

correlation between cerebellar gradient and behavioral composite scores in the test folds (LV1, 15 

r=0.12, p=0.0029 ; LV2, r=0.16, p=0.0027; LV3, r=0.11, p=0.0029; LV4, r=0.07, p=0.0032). 16 

Control Analyses 17 

Global signal regression 18 

 19 

Results were similar to the original PLS. Correlations between the saliences of the new and 20 

the original PLS analysis for the first four LVs ranged from 0.87 to 0.96 (Table S3), 21 

suggesting high correlation.  22 

 23 

Regressing out total cerebellar grey matter volume 24 

 25 
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Results were similar to the original PLS. Correlations between the saliences of the new and 1 

the original PLS analysis for the first four LVs ranged from 0.97 to 1 (Table S3), suggesting 2 

high correlation.  3 

 4 

Cerebellar gradient based on cerebellar-cerebral FC 5 

 6 

When using cerebellar gradient based on cerebellar-cerebral FC, results were similar to the 7 

original PLS using the cerebellar gradient based on intra-cerebellar FC. Correlations between 8 

the saliences of the new and the original PLS analysis for the first four LVs ranged from 0.77 9 

to 0.99, suggesting high correlation (Table S3).  10 

 11 

Including confounds 12 

 13 

Results were similar to the original PLS, with moderate to high correlations between the 14 

saliences of the new and the original PLS analysis ranging from 0.61 to 0.93 for LVs 1-4 15 

(Table S3).  16 

 17 

Quantile normalization 18 

 19 

Results were similar to the original PLS, with high correlations between the saliences of the 20 

new and the original PLS analysis ranging from 0.95 to 0.99 for LVs 1-4 (Table S3). 21 

 22 

Patients and sites factor  23 

 24 

When using healthy participants separately in the new PLS analysis, correlations between the 25 

saliences of the new and the original PLS analysis ranged between 0.46-0.83 for the first four 26 
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LVs, suggesting moderate to high correlation. However, correlations dropped to 0.14 and 0.22 1 

for LV5; hence we did not describe LV5 further. When considering only patients, correlations 2 

between the saliences of the new and the original PLS analysis ranged between 0.55-0.93 for 3 

the first four LVs, suggesting moderate to high correlation (Table S3). 4 

 5 

When using only participants from site 1 in the new PLS analysis, correlations between the 6 

saliences of the new and the original PLS analysis ranged between 0.66-0.96 for the first four 7 

LVs, suggesting high correlation. When considering only participants from site 2, correlations 8 

between the saliences of the new and the original PLS analysis ranged between 0.49-0.97 for 9 

the first four LVs, suggesting moderate to high correlation (Table S3).  10 

 11 

Contribution of each diagnostic group to the overall composite correlations 12 

 13 

There was no significant difference between pairs of correlation coefficients (Table S4, FDR 14 

q > 0.05 for all pairwise comparisons), suggesting that each diagnostic group contributed 15 

similarly to the overall composite correlations of these four LVs. 16 

  17 
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Table S1. Behavior measures used in the present study 1 
Scale Subscale Number of subjects 

available 
Young Mania Rating Scale-C Total score 106 
Hamilton Psychiatric Rating 
Scale for Depression 

Total score (items 1-17) 106 

Scale for the Assessment of 
Positive Symptoms 

Delusions  72 

 Hallucinations 72 
 Bizarre behavior 72 
 Positive formal thought 

disorder 
71 

Scale for the Assessment of 
Negative Symptoms 

Alogia  72 

 Anhedonia 72 
 Attention 72 
 Avolition 72 
 Blunt affect 72 
Brief Psychiatric Rating Scale Positive symptoms  106 
 Negative symptoms 106 
 Mania/disorganization 106 
 Depression/anxiety 106 
Hopkins Symptom Checklist  Anxiety  198* 
 Depression 198* 
 Obsessive compulsiveness 198* 
 Somatization 198* 
 Interpersonal sensitivity 198* 
Adult ADHD clinical 
diagnosis scale 

Inattention 106 

 Hyperactivity 106 
Adult Self-Report Scale v.1.1 
Screener 

ADHD symptoms (total score) 198* 

Chapman Psychosis-
Proneness Scales 

Perceptual aberrations  198* 

 Social anhedonia 198* 
 Physical anhedonia 198* 
 Infrequency 198* 
Scale for Traits that Increase 
Risk for Bipolar II Disorder 

Mood lability  198* 

 Daydreaming 198* 
 Energy/activity 198* 
 Social anxiety 198*  
Golden & Meehl's Seven 
MMPI Items Selected by 
Taxonomic Method 

Schizoid-type personality 198* 

Eckblad and Chapman's 
Hypomanic Personality Scale 

Hypomanic personality 198* 

Temperament and Character 
Inventory  

Reward dependence  198* 

 Persistence 198* 
 Novelty seeking 198* 
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 Harm avoidance 198* 
Barratt Impulsiveness Scale 
(BIS-11) 

Attentional impulsivity  198* 

 Motor impulsivity 198* 
 Nonplanning 198* 
Dickman Functional and 
Dysfunctional Impulsivity 
Scale 

Functional impulsivity  198* 

 Dysfunctional impulsivity 198* 
Impulsiveness, 
Venturesomeness and 
Empathy Scale  

Impulsiveness  198* 

 Venturesomeness 198* 
 Empathy 198* 
Multidimensional Personality 
Questionnaire (MPQ)—
Control subscale  

Control 198* 

Delay Discounting Task Small rewards  196 
 Medium rewards 196 
 Large rewards 196 
 Total 196 
Balloon Analog Risk Task Total pumps 189 
California Verbal Learning 
Test (CVLT-II) 

Short delay free recall  198* 

 Short delay cued recall 198* 
 Long delay free recall 198* 
 Long delay cued recall 198* 
 Long delay recognition 198* 
Scene Recognition Task Encoding accuracy  196 
 Encoding RT 196 
 Recall accuracy 196 
 Recall RT 196 
Remember-Know Task Remember words accuracy   168 
 Remember colors accuracy 168 
 Remember forced recognition 

1 feature 
168 

 Remember forced recognition 
2 features 

168 

 Remember mean RT 165 
 Know words accuracy 168 
 Know colors accuracy 168 
 Know forced recognition 1 

feature 
168 

 Know forced recognition 2 
features 

168 

 Know mean RT 161 
Wechsler Memory Scale 
(WMS-IV)  

Symbol span  198* 

 Visual reproduction immediate 
recall 

198* 

 Visual reproduction delayed 198* 
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recall 
 Visual reproduction 

recognition 
198* 

 Digit span forward 198* 
 Digit span backward 198* 
 Digit span sequencing 198* 
Spatial Maintenance and 
Manipulation Task 

Maintenance mean accuracy  190 

 Maintenance median RT 190 
 Manipulation mean accuracy 190 
 Manipulation median RT 190 
Verbal Maintenance and 
Manipulation Task 

Maintenance mean accuracy  189 

 Maintenance median RT 189 
 Manipulation mean accuracy 189 
 Manipulation median RT 189 
Spatial Capacity Task Load 1 accuracy  197 
 Load 1 mean RT 197 
 Load 3 accuracy 197 
 Load 3 mean RT 197 
 Load 5 accuracy 197 
 Load 5 mean RT 197 
 Load 7 accuracy 197 
 Load 7 mean RT 197 
 Maximum capacity  197 
Verbal Capacity Task Load 3 accuracy 197 
 Load 3 mean RT 197 
 Load 5 accuracy 197 
 Load 5 mean RT 197 
 Load 7 accuracy 197 
 Load 7 mean RT 197 
 Load 9 accuracy 197 
 Load 9 mean RT 197 
 Maximum capacity  197 
Wechsler Adult Intelligence 
Scale (WAIS-IV) 

Matrix reasoning  198* 

 Letter/number sequencing 198* 
 Vocabulary 198* 
Delis-Kaplan Executive 
Function System 

English verbal fluency 198* 

 Spanish verbal fluency 68 
Stroop Color Word Task Interference accuracy 198* 
 Interference RT 198* 
Color Trails Test Interference index 198* 
Stop Signal Task Quantile RT 196 
Task Switching Task Accuracy  198* 
 Interference 198* 
 Switching cost 198* 
 Residual switching cost 198* 
Attention Network Task Interference RT 197 
Continuous Performance Hit rate  198* 
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Go/No Go Task 
 Hits median RT 198* 
 False alarm rate 198*  
Notes: This table lists both behavior measures used in the PLS analysis and measures only 1 
considered in posthoc analyses (Table S3). Behavior measures used in the PLS analysis were 2 
marked with *.   3 
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Table S2. Group differences among the Fifty-five Behavioral measures in 1 
the PLS analysis 2 

Scale Variables ADHD BD HC SZ F P value 
Adult Self 
Report Scale 

ADHD symptoms 
15.51(3.86) 13.11(4.98) 8.89(2.81) 9.34(4.36) 32.5

4 
4.41E-
17 

Hopkins 
Symptom 
Checklist 

Depression 
0.67(0.48) 0.91(0.63) 0.39(0.37) 0.72(0.59) 11.4

7 
5.89E-7 

Obsessive 
compulsiveness 

1.21(0.74) 1.10(0.75) 0.52(0.44) 0.95(0.61) 15.9
3 

2.68E-9 

Anxiety 
0.47(0.41) 0.71(0.62) 0.22(0.30) 0.71(0.65) 15.2

1 
6.28E-9 

Somatization 
0.35(0.28) 0.63(0.65) 0.22(0.24) 0.57(0.48) 12.7

5 
1.22E-7 

Interpersonal 
sensitivity 

0.76(0.55) 1.00(0.71) 0.40(0.37) 0.85(0.61) 14.3
2 

1.83E-8 

Chapman 
Psychosis- 
Proneness 
Scales  

Infrequency 
(Careless response) 

0.74(0.95) 0.89(1.21) 0.67(1.12) 1.57(1.50) 5.04 0.002 

Perceptual 
aberrations 

4.11(3.81) 5.08(4.75) 2.16(2.67) 9.51(8.23) 21.3
0 

5.70E-
12 

Social anhedonia 14.09(8.87) 15.53(7.63) 10.15(7.15) 15.37(6.24) 7.27 1.21E-4 
Physical anhedonia 13.03(7.94) 15.47(9.66) 11.54(6.63) 15.71(6.72) 3.90 0.01 

Scale for Traits 
that Increase 
Risk for Bipolar 
II Disorder 

Mood lability 3.66(2.45) 5.14(2.97) 2.13(1.71) 3.97(2.66) 16.9
8 

7.84E-
10 

Energy(Restless) 3.74(2.06) 3.86(2.58) 3.05(2.15) 4.11(2.14) 2.60 0.05 
Daydreaming 3.91(1.42) 3.47(1.87) 3.14(1.82) 3.11(2.07) 1.78 0.15 
Social anxiety 3.09(1.63) 3.56(1.99) 3.01(1.90) 3.77(1.73) 1.87 0.14 

Barratt 
Impulsiveness 
Scale 

Attention 
impulsivity 

22.00(3.91) 19.06(5.52) 14.59(3.33) 17.00(4.63) 30.3
1 

4.08E-
16 

Motor impulsivity 
26.91(4.01) 24.61(5.51) 21.98(3.74) 22.71(4.43) 12.5

3 
1.61E-7 

Nonplanning 
28.60(4.39) 28.33(5.58) 23.05(4.38) 26.74(5.40) 17.6

8 
3.46E-
10 

Multidimension
al Personality 
Questionnaire 

MPQ control 
10.74(4.97) 11.72(7.30) 18.04(5.06) 16.23(5.09) 20.8

8 
9.12E-
12 

Golden & 
Meehl’s Seven 
MMPI 

Schizoid 
personality 

3.00(1.37) 3.83(1.63) 2.42(1.28) 3.43(1.63) 10.0
6 

3.40E-6 

Eckblad and 
Chapman's 
Hypomanic 
Personality 
Scale 

Hypomanic 
personality 

24.71(6.85) 23.25(11.58) 16.14(7.76) 19.80(8.73) 11.2
5 

7.76E-7 

Dickman 
Functional and 
Dysfunctional 
Impulsivity 
Scale 

Functional 
impulsivity 

7.03(2.93) 5.50(3.21) 6.60(2.72) 5.66(2.80) 2.61 0.05 

dysfunctional 
impulsivity 

4.83(2.82) 5.36(4.28) 1.91(2.43) 4.06(3.46) 14.9
5 

8.59E-9 

Impulsiveness, Eysenck 9.11(3.22) 9.08(4.54) 6.24(3.01) 9.23(3.49) 11.6 4.95E-7 
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Venturesomenes
s and Empathy 
Scale 

impulsiveness 1 
Eysenck 
venturesomeness 

9.51(1.90) 7.78(2.61) 8.76(2.46) 8.29(2.67) 3.32 0.02 

Eysenck empathy 11.17(2.77) 11.14(3.50) 10.63(3.13) 11.17(2.63) 0.49 0.69 
Temperament 
and Character 
Inventory 
Harm 

Persistence 21.97(7.81) 19.11(9.37) 23.57(7.21) 22.14(6.28) 2.98 0.03 
Harm avoidance 11.97(6.41) 18.06(9.18) 11.91(6.50) 15.23(7.50) 7.44 9.66E-5 
Reward 
dependence 

14.86(4.88) 14.25(5.11) 15.96(4.44) 14.69(3.86) 1.58 0.20 

Novelty seeking 
25.37(4.90) 22.64(7.81) 19.09(5.94) 18.60(5.56) 11.5

8 
5.16E-7 

California 
Verbal Learning 
Test 

Short delay free 
recall 

11.60(2.81) 10.69(3.58) 12.86(2.32) 8.95(3.56) 16.6
7 

1.13E-9 

Short delay cued 
recall 

12.29(2.23) 11.81(3.23) 13.33(2.10) 10.26(2.73) 13.5
4 

4.65E-8 

Long delay free 
recall 

12.20(2.42) 11.11(3.50) 13.27(2.32) 9.57(3.10) 17.2
3 

5.81E-
10 

Long delay cued 
recall 

12.71(2.22) 12.11(3.47) 13.28(2.13) 10.23(3.15) 14.1
6 

2.20E-8 

Long delay 
recognition 

3.29(0.65) 3.32(0.86) 3.37(0.80) 2.61(0.95) 7.75 6.48E-5 

Wechsler 
Memory Scale 

Visual 
reproduction 
immediate recall 

37.80(5.37) 35.72(4.96) 38.40(4.55) 32.74(8.27) 9.51 6.88E-6 

Visual 
reproduction 
delayed recall 

30.57(8.79) 26.81(10.80) 32.95(8.46) 23.54(11.00
) 

9.79 4.83E-6 

Visual 
reproduction 
recognition 

6.54(0.85) 6.11(1.24) 6.51(0.75) 5.46(1.75) 8.83 1.62E-5 

Symbol span 
23.09(6.84) 21.31(6.47) 25.63(6.05) 17.26(6.88) 15.3

0 
5.63E-9 

Digit span forward 
11.09(1.92) 10.56(2.24) 11.11(2.34) 8.74(2.15) 10.3

5 
2.39E-6 

Digit span 
backward 

9.11(2.26) 8.92(2.39) 9.72(2.41) 7.26(2.23) 9.32 8.70E-6 

Digit span 
sequencing 

9.03(1.95) 8.61(2.77) 9.78(2.39) 7.29(1.90) 10.2
4 

2.74E-6 

Wechsler Adult 
Intelligence 
Scale 

Letter/Number 
sequencing 

19.97(2.79) 19.75(2.71) 21.14(2.89) 17.83(3.49) 10.8
9 

1.21E-6 

Vocabulary 
42.97(9.18) 42.69(10.38) 43.58(8.59) 31.29(9.91) 16.0

7 
2.27E-9 

Matrix reasoning 
20.71(3.88) 19.28(4.74) 20.87(3.83) 15.69(4.98) 13.6

2 
4.25E-8 

Color Trails 
Test 

ColorTrail 
interference 

1.08(0.65) 1.10(0.59) 1.10(0.55) 1.09(0.62) 0.13 0.99 

English Verbal 
fluency Letter Fluency 

41.03(10.44
) 

40.03(13.80) 41.79(12.02
) 

30.37(8.14) 8.75 1.81E-5 

Task Switching Taskswitch total 
accuracy 

0.96(0.027) 0.96(0.0350) 0.97(0.027) 0.94(0.074) 5.49 0.001 

Taskswitch 
interference 

57.77(88 
49) 

68.13(74.78) 42.76(63.76
) 

57.76(147.7
6) 

0.77 0.52 
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Notes: Mean (standard deviation) values are shown for each group. RT=reaction time. 1 

Taskswitch switch 
cost 

274.16(120.
28) 

259.64(137.1
0) 

262.40(145.
15) 

278.56(202.
63) 

0.15 0.93 

Taskswitch 
residual switch cost 

79.01(121.1
3) 

54.58(108.74
) 

54.69(105.1
9) 

126.77(164.
35) 

3.30 0.02 

Continuous 
Performance 
Go/NoGo Task 

Total go hit 
321.17(6.59
) 

319.44(8.61) 322.88(1.64
) 

317.91(12.2
0) 

5.14 0.002 

Total false alarms 13.91(8.20) 12.78(7.21) 12.78(6.71) 13.29(6.54) 0.25 0.86 

Hits median RT 
360.36(54.7
4) 

387.50(60.31
) 

350.75(43.1
8) 

386.59(51.0
9) 

7.15 1.40E-4 

Stroop Color 
Word Task Conflict effect 

-
0.042(0.064
) 

-0.020(0.041) -
0.035(0.056
) 

-
0.051(0.062
) 

1.89 0.13 

Conflict effect RT 141.20(69.9
0) 

128.87(60.23
) 

122.97(70.6
7) 

122.55(75.5
4) 

0.64 0.59 
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Table S3. Absolute correlations between cerebellar gradient (or behavioral) 1 
saliences obtained in control analyses and cerebellar gradient (or 2 
behavioral) saliences from the original PLS analysis. 3 
 4 

 Latent 
dimensi
on 

GS
R 

Regressing 
out 
cerebellar 
grey matter 
volume 

Cerebella
r- 
cerebral 
Gradient 

Confounds 
included 

Behavior 
normalize
d 

Contro
ls 
Only 

Patients 
only 

Site 
#1 

Site 
#2 

Correlations 
with 
original 
gradient 
saliences 

LV #1 0.9
1 

1 0.83 0.77 0.99 0.46 0.61 0.76 0.68 

LV #2 0.9
2 

0.97 0.85 0.85 0.98 0.70 0.55 0.79 0.76 

LV #3 0.8
7 

0.98 0.77 0.89 0.97 0.66 0.77 0.75 0.49 

LV #4 0.9
1 

0.99 0.81 0.62 0.97 0.57 0.67 0.66 0.69 

LV #5 0.8
3 

1 0.82 0.58 0.95 0.14 0.55 0.52 0.45 

Correlations 
with 
original 
behavioral 
saliences 

LV #1 0.9
8 

1 0.99 0.93 1 0.83 0.82 0.96 0.97 

LV #2 0.9
5 

0.98 0.96 0.84 0.97 0.80 0.59 0.90 0.89 

LV #3 0.9
6 

0.99 0.93 0.93 0.97 0.87 0.93 0.89 0.70 

LV #4 0.9
4 

0.99 0.92 0.61 0.95 0.71 0.64 0.74 0.76 

LV #5 0.8
7 

1 0.94 0.63 0.95 0.22 0.69 0.63 0.61 

 5 
  6 
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Table S4. Comparisons between pairs of correlation coefficients between 1 
gradient composite scores and behavioral composite scores 2 
 3 

LV1(separated 
group-1) 

LV2(separated group-1) LV3(separated group-1) LV4(separated group-1) 

r_hc=0.6099; 
r_patients=0.5696 

r_hc=0.5415;r_patients=0.5943 r_hc=0.5548;r_patients 
=0.6571 

r_hc=0.5466;r_patients=0.6667 

z = 0.4272, p = 0.6692 z = -0.5390, p = 0.5899 z = -1.1222, p = 0.2618 z = -1.3216, p = 0.1863 
LV1(separated 
group-2) 

LV2(separated group-2) LV3(separated group-2) LV4(separated group-2) 

r_hc=0.6099; 
r_sz=0.4539 
r_bd=0.7114; 
r_adhd=0.5740 

r_hc=0.5415; r_sz=0.7511 
r_bd=0.5103; r_adhd=0.6037 

r_hc=0.5548; 
r_sz=0.6782 
r_bd=0.7275; 
r_adhd=0.4116 

r_hc=0.5466; r_sz=0.5607 
r_bd=0.8036; r_adhd=0.4845 

hc-sz: z = 1.0633,p = 
0.2877; 
hc-bd: z = -0.8893, p = 
0.3738 
hc-adhd: z = 0.2683, p 
= 0.7885 
sz-bd: z = -1.6139, p = 
0.1065 
sz-adhd: z = -0.6555, p 
= 0.5122 
bd-adhd: z = 0.9534, p 
= 0.3404 

hc-sz: z = -1.7912, p = 0.0733 
hc-bd: z = 0.2117, p = 0.8324 
hc-adhd: z = -0.4496, p = 
0.6530 
sz-bd: z = 1.6620, p = 0.0965 
sz-adhd: z = 1.1061, p = 
0.2687 
bd-adhd: z = -0.5474, p = 
0.5841 

hc-sz: z = -0.9727, p = 
0.3307 
hc-bd: z = -1.4627, p = 
0.1436 
hc-adhd: z = 0.9109, p = 
0.3624 
sz-bd: z = -0.3935, p = 
0.6940 
sz-adhd: z = 1.5529, p = 
0.1204 
bd-adhd: z = 1.9583, p = 
0.0502 

hc-sz: z = -0.0986, p = 0.9214 
hc-bd: z = -2.4296, p = 0.0151 
hc-adhd: z = 0.4108, p = 
0.6812 
sz-bd: z = -1.9139, p = 0.0556 
sz-adhd: z = 0.4200, p = 
0.6745 
bd-adhd: z = 2.3372, p = 
0.0194 

Notes: There was no significant difference between pairs of correlation coefficients (FDR q > 4 
0.05 for all pairwise comparisons) 5 
  6 
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Table S5. Associations between cerebellar gradient or behavior composite scores and 1 
confounding factors 2 

 LV1 LV2 LV3 LV4 
 Gradient 

composite 
scores 

Behavioral 
composite scores 

Gradient 
composite 

scores 

Behavioral 
composite 

scores 

Gradient 
composite 

scores 

Behavioral 
composite 

scores 

Gradient 
composite 

scores 

Behavioral 
composite 

scores 
 r/t p r/t p r/t p r/t p r/t p r/t p r/t p r/t p 

Age 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Sex 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Education 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Site 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Motion 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
Total brain 

volume 
-0.04 0.59 -0.08 0.26 -0.03 0.63 0.05 0.48 -0.05 0.44 -0.07 0.31 0.02 0.80 0.04 0.62 

Cerebellar 
volume 

-0.10 0.20 -0.04 0.55 0.15 0.03 0.17 0.02 -0.06 0.38 -0.10 0.18 0.07 0.32 0.02 0.73 

Medication 
load 

0.35 4.7E-7 0.39 1.2E-8 -0.09 0.19 0.07 0.30 0.18 0.01 0.28 6.2E-5 -0.07 0.30 0.06 0.43 

Substance 
use 

0.12 0.08 0.10 0.16 0.07 0.35 0.15 0.03 -0.13 0.06 -0.10 0.15 -0.03 0.65 -0.07 0.35 

Notes: T tests were performed for binary measures, and Pearson’s correlations were 3 
performed for continuous measures. Bold refers to significant associations that survived FDR 4 
correction (q < 0.05).  5 
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Table S6. Correlations between subjects’ behavioral measures and their 1 
behavioral composite scores 2 

LV#1 LV#2 
 r  SD  r  SD 

Eysenck impulsiveness 0.70  0.04  ADHD symptoms 0.60  0.04  
Dysfunctional impulsivity 0.66  0.04  Attention impulsivity 0.57  0.05  
Mood lability 0.60  0.04  Depression 0.55  0.05  
Nonplanning 0.56  0.04  Mood lability 0.53  0.05  
Perceptual aberrations 0.56  0.06  Interpersonal sensitivity 0.53  0.05  
Attention impulsivity 0.54  0.05  Attention severity* 0.52  0.09  
Obsessive compulsiveness 0.54  0.05  Obsessive compulsiveness 0.52  0.05  
Anxiety 0.53  0.06  Daydreaming 0.52  0.05  
Interpersonal sensitivity 0.52  0.05  Vocabulary 0.49  0.05  
Hypomanic peronality 0.52  0.05  Schizoid personality 0.47  0.05  
Depression 0.47  0.05  Harm avoidance 0.47  0.05  
ADHD symptoms 0.45  0.05  Motor impulsivity 0.47  0.05  
Somatization 0.42  0.07  Social anxiety 0.46  0.06  
Social anhedonia 0.39  0.06  Dysfunctional impulsivity 0.46  0.05  
Motor impulsivity 0.39  0.05  Nonplanning 0.45  0.05  
Energy(Restless) 0.37  0.06  Anxiety 0.43  0.06  
Infrequency(careless 
response) 0.37  0.07  

HAMD_depression* 
0.42  0.09  

Physical anhedonia 0.37  0.07  Hyperactivity severity* 0.39  0.09  
YMRC_mania* 0.36  0.10  Matrix reasoning 0.39  0.07  
Depression/anxiety* 0.35  0.10  Letter fluency 0.39  0.06  
Schizoid personality 0.34  0.06  Digit span backward 0.38  0.06  
HAMD_depression* 0.33  0.10  Somatization 0.37  0.07  
Delusions* 0.32  0.13  Depression/anxiety* 0.36  0.09  

Novelty seeking 0.31  0.06  
Remember words 
accuracy* 0.36  0.07  

Eysenck empathy 0.30  0.05  Long delay recognition 0.36  0.07  
Total false alarms 0.28  0.06  Digit span forward 0.34  0.06  
Mania/disorganization* 0.27  0.10  Eysenck impulsiveness 0.34  0.05  
Positive formal thought* 0.25  0.13  Novelty seeking 0.33  0.06  
Social anxiety 0.25  0.06  Social anhedonia 0.32  0.06  
Positive symptoms* 0.25  0.10  Long delay cued recall 0.32  0.07  

Hallucinations* 0.24  0.13  
Visual reproduction 
immediate recall 0.31  0.07  

Harm avoidance 0.24  0.06  Digit span sequencing 0.31  0.05  

Attention* 0.24  0.12  
Verbal manipulation 
accuracy* 0.29  0.06  

Daydreaming 0.22  0.06  Symbol span 0.28  0.05  
Attention severity* 0.18  0.10  Hypomanic peronality 0.28  0.06  
Anhedonia* 0.17  0.12  Mania/disorganization* 0.27  0.10  
Hyperactivity severity* 0.17  0.10  Short delay cued recall 0.27  0.08  
Avolition* 0.16  0.12  Long delay free recall 0.26  0.07  
Spatial capacity load 3 
RT* 0.14  0.07  

Visual reproduction 
recognition 0.25  0.08  

Bizarre behavior* 0.12  0.12  Taskswitch total accuracy 0.24  0.07  
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ANT_Interference RT* 0.10  0.07  
Visual reproduction 
delayed recall 0.24  0.08  

Verbal capacity load 5 RT* 0.09  0.07  Short delay free recall 0.23  0.07  

Vpatial capacity load 3 RT* 0.09  0.06  
Know forced recognition 2 
features* 0.23  0.07  

Delay discounting medium 
rewards* 0.09  0.07  

Scene recognition encoding 
accuracy* 0.23  0.06  

Taskswitch interference 0.09  0.07  Letter/Number sequencing 0.22  0.06  
Delay discounting small 
rewards* 0.09  0.07  

Scene recognition recall 
accuracy* 0.22  0.06  

Alogia* 0.08  0.12  BART_total pumps* 0.21  0.07  
Delay discounting total 
rewards* 0.08  0.07  

Verbal maintenance 
accuracy* 0.21  0.06  

Spatial maintenance RT* 0.08  0.07  
Remember forced 
recognition 2 features* 0.20  0.07  

Scene recognition encoding 
RT* 0.08  0.07  

Spatial capacity load 7 
accuracy* 0.20  0.06  

Delay discounting large 
rewards* 0.07  0.07  

YMRC_mania* 
0.19  0.10  

Blunt affect* 0.07  0.12  
Spatial maintenance 
accuracy* 0.19  0.07  

Know forced recognition 1 
feature* 0.07  0.07  

Know words accuracy* 
0.19  0.07  

Negative symptoms* 0.07  0.10  Eysenck empathy 0.18  0.06  
Taskswitch residSwitchCost 0.07  0.08  Physical anhedonia 0.15  0.08  

ColorTrail interference 0.06  0.07  
Verbal capacity load 7 
accuracy* 0.15  0.07  

Spatial capacity load 1 RT* 0.05  0.07  Know colors accuracy* 0.14  0.07  

Spatial capacity load 5 RT* 0.05  0.07  
Verbal maximum 
capacity* 0.13  0.06  

Scene recognition recall RT* 0.04  0.07  
Spatial maximum 
capacity* 0.13  0.07  

Spatial capacity load 7 RT* 0.02  0.07  Verbal capacity load 9 RT* 0.12  0.07  
Verbal maintenance RT* 0.02  0.07  Perceptual aberrations 0.12  0.06  

Stop signal quantile RT* 0.01  0.07  
Verbal capacity load 3 
accuracy* 0.12  0.07  

Verbal manipulation RT* 0.01  0.07  Go hit median RT 0.11  0.08  
Functional impulsivity 0.01  0.07  Remember mean RT* 0.11  0.07  
Remember forced 
recognition 1 feature* 0.00  0.07  

Remember colors accuracy* 
0.10  0.07  

Remember mean RT* 0.00  0.07  
Spatial capacity load 3 
accuracy* 0.10  0.07  

Spatial manipulation RT* -0.02  0.06  Bizarre behavior* 0.10  0.10  
Eysenck venturesomeness -0.02  0.07  Taskswitch interference 0.10  0.07  
Know colors accuracy* -0.03  0.07  Conflict effect RT 0.10  0.07  

Verbal capacity load 7 RT* -0.03  0.07  
Spatial manipulation 
accuracy* 0.09  0.06  

Taskswitch switch cost -0.05  0.07  Anhedonia* 0.09  0.11  

Conflict effect RT -0.07  0.06  
Know forced recognition 1 
feature* 0.09  0.07  
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Persistence -0.08  0.07  
Verbal capacity load 9 
accuracy* 0.08  0.07  

Go hit median RT -0.09  0.07  Delusions* 0.08  0.09  
Know mean RT* -0.10  0.08  Verbal capacity load 7 RT* 0.08  0.06  
Remember forced 
recognition 2 features* -0.12  0.06  

Spatial capacity load 1 
accuracy* 0.04  0.07  

Total go hit -0.12  0.06  
Remember forced 
recognition 1 feature* 0.04  0.07  

Conflict effect -0.13  0.09  
Spatial capacity load 5 
accuracy* 0.03  0.07  

Know words accuracy* -0.13  0.07  Vpatial capacity load 3 RT* 0.03  0.06  
Verbal capacity load 9 
RT* -0.13  0.07  

Spatial manipulation RT* 
0.03  0.07  

BART_total pumps* -0.13  0.06  
Verbal capacity load 5 
accuracy* 0.03  0.07  

Spatial manipulation 
accuracy* -0.16  0.06  

Conflict effect 
0.01  0.06  

Reward dependence -0.18  0.06  ColorTrail interference -0.01  0.08  
Spatial capacity load 7 
accuracy* -0.18  0.06  

Verbal manipulation RT* 
-0.02  0.07  

Remember colors 
accuracy* -0.23  0.07  

Verbal capacity load 5 RT* 
-0.02  0.07  

Verbal capacity load 3 
accuracy* -0.24  0.07  

ANT_Interference RT* 
-0.02  0.06  

Verbal capacity load 7 
accuracy* -0.25  0.07  

Hallucinations* 
-0.03  0.10  

Verbal capacity load 9 
accuracy* -0.26  0.06  

Positive symptoms* 
-0.03  0.08  

Scene recognition encoding 
accuracy* -0.26  0.09  

Taskswitch residSwitchCost 
-0.03  0.07  

Spatial maximum 
capacity* -0.27  0.06  

Energy(Restless) 
-0.03  0.06  

Spatial capacity load 1 
accuracy* -0.28  0.07  

Scene recognition recall RT* 
-0.04  0.07  

Digit span forward -0.29  0.08  
Scene recognition encoding 
RT* -0.04  0.07  

Remember words 
accuracy* -0.29  0.07  

Delay discounting small 
rewards* -0.04  0.06  

Spatial maintenance 
accuracy* -0.30  0.07  

Taskswitch switch cost 
-0.05  0.06  

Taskswitch total accuracy -0.30  0.08  Spatial maintenance RT* -0.05  0.07  
Verbal maximum 
capacity* -0.31  0.07  

Stop signal quantile RT* 
-0.06  0.07  

Letter fluency -0.31  0.07  Know mean RT* -0.06  0.07  
Know forced recognition 2 
features* -0.32  0.07  

Spatial capacity load 3 RT* 
-0.08  0.07  

Verbal capacity load 5 
accuracy* -0.32  0.07  

Delay discounting medium 
rewards* -0.08  0.07  

Spatial capacity load 5 
accuracy* -0.34  0.06  

Positive formal thought* 
-0.08  0.11  
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Verbal manipulation 
accuracy* -0.34  0.06  

Attention* 
-0.08  0.11  

Spatial capacity load 3 
accuracy* -0.35  0.07  

Avolition* 
-0.10  0.10  

Matrix reasoning -0.35  0.06  
Delay discounting total 
rewards* -0.11  0.06  

Digit span sequencing -0.37  0.06  Spatial capacity load 1 RT* -0.11  0.07  
Digit span backward -0.37  0.07  Reward dependence -0.12  0.06  
Vocabulary -0.38  0.06  Functional impulsivity -0.12  0.06  
Verbal maintenance 
accuracy* -0.41  0.07  

Eysenck venturesomeness 
-0.12  0.08  

Visual reproduction 
recognition -0.43  0.07  

Negative symptoms* 
-0.13  0.09  

Letter/Number sequencing -0.44  0.05  Total false alarms -0.13  0.07  
Long delay recognition -0.46  0.06  Verbal maintenance RT* -0.13  0.07  
Visual reproduction 
delayed recall -0.47  0.06  

Infrequency(careless 
response) -0.14  0.08  

Symbol span -0.49  0.05  Total go hit -0.14  0.08  
Scene recognition recall 
accuracy* -0.49  0.07  

Spatial capacity load 5 
RT* -0.14  0.07  

Visual reproduction 
immediate recall -0.51  0.06  

Delay discounting large 
rewards* -0.15  0.06  

MPQ control -0.57  0.05  
Spatial capacity load 7 
RT* -0.17  0.07  

Short delay cued recall -0.61  0.05  Alogia* -0.18  0.10  
Short delay free recall -0.61  0.05  Blunt affect* -0.21  0.10  
Long delay free recall -0.62  0.05  Persistence -0.37  0.06  
Long delay cued recall -0.62  0.05  MPQ control -0.44  0.05  

 1 
 2 

LV #3 LV#4 
 r  SD  r  SD 

Harm avoidance 0.68  0.04  Total false alarms 0.28  0.07  
Social anxiety 0.56  0.04  Nonplanning 0.20  0.07  
Negative symptoms* 0.49  0.09  ColorTrail interference 0.17  0.06  
MPQ control 0.45  0.06  Spatial capacity load 3 RT* 0.13  0.07  
Alogia* 0.41  0.10  ANT_Interference RT* 0.13  0.07  
Physical anhedonia 0.39  0.06  Total go hit 0.12  0.09  
Blunt affect* 

0.39  0.11  
Scene recognition recall 
RT* 0.12  0.07  

Social anhedonia 0.39  0.06  Taskswitch interference 0.11  0.07  
Anhedonia* 0.38  0.12  Spatial maintenance RT* 0.11  0.07  
Positive symptoms* 0.33  0.08  Spatial manipulation RT* 0.11  0.07  
Somatization 0.33  0.06  Attention* 0.11  0.11  
Depression/anxiety* 0.31  0.09  Spatial capacity load 5 RT* 0.10  0.07  
Avolition* 0.30  0.11  Spatial capacity load 1 RT* 0.10  0.07  
Attention* 

0.25  0.11  
Taskswitch 
residSwitchCost 0.10  0.06  

Hallucinations* 0.25  0.11  Delay discounting medium 0.10  0.07  
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rewards* 
Anxiety 0.23  0.08  Spatial capacity load 7 RT* 0.08  0.07  
Depression 0.23  0.08  Know mean RT* 0.08  0.08  
Schizoid personality 

0.21  0.06  
Delay discounting small 
rewards* 0.07  0.07  

HAMD_depression* 0.21  0.09  Verbal capacity load 5 RT* 0.07  0.08  
Interpersonal sensitivity 0.19  0.09  Taskswitch switch cost 0.07  0.06  
Mood lability 

0.18  0.07  
Delay discounting total 
rewards* 0.07  0.07  

Perceptual aberrations 
0.18  0.07  

Scene recognition encoding 
RT* 0.07  0.07  

Obsessive compulsiveness 0.17  0.08  Verbal maintenance RT* 0.06  0.07  
Delusions* 

0.16  0.11  
Delay discounting large 
rewards* 0.06  0.07  

Go hit median RT 
0.14  0.07  

Remember colors 
accuracy* 0.06  0.07  

Scene recognition encoding 
RT* 0.14  0.07  

Vpatial capacity load 3 RT* 
0.05  0.07  

Infrequency(careless 
response) 0.11  0.08  

Daydreaming 
0.05  0.07  

Know mean RT* 0.09  0.07  Digit span forward 0.03  0.07  
Stop signal quantile RT* 0.08  0.07  Avolition* 0.03  0.12  
Scene recognition recall RT* 0.08  0.07  Verbal manipulation RT* 0.03  0.07  
Remember mean RT* 0.07  0.07  Verbal capacity load 9 RT* 0.02  0.07  
Vpatial capacity load 3 RT* 0.07  0.07  Verbal capacity load 7 RT* 0.02  0.07  
Spatial maintenance RT* 0.07  0.07  Conflict effect 0.01  0.06  
Spatial manipulation RT* 0.07  0.07  Eysenck venturesomeness 0.01  0.09  
Spatial capacity load 1 RT* 0.07  0.07  Blunt affect* 0.00  0.11  
Verbal capacity load 9 RT* 

0.06  0.07  
Know forced recognition 2 
features* 0.00  0.08  

Spatial capacity load 3 RT* 0.05  0.07  Alogia* 0.00  0.11  
Verbal capacity load 5 RT* 0.05  0.07  Stop signal quantile RT* 0.00  0.07  
BART_total pumps* 0.04  0.07  Conflict effect RT 0.00  0.07  
Delay discounting large 
rewards* 0.04  0.06  

MPQ control 
-0.01  0.07  

Spatial capacity load 5 RT* 0.04  0.06  Attention impulsivity -0.01  0.07  
Daydreaming 0.04  0.06  BART_total pumps* -0.01  0.07  
Spatial capacity load 7 RT* 0.03  0.07  Know colors accuracy* -0.01  0.08  
Eysenck empathy 

0.03  0.06  
Verbal capacity load 9 
accuracy* -0.02  0.07  

Taskswitch residSwitchCost 
0.03  0.07  

Verbal maintenance 
accuracy* -0.02  0.07  

Verbal maintenance RT* 
0.02  0.07  

Remember forced 
recognition 2 features* -0.02  0.08  

Remember forced 
recognition 1 feature* 0.02  0.08  

Know forced recognition 1 
feature* -0.03  0.08  

Verbal capacity load 7 RT* 0.02  0.07  Vocabulary -0.03  0.06  
ANT_Interference RT* 0.02  0.07  Motor impulsivity -0.03  0.08  
Delay discounting total 0.02  0.07  Verbal capacity load 5 -0.03  0.07  
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rewards* accuracy* 
Know forced recognition 1 
feature* 0.02  0.07  

Hyperactivity severity* 
-0.03  0.10  

Delay discounting medium 
rewards* 0.01  0.06  

Digit span backward 
-0.04  0.07  

Long delay cued recall 0.00  0.07  Attention severity* -0.04  0.10  
Remember words accuracy* 0.00  0.07  Harm avoidance -0.04  0.07  
Long delay free recall 

0.00  0.07  
Remember forced 
recognition 1 feature* -0.04  0.08  

Short delay cued recall 0.00  0.07  Letter fluency -0.05  0.07  
Bizarre behavior* -0.01  0.11  Hallucinations* -0.05  0.10  
Long delay recognition 

-0.02  0.06  
Spatial manipulation 
accuracy* -0.05  0.07  

Total go hit -0.03  0.07  Know words accuracy* -0.06  0.08  
Know forced recognition 2 
features* -0.03  0.07  

ADHD symptoms 
-0.06  0.07  

Taskswitch interference 
-0.03  0.08  

Remember words 
accuracy* -0.07  0.08  

Delay discounting small 
rewards* -0.03  0.07  

Novelty seeking 
-0.07  0.08  

Short delay free recall -0.04  0.08  Verbal maximum capacity* -0.08  0.07  
Remember colors accuracy* 

-0.05  0.07  
Spatial capacity load 1 
accuracy* -0.09  0.07  

Visual reproduction delayed 
recall -0.07  0.07  

Dysfunctional impulsivity 
-0.09  0.06  

Nonplanning -0.07  0.07  Social anhedonia -0.10  0.07  
Verbal manipulation RT* -0.07  0.07  Positive formal thought* -0.10  0.11  
ADHD symptoms 

-0.07  0.07  
Verbal manipulation 
accuracy* -0.11  0.07  

Attention impulsivity 
-0.08  0.07  

Spatial capacity load 5 
accuracy* -0.11  0.07  

Taskswitch switch cost 
-0.09  0.08  

Scene recognition recall 
accuracy* -0.12  0.07  

YMRC_mania* -0.10  0.10  Reward dependence -0.12  0.08  
Spatial maintenance 
accuracy* -0.10  0.07  

Infrequency(careless 
response) -0.13  0.07  

Know words accuracy* -0.10  0.08  Letter/Number sequencing -0.13  0.07  
Scene recognition encoding 
accuracy* -0.11  0.07  

Delusions* 
-0.13  0.10  

Conflict effect RT 
-0.11  0.06  

Spatial maintenance 
accuracy* -0.13  0.07  

Spatial capacity load 1 
accuracy* -0.11  0.07  

Remember mean RT* 
-0.14  0.07  

Visual reproduction 
immediate recall -0.12  0.07  

Verbal capacity load 7 
accuracy* -0.14  0.07  

Vocabulary -0.12  0.06  Physical anhedonia -0.15  0.08  
Taskswitch total accuracy 

-0.12  0.07  
Scene recognition encoding 
accuracy* -0.15  0.07  

Total false alarms -0.12  0.07  Negative symptoms* -0.15  0.10  
Know colors accuracy* -0.13  0.07  Eysenck impulsiveness -0.17  0.07  
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Verbal maximum capacity* -0.13  0.07  Mania/disorganization* -0.17  0.10  
Scene recognition recall 
accuracy* -0.14  0.07  

Perceptual aberrations 
-0.18  0.06  

Verbal capacity load 5 
accuracy* -0.14  0.07  

Social anxiety 
-0.18  0.07  

ColorTrail interference 
-0.16  0.07  

Spatial maximum 
capacity* -0.19  0.07  

Remember forced 
recognition 2 features* -0.16  0.07  

Verbal capacity load 3 
accuracy* -0.19  0.07  

Conflict effect 
-0.16  0.07  

Spatial capacity load 7 
accuracy* -0.20  0.07  

Spatial capacity load 3 
accuracy* -0.16  0.07  

Spatial capacity load 3 
accuracy* -0.20  0.07  

Spatial capacity load 7 
accuracy* -0.16  0.07  

Symbol span 
-0.21  0.06  

Verbal capacity load 7 
accuracy* -0.17  0.07  

Mood lability 
-0.22  0.07  

Spatial maximum capacity* -0.17  0.07  Positive symptoms* -0.23  0.09  
Verbal capacity load 9 
accuracy* -0.17  0.07  

Anhedonia* 
-0.24  0.12  

Spatial capacity load 5 
accuracy* -0.18  0.07  

Schizoid personality 
-0.24  0.08  

Eysenck impulsiveness -0.18  0.06  Eysenck empathy -0.24  0.07  
Verbal maintenance 
accuracy* -0.18  0.06  

Taskswitch total accuracy 
-0.25  0.07  

Verbal capacity load 3 
accuracy* -0.19  0.07  

Functional impulsivity 
-0.25  0.07  

Positive formal thought* -0.19  0.12  YMRC_mania* -0.27  0.11  
Symbol span -0.21  0.07  Obsessive compulsiveness -0.27  0.06  
Spatial manipulation 
accuracy* -0.22  0.07  

Digit span sequencing 
-0.27  0.08  

Digit span backward -0.23  0.07  Go hit median RT -0.28  0.07  
Dysfunctional impulsivity 

-0.23  0.07  
Visual reproduction 
recognition -0.29  0.07  

Verbal manipulation 
accuracy* -0.23  0.07  

Depression/anxiety* 
-0.30  0.10  

Reward dependence -0.24  0.06  Matrix reasoning -0.31  0.06  
Visual reproduction 
recognition -0.26  0.06  

Anxiety 
-0.32  0.07  

Letter/Number sequencing -0.26  0.06  HAMD_depression* -0.33  0.10  
Letter fluency -0.27  0.07  Bizarre behavior* -0.33  0.12  
Digit span forward -0.27  0.06  Hypomanic peronality -0.34  0.06  
Matrix reasoning -0.29  0.06  Long delay recognition -0.34  0.06  
Mania/disorganization* 

-0.29  0.09  
Visual reproduction 
immediate recall -0.35  0.05  

Digit span sequencing -0.29  0.06  Interpersonal sensitivity -0.36  0.06  
Attention severity* -0.30  0.09  Depression -0.37  0.06  
Eysenck venturesomeness -0.35  0.06  Persistence -0.37  0.07  
Hyperactivity severity* -0.43  0.09  Somatization -0.39  0.06  
Motor impulsivity -0.45  0.06  Energy(Restless) -0.40  0.05  
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Energy(Restless) 
-0.49  0.05  

Visual reproduction 
delayed recall -0.42  0.06  

Hypomanic peronality -0.50  0.05  Short delay free recall -0.44  0.05  
Persistence -0.50  0.05  Long delay cued recall -0.48  0.05  
Novelty seeking -0.62  0.05  Short delay cued recall -0.49  0.05  
Functional impulsivity -0.71  0.03  Long delay free recall -0.49  0.05  

 1 
Notes: The contribution of each behavioral measure to LV 1-4 (correlation values) was shown 2 
as decreasing order, along with their bootstrap-estimated standard deviations (SD). This table 3 
lists both behavior measures that included in the PLS analysis and behavior measures that 4 
were considered in post hoc analyses due to missing data (*). Correlations with significant 5 
bootstrapped Z scores that survived FDR correction (q < 0.05) are shown in bold. 6 
  7 
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 1 
 2 
Figure S1. The amount of covariance explained by each LV. Five LVs survived after applying FDR 3 
correction (q<0.05) to the p-values derived from permutation tests.   4 
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1 
Figure S2. Significant behavioral and cerebral connectivity gradient features associated with 2 
LV1. 3 
  4 

Significant behavioral features Significant gradient features 
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 1 
Figure S3. Significant behavioral and cerebral connectivity gradient features associated with 2 
LV2. 3 
  4 

Significant behavioral features 

 

Significant gradient features 
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1 
Figure S4. Significant behavioral and cerebral connectivity gradient features associated with 2 
LV3. 3 
  4 

Significant behavioral features Significant gradient features 
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 1 
Figure S5. Significant behavioral and cerebral connectivity gradient features associated with 2 
LV4. 3 

Significant behavioral features Significant gradient features 
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