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Abstract  30 

The infection by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 31 

causes major public health concern and economic burden. Although clinically approved 32 

drugs have been repurposed to treat individuals with 2019 Coronavirus disease (COVID-33 

19), the lack of safety studies and limited efficiency as well jeopardize clinical benefits. 34 

Daclatasvir and sofosbuvir (SFV) are clinically approved direct-acting antivirals (DAA) 35 

against hepatitis C virus (HCV), with satisfactory safety profile. In the HCV replicative 36 

cycle, daclatasvir and SFV target the viral enzymes NS5A and NS5B, respectively. NS5A 37 

is endowed with pleotropic activities, which overlap with several proteins from SARS-38 

CoV-2. HCV NS5B and SARS-CoV-2 nsp12 are RNA polymerases that share homology in 39 

the nucleotide uptake channel. These characteristics of the HCV and SARS-CoV-2 40 

motivated us to further study the activity of daclatasvir and SFV against the new 41 

coronavirus.  Daclatasvir consistently inhibited the production of infectious SARS-CoV-2 42 

virus particles in Vero cells, in the hepatoma cell line HuH-7 and in type II pneumocytes 43 

(Calu-3), with potencies of 0.8, 0.6 and 1.1 µM, respectively. Daclatasvir targeted early 44 

events during SARS-CoV-2 replication cycle and prevented the induction of IL-6 and TNF-45 

α, inflammatory mediators associated with the cytokine storm typical of SARS-CoV-2 46 

infection.  Sofosbuvir, although inactive in Vero cells, displayed EC50 values of 6.2 and 9.5 47 

µM in HuH-7 and Calu-3 cells, respectively. Our data point to additional antiviral 48 

candidates, in especial daclatasvir, among drugs overlooked for COVID-19, that could 49 

immediately enter clinical trials.  50 

 51 

 52 

 53 

 54 

 55 

 56 
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1) Introduction 58 

Several single-stranded positive sense RNA viruses affect the public health, causing 59 

hepatitis C, dengue, Zika, yellow fever, chikungunya and severe acute respiratory 60 

syndrome (SARS). The unfold of the ongoing pandemic of SARS coronavirus (CoV) 2 61 

highlights that the world is ill-prepared to respond to the spillover of highly pathogenic 62 

respiratory viruses (1). Indeed, in the two decades of the 21st century, other life-threatening 63 

public health emergencies of international concern related to other coronavirus emerged, 64 

such as the SARS-CoV in 2002, and the Middle-East respiratory syndrome (MERS-CoV)  65 

in 2014 (2). Since the end of 2019 to date, the infection by SARS-CoV-2 has reached 188 66 

countries, affecting more than 7.5 million persons, with mortality ratio of 5-10 % (3). 67 

Despite the self-quarantining and social distancing to avoid contact between 68 

infected/uninfected individuals and to diminish transition rates, it has become evident that 69 

long-term control and prevention of 2019 CoV disease (COVID-19) will be dependent on 70 

effective antivirals and vaccines. In this sense, the repurposing of clinically approved drugs 71 

is recognized by the World Health Organization (WHO) as the fastest way to catalogue 72 

candidate treatments (4)(5). WHO’s global clinical trial (named Solidarity) selected four 73 

therapeutic interventions, such as with lopinavir (LPV)/ritonavir (RTV), in combination or 74 

not with interferon-β (IFN-β), chloroquine (CQ) and remdesivir (RDV) to treat COVID-75 

19(5). Safety of repurposing antiviral has been an issue for COVID-19 (6, 7), and 76 

controversial efficacy of the components of the Solidarity trial has been described (6–8). 77 

Nevertheless, very early treatment with RDV showed promising results in non-human 78 

primates and clinical studies (7, 9, 10).   79 

Direct-acting antivirals (DDA) against hepatitis C virus (HCV) are among the safest 80 

antiviral agents, since they become routinely used in the last five years(11). Due to their 81 

recent incorporation amongst therapeutic agents, drugs like daclatasvir and sofosbuvir 82 

(SFV) were not systematically tested against SARS-CoV or MERS-CoV.  83 

Daclatasvir inhibits HCV replication by binding to the N-terminus of non-structural 84 

protein (NS5A), affecting both viral RNA replication and virion assembly (12). NS5A is a 85 

multifunctional protein in the HCV replicative cycle, involved with recruitment of cellular 86 

lipidic bodies, RNA binding and replication, protein-phosphorylation, cell signaling and 87 
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antagonism of interferon pathways (12). In large genome viruses, such as SARS-CoV-2, 88 

these activities are executed by various viral proteins, especially the non-structural proteins 89 

(nsp) 1 to 14(13). 90 

SFV inhibits the HCV protein NS5B, its RNA polymerase(14). This drug has been 91 

associated with antiviral activity against the Zika (ZIKV), yellow fever (YFV) and 92 

chikungunya (CHIKV) viruses(15–18).   With respect to HCV, SFV appears to have a high 93 

barrier to the development of resistance. SFV is 2`Me-F uridine monophosphate 94 

nucleotide(14). Hydrophobic protections in its phosphate allow SFV to enter the cells, and 95 

then this pro-drug must become the active triphosphorylated nucleotide. Although the 96 

cellular enzymes cathepsin A (CatA), carboxylesterase 1 (CES1) and histidine triad 97 

nucleotide-binding protein 1 (Hint1) involved with removal of monophosphate protections 98 

are classically associated with the hepatic expression(19), they are also present in other 99 

tissue, such as the respiratory tract(20–22). Moreover, the similarities between the SARS-100 

CoV-2 and HCV RNA polymerase suggest that sofosbuvir could act as an antiviral against 101 

COVID-19(23). Using enzymatic assays, sofosbuvir was shown to act as a competitive 102 

inhibitor and a chain terminator for SARS-CoV-2 RNA polymerase(24, 25). In human 103 

brain organoids, sofosbuvir protected from SARS-CoV-2-induced cell death(26).  104 

Altogether, these data motivated us to use cellular-based assays in combination with 105 

titration of infectious viral particles and molecular assay to evaluate if the level of 106 

susceptibility of SARS-CoV-2 to daclatasvir and SFV would occur in physiologically 107 

relevant concentrations. Daclatasvir consistently inhibited the production of infectious 108 

SARS-CoV-2 in different cells, targeting early events during viral replication cycle and 109 

preventing the induction of IL-6 and TNF-α, inflammatory mediators associated with the 110 

cytokine storm characteristic of the SARS-CoV-2 infection.  SFV, which was inactive in 111 

Vero cells, inhibited SARS-CoV-2 replication more potently in hepatoma than in 112 

respiratory cell lines. Our data point to additional antiviral candidates that should  be 113 

considered for clinical trials and eventual treatment for COVID-19 and to potential 114 

chemical structures for efficiency optimization.   115 

 116 

 117 
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2) Results 118 

2.1) SARS-CoV-2 is susceptible to daclatasvir and SFV in a dose- and cell-dependent 119 

manner  120 

SARS-CoV-2 may infect cell lineages from different organs, but permissive 121 

production of infectious virus particles varies according to the cell type and culture 122 

conditions. Since we wanted to diminish infectious virus titers with studied antiviral drugs, 123 

we first compared common cell types used in COVID-19 research with respect to their 124 

permissiveness to SARS-CoV-2. Whereas African green monkey kidney cell (Vero E6), 125 

human hepatoma (HuH-7) and type II pneumocytes (Calu-3) produce infectious SARS-126 

CoV-2 titers and quantifiable RNA levels (Figure S1), A549 pneumocytes displayed 127 

limited ability to generate plaque forming units (PFU) of virus above the limit of detection 128 

(Figure S1A). Therefore, our next experiments were performed with Vero E6, HuH-7 and 129 

Calu-3 cells. 130 

To functionally test whether daclatasvir or SFV would inhibit SARS-COV-2 131 

replication, cells were infected at experimental conditions to reach the peak of virus 132 

replication, e.g. MOI of 0.01 for Vero cells or 0.1 to HuH-7 and Calu-3 cells. Cultures were 133 

treated with daclatasvir or SFV after infection. After 24 h (Vero) or 48h (HuH-7 and Calu-134 

3) culture supernatants were harvested and infectious SARS-CoV-2 tittered in Vero cell. 135 

Daclatasvir inhibited the production of SARS-CoV-2 infectious virus titers in dose-136 

dependent manner (EC50 of 0.8 µM; Table 1), but showed no efficiency when virus was 137 

quantified by copies/mL (Figures 1A and 1B, S2A and S2B, Table 1). These data 138 

strengthen that measurement of virus-induced PFU represents a more reliable way to search 139 

for antiviral drugs than quantification of RNA loads.  140 

SFV did not inhibit SARS-CoV-2 replication in Vero cells (Figure 1A and 1B, S2A 141 

and S2B). On the other hand, daclatasvir consistently inhibited SARS-CoV-2 replication in 142 

Huh-7 and Calu-3 cells with potencies of 0.6 and 1.1 µM, respectively (Figures 1C and D, 143 

S2C and S2D, Table 1). SFV was 35 % more potent to inhibit SARS-CoV-2 replication in 144 

Huh-7 then in Calu-3 cells (Figures 1C and D, S2C and S2D, Table 1). For comparisons, 145 

daclatasvir was 1.1- to 4-fold more potent and efficient than, CQ, LPV/RTV and ribavirin 146 

(RBV), used here as positive controls (Figures 1, S2 and Table 1). SFV performed similarly 147 
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to RBV to inhibit SARS-CoV-2 production in HuH-7 and Calu-3 cells (Figures 1, S2 and 148 

Table 1). Nevertheless, selective index (SI = CC50/EC50) for SFV was 4.6-times superior 149 

then RBV, because of SFV`s lower cytotoxicity (Table 1).     150 

These data demonstrated that SARS-CoV-2 is susceptible to daclatasvir and SFV at 151 

different magnitudes.  152 

 153 

2.2) Daclatasvir and SFV decrease SARS-CoV-2 RNA synthesis.  154 

 Different proteins of the SARS-CoV-2 life cycle could be targeted by daclatasvir, 155 

which originally targets the multi-functional HCV protein NS5A. To gain insight on the 156 

temporality of events critical for daclatasvir`s activity against SARS-CoV-2, we performed 157 

time-of-addition (TOA) assays. Vero cells were infected at MOI of 0.01 and treated with 158 

two times the EC50 of daclatasvir. Vero cells were used in this assay because they present 159 

the peak of virus replication in 24 h, and because, for proper readout, it is wise to avoid 160 

multiple rounds of re-infection in this experiment.  161 

We found that treatments could be efficiently postponed up to 4h with daclatasvir, 162 

declining thereafter (Figure 2A). The temporal preservation of daclatasvir’s anti-SARS-163 

CoV-2 activity overlaps with RBV, which inhibits pan-inhibitor of viral RNA synthesis 164 

(Figure 2A).  165 

 To confirm daclatasvir’s effect on viral RNA synthesis, and considering that SFV is 166 

a RNA polymerase inhibitor, we next tested if these treatments could impair cell-associated 167 

SARS-CoV-2 genomic and subgenomic RNA synthesis in type II pneumocytes (Calu-3 168 

cells). These cells were infected at MOI of 0.1 and treated with 10 µM of the compounds. 169 

After two days, cellular monolayers were lysed and real time RT-PCR performed for ORF1 170 

(genomic) and ORFE (subgenomic) RNA quantification. Daclatasvir was two-times more 171 

efficient to inhibit viral RNA synthesis when compared to SFV (Figure 2B). Daclatasvir 172 

was also more efficient to impair subgenomic RNA synthesis and genomic RNA levels, 173 

reinforcing the perception of targeting the SARS-CoV-2 RNA polymerase complex (Figure 174 

2B).  175 

 176 

 177 

 178 
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2.3) Daclatasvir prevents pro-inflammatory cytokine production in SARS-CoV-2-179 

infected monocytes. 180 

Severe COVID-19 has been associated with increased levels of leukopenia and 181 

uncontrolled pro-inflammatory response (27). Viral infection in the respiratory tract often 182 

triggers the migration of blood monocytes to orchestrate the transition from innate to 183 

adaptive immune responses(28), where the imbalance of pro-inflammatory mediators, such 184 

as IL-6 and TNF-α, may result in cytokine storm. We thus infected human primary 185 

monocytes with SARS-CoV-2 and found that daclatasvir, the most potent compound 186 

observed here, was significantly more efficient to reduce cell-associated RNA levels than 187 

the other studied drugs for COVID-19 (Figure 3A). Accordingly, daclatasvir also reduced 188 

the SARS-CoV-2-induced enhancement of TNF-α and IL-6 (Figure 3B and C). Our results 189 

strongly suggest that the investigated HCV DDA, due to their anti-SARS-CoV-2 and anti-190 

inflammatory effects here described, may offer play a beneficial aspect role for patients 191 

with COVID-19.   192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 
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3) Discussion 205 

The COVID-19 has become a major global health threaten, and most significant 206 

economic burden in decades(29). On June 15th, around 6 months after the outbreak in 207 

Wuhan, China, the WHO recorded more than 7.5 million cases and 420,000 deaths 208 

worldwide (2). SARS-CoV-2 is the third highly pathogentic coronavirus that emerged in 209 

these two decades of the 21st century (2). SARS-CoV-2 actively replicates in type II 210 

pneumocytes, leading to cytokine storm and the exacerbation of thrombotic pathways  (27, 211 

30, 31). This virus-triggered sepsis-like disease associated with severe COVID-19 could be 212 

blocked early during the natural history of infection with antivirals (27, 30, 31). Indeed, 213 

clinical studies providing early antiviral intervention accelerated the decline of viral loads 214 

and diminished disease progression(9, 10). The decrease of viral loads is an important 215 

parameter, because it could reduce the transmissibility at the treated individual level.  216 

To rapidly respond to an unfolded pandemics, it is pivotal to catalogue preclinical data 217 

on the susceptibility of SARS-CoV-2 to clinically approved drugs, as an attempt to trigger 218 

clinical trials with promising products (4). We used this approach during ZIKV, YFV, and 219 

CHIKV outbreak in Brazil, when we showed the susceptibility of these viruses to SFV (15–220 

18, 32). SFV and dacaltasvir are considered safe anti-HCV therapy with potential to be 221 

used with broader antiviral activity. Here, we demonstrated that SARS-CoV-2 is 222 

susceptible to daclatasvir, across different cell types tested, and to SFV, in a cell-dependent 223 

manner. In line with their activity against HCV, these drugs impaired SARS-CoV-2 RNA 224 

synthesis.   225 

In the 9.6 kb genome of HCV, the gene ns5a encodes for a multifunctional protein. The 226 

protein NS5A possesses motifs involved with lipid, zinc and RNA biding, phosphorylation 227 

and interaction with cell signaling events(12). In other viruses, with less compact genomes, 228 

the functions and motifs present in NS5A are distributed to other proteins. For instance, in 229 

SARS-CoV-2, its 29 kb genome encodes for nsp3, with zinc motif; nsp4 and 5, with lipidic 230 

binding activity; nsp7, 8, 12, 13 and 14 able to bind RNA(13). Although there is not a 231 

specific orthologue of NS5A in the SARS-CoV-2 genome, their activities may be exerted 232 

by multiple other proteins.  233 
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Consistently, daclatasvir inhibited the production of infectious SARS-CoV-2 titers with 234 

EC50 values ranging from 0.6 to 1.1 µM across different cell types, including pneumocytes. 235 

The pharmacological parameters presented against SARS-CoV-2 are within the area under 236 

the curve (AUC) for dacaltasvir’s pharmacokinetic in humans (12, 33), thus supporting its 237 

potential for clinical trials against COVID-19, according to drug prioritizing algorithms 238 

(34). Moreover, daclatasvir impaired SARS-CoV-2 RNA synthesis in Calu-3 cells, 239 

suggesting an action in the RNA polymerization complex, similarly to its activity on HCV.   240 

Influenza A virus and other highly pathogenic respiratory viruses provoke cytokine 241 

storm, an exaggerated immune response leading to an uncontrolled pro-inflammatory 242 

cytokine response(35, 36). Similarly, severe COVID-19 is associated with cytokine storm 243 

(27), marked by increased IL-6 levels (27). Dacaltasvir diminished cell-associated viral 244 

RNA in human primary monocytes and not only IL-6, but also TNF-α levels, another 245 

hallmark of this hyper-inflammation (27, 37), and it was more potent than atazanavir, 246 

previously showed by us to inhibit SARS-CoV-2 (38).  247 

With respect to sofosbuvir, although the architecture of the SARS-CoV-2 and HCV 248 

RNA polymerase nucleotide uptake channel is similar (23), the 2’-Me radical apparently 249 

bumps onto critical amino acid residues on the enzymes structure (24). In enzyme kinetic 250 

assays with SARS-CoV-2 nsp7, 8 and 12, its RNA polymerase complex, sofosbuvir-251 

triphosphate, the active metabolite, competitively acts as a chain terminator(24, 25). 252 

Similarly, RBV-, favipiravir- and RDV-triphosphate also target SARS-CoV-2 RNA 253 

elongation (24, 25). Indeed, sofosbuvir reduced the RNA synthesis in SARS-CoV-2-254 

infected cells. 255 

However, to become active in biological systems, sofosbuvir, the pro-drug, must be 256 

converted to its above mentioned triphosphate. This is a multi-stage pathway in which 257 

hydrophobic protections in the monophosphate of sofosbuvir are removed by liver enzymes 258 

CatA, CES1 and HINT1(19). Nevertheless, according to the Human Protein Atlas, these 259 

enzymatic entities are also found in the respiratory tract (20–22). Indeed, we found that 260 

SARS-CoV-2 replication could be inhibited by sofosbuvir, at high concentrations in HuH-7 261 

hepatoma cells and Calu-3 type II pneumocytes. It is impossible to compare sofosbuvir 262 

efficacy over HCV and SARS-CoV-2 because assays readout are quite different, 263 
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respectively: replication systems and PFU. There is a limited knowledge on the intracellular 264 

concentration of sofosbuvir in anatomical compartments other than the liver. Based on the 265 

classical plasma pharmacokinetic model (19), the SFV’s potencies for SARS-CoV-2 would 266 

not be physiological. 267 

The time-frame for antiviral intervention could be up to the 10 days after onset of 268 

illness, which overlaps with the clinical deterioration of COVID-19, marked by the severe 269 

respiratory dysfunction (27). Therefore, there is a therapeutic window that can be explored, 270 

as long as an active antiviral agent is available. It is expected that early antiviral 271 

intervention will modulate the uncontrolled pro-inflammatory cytokine storm, allowing an 272 

equilibrated adaptive immune response towards resolution of the infection. Early antiviral 273 

intervention may lead to the breakdown of the deleterious cycle triggered by SARS-CoV-2 274 

and improve patients' clinical outcomes. Thus, our data on anti-HCV drugs, in especial 275 

daclatasvir, could reinforce their indication as a potential compounds for clinical trials. 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 
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4) Material and Methods 290 

4.1. Reagents.  291 

The antiviral Lopinavir/ritonavir (4:1 proportion) was pruchased from AbbVie 292 

(Ludwingshafen, Germany). Chloroquine, atazanavir, ritonavir and ribavirin were received 293 

as donations from Instituto de Tecnologia de Fármacos (Farmanguinhos, Fiocruz). 294 

Atazanavir/ritonavir was used in the proportion 3:1. Daclatasvir and Sofosbuvir were 295 

donated by Microbiologica Química-Farmacêutica LTDA (Rio de Janeiro, Brazil). ELISA 296 

assays were purchased from R&D Bioscience. All small molecule inhibitors were dissolved 297 

in 100% dimethylsulfoxide (DMSO) and subsequently diluted at least 104-fold in culture or 298 

reaction medium before each assay. The final DMSO concentrations showed no 299 

cytotoxicity. The materials for cell culture were purchased from Thermo Scientific Life 300 

Sciences (Grand Island, NY), unless otherwise mentioned.  301 

4.2. Cells and Virus 302 

African green monkey kidney (Vero, subtype E6), human hepatoma (Huh-7), human 303 

lung epithelial cell lines (A549 and Calu-3) cells were cultured in high glucose DMEM 304 

with 10% fetal bovine serum (FBS; HyClone, Logan, Utah), 100 U/mL penicillin and 100 305 

μg/mL streptomycin (Pen/Strep; ThermoFisher) at 37 °C in a humidified atmosphere with 306 

5% CO2. 307 

Human primary monocytes were obtained after 3 h of plastic adherence of peripheral 308 

blood mononuclear cells (PBMCs). PBMCs were isolated from healthy donors by density 309 

gradient centrifugation (Ficoll-Paque, GE Healthcare). PBMCs (2.0 x 106 cells) were plated 310 

onto 48-well plates (NalgeNunc) in RPMI-1640 without serum for 2 to 4 h. Non-adherent 311 

cells were removed and the remaining monocytes were maintained in DMEM with 5% 312 

human serum (HS; Millipore) and penicillin/streptomycin. The purity of human monocytes 313 

was above 95%, as determined by flow cytometric analysis (FACScan; Becton Dickinson) 314 

using anti-CD3 (BD Biosciences) and anti-CD16 (Southern Biotech) monoclonal 315 

antibodies. The experimental procedures using involving human cells were performed with 316 

samples obtained after written informed consent and were approved by the Institutional 317 
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Review Board (IRB) of the Oswaldo Cruz Foundation/Fiocruz (Rio de Janeiro, RJ, Brazil) 318 

under the number 397-07, to the author DCBH. 319 

SARS-CoV-2 was prepared in Vero E6 cells at MOI of 0.01. Originally, the isolate was 320 

obtained from a nasopharyngeal swab from a confirmed case in Rio de Janeiro, Brazil (IRB 321 

approval, 30650420.4.1001.0008). All procedures related to virus culture were handled in a 322 

biosafety level 3 (BSL3) multiuser facility according to WHO guidelines. Virus titers were 323 

determined as plaque forming units (PFU)/mL. Virus stocks were kept in - 80 °C ultralow 324 

freezers.  325 

4.3. Cytotoxicity assay 326 

Monolayers of 1.5 x 104 cells in 96-well plates were treated for 3 days with various 327 

concentrations (semi-log dilutions from 1000 to 10 µM) of the antiviral drugs. Then, 5 328 

mg/ml 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) in 329 

DMEM was added to the cells in the presence of 0.01% of N-methyl dibenzopyrazine 330 

methyl sulfate (PMS). After incubating for 4 h at 37 °C, the plates were measured in a 331 

spectrophotometer at 492 nm and 620 nm. The 50% cytotoxic concentration (CC50) was 332 

calculated by a non-linear regression analysis of the dose–response curves. 333 

4.4. Yield-reduction assay 334 

Unless otherwise mentioned, Vero cells were infected with a multiplicity of infection 335 

(MOI) of 0.01. HuH-7, A549 and Calu-3 were infected at MOI of 0.1. Cells were infected 336 

at densities of 5 x 105 cells/well in 48-well plates for 1h at 37 °C. The cells were washed, 337 

and various concentrations of compounds were added to DMEM with 2% FBS. After 24 or 338 

48h, supernatants were collected and harvested virus was quantified by PFU/mL or real 339 

time RT-PCR. A variable slope non-linear regression analysis of the dose-response curves 340 

was performed to calculate the concentration at which each drug inhibited the virus 341 

production by 50% (EC50).  342 

For time-of-addition assays, 5 x 105 vero cells/well in 48-well plates wee infected with 343 

MOI of 0.01 for 1h at 37 °C. Treatments started from 2h before to 18h after infection with 344 

two-times EC50 concentration. On the next day, culture supernatants were collected and 345 

tittered by PFU/mL.   346 
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4.5. Virus titration 347 

Monolayers of Vero cells (2 x 104 cell/well) in 96-well plates were infected with serial 348 

dilutions of supernatants containing SARS-CoV-2 for 1h at 37°C. Cells were washed, fresh 349 

medium added with 2% FBS and 3 to 5 days post infection the cytopathic effect was scored 350 

in at least 3 replicates per dilution by independent readers. The reader was blind with 351 

respect to source of the supernatant. 352 

4.6. Molecular detection of virus RNA levels.  353 

The total RNA from a culture was extracted using QIAamp Viral RNA (Qiagen®), 354 

according to manufacturer’s instructions. Quantitative RT-PCR was performed using 355 

QuantiTect Probe RT-PCR Kit (Quiagen®) in an ABI PRISM 7500 Sequence Detection 356 

System (Applied Biosystems). Amplifications were carried out in 25 µL reaction mixtures 357 

containing 2× reaction mix buffer, 50 µM of each primer, 10 µM of probe, and 5 µL of 358 

RNA template. Primers, probes, and cycling conditions recommended by the Centers for 359 

Disease Control and Prevention (CDC) protocol were used to detect the SARS-CoV-2(39). 360 

The standard curve method was employed for virus quantification. For reference to the cell 361 

amounts used, the housekeeping gene RNAse P was amplified. The Ct values for this target 362 

were compared to those obtained to different cell amounts, 107 to 102, for calibration. 363 

Alternatively, genomic (ORF1) and subgenomic (ORFE) were detected, as described 364 

elsewhere (40). 365 

4.7. Statistical analysis  366 

The assays were performed blinded by one professional, codified and then read by 367 

another professional. All experiments were carried out at least three independent times, 368 

including a minimum of two technical replicates in each assay. The dose-response curves 369 

used to calculate EC50 and CC50 values were generated by variable slope plot from Prism 370 

GraphPad software 8.0. The equations to fit the best curve were generated based on R2 371 

values ≥ 0.9. Student’s T-test was used to access statistically significant P values <0.05. 372 

The statistical analyses specific to each software program used in the bioinformatics 373 

analysis are described above. 374 
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Legend for the Figures 569 

Figure 1. The antiviral activity of daclatasvir and sofosbuvir (SFV) against SARS-570 

CoV-2. Vero (A and B), HuH-7 (C) or Calu-3 (D) cells, at density of 5 x 105 cells/well in 571 

48-well plates, were infected with SARS-CoV-2, for 1h at 37 °C. Inoculum was removed, 572 

cells were washed and incubated with fresh DMEM containing 2% fetal bovine serum 573 

(FBS) and the indicated concentrations of the daclatasvir, SFV, chloroquine (CQ), 574 

lopinavir/ritonavir (LPV+RTV) or ribavirin (RBV). Vero (A and B) were infected with 575 

MOI of 0.01 and supernatants were accessed after 24 h. HuH-7 and Calu-3 cells were 576 

infected with MOI of 0.1 and supernatants were accessed after 48 h.  Viral replication in the 577 

culture supernatant was measured by PFU/mL (A, C and D) or RT-PCR (B). The data 578 

represent means ± SEM of three independent experiments. 579 

Figure 2. Daclatasvir and sofosbuvir (SFV) reduced SARS-CoV-2 associated RNA 580 

synthesis. (A) To initially understand the temporal pattern of inhibition promoted 581 

daclatasvir, we performed by Time-of-addition assays. Vero cells were infected with MOI 582 

0f 0.01 of SARS-CoV-2 and treated with daclatasvir or ribavirin (RBV) with two-times 583 

their EC50 values at different times after infection, as indicated. After 24h post infection, 584 

culture supernatant was harvested and SARS-CoV-2 replication measured by plaque assay. 585 

(B) Next, Calu-3 cells (5 x 105 cells/well in 48-well plates), were infected with SARS-CoV-586 

2 at MOI of 0.1, for 1h at 37 °C. Inoculum was removed, cells were washed and incubated 587 

with fresh DMEM containing 2% fetal bovine serum (FBS) and the indicated 588 

concentrations of the daclatasvir, SFV or ribavirin (RBV) at 10 µM. After 48h, cells 589 

monolayers were lysed, total RNA extracted and quantitative RT-PCR performed for 590 

detection of ORF1 and ORFE mRNA. The data represent means ± SEM of three 591 

independent experiments. * P< 0.05 for comparisons with vehicle (DMSO). # P< 0.05 for 592 

differences in genomic and sub-genomic RNA.  593 

Figure 3. Daclatasvir impairs SARS-CoV-2 replication and cytokine storm in human 594 

primary monocytes. Human primary monocytes were infected at the MOI of 0.01 and 595 

treated with 1 µM of daclatasvir, chloroquine (CQ), atazanavir (ATV) or 596 

atazanavir/ritonavir (ATV+RTV). After 24h, cell-associated virus RNA loads (A), as well 597 

as TNF-α (B) and IL-6 (C) levels in the culture supernatant were measured. The data 598 
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represent means ± SEM of experiments with cells from at least three healthy donors. 599 

Differences with P < 0.05 are indicates (*), when compared to untreated cells (nil). 600 
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Table 1 – The pharmacological parameters of SARS-CoV-2 infected cell in the presence of daclatasvir and sofosbuvir (SFV) 0 

 1 

 
Daclatasvir Sofosbuvir Ribavirin Chloroquine LPV+RTV 

 

E

C50 

E

C90 

C

C50 

S

I 

E

C50 

E

C90 

C

C50 

S

I 

E

C50 

E

C90 

C

C50 

S

I 

E

C50 

E

C90 

C

C50 

S

I 

E

C50 

E

C90 

C

C50 

S

I 

Vero/PF

U 

0.

8 ± 

0.3 

3.

4 ± 

1.2 

31 

± 8 

3

9 

>1

0 

>1

0 

36

0 ± 

43 

N

D 

N

D 

N

D 

N

D 

N

A 

1.

3 ± 

0.4 

6.

8 ± 

0.3 

26

8 ± 

23 

2

06 

3.

3 ± 

0.2 

7.

3 ± 

0.3 

29

1 ± 

32 

8

8 

Vero/Co

pies 

>1

0 

>1

0 

31 

± 8 

N

A 

>1

0 

>1

0 

42

1 ± 

34 

N

D 

N

D 

N

D 

N

D 

N

A 

0.

9 ± 

0.3 

5.

7 ± 

0.2 

26

8 ± 

23 

2

06 

2.

8 ± 

0.5 

9.

8 ± 

1.2 

29

1 ± 

32 

1

04 

Huh-

7/PFU 

0.

6 ± 

0.2 

6.

1 ± 

1.4 

28 

± 5 

4

7 

6.

2 ± 

1.1 

10

.8 ± 

2.3 

38

1 ± 

34 

6

1 

6.

5 ± 

1.3 

10 

± 0.3 

14

2 

1

3 

N

D 

N

D 

N

D 

N

A 

2.

9 ± 

0.2 

6.

4 ± 

0.3 
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8 ± 

16 

1

13 
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3/PFU 

1.

1 ± 

0.3 

3.

0 ± 

1.8 

38 

± 5 

3

4 

9.

5 ± 

1.5 
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0 

51

2 ± 

34 

5

4 

8.

6 ± 

1.3 

>1

0 
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0 

1

6 

N

D 

N

D 

N

D 

N

A 

4.

2 ± 

0.5 

9.

8 ± 

1.2 

25

6 ± 

17 

6

1 

EC50, EC90 and CC50 are described in µM 2 

LPV+RTV stands for lopinavir/ritonavir 3 
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