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Abstract  16 
 17 
The status of sardine and anchovy populations in the northern Mediterranean Sea has been 18 
declining in recent decades. In this study, fatty acids and parasitism at different 19 
reproductive and feeding stages in these two species were assessed using specimens 20 

caught along the northern Catalan coast, in order to assess the links between lipid 21 
dynamics, reproduction and feeding in these two species, and to contribute towards an 22 
explanation of the potential causes of the current situation of the stocks. The results 23 

support the use of fatty acid levels as indicators of the body condition of sardine and 24 

anchovy at different reproductive and feeding stages, as well as that of the pelagic 25 
environmental conditions. In particular, the relatively low n-3 PUFA levels (which are 26 
crucial for reproductive success) found in spawning sardines compared to spawning 27 

anchovies indicate a poorer reproductive health status of sardine. By comparing the 28 
current total lipid content values with those recorded in other Mediterranean and North 29 

Atlantic areas, and, others from more than ten years ago, in the adjacent area of the Gulf 30 
of Lion, our study reveals the persistent poor condition of sardine and anchovy in the 31 
northern Catalan Sea. Furthermore, the low levels of diatom fatty acid markers observed 32 

throughout the spawning and non-spawning seasons in both sardine and anchovy, indicate 33 
a diet poor in diatoms. Moreover, the results indicate that it is very unlikely that parasitism 34 

is a significant factor in the decline in condition of sardine and anchovy in the northern 35 

Catalan Sea. In fact, the results suggest that the current poor condition of sardine and 36 

anchovy in the northern Catalan Sea has been exacerbated by a decrease in plankton 37 
productivity and/or a shift in the taxonomic composition of phytoplankton communities, 38 
adding to the ongoing effects of overfishing. 39 
 40 
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 46 
 47 

Introduction 48 

 49 
Substantial declines in the stock size, mean body size and/or condition of European 50 
sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus) have been 51 
observed in the north-western Mediterranean Sea since 2009 (Van Beveren et al. 2014; 52 
Brosset et al. 2015, 2016a; 2017; Ferrer-Maza et al. 2016, Albó-Puigserver et al. 2017, 53 
2019; Saraux et al. 2019), resulting in profound changes in the structure of the stocks and 54 

a major decline in the landings and fishing activity (Coll and Bellido 2019; Brosset et al. 55 
2017; Saraux et al. 2019). Similar negative trends in the body condition of sardine and 56 
anchovy have been documented in other northern areas of the Mediterranean Sea (Brosset 57 

et al. 2017) and for sardine in the Bay of Biscay in the North Atlantic (Veron et al. 2020). 58 
The current status of sardine and anchovy stocks is worrying as these small pelagic 59 
species are not only important to fisheries, they are also important from an ecological 60 
point of view, as they have a central place in the food web as forage species (Saraux et 61 

al. 2019; Albó-Puigserver et al. 2019). Forage fish play a fundamental role in marine 62 
trophodynamics because they uptake the energy available from low-level plankton and 63 
provide higher-order predators, including marine mammals, seabirds, large piscivorous 64 
fish and humans, with a highly nutritious and energetic food source (Cury et al. 2000). 65 

Hence, changes in body condition in these small pelagic fish can have important 66 
implications for the whole ecosystem structure (Pethybridge et al. 2014; Albó-Puigserver 67 
et al. 2017, 2019; Saraux et al. 2019). 68 

 69 

Overfishing, climate change, diseases, predation by large fish such as tuna, and 70 
competition between pelagic organisms for the zooplankton they feed on, have all been 71 
suggested as factors to explain the decline in abundance and mean weight of sardine and 72 

anchovy populations in the Gulf of Lion. It seems, however, that the combined effects of 73 
poor condition, slower growth and the disappearance of older and larger individuals 74 

mediated by potential changes in food availability have been the major causes (Saraux et 75 
al. 2014, Van Beveren et al. 2014; Saraux et al. 2019). In the NW Mediterranean, anchovy 76 
feed on zooplankton (particularly large copepods) whereas sardine feed on both 77 

zooplankton (mainly large copepods) and phytoplankton (mainly diatoms) (Plounevez 78 
and Champalbert (2000), Costalgo and Palomera (2014); Le Bourg et al. (2015). 79 

However, recent studies have suggested a shift in the diet of sardines in the Gulf of Lion 80 

from larger mesozooplankton (with a high proportion of cladocerans) before 2008 to 81 

smaller prey (copepods, suspected to be less nutritious) in the early 2010s (Zarubin et al. 82 
2014; Brosset et al. 2016b). Furthermore, an experimental study carried out in the Gulf 83 
of Lion showed that food size is as important as food quantity for body condition, growth 84 
and total lipids of sardines (Queirós et al. 2019). A combination of pollution and sea 85 
warming may have resulted in a long-lasting domination of smaller, lower-energy 86 

plankton in this region, which could be extremely detrimental to sardine populations 87 
(Queirós et al. 2019). Overall, plankton composition, concentration and size seem to play 88 
a key role in determining the condition of small pelagic fish as other studies have shown: 89 
anchovy in the Strait of Sicily (Basilone et al. 2004, 2006) and in the Adriatic (Zorica et 90 
al. 2013), sprat in the Black Sea (Shulman et al. 2005) and sardine in the Bay of Biscay 91 

(Veron et al. 2020). In the Bay of Biscay, the decline in body condition in sardine since 92 

the late 2000s had no apparent link with fishing pressure but instead was linked to trophic 93 
responses involving a potential shift in the timing of the secondary production and/or the 94 
quality of the food (Veron et al. 2020).  95 
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  96 
Assessing fatty acid composition in forage fish is seen as an ideal way to 97 

understand variability in their population dynamics (Shulman et al. 2005; Litzow et al. 98 
2006; Lloret et al. 2014; Pethybridge et al. 2014; Keinänen et al. 2017). In addition, fatty 99 

acid composition can be used to monitor energy availability and energy transfer in a food 100 
web, because it is known to reflect the fatty acid content of the fish diet, and, ultimately, 101 
of local phytoplankton (St. John and Lund 1996; Litzow et al. 2006), and to determine 102 
the flow-on effects of these observed changes to their predators, because lipid content in 103 
forage fish is likely to have a large influence on higher-order secondary production (Lloret 104 

et al. 2014; Pethybridge et al. 2014; Keinänen et al. 2017).  105 
 106 

Fatty acids are relevant from a nutritional point of view because they serve as 107 

substrates for a number of important metabolic energy and maintenance processes that 108 
underlie essential life history traits of fish, such as reproduction, growth and development. 109 
Fatty acids are the most important components of lipids, defining their energy value and 110 
forming the structural–metabolic “skeleton” of cellular and subcellular membranes. In 111 

particular, polyunsaturated fatty acids (PUFAs) – among which are the omega 3 fatty 112 
acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the 113 
omega 6 fatty acids, such as arachidonic acid (ARA) – are fundamental components of 114 
membranes and are regarded as essential for ion transport and for regulating the viscosity 115 

of membranes, as they provide osmotic and electrolytic homeostasis and membrane 116 
permeability (Lloret et al. 2014). In addition, PUFAs have been identified as a major 117 
dietary factor in determining successful reproduction of fish, being crucial for the future 118 

requirements of the progeny (Tocher 2003; Lloret et al. 2014). They affect hatching 119 

success and viability of larvae because they are especially important in the development 120 
of larval activity and vision, as they accumulate in muscle, retinal rhodopsin, and brain 121 
tissue of larvae and provide them with a better orientation during feeding (Tocher 2003; 122 

Lloret et al. 2014). EPA and ARA are precursors of prostaglandins, which have a role in 123 
final oocyte maturation and ovulation (Lloret et al. 2014). Selective retention of DHA and 124 

ARA in ovaries during ovarian maturation occurs in species such as cod (Røjbek et al. 125 
2012). In the case of sardine and anchovy, there is evidence of the importance of fatty 126 
acids in their reproduction success. For example, a significant variation in the EPA and 127 

ARA concentration of Iberian sardine oocytes was found to be caused by parental effects, 128 
with the amount, and particularly the composition, of the fat reserves that sardines are 129 

able to accumulate prior to the spawning season having a marked effect on the quality of 130 

the eggs produced during the spawning season (Garrido et al. 2007). Hence, from an eco-131 

physiological perspective, assessing PUFAs is one of the best ways to test the effects of 132 
lipid reserves on the reproductive success of small pelagic fish (Lloret et al. 2014). 133 
However, the majority of marine fishes do not possess the ability to synthesize PUFAs 134 
themselves: in pelagic ecosystems, they are mostly produced only by phytoplankton and 135 
are transferred up the food webs; hence, they are considered to be essential fatty acids 136 

(EFAs; Dalsgaard et al. 2003; Lloret et al. 2014). 137 
 138 

Furthermore, determining fatty acid profiles can help in monitoring ecosystem 139 
dynamics in the face of global climate change, reflecting baseline food web dependencies 140 
(Auel et al. 2002; Dalsgaard et al. 2003). In a changing ocean, studies of the fatty acid 141 

profiles of forage fish, complemented with other physiological measures such as 142 

oxidative stress balance, could help reveal shifts in primary productivity and consequently 143 
lead to a system-level understanding of marine trophodynamics (Litzow et al. 2006; 144 
Pethybridge et al. 2014; Queirós et al. 2019).  145 
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 146 
Along with food availability and reproduction, parasitism has also been identified 147 

as a factor affecting the body condition of several fish species in the Mediterranean (e.g. 148 
Lloret et al. 2012; Ferrer-Maza et al. 2014, 2015; 2016; Serrat et al. 2019). However, to 149 

our knowledge, only two studies have looked into the effects of parasites on the lipid 150 
content of small pelagic fish in the Mediterranean. The first, Shchepkina (1985), analyzed 151 
the lipid concentration in the liver and the white and red muscles of anchovy in the Black 152 
Sea and found that specimens that were heavily infected by nematodes showed lower 153 
lipid concentrations (especially triglycerides) in their tissues than lightly infected 154 

specimens. The second study, by Ferrer-Maza et al. (2016), revealed that certain parasites 155 
could be having a negative effect on the energy reserves of anchovy and hypothesized 156 
that the differences observed in energy reserves in anchovy could be due to the effect of 157 

parasitism rather than reproduction. However, a study from Van Beveren et al. (2016) did 158 
not provide evidence of strong pathogenicity from parasites in sardine and anchovy in the 159 
Gulf of Lion. 160 
 161 

In this context, this study analyses, from an ecological standpoint, the fatty acid 162 
composition of sardine and anchovy from the northern Catalan Coast (NW 163 
Mediterranean) in different reproductive and feeding stages, in order to assess the links 164 
between reproduction, feeding and lipid dynamics in both species. We also evaluate a 165 

number of fatty acid trophic markers that have been proposed as candidates for assessing 166 
changes in the condition of small pelagic fish related to changes in planktonic 167 
productivity. In addition, we compare the results provided in this paper in the northern 168 

Catalan Coast with results from other areas to shed light on the current situation in the 169 

northern Catalan Sea. Finally, the lipid dynamics are complemented with the analysis of 170 
an extensive parasitism data set in order to establish whether or not parasites are in some 171 
way responsible for the poor status of these small pelagic species in the study area.  172 

 173 

Materials and methods 174 
 175 
Sampling of individuals  176 

  177 
Samples of adult sardines and anchovies caught by purse seines were taken at the ports 178 
of Blanes, Roses, Sant Feliu de Guíxols, L’Escala and Palamós in the northern Catalan 179 

Sea (Figure 1), during two different periods, corresponding to the two spawning seasons 180 

reported for each species: first, the spawning season of sardine in autumn/winter period 181 

from November 2018 to January 2019 (Palomera and Olivar 1996; Ganias et al. 2007; 182 
Hani et al. 2016); and second, the spawning season of anchovy in the spring/summer 183 
period from April 2019 to June 2019 (Palomera 1992. In order to verify reproductive 184 
status, half the specimens sampled were assessed for maturity stage via visual inspection 185 
of the gonads after dissection. Based on collected commercial data and maturity stage 186 

descriptions for anchovy and sardine (ICES 2008), we concluded that our spawning 187 
individuals were in the categories spawning capable or spawning (i.e. in the early and 188 
active reproductive periods) whereas non-spawning individuals were in the categories 189 
post-spawning, resting or developing. Henceforth we shall refer to these as “spawning 190 
anchovy/sardine” and “non-spawning anchovy/sardine”. Inspecting the gonads of the 191 

specimens allowed us to relate lipid dynamics to reproductive cycle more precisely, 192 

compared to inferring the reproductive stage of the individuals from the month of capture, 193 
as was the case in previous works (e.g. Pethybridge et al. 2014).  194 
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Sampling was performed on several days each month. Fish catches were grouped 195 
in different sample units, which were classified as follows: 10 samples of spawning 196 
sardines, 15 samples of non-spawning sardines; 9 samples of spawning anchovies and 13 197 
samples of non-spawning anchovies. Sample units consisted of between 15 and 90 198 

anchovies (similar lengths, randomly selected from the catch) and between 15 and 40 199 
sardines (similar lengths, randomly selected from the catch). Because the effect of sex 200 
and length on lipid content and fatty acid levels of sardine and anchovy was not significant 201 
(as reported in the Gulf of Lion by Pethybridge et al. 2014), we grouped the specimens 202 
together. Individuals were headed and gutted within 24 h of being caught, and the muscle 203 

samples were homogenized with a grinder and kept frozen at -80 C until analysis.  204 

Analysis of total lipid (fat) and fatty acids 205 

The fat, or lipid content and fatty acid composition were determined for the muscle of 206 
sardine and anchovy, where both species, and indeed most pelagic fishes, store most of 207 

the energy reserves (review by Lloret et al. 2014). The total lipid content (% wet weight) 208 
was determined with an automatic Soxhlet extractor (Gerhardt SOX-416 Macro) 209 
following ISO 1443:1973 for fat extraction. Ground samples were first hydrolysed with 210 
hydrochloric acid (100 ml water+50 ml hydrochloric acid for every 10 grams of sample) 211 

and the lipid fraction was extracted by repeated extraction (percolation) with a volume of 212 
150 ml of petroleum ether per 10 grams of sample. This solvent flowed for several cycles 213 

through the sample into a glass vitrified capsule (thimble) by distillation. The lipid content 214 
in the samples was then calculated by differences in weight.  215 

Fatty acid methyl esters (FAMEs) were analyzed by Gas Chromatography 216 
coupled with a Flame Ionization Detector (GC-FID) following ISO 12966-4:2015. First, 217 
30 g of ground sample were extracted with 50 ml of petroleum ether. The extract was 218 

then evaporated by means of a Buchi rotary evaporator R-210. FAMEs were prepared by 219 
transesterification of the lipid extract, according to ISO 12966-2. FAMEs were analyzed 220 
using an Agilent 7693A gas chromatograph coupled to a FID (Agilent Technologies, US). 221 

The injection volume of samples and standards was 1µL and the column used was a high-222 
polarity capillary column, BPX 70 (70% cyanopropyl / polysilphenylene-siloxane 223 

column, 30 m x 0.25 mm; 0.25 μm film thickness). Initial temperature was 90°C for 1 224 
min, followed by a ramp of 4°C/minute up to 206°C and then another ramp of 20 225 
°C/minute up to 246 °C at which point the temperature was held for 5 min. Detector and 226 

injector temperatures were set at 280°C and 260ºC, respectively. The whole process lasted 227 
37 minutes, with an air flow of 400 mL/minute, an H2 flow of 30 mL/minute and a Helium 228 
flow of 25 mL/minute. Chromatographic peaks were integrated and identified using 229 
standard samples (Supelco 37 Component FAME Mix, from Sigma Aldrich). The content 230 

of each fatty acid in lipids was expressed as a percentage of the total content of all fatty 231 
acids. A total of 24 fatty acids were identified in the total lipid fraction from both species. 232 
However, some were detected at such low levels that a cut off point for quantification 233 
was set at 0.1% for both fish species. This resulted in the quantification of 16 fatty acids.  234 

Indices of trophic relationships 235 

In order to assess trophic relationships, we computed the following ratios (Auel et al. 236 

2002; Dalsgaard et al. 2003): palmitoleic acid/palmitic acid (16:1 n-7/16:0; or PO/P) and 237 
eicosapentaenoic acid/docosahexaenoic acid (20:5 n-3/22:6 n-3; or EPA/DHA). High 238 

values of these ratios indicate a diatom-based diet, whereas low values indicate a 239 
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dinoflagellate-based diet. This is because among the specific lipid components suggested 240 
as suitable for use as trophic biomarkers in the pelagic marine environment (Dalsgaard et 241 
al. 2003), diatoms contain high levels of PO, 16:1 n-7 and EPA, 20:5 n-3, whereas 242 
dinoflagellates usually contain elevated concentrations of stearidonic acid (18:4 n-3 or 243 

SDA) and DHA. Moreover, high EPA/DHA ratios indicate a diet that is predominantly 244 
carnivorous (zooplanktivorous), whereas low EPA/DHA ratios indicate a more 245 
herbivorous (phytoplanktivorous) diet (Dalsgaard et al. 2003). High EPA/DHA ratios 246 
may also be indicative of an important influence of the primary production of cold-247 
diatoms, since cold-water diatoms accumulate especially high amounts of EPA (Falk-248 

Petersen et al. 1998; Scott et al.1999).  249 
 250 
 251 

Evaluation of parasitism 252 

  253 
To evaluate parasitism, we used the data provided by the Catalan Health Agency gathered 254 
from a 6-year program (2002-2007) that monitored parasites in exploited fish species 255 

landed in Catalan ports (Servei de Veterinària de Salut Pública, 2007). Samples were 256 
collected randomly on a monthly basis by the Agency’s veterinary inspectors at seven of 257 
the main fishing ports on the northern Catalan coast. The specimens were caught in the 258 
same areas (although in different years) where the specimens used to evaluate fatty acids 259 

were caught. In total, 1,269 sardines (measuring between 11 and 31 cm) and 773 260 
anchovies (measuring between 7 and 23 cm) were analyzed for the presence of 261 
macroparasites. Immediately after landing, the inspectors recorded the total body length 262 

of each specimen and examined them for macroparasites in the gills, skin, fins and 263 

intestines using a binocular microscope in facilities at each port. When found, parasites 264 
were preserved in a lactophenol solution composed of 1:2:1 lactic acid, glycerol and 265 
water. The preserved parasites were then sent to the laboratories of the Catalan Centre of 266 

Microbiology where they were identified to the lowest possible taxa possible. 23% of 267 
sardine parasites and 16% of the anchovy parasites could be not identified. The 268 

prevalence of parasites was calculated as the proportion of fish infected with parasites, 269 
whereas the mean intensity of parasitism was calculated as the average number of 270 
parasites found in the infected hosts. 271 

 272 
 273 

Statistical tests  274 

 275 

For each fish species, a one-way ANOVA, considering the spawning and non-spawning 276 
period as a factor, was used to examine the existence of significant differences in fatty 277 
acid composition and fat content. A post-hoc Tukey HSD was used to identify statistical 278 
differences between means. In addition, a Principal Component Analysis (PCA) was 279 
carried out to examine the relationships between fatty acid profiles, fatty acid ratios (PO/P 280 

and EPA/DHA) and fat content. Furthermore, for each species, the difference in the 281 
prevalence of parasites between spawning and non-spawning individuals was tested using 282 
a Chi-square 2x2 contingency table. In all cases, the statistical significance was 283 
predetermined at P < 0.05. All analyses were performed using JMP13 software (SAS 284 
Institute, Cary, North Carolina, USA). 285 

 286 

 287 
Results  288 
 289 
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Total lipid content (fat) and fatty acid profiles 290 
 291 
The values for total lipid content (% wet weight) in the muscle tissue of sardine 292 
and anchovy are shown in Table 1. Lipid content was significantly lower in muscle 293 

from spawning sardine (mean value, 1.78%) compared to non-spawning sardine 294 
(mean, 5.86%). In contrast, lipid content was significantly higher in muscle from 295 
spawning anchovy (mean, 2.46%) compared to non-spawning anchovy (mean, 296 
0.89%). 297 
 298 

The fatty acid compositions of the total lipid fraction (from the muscle in all cases) 299 
of both sardines and anchovies are presented in Table 1.  300 
Saturated fatty acids (SFAs): between 37.49% and 46.33% of the total fatty acids in 301 

sardine and between 33.52% and 43.50% in anchovy were SFAs. The most abundant SFA 302 
in sardine and anchovy (spawning and non-spawning) was C16:0. Significant differences 303 
in the proportion of certain fatty acids between spawning and non-spawning fish were 304 
observed. The proportion of C16:0, C17:0, C18:0 – as well as total SFAs – was 305 

significantly higher in spawning sardine than in non-spawning sardine, while the reverse 306 
was true for C24:0, which was significantly higher in non-spawning sardine. In the case 307 
of anchovy, the proportion of C16:0, C17:0, C18:0 – as well as total SFAs – was 308 
significantly lower in spawning anchovy than in non-spawning anchovy, while the 309 

reverse was true for, in this case, C20:0, which was significantly higher in non-spawning 310 
anchovy (Table 1). 311 
 312 

Monounsaturated fatty acids (MUFAs): between 20.33% and 23.61% of total fatty 313 

acids in sardine muscle and between 15.59% and 17.15% of total fatty acids in anchovy 314 
muscle were MUFAs. The most abundant MUFA in sardine and anchovy (spawning and 315 
non-spawning) was C18:1n-9. The proportion of C18:1n-9 and total MUFA was 316 

significantly lower in spawning sardines than in non-spawning sardines. In the case of 317 
anchovy, the proportion of C18:1n-9 was also significantly lower in spawning anchovy 318 

than in non-spawning anchovy, but the reverse was true for the proportion of C22:1n-9, 319 
which was significantly higher in non-spawning anchovy (Table 1).  320 
 321 

Polyunsaturated fatty acids (PUFAs): between 33.32% and 38.88% of the total fatty 322 
acids in sardine muscle and between 39.34% and 50.90% in anchovy muscle were 323 

PUFAs, most of which were n-3 PUFAs (which comprised between 30.13% and 35.75% 324 

of total fatty acids in sardine, and between 35.31% and 47.53% in anchovy). The main 325 

differences between the proportion of PUFAs in spawning and non-spawning individuals 326 
of both species involve n-3 PUFAs. Among the PUFAs, C22:6 n-3 (DHA) was present in 327 
the highest proportion in both species and in both spawning and non-spawning 328 
individuals. Significantly lower proportions of total PUFA, C20:5 n-3 (EPA), C18:3 n-3, 329 
C18:2 n-6 and n-3 PUFA were found in spawning sardines compared to non-spawning 330 

sardines; whereas, significantly higher proportions of C18:2 n-6, EPA, DHA and n-3 331 
PUFA were found in spawning anchovy than in non-spawning anchovy. Only the 332 
proportion of C20:4 n-6 was found to be significantly lower in spawning anchovy than in 333 
non-spawning anchovy (Table 1). 334 
 335 

 336 

Principal component analysis (PCA) 337 
 338 
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A PCA was performed to examine the variation in fatty acid composition between the 339 
two fish species and period of spawning, and to identify the fatty acids most responsible 340 
for this variation. The first two components of the PCA explained 62.8% of the variance. 341 
As shown in Figure 2, Component 1 influences the majority of SFAs and n-3 PUFAs. 342 

Component 1 positively influences C16:0, C17:0, C18:0 and total SFA, and the ratios 343 
between C16:1/C16:0 (PO/P) and EPA/DHA, which are localized together and in 344 
opposite coordinates to C24:0, C20:5 n3, C18:2 n-6 and C22:1 n-9. In addition, C22:6 n-345 
3, total n-3 PUFAs and C20:0 are grouped together and negatively influenced by 346 
Component 1. Meanwhile, Component 2 positively influences fat content and most of the 347 

MUFAs. Linolenic acid (C18:3 n-3) and C22:0 are also positively influenced by 348 
Component 2. Conversely, n-6 PUFA and C20:4 n-6 are negatively influenced by 349 
Component 2. 350 

 351 
In general, the two PCA components allow the variability of fish species to be explained 352 

by the period of spawning. Component 1 is associated with the PO/P and EPA/DHA ratios 353 
and mainly explains the variability in the fatty acid profile of anchovy due to the spawning 354 

period. Accordingly, it seems possible to separate spawning anchovies from non-355 
spawning anchovies by the increase in EPA and DHA (as well as total n-3 PUFAs) and 356 
C20:0 and the decrease in the proportion of SFAs with a chain length of up to 18 carbons. 357 
Non-spawning sardines are also separated from non-spawning anchovies mainly due to 358 

the n-6 and n-9 fatty acid series (Component 2). Similarly, SFAs and n-3 PUFAs help to 359 
differentiate between spawning sardines and spawning anchovies (Component 1).  360 
 361 

 362 

Parasitism 363 
 364 

All the parasites identified in sardines and anchovies were nematode larvae. The results 365 

of the Chi-square tests for each fish species showed that the differences in the prevalence 366 
of parasites between spawning and non-spawning sardines and anchovies were 367 

insignificant. Therefore, the prevalence by species is presented for all individuals 368 
(spawning and non-spawning) taken together. Of all the dissected sardine specimens, 369 
7.88% were infected with at least one nematode, with an intensity that ranged between 370 

one and three parasites (mean intensity=1.15). Hysterothylacium sp was the most frequent 371 
parasite, comprising 75.00% of the total nematodes identified, followed by Anisakis sp 372 

(22.92% of the total). Of all the dissected anchovy specimens, 12.16% were infected with 373 

at least one nematode, with an intensity that ranged between one and four parasites (mean 374 

intensity=1.10). Again, Hysterothylacium sp was the most frequent parasite, comprising 375 
70.40% of the total nematodes identified, followed by Anisakis sp (28.61% of the total). 376 
 377 
 378 

 379 
Discussion 380 
 381 
Our results provide new insights into lipid changes in sardine and anchovy that will 382 
contribute to our understanding of the physiology and ecology of these small pelagic 383 
species in the Mediterranean Sea in the face of changing environmental conditions.  384 

 385 

 386 
Seasonal variation in total lipid content and fatty acid profile in relation to reproduction 387 
and feeding cycles 388 
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 389 
First, this study demonstrates seasonal variations in total lipid content between spawning 390 
and non-spawning sardine and anchovy in the northern Catalan Sea, and these variations 391 
are linked to the different reproduction and feeding strategies of the two species. For 392 

sardine, our study found the lowest total lipid content values during the spawning season, 393 
i.e., in the autumn-winter period of low food (plankton) availability; for anchovy, the 394 
highest values were found during the spawning season, i.e., in the spring-summer period 395 
of high food (plankton) availability. Similar patterns of seasonal variability in total lipid 396 
content have already been reported in other studies (Ganias et al. 2007; Sánchez et al. 397 

2013; Pethybridge et al. 2014; Ferrer-Maza et al. 2016; Albo Puigserver, 2019) and are 398 
in consonance with the breeding strategy of each species: sardine has been described 399 
mainly as a capital breeder, relying on energy stores accumulated prior to reproduction, 400 

whereas anchovy has been described mainly as an income breeder, relying on an abundant 401 
food source during their spawning phase (García and Palomera 1996, Somarakis et al. 402 
2004; McBride et al. 2015; Brosset et al. 2016b). 403 
 404 

Second, our study has been able to link the fatty acid composition of sardine and 405 
anchovy in the northern Catalan Sea with the reproductive and feeding cycle of these 406 
species. In the case of sardine, and in line with the total lipid content data, levels of total 407 
MUFAs and total PUFAs were highest during the non-spawning season during which 408 

feeding intensity is high, in consonance with capital breeding strategy. In the case of 409 
anchovy, and also in line with the total lipid content data, the total PUFAs were 410 
significantly higher during the spawning season, during which the phytoplankton are in 411 

maximum supply, in consonance with its income breeding strategy. However, while the 412 

differences in MUFAs between spawning and non-spawning anchovies were not 413 
significant, the total SFA values in both species displayed the opposite pattern to that of 414 
total lipid with significantly higher values in spawning sardine and in non-spawning 415 

anchovy.   416 
 417 

The reproductive and feeding cycles of these two fish species explain the 418 
variability in the fatty acid composition that can be differentiated by means of a PCA. 419 
Similar findings have been reported for the fatty acid composition of sprat, sardine and 420 

anchovy collected in Gulf of Lion (Pethybridge et al. 2014). These authors reported that 421 
C14:0, C16:0, C16:1 n-7, C18:1 n-9, EPA and DHA are crucial for explaining the 422 

variability in the fatty acid composition of these fish species which is very consistent with 423 

our findings (Figure 2).  It is also worth noting that the PO/P and EPA/DHA ratios 424 

together with the proportions of C18:1 n-9, and, to a lesser extent, EPA and C14:0, can 425 
help to explain feeding habits. It appears, therefore, that the sardine’s diet during 426 
spawning is more carnivorous (zooplanktivorous) and less herbivorous 427 
(phytoplanktivorous) than it is during non-spawning. However, these indices lack 428 
significance in the case of anchovy which suggests that it has different feeding habits 429 

compared to sardine, supporting the hypothesis that sardine and anchovy probably do not 430 
compete strongly for food resources (Chouvelon et al. 2015). As shown in the PCA, 431 
higher percentages in DHA seem to discriminate anchovies during spawning when their 432 
diet may be richer in dinoflagellates and, in general, phytoplankton.   433 
 434 

Our findings also suggest that, in general, a higher proportion of MUFAs is associated 435 

with fattier fish, which may explain the relatively lower proportion of very long chain n-436 
6 PUFAs, with the exception of the precursor of n-6 fatty acid series, linoleic acid (18:2 437 
n-6). On the other hand, the increase in very long-chain n-3 PUFAs seems to be at the 438 
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expense of SFAs containing up to 18 carbon atoms. SFAs and MUFAs are major sources 439 
of metabolic energy in fish (particularly, C16:0, which is a predominant source of 440 
potential metabolic energy during growth and ovary development; Henderson et al. 441 
1984), and can be synthesized by the fish themselves. There are, therefore, complex trade-442 

offs between reproduction, growth and basal energy that cannot be fully explained in our 443 
study. 444 

 445 

The relevance of PUFAs  446 

We shall now turn our attention to the PUFA levels, bearing in mind that they may provide 447 

the only outputs that can be easily interpreted from a physiological point of view. In 448 

particular, n-3 PUFAs have been identified as a major dietary factor determining 449 

successful reproduction in fish, as they are crucial for the future requirements of the 450 
progeny (Tocher 2003, Lloret et al. 2014). There is a high requirement for n−3 PUFAs in 451 
the developing eggs and larvae of fish because of their preponderance in neural and visual 452 
tissues, which predominate in the early stages of development (Bruce et al. 1999). Hence, 453 
any deficiency in these particular fatty acids can cause abnormalities in the neural system 454 

and may affect the success of larvae as visual predators at the onset of first feeding (Bell 455 
and Sargent 1996). In fact, anchovy larvae in the NW Mediterranean contain a high 456 

proportion of PUFAs (Rossi et al. 2006).  457 

The variation in total PUFA levels found in sardine and anchovy in the northern 458 
Catalan Sea was mostly due to variations in the levels of highly unsaturated fatty acids, 459 

namely the n-3 fatty acids, EPA and DHA. Although the relative proportion of n-3 PUFAs 460 

in the fatty acids of non-spawning sardine and non-spawning anchovy was quite similar 461 
(about 35%), the relative proportion in spawning sardine was much lower (about 30%) 462 
than in spawning anchovy (47%). If we consider the significant relationships found 463 

between n-3 PUFAs in female muscle and oocytes of sardine in the North Atlantic, and 464 
the relationship between female diet – in particular, plankton availability immediately 465 

before and during the spawning season – and the quality of offspring produced by sardine 466 
(Garrido et al. 2007), then we can surmise that the relatively low proportion of n-3 PUFAs 467 
in spawning sardines in the northern Catalan Sea indicates a poorer reproductive status of 468 
this species than that of anchovy. It must be also taken into account that sardines have a 469 

lower degree of trophic plasticity than anchovies, both in terms of feeding areas and in 470 
the size of the zooplanktonic prey consumed (Chouvelon et al. 2015) and that Van 471 

Beveren et al. (2016) revealed elevated quantities of macrophage aggregates in sardines 472 
in the Gulf of Lion indicating stress on the fish that might potentially be related to 473 

starvation. In the following section we address the issue of the challenging food supply 474 
over time in more detail 475 

 476 
What do fatty acids tell us regarding the current status of sardine and anchovy stocks 477 
under challenging environmental conditions? 478 

 479 
In order to understand the challenges facing small pelagic fish in the 480 

Mediterranean, and particularly that of sardine, we shall now discuss how the fatty acid 481 
profiles, and the ratios computed, help to explain the potential causes behind the current 482 

status of the stocks. In our study, low diatom markers were present throughout the 483 
spawning and non-spawning seasons of sardine and anchovy. The low (< 0.50) ratios of 484 
PO/P, and EPA/DHA for both sardine and anchovy during the non-spawning periods 485 
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support the hypothesis of a diet for both species that is not predominantly based on 486 
diatoms. This is in contrast to the situation ten years ago (2010 and 2011) in the adjacent 487 
waters of the Gulf of Lion, where for all seasons, these ratios indicated a predominantly 488 
diatom-based diet for both species (Pethybridge et al. 2014). In fact, studies on stomach 489 

analyses of sardine in the Gulf of Lion at that time (2011-2012) showed a higher 490 
proportion of diatoms in the diet compared to dinoflagellates, a situation that was more 491 
accentuated during summer when diatom abundance was usually high after the spring 492 
bloom (Le Bourg et al. 2015; Leblanc et al. 2003).  493 
 494 

Furthermore, the relatively low PO/P and EPA/DHA ratios of non-spawning 495 
sardine in the northern Catalan Sea compared to the ratios observed in other 496 
Mediterranean and North Atlantic areas indicate that, in the Catalan Sea, the proportion 497 

of diatoms in the diet of sardine is lower than in other areas (Table 2). Furthermore, the 498 
comparatively lower EPA/DHA values and high C16:0 values of non-spawning sardines 499 
in the northern Catalan Sea suggest that low-energy phytoplankton is proportionally more 500 
important than high-energy zooplankton in the sardine’s diet in the study area compared 501 

to other areas. This pattern does not occur in anchovy (Table 3), for which the ratios of 502 
PO/P, EPA/DHA and the levels C16:0 in non-spawning individuals from the Catalan Sea 503 
are similar to other Mediterranean areas, except in the Black Sea, where higher PO/P, 504 
EPA/DHA values and lower C16:0 values are found (Table 3). Notwithstanding these 505 

results, the comparison of fatty acid profiles between areas must be taken with caution, 506 
because values compared are expressed in % of total fatty acid mass, and it would be 507 
much better to compare data on absolute fatty acid content (% body mass) (Litzow et al. 508 

2006). 509 

 510 
Although our results show relatively similar or higher values of essential fatty 511 

acids in non-spawning sardine and anchovy compared to other Mediterranean and 512 

Atlantic areas (Tables 2 and 3), when we compare the level of total fat content of non-513 
spawning sardine and anchovy in our study area with that of the Gulf of Lion ten years 514 

ago (Pethybridge et al. 2014), we can conclude that the total fat content in the muscle of 515 
both species has declined (Tables 2 and 3). This may be related to a decrease in primary 516 
production, since a recent study in a coastal area of the northern Catalan Sea showed that 517 

most of the phytoplankton groups there presented a decreasing linear interannual trend in 518 
abundance, which could be associated with a reduction in nutrient availability (Nunes et 519 

al. 2018). Furthermore, the total lipid content of non-spawning sardines and anchovies in 520 

the northern Catalan Sea is also much lower than in the other areas (Tables 2 and 3) 521 

suggesting that sardine may even be forced to rely on direct food intake to acquire enough 522 
energy during the spawning period. 523 
 524 

Taking all these results together, it appears that a decrease in plankton 525 
productivity and/or a shift in the taxonomic composition of phytoplankton communities 526 

may have occurred in the northern Catalan Coast in the last decade, although further 527 
investigations are needed to confirm this statement as the studies carried out so far remain 528 
scarce (Thiébault et al. 2016). The results from our study support the hypothesis proposed 529 
by Saraux et al. (2019) that changes in plankton availability/diversity may be a factor in 530 
the poor condition observed in small pelagic fish in the NW Mediterranean. By altering 531 

the pelagic environment, climate change may be altering the composition and distribution 532 

of plankton species, as well as their importance in the food web, with higher temperatures 533 
favouring the smallest components of the plankton, thus strengthening microbial loop 534 
activity (Thiébault et al. 2016). As increasing temperature favours planktonic organisms 535 
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of smaller size, climate change may particularly affect the condition of sardine, as recent 536 
results revealed that food size (without any modification of its energy content) is as 537 
important as food quantity for the body condition, growth and reserve lipids of sardine 538 
(Queirós et al. 2019). Furthermore, fluctuations in the diatom/dinoflagellate ratio may 539 

have ecosystem-wide consequences for the transfer of energy and matter to higher trophic 540 
levels considering the importance of both groups in the trophic chain of many seas 541 
(Wasmund et al. 2017). Although EFA availability is generally high in marine 542 
ecosystems, it is also highly variable, implying that, occasionally, EFA availability is 543 
limited (Litzow et al. 2006). In the Pacific Ocean, for example, it seems that climate-544 

mediated changes in the availability of EFA were behind the changes in lipid content of 545 
different fish communities, supporting a growing consensus that EFA availability may 546 
influence trophic structure in aquatic ecosystems (Litzow et al. 2006).  547 

 548 

 549 

Parasitism  550 

 551 
Our results on parasitism showed that the metazoan parasite fauna of sardine and anchovy 552 
in the northern Catalan Sea is dominated by nematode larvae. However, considering the 553 

low prevalence and low intensity of parasites in sardine and anchovy in the study area, 554 
our results are in line with Van Beveren et al. (2016) and Saraux et al. (2019) both of 555 

which concluded that it is very unlikely that parasites, or any other pathogenic agent, are 556 
root causes of the drastic population modifications observed in sardine and anchovy in 557 
the NW Mediterranean. For sardine, the study by Van Beveren et al. (2016) found no link 558 

between sardine condition and a wide range of potential pathogens, including parasites 559 

(although only microparasites were found), viruses and bacteria; in other words, no strong 560 
indications of pathogenicity were found. In contrast, for anchovy, a study by Ferrer-Maza 561 
et al. (2016) showed that certain species of parasites had a negative effect on female egg 562 

production and lipid content in smaller individuals. However, there is a wide range of 563 
research available concerning the nematodes that infect anchovy and sardine in the 564 

Mediterranean (e.g. Rello et al. 2009; Gutiérrez-Galindo et al. 2010; Cavallero et al. 2015; 565 
Zorica et al. 2016) and, in general, such studies have reported a relatively low prevalence 566 
of nematodes in these two species, ranging from 0 to 25%, with low values for overall 567 

prevalence when data from different studies were pooled (<3% in the case of Anisakids 568 
in the meta analysis conducted by Colombo et al. 2016). In a study by Rello et al. (2008), 569 

H. aduncum was the only Anisakid parasite found in sardines from the southern and 570 

eastern coasts of Spain, with a total prevalence of 11.85%. Although it is true that 571 
prevalence may change depending on season, parasite species and area (Mladineo et al. 572 
2012; Zorica et al. 2016), such low values support the idea that parasites are probably not 573 

responsible for the poor status of sardine and anchovy stocks in the Mediterranean.  574 
 575 

Our results contribute to the literature on parasitic infestation of sardine and 576 
anchovy in the northern Catalan Sea because, for the first time, we used extensive data 577 
from a monitoring programme covering many ports and years and seasons. However, it 578 

must be noted that other metazoan parasites (such as Digenea and Cestoda) are found in 579 
particular organs, such as pyloric caeca and the stomach, which are difficult to evaluate 580 
in the port and may have gone undetected by the veterinarian inspectors involved in the 581 
programme. It must also be noted, however, that inside the musculature of anchovy, the 582 

number of parasites is negligible (Ferrer-Maza et al. 2016). Overall, the evaluation carried 583 
out by the inspectors in the frame of the monitoring programme in the northern Catalan 584 
Sea ports provide good estimates of parasitism in this region, despite the fact that 585 
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monitoring parasite infestations in fish is particularly challenging due to the complex 586 
interactions among hosts, parasites and the environment, and the existence of many zero-587 
values (Helland et al. 2015). 588 
 589 

 590 
Conclusion  591 
 592 
The results from this study provide evidence that fatty acid levels are good indicators not 593 
only of the body condition at different reproductive and feeding stages of small pelagic 594 

fish, but also of pelagic environmental conditions in the context of global change. The 595 
study contributes to our understanding of the trade-off between condition, reproduction 596 
and feeding in sardines and anchovies through the analysis of variations in the profiles of 597 

fatty acids that are crucial in key life history traits of these forage species, particularly 598 
reproductive success. In our study, low diatom markers were observed throughout the 599 
spawning and non-spawning seasons of sardine and anchovy, indicating a potential shift 600 
in the diets of sardine and anchovy in the area from diatoms to dinoflagellates. Overall, 601 

these results indicate that a decrease in plankton productivity and/or a shift in the 602 
taxonomic composition of phytoplankton communities may have occurred in the northern 603 
Catalan Sea in the last decade. Feeding conditions in spring and summer appear to be a 604 
key factor in determining not only total lipid content but also the levels of specific fatty 605 

acids of sardine and anchovy in the NW Mediterranean. According to our results, it would 606 
appear that, based on total lipid content and fatty acid distribution, sardine and, to a lesser 607 
extent, anchovy, in the northern Catalan Sea are currently in poor condition and 608 

malnourished. In order to confirm this trend and to confirm any potential limitations in 609 

PUFA/EFA availability, further studies on the fatty acids of small pelagic fish in the area 610 
will be needed. Because lipid biochemistry is complex, more research into the nature of 611 
the PUFA/EFA requirements is needed before the ecological implications can be 612 

elucidated.  613 
Our results also support the idea that it is very unlikely that parasites are a root 614 

cause of the decline in the condition of sardine and anchovy in the NW Mediterranean, 615 
but any increase in parasitism could instead be the result of qualitative and/or quantitative 616 
modifications in planktonic production leading to fish in poorer condition, particularly 617 

sardines. Further studies on the planktonic composition and its evolution in the 618 
Mediterranean Sea are needed to improve our understanding of the impacts of changing 619 

food quantity and quality on the condition of these small pelagic fish, which may have 620 

consequences not only for fisheries but also for the whole trophic chain – considering 621 

their importance as forage species. Furthermore, bearing in mind that, in the Catalan Sea, 622 
which is part of GSA6, the sardine and anchovy stocks are considered to be overexploited 623 
according to STECF assessments (STECF 2016), the poor condition status of these 624 
species adds to the worries posed by the impact of fishing activity. This is more evident 625 
for sardine, which according to assessments made by GFCM (2017) has seen a negative 626 

trend in landings and acoustic biomass estimates since 1994 in GSA 6.  627 
 628 
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Tables 947 
 948 
Table 1.  Total fat (% wet weight) and fatty acid profiles (% of total fatty acids) in the muscle of 949 
spawning and non-spawning sardine and anchovy (1) 950 

 Sardine   Anchovy  

 Non-spawning Spawning  Sig.  Non-spawning Spawning  Sig. 

Total fat 5.86 ± 2.14 1.78 ± 1.05 ***  0.89 ± 0.63 2.46 ± 1.49 ** 

C14:0 7.41 ± 0.90 8.07 ± 1.00 ns  6.90 ± 2.25 6.23 ± 1.74 ns 

C16:0 (P) 23.75 ± 1.63 29.49 ± 7.35 **  28.89 ± 6.41 21.39 ± 3.50 ** 

C17:0 0.91 ± 0.16 1.44 ± 0.34 ***  1.37 ± 0.32 0.66 ± 0.44 *** 

C18:0 4.45 ± 0.63 6.59 ± 1.55 ***  5.68 ± 1.13 2.93 ± 1.42 *** 

C20:0 0.32 ± 0.12 0.43 ± 0.27 ns  0.24 ± 0.31 2.14 ± 1.22 *** 

C22:0 0.15 ± 0.09 0.16 ± 0.10 ns  0.08 ± 0.10 0.04 ± 0.09 ns 

C24:0 0.45 ± 0.45 0.15 ± 0.10 *  0.34 ± 0.68 0.12 ± 0.33 ns 

Total SFA 37.49 ± 2.03 46.33 ± 8.76 ***  43.50 ± 8.50 33.52 ± 5.68 ** 

C16:1 n-7 (PO) 5.59 ± 1.10 4.99 ± 1.24 ns  4.30 ± 1.33 3.84 ± 2.11 ns 

C18:1 n-9 14.11 ± 1.37 12.66 ± 1.65 *  11.92 ± 1.73 9.69 ± 2.06 * 

C20:1 n-9 3.57 ± 1.19 2.45 ± 1.97 ns  0.82 ± 0.95 1.52 ± 1.05 ns 

C22:1 n-9 0.22 ± 0.21 0.23 ± 0.21 ns  0.10 ± 0.17 0.53 ± 0.22 *** 

Total MUFA 23.61 ± 2.23 20.33 ± 4.48 *  17.15 ± 2.87 15.59 ± 4.63 ns 

C18:3 n-3 1.95 ± 0.64 1.40 ± 0.16 *  1.07 ± 0.80 1.37 ± 0.86 ns 

C20:5 n-3 (EPA) 10.91 ± 0.99 7.88 ± 1.42 ***  9.02 ± 1.58 14.13 ± 2.61 *** 

C22:6 n-3 (DHA) 22.88 ± 2.38 20.86 ± 4.17 ns  25.24 ± 6.75 32.02 ± 7.46 * 

Total n-3 PUFA 35.75 ± 2.70 30.13 ± 5.42 **  35.31 ± 8.01 47.53 ± 8.64 ** 

C18:2 n-6 2.26 ± 0.26 1.96 ± 0.12 **  1.92 ± 0.50 2.43 ± 0.33 * 

C20:4 n-6 0.89 ± 0.21 1.22 ± 0.77 ns  2.12 ± 1.21 0.97 ± 0.15 * 

Total n-6 PUFA 3.13 ± 0.18 3.19 ± 0.75 ns  4.03 ± 1.36 3.37 ± 0.46 ns 

Total PUFA 38.88 ± 2.75 33.32 ± 5.82 **  39.34 ± 8.59 50.90 ± 8.89 ** 

PO/P 0.24 ± 0.05 0.18 ± 0.07 *  0.15 ± 0.05 0.18 ± 0.09  ns 

EPA/DHA 0.48 ± 0.07 0.38 ± 0.04 ***  0.38 ± 0.09 0.45 ± 0.11 ns 

        

(1) Pairs of means corresponding to spawning and non-spawning fish were compared and those that 951 
were significantly different are identified with the symbols ∗∗∗, ∗∗ and ∗, showing significance 952 
levels of P < 0.001, P < 0.01 and P < 0.05, respectively. ns means not significant. Values in this 953 
table correspond to means ± standard deviation. 954 

 955 
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 957 
 958 
Table 2. Total fat (% wet weight) and fatty acid profiles (% of total fatty acids) during non-959 
spawning periods for Sardina pilchardus in the Eastern Algarve waters of the Atlantic Ocean, 960 
(Bandarra et al. 2017); the Mediterranean waters of the Adriatic Sea (De Leonardis and Macciola 961 
2004), the Gulf of Lion (Pethybridge et al. 2014) and the northern Catalan Sea (our study).  962 
 963 

 

Marine Areas 

 

 

Eastern 

Algarve 

Adriatic Sea Gulf of Lion This study 

(N Catalan Sea) 

October 2016 January–March and 

August–October 2002 

July 2010 November-April 

2019-2020 

 

Total fat 14.0 (-) 18.21 5.86 

C16:0  (P) 19.6 22.3 (-) 23.75 

C16:1 n-7 (PO) 6.6 9.2 (-) 5.59 

PO/P 0.34 0.41 (-) 0.24 

C20:5 n-3 

(EPA) 

13.6 6.5 (-) 10.91 

C22:6 n-3 

(DHA) 

14.8 11.3 (-) 22.88 

EPA/DHA 0.92 0.57 (-) 0.48 

 964 
(-) means no data available. 965 
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Table 3. Total fat (% wet weight) and fatty acid profiles (% of total fatty acids) during non-spawning periods for Engraulis 989 
encrasicolus in the Mediterranean Sea (Eastern Mediterranean, Black Sea, Oksuz et al. 2009; Tyrrhenian Sea, Adriatic Sea and Ionian 990 

Sea, Roncarati et al. 2012; Gulf of Lion, Pethybridge et al. 2014 and northern Catalan Sea (our study).  991 
 992 
 993 

 

Marine Areas 

 

 

Eastern 

Medit. 

Black Sea Tyrrhenian Sea Adriatic Sea Ionian Sea Gulf of Lion This study 

(N Catalan Sea) 

December 

2007 

January 2009 May 2007-2008 

November 2007 

May 2007-2008 

November 2007 

May 2007-2008 

November 2007 

March 2011 December-June 

2019-2020 

 

Total fat (-) 8.85 2.27 1.81 1.91 8.19 0.89 

C16:0  (P) 22.13 17.35 23.66 23.27 21.94 (-) 28.89 

C16:1 n-7 (PO) 2.61 7.93 2.95 3.17 3.71 (-) 4.30 

PO/P 0.12 0.46 0.12 0.14 0.17 (-) 0.15 

C20:5 n-3 

(EPA) 

5.65 10.92 6.13 6.25 6.49 (-) 9.02 

C22:6 n-3 

(DHA) 

33.4 15.29 28.06 27.16 25.28 (-) 25.24 

EPA/DHA 0.17 0.71 0.22 0.23 0.26 (-) 0.36 

 994 
(-) means no data available 995 
 996 
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 1026 
Figure 1. Map of the fishing ports in the northern Catalan Sea (NW Mediterranean) where samples of 1027 
sardines and anchovies were taken  1028 
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 1044 
 1045 
Figure 2. Plots of scores (non-spawning sardine = dark blue; spawning sardine = light blue; non-spawning 1046 
anchovy = red; spawning anchovy = orange) and loadings of the Principal Component Analysis of fish 1047 
species fatty acid composition. 1048 
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