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 2 

ABSTRACT 24 

 25 

The phylogenetic and functional diversity of microbial communities in tropical rainforests, and 26 

how these differ from temperate communities remain poorly described but are directly related to 27 

the increased fluxes of greenhouse gases such as nitrous oxide (N2O) from the tropics. Towards 28 

closing these knowledge gaps, we analyzed replicated shotgun metagenomes representing 29 

distinct life zones from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. 30 

These soils had a distinct microbial community composition and lower species diversity when 31 

compared to temperate grasslands or agricultural soils. Unlike temperate soils, LEF soils showed 32 

little stratification with depth in the first 0-30cm, with ~45% of community composition 33 

differences explained solely by location. The relative abundances and nucleotide sequences of 34 

N2O reductases (nosZ) were highly similar between tropical forest and temperate soils. However, 35 

respiratory NO reductase (norB) was 2-fold more abundant in the tropical soils, which might be 36 

relatable to their greater N2O emissions. Nitrogen fixation (nifH) also showed higher relative 37 

abundance in rainforest compared to temperate soils (20% vs. 0.1-0.3% of bacterial genomes in 38 

each soil type harbored the gene, respectively). Collectively, these results advance our 39 

understanding of spatial diversity and metabolic repertoire of tropical rainforest soil 40 

communities, and should facilitate future ecological modeling efforts.  41 

 42 

Importance:  43 

Tropical rainforests are the largest terrestrial sinks of atmospheric CO2 and the largest natural 44 

source of N2O emissions, two critical greenhouse gases for the climate. The microbial 45 

communities of rainforest soils that directly or indirectly, through affecting plant growth, 46 
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contribute to these fluxes remain poorly described by cultured-independent methods. To close 47 

this knowledge gap, the present study applied shotgun metagenomics to samples selected from 3 48 

distinct life zones within the Puerto Rico rainforest. The results advance our understanding of 49 

microbial community diversity in rainforest soils and should facilitate future studies of natural or 50 

manipulated perturbations of these critical ecosystems.  51 

 52 

INTRODUCTION  53 

 54 

 Soil microbiomes are one of the most complex ecosystems owing to microenvironments 55 

and steep physicochemical gradients, which can change on a micrometer or millimeter scale (1-56 

3). Temporal and spatial heterogeneity, demographic stochasticity, ecotype mixing, dispersion 57 

and biotic interactions are the major drivers of soil microbial diversity in these ecosystems (4, 5). 58 

The formation of such “metacommunities” coupled with biogeography and other edaphic factors 59 

greatly influence the functional and taxonomic profile of a soil ecosystem at any given location 60 

(6). 61 

 Tropical rainforests (“forests” hereafter) are characterized by humid and wet climate 62 

patterns and account for a large portion of the world’s total forest cover (7). These forests have 63 

high levels of primary productivity (~30% of the total global production) due to large amounts of 64 

precipitation coupled with year-long warm temperatures and high levels of light (8). 65 

Consequently, high levels of biodiversity are observed in these forest soils with unique microbial 66 

genotypic signatures being exclusive to this habitat/location, along with only a few cosmopolitan 67 

taxa that are shared with other (non-tropical forest) habitats (9, 10). Although tropical forest soils 68 

are critical ecosystems that host a plethora of distinct ecological niches, little is known about the 69 
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metabolic potential of tropical soils, especially, across elevation and depth gradients. Describing 70 

this metabolic diversity is important for studying and monitoring the microbial activities related 71 

to greenhouse gas fluxes, namely, nitrous oxide (N2O) and carbon dioxide (CO2) from the 72 

tropical soils (11).  73 

Notably, tropical forests represent the largest terrestrial sinks of atmospheric CO2 and the 74 

largest natural source of N2O emissions (12-15). Natural soils have been reported to contribute 75 

over 43% of the total global N2O emissions, with tropical ecosystems being the highest 76 

contributors, having 2 to 4 times higher contributions compared to natural temperate ecosystems 77 

(16-19).  These soils are also responsible for about 70% of terrestrial nitrogen fixation, which 78 

underlies, at least in part, their high rates of net primary productivity (11, 20).  79 

Microbially-mediated nitrification and denitrification are the biotic processes contributing 80 

the most to global N2O soil emissions (60-70%) (19, 21, 22), although chemodenitrification, i.e., 81 

ferrous iron generated by ferric iron-reducing bacteria reacting with nitrite to produce N2O 82 

abiotically, is also likely high in iron-rich tropical soils (23). In soils, N2O is biologically 83 

produced as a result of incomplete nitrification, DNRA (dissimilatory nitrite reduction to 84 

ammonium) or denitrification respiratory pathways (22, 24, 25). Respiratory nitric oxide 85 

reductase (nor) is a key contributor to the microbial production of N2O and is commonly 86 

encoded in the genome of denitrifying bacteria as well as some ammonia-oxidizing organisms 87 

(22, 26-30). 88 

While both biotic and abiotic processes contribute to N2O production, consumption of 89 

N2O is exclusively mediated by microbial N2O reductase (NosZ) activity (31-34). Yet, whether 90 

the denitrifying microorganisms in these soils differ from their counterparts in temperate soils 91 

and, if their functional genes present in the community reflect the high nitrogen fluxes, remain 92 
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unanswered questions despite their apparent importance for better management and modeling of 93 

tropical soil ecosystems. It has also been demonstrated that tropical forests have significantly 94 

higher rates of nitrogen fixation (~70% of total terrestrial nitrogen fixation) compared to other 95 

ecosystems, significantly affecting the nitrogen budgets in these ecosystems (3, 35-37). For 96 

instance, higher rates of nitrogen fixation in soils have been linked to nitrous oxide emissions (N 97 

loss) due to reduced N retention capacities (11, 38, 39). How these ecosystem rates translate to 98 

the nitrogen-fixing microbial (sub)community diversity and gene potential remains unclear.  99 

The Luquillo Experimental Forest (LEF), also known as the El Yunque National Forest in 100 

Puerto Rico (PR), has been a long term ecological research (LTER) site since 1988. The site is 101 

dedicated to the assessment of the effects of climate drivers on the biota and biogeochemistry. 102 

The forest has been subjected to several disturbance regimes over the last few decades, mostly  103 

natural and -to a smaller extent- anthropogenic such as tourism and experimental manipulations 104 

(40, 41). This site encompasses distinct “life zones” characterized by sharp environmental 105 

gradients even across small spatial scales (40, 42, 43). The broad life zones based on the 106 

Holdridge classification system include the rain forest, wet forest, lower montane wet forest, and 107 

lower montane rain forest. These life zones are distinguished by elevation, temperature and 108 

rainfall patterns in addition to other edaphic factors (44-47).  The elevation and rainfall patterns 109 

also tend to influence oxygen availability, redox potential, nutrient uptake and organic 110 

decomposition rates (44, 47, 48).  The dynamic interplay of existing physicochemical gradients 111 

and climatic factors gives rise to a complex mosaic of biodiversity patterns observed in this 112 

forest (45).  Hence, LEF represents an ideal environment to study tropical microbial community 113 

diversity patterns and their impacts on carbon and nitrogen cycling. The four sampling sites of 114 

this study were chosen to represent the distinct vegetation and life zones within the LEF.  115 
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 6 

 Previous studies in the LEF, and similar forest regions, have mostly focused on the 116 

effects of redox dynamics, litter decomposition, nitrogen (N) and other nutrient fertilization on 117 

microbial community activity through enzyme assays. Few studies have examined microbial 118 

diversity patterns across an elevation gradient and were only based on low-resolution techniques 119 

such as terminal restriction fragment length polymorphism analysis (14, 49-53). Furthermore, 120 

studies linking marker-gene abundances (related to nitrogen cycling) with in-situ flux 121 

measurements showed very high N2O fluxes in the forest soils (54). However, the nosZ primers 122 

targeted only the typical (Clade I) clades, thereby introducing a primer bias, which can be 123 

circumvented by employing metagenomic analyses.  124 

With recent developments in next generation DNA sequencing and associated 125 

bioinformatics binning algorithms, near-complete metagenome-assembled genomes (MAGs) can 126 

been recovered without cultivation (55, 56), opening new windows into studying soil microbial 127 

communities. Here, shotgun metagenomes originating from soils from the four different 128 

locations/life zones and three different depths in the LEF were analyzed to describe the microbial 129 

community diversity, biogeographical patterns, and metabolic potential differences across 130 

samples. Furthermore, the metagenomic data obtained from these soils were also compared to 131 

similar data from temperate grasslands in Oklahoma (OK) (57) and agricultural soils from 132 

Illinois (IL), USA (56) obtained previously by our team. By analyzing near-complete MAGs, we 133 

show that the most abundant microbial population (based on number of reads recruited) at each 134 

of the sampling locations represent sequence-discrete populations, similar to those observed in 135 

other habitats (58). Using such sequence-discrete populations as the fundamental unit of 136 

microbial communities, we subsequently assess the population distribution at high resolution 137 
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across the sampling sites (biogeography) and the gene content they encoded, with a focus on 138 

nitrogen metabolism. 139 

 140 

RESULTS 141 

 142 

Diversity of forest microbial communities 143 

The LEF soil communities were compared to those of intensively studied ecosystems, 144 

namely the Oklahoma temperate grassland (OK) (57, 59) and Illinois agricultural soils (IL) (56), 145 

which were previously characterized with similar shotgun metagenomics approaches. Shotgun 146 

metagenomic sequencing recovered a total of 370 million reads across the 4 sites (Suppl. Table 147 

S2). Nonpareil 2.0 (60) was used to estimate sequence coverage, i.e., what fraction of the total 148 

extracted community DNA was sequenced. Nonpareil analysis of community diversity (Suppl. 149 

Fig. S1) showed that the agricultural Urbana (IL) site had the highest diversity of all the soils 150 

compared (NP diversity 24.02; note that NP values are given in log scale), and consequently, the 151 

lowest sequence coverage at (only) 37.23%. El Verde and Pico del Este (20-30cm) were the least 152 

diverse or most completely sequenced with 87.1% and 73.4% coverage respectively (NP 153 

diversity of 19.6 and 20.6 respectively or about 2-3 orders of magnitude less diverse). Overall, 154 

OK and IL soils appear to be more diverse than the PR soils by about two orders of magnitude, 155 

on average, with an average Nonpareil value of 22.75 0.37.  Nearly complete coverage for El 156 

Verde and Pico del Este (20-30cm samples) would require 2.402e+09bp and 8.735e+09bp, 157 

respectively, and, for the same level of coverage, the more complex communities in Urbana (IL) 158 

would require a substantially higher sequencing effort of 1.282e+12bp. The OK soils had an 159 

estimated sequencing depth of 2.063e+11 1.436e+11 bp.  160 
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 161 

Community composition variation across the forest sites based on 16S rRNA gene 162 

sequences. 163 

The number of total 16S-rRNA gene-based OTUs (Operational Taxonomic Unit) 164 

observed in each metagenome as well as the Chao1 estimate of total OTUs present reflected the 165 

degree of undersampling at each site (Suppl. Fig. S1 and S2), and were also consistent with the 166 

Nonpareil coverage estimates (Fig. 1). When Puerto Rico tropical soils (PR) were compared with 167 

the agricultural and grassland soils from the United States at the phylum level, Proteobacteria, 168 

Acidobacteria and Actinobacteria were the most abundant taxa across all ecosystems. However, 169 

in the forest soils, a few highly abundant OTUs dominated the entire soil community whereas in 170 

the OK and IL soils, OTUs were more evenly distributed (Suppl. Fig. S2), consistent with the 171 

Nonpareil diversity results.  Only 1.28% of the total detected OTUs (out of a total 8019, non-172 

singleton OTUs) were shared among all PR samples, while 49.95% of OTUs were exclusive to a 173 

particular sampling site in PR, reflecting partly the under-sampling of the extant diversity by 174 

sequencing. Only 0.37% of the OTUs (out of a total 13760, non-singleton OTUs) were shared 175 

among all the sites across all 3 ecosystems, all of which were assignable to Alphaproteobacteria, 176 

Acidobacteria, Verrucomicrobia and Actinobacteria.  177 

 Further, applying four additional DNA extraction methods on a selected subset of our 178 

samples, including two manual phenol chloroform-based methods that are often advantageous 179 

for iron rich soils like those in tropical forest, revealed similar levels of diversity, more or less 180 

(Suppl.Fig. S3). Hence, the diversity patterns reported here are robust and independent of the 181 

DNA method used. 182 

 183 
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Factors driving community diversity in the forest soils: Multidimensional scaling analysis 184 

of beta diversity 185 

The PCoA (Principal Coordinate Analysis) plots, constructed based on the MASH 186 

distances among whole metagenomes, showed a clustering pattern that was primarily governed 187 

by site/location. Accordingly, site explained 45.22% of the total diversity (Fig. 2B). The non-188 

metric multidimensional scaling (NMDS) analysis of the data revealed only site, pH and soil 189 

moisture to be statistically significant physicochemical parameters in explaining the observed 190 

community diversity (Fig. 2C, Suppl. Table S3). ANOSIM values also indicated site to be a 191 

more important factor than depth, with a P value of 0.001 and 0.94, respectively. Based on the 192 

distance-based redundancy analysis (dbRDA), site was the most significant factor, even when the 193 

interplay between site and sampling depth was accounted for (Suppl. Table S4). Table 1 shows 194 

the partitioning of the variance between the proportion that is explained by constrained axes (i.e., 195 

environmental variables measured) and the porportion explained by unconstrained axes (i.e., 196 

variance not explained by environmental variables measured). The total variance explained by all 197 

(measured) environmental variables was 80.2% (Table. 1), which is remarkably high for a soil 198 

ecosystem (61). 199 

 200 

Major N cycling pathways  201 

Genes encoding proteins involved in denitrification and nitrogen fixation were the most 202 

abundant nitrogen (N) cycling pathway genes detected at different sites. Overall, the forest soils 203 

harbored about a 2-3-fold higher abundance of denitrification genes, i.e., narG, nirK, and norB 204 

catalyzing the reduction of nitrate, nitrite, and nitric oxide, respectively, compared to the 205 

grassland and agricultural soils (Fig. 2A). For instance, the norB gene abundance was found to 206 
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be at the highest abundance among the denitrification genes, with ~37% (SD 9.5%) of the 207 

genomes in the PR soils predicted to contain a norB gene, compared to ~17% (SD 4%) and 208 

~14% (SD 1.3%) at IL and OK, respectively. Similarly, narG showed a 3-fold higher abundance 209 

in the PR soils compared to IL and OK soils (Fig.2B). While denitrification gene abundances 210 

appeared higher in the tropical soils, the relative abundance of nosZ gene, i.e., 11.6% (SD 3%) of 211 

the total genomes across the four locations in the LEF were predicted to encode nosZ, similar to 212 

nosZ relative abundance in IL and OK soils, i.e., 11.75% (SD 5%) and 11.08% (SD 3%), 213 

respectively (not statistically significant at p=0.05). Similar to nosZ, DNRA gene abundances 214 

(namely, nrfA) was similar across all sites studied herein (9%, SD 1.9%).  215 

 216 

Predominant NosZ clades are shared among soil ecosystems 217 

Placing nosZ-encoding reads to a reference nosZ phylogenetic tree revealed that atypical 218 

clades (clade II nosZ), affiliated predominantly with Opitutus, Anaeromyxobacter and other 219 

closely related genera, dominated the nosZ gene pool in the tropical forests (Figs. 3, Suppl. 220 

Figs.S4-S7). In contrast, a very small fraction of reads (<10% of total nosZ reads) were recruited 221 

to typical nosZ clades (or clade I). Members belonging to the clade II nosZ dominated the nosZ 222 

gene pool in OK and IL soils as well, with IL agricultural soils showing the greatest nosZ 223 

sequence diversity among the three regions. Notably, O. terrae-affiliated sequences represented 224 

the most abundant sub-clade (nosZ OTUs/sub-clades were defined at the 95% nucleotide 225 

sequence identity level) in all regions. Furthermore, most of the O. terrae–affiliated reads in the 226 

forest soil dataset appeared to be assigned to a single sub-clade, while their counterparts in the 227 

OK and IL soils appeared to be more evenly distributed among several closely related nosZ sub-228 

clades, i.e., showing higher sequence diversity (Fig. 3, Suppl. Figs. S4-S7). O. terrae (strain 229 
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DSM 11246/PB90-1) nosZ reads at >95% identity made up between 20% and 60% of the total 230 

nosZ reads recovered from the El Verde site and, together with the second most abundant sub-231 

clade from Anaeromyxobacter sp., contributed over 30% of the total nosZ reads across all four 232 

PR locations (Fig. 5). Despite the significant taxonomic diversity observed in these soils (Suppl 233 

Fig. S2), the soils from PR shared several abundant nosZ gene sequences/sub-clades at >95 234 

nucleotide identity with soils in OK and IL (Fig. 3). Furthermore, in order to compare the 235 

predominant nosZ clades across the samples shown here, a new phylogenetic reference tree was 236 

constructed based on almost full length sequences obtained from the assemblies/MAGs obtained 237 

from the metagenomes studied here (namely PR,OK,IL). The short-reads identified as nosZ from 238 

the PR soils were placed on this tree and show that the majority of these reads are recruited by 239 

the nosZ sequences obtained from these assemblies/MAGs, indicating that the nosZ sequences 240 

across these ecosystems studies here are similar (Suppl. Fig. S8) 241 

 242 

Nitrogen fixation potential 243 

The nitrogen fixation genes (mainly nifH) were present at a much lower abundance in the 244 

lower altitude forest samples. For instance, only ~1-3% of all genomes in the lower altitude 245 

samples were predicted to encode nifH compared to a ~20% of the genomes in the higher 246 

elevation samples (Pico del Este) (Fig. 2A), and almost none of the reads from IL and OK 247 

metagenomes appeared to encode nifH (<0.1%). Therefore, nitrogen fixation gene abundance 248 

patterns indicated a much stronger selection for nitrogen fixation in the tropical forest relative to 249 

temperate agricultural or natural prairie soils, especially at higher elevations. Furthermore, no 250 

ammonia oxidizing genes (amoA) were detected in any of the soils except for Urbana soils (IL), 251 

which had a history of fertilizer (N) input. 252 

 253 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153866
http://creativecommons.org/licenses/by-nd/4.0/


 12 

Recovery of metagenome-assembled genomes (MAGs) representative of each site 254 

In order to test the effect of biogeography (i.e., limits to dispersion) of taxa across the 255 

elevation gradient sampled, the distribution of abundant MAGs recovered from each PR 256 

sampling site \ (assembly and MAG statistics provided in Suppl. Table S6) were assessed across 257 

the sites using read-recruitment plots (62). Taxonomic assignment using the Microbial Genomes 258 

Atlas (63) revealed that the most abundant MAG at site El Verde (lowest elevation), representing 259 

4.39% of the total metagenome, and was affiliated with an unclassified Verrucomicrobia. The 260 

second most abundant (1.8% of total) was likely a member of the genus Ca. Koribacter 261 

(Acidobateria) followed by an unclassified member of Acidobacteria (1.45% of total). The 262 

Verrucomicrobium MAG was found at an abundance of 1.03% of the total population at Sabana, 263 

and at 0.07% and 0.03% in Palm Nido and Pico del Este (highest elevation), respectively. 264 

Uneven coverage across the length of the reference sequence and nucleotide sequence identities 265 

were observed in the recruitment of short-reads from Palm Nido and Pico del Este as well as 266 

with all OK datasets, indicating that the related populations in the latter samples were divergent 267 

from the reference MAG (Suppl. Fig. S10). Therefore, at least this abundant low-elevation 268 

Verrucomicrobial population did not appear to be widespread in the other samples analyzed here  269 

(Suppl. Fig. S10). Similarly, the other abundant MAGs from other sites in the forest soils were 270 

unique to the corresponding sites (elevation) from which they were recovered. Almost all MAGs 271 

used in the analyses were assignable to a novel family, if not higher taxonomic rank, according 272 

to MiGA analysis (when compared to 11,566 classified isolate genomes available in the NCBI 273 

prokaryotic genome database), underscoring the large unexplored diversity harbored by the PR 274 

tropical rainforest soils. The sequence diversity/complexity as well as sequencing depth limited 275 

large-scale recovery of high-quality MAGS. 276 
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 277 

Functional gene content of the MAGs 278 

The genome sequences of the most abundant MAGs from each location (n=6) were 279 

analyzed in more detail to assess the functions they encoded, especially with respect to N cycling 280 

pathways (Fig. 4). MAGs from Pico del Este (highest elevation) showed a high abundance of N 281 

metabolism related genes compared to MAGs from other sites (Fig. 4). Most notably, genes 282 

related to nitrogen fixation were found only in the  Pico del Este MAG, which was consistent 283 

with the short read analysis datasets showing greater relative abundance of nifH at this site. 284 

Nitrification (ammonia oxidation related genes) gene clusters were not detected in any of the 285 

recovered MAGs. norB and nosZ genes were found in three out of the six abundant MAGs 286 

analyzed. The most abundant El Verde MAG, most closely related to O. terrae (AAI = 40 %), 287 

possessed a nosZ gene, which was congruent with the nosZ phylogeny described above (i.e., 288 

~60% of the nosZ-encoded reads from El Verde had a closest match to O. terrae nosZ 289 

sequences).  290 

 291 

DISCUSSION  292 

 293 

The present study reported the taxonomic and gene content diversity of the poorly 294 

characterized tropical rainforest soils by using whole-community, shotgun metagenomic 295 

sequencing of samples from the El Yunque forest, Puerto Rico.  The recovered near-complete 296 

MAGs represented several abundant and widespread organisms within this ecosystem that could 297 

serve as model organisms for future studies. Furthermore, since the Luquillo Experimental Forest 298 

(LEF) within El Yunque is subjected to varying natural as well as experimental (e.g., warming, 299 
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phosphorus fertilization) perturbations, our study could also provide a baseline for these 300 

perturbations and future soil microbial studies at LEF. Our results revealed that the LEF soils 301 

harbor distinct microbial communities at sites with distinct elevation from sea-level. In contrast, 302 

and unlike several other soil ecosystems, sampling depth did not have a substantial impact on 303 

structuring community diversity, revealing no depth stratification in the LEF soils, at least for the 304 

depths sampled here (5-30cm). This could be due to the lack of distinct soil horizons within the 305 

first 30cm of the sampling sites, and indicates that the soil formation and/or physicochemical 306 

properties in these ecosystems could differ markedly from those in their temperate counterparts 307 

(44).  308 

 A recent study examining the dominant bacterial phylotypes across the globe found that 309 

the predominant phylotypes were widespread across ecosystems. The only exception to this 310 

pattern was the forest tropical soils which harbor distinct phylotypes (10). Consistent with these 311 

conclusions, the MAGs recovered from each LEF site represented at least novel species and 312 

genera, further underlining the under-tapped microbial diversity harbored by tropical forest soils. 313 

Currently, the environmental factors driving these diversity patterns remain poorly understood 314 

for tropical forest soils (10), but our study provided several new insights into this issue.  315 

In particular, sites El Verde and Sabana (lowest elevation sites) had similar community 316 

structure and diversity compared to the two higher-elevation sampling sites with certain MAGs 317 

being present at both sites but not in any of the other (higher-elevation) sites examined. This is 318 

presumably attributable to both sites having similar climate and vegetation patterns (i.e., 319 

Tabonuco forest). On the other hand, Pico del Este was the highest elevation site and experiences 320 

almost continuous cloud cover as well as horizontal precipitation. The unique topology of Pico 321 

del Este was reflected in distinct and deeply novel MAGs and gene content, which differed 322 
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markedly from the other three sampling sites within the LEF (PCoA plots, Fig. 2B). The high 323 

water content of the Pico del Este soils gives rise to a unique ecosystem dominated by epiphytes 324 

(e.g., moss) (64). The epiphytic community has presumably significant impacts on nutrient (e.g., 325 

nitrogen) cycling (65), and influences the water input to the soil, thereby shaping a unique 326 

habitat/niche for the soil microbes. Free-living microbes have been shown to be one of the 327 

highest contributors to biological N fixation in these forests with high rates of nitrogenase 328 

activity associated with the presence of moss/epiphytes (53, 66). Consistent with these previous 329 

results and interpretations, the Pico del Este showed an extremely high potential for nitrogen 330 

fixation, i.e., it was estimated that 1/5 of the total bacterial genomes sampled possessed genes for 331 

N fixation, which is at least 10 times greater than any other site evaluated herein. Accordingly, 332 

we found that site (location) alone explained about half (45%) of the beta diversity differences 333 

observed among the four sampling sites, which reached ~80% when a few physicochemical 334 

parameters namely pH and moisture were also included in the analyses (Fig. 2B, Table 1). This 335 

is a remarkably high fraction of beta diversity explained by measured parameters for a soil 336 

ecosystem (61) and likely reflected that location and the physical properties that characterized 337 

different locations within LEF structured diversity much stronger than in other soil ecosystems. 338 

Tropical forests have also been shown to have significantly higher rates of nitrogen fixation 339 

compared to other ecosystems, which can exceed the N retention capacity of the soil resulting in 340 

large N loss as N2O (67). The findings reported here on denitrification gene abundances were 341 

generally consistent with these previous observations as well.  342 

Links between soil community structure and nitrogen cycling can help close the 343 

knowledge gaps on how the forest ecosystems impact the release and mitigation of certain highly 344 

potent greenhouse gases such as N2O. The gene abundances observed here, e.g., more than two-345 
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fold higher abundance of norB (associated with NO reduction to N2O) and similar nosZ (N2O 346 

consumption) abundances in tropical soils relative to temperate soils were consistent with higher 347 

N2O emissions observed previously from the tropics. Further, in acidic soils such as the tropical 348 

forest soils evaluated in this study, lack of N limitation can suppress complete denitrification, 349 

thereby leading to higher N2O release compared to other soil ecosystems (35). These 350 

interpretations were consistent with our observation that the PR soils harbored a relatively high 351 

abundance of respiratory (related to denitrification) norB genes as well. Previous studies have 352 

also suggested that most denitrifying bacterial genomes possess the genes required to reduce 353 

nitrate to nitrous oxide but do not possess the gene responsible for the last step i.e., N2O 354 

reduction to N2, leading to the release of N2O gas (Braker and Tiedje, 2003; Richardson et al., 355 

2009; Giles et al., 2012; (22, 26-29), consistent with the findings of our study.  356 

It has been established that tropical forest soils are the single highest contributor of 357 

natural N2O emissions. While several abiotic and microbial processes can contribute to soil N2O, 358 

N2O consumption is an exclusively microbial process, catalyzed by the enzyme product of the 359 

nosZ genes (34). Based on the assessment of the nosZ gene phylogeny, it appears that almost all 360 

of the nosZ genes from the tropical forest soils studied here belong to a previously overlooked 361 

Clade II or atypical nosZ genes (32, 34, 68). This clade consists mainly of non-denitrifying, and 362 

secondary denitrifying N2O reducers. Despite the unique phylogenetic diversity harbored by 363 

tropical soils in general, the nosZ gene sequence diversity appears to be shared between 364 

temperate and agricultural soils (Fig 4). These findings imply strong selection pressure for 365 

conservation of nitrous oxide reductase sequences across tropical and temperate soil ecosystems 366 

that are not apparently applicable to other N-cycling genes and pathways, which warrants further 367 

attention in the future. 368 
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Integration of functional (e.g., gene expression) data with in-situ rate measurements will 369 

provide a more complete picture of the composition and functioning in tropical forest soils. The 370 

identification of certain biomarker genes such as nosZ sequences in our study could facilitate 371 

future investigations on biogeochemical N-cycling and greenhouse gas emissions. For instance, 372 

the assembled MAGs and gene sequences provided here could be useful for the design of 373 

specific PCR assays for assessing transcript levels (activity), allowing potential linking of carbon 374 

dioxide, methane, nitrogen, SOM, etc. turnover to the activity of individual populations. It would 375 

also be interesting to assess how the findings reported here for the LEF apply (or not) to other 376 

tropical forests especially because our study is based on a relative small sample size. While the 377 

diversity in the Puerto Rico soils appears to be lower than that in temperate grassland and 378 

agricultural soils, and different DNA extraction methods, including phenol-chloroform- and kit-379 

based, provided for similar results  (Fig. S3), it is important to note that DNA of the temperate 380 

soil samples was extracted using different methods (OK soils were extracted using the PowerSoil 381 

kit). Therefore, it would be important to confirm these preliminary findings by using the exact 382 

same DNA extraction and sequencing procedures in all soils. Despite the sample size, however, 383 

our results showed differences along the elevation gradient sampled at the LEF that are 384 

independent of DNA extraction (Suppl.Fig. S3) or sequencing methods, and consistent with our 385 

metadata (Fig. 2), and previous process rate measurements. As the gradients at the LEF also 386 

provide a natural setting to interpret the potential ramifications of climate change scenarios such 387 

as altered participation patterns, the DNA sequences provided here could facilitate future 388 

manipulation experiments with an emphasis on understanding and predicting the effects of 389 

climate change on microbial community dynamics along the elevation gradient.  390 

 391 
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MATERIALS AND METHODS 392 

 393 

Sampling sites  394 

Soil samples were collected on February 2016 from four locations/sites across the LEF (18.3′ N, 395 

65.80′ W). The four sites namely, Sabana, El Verde field station, Palm Nido and Pico del Este, 396 

each located at different elevations from the mean sea level, i.e., 265, 434, 634 and 953 m, 397 

respectively, were chosen due to their unique landscape and rainfall patterns, thereby creating 398 

distinct ecological niches (Fig. 2A).   399 

The El Yunque forest is categorized into four distinct vegetation zones namely, the 400 

Tabonuco, Palo Colorado, Sierra Palm and Dwarf/Elfin forests. Site Sabana and El Verde, which 401 

are located at the lowest elevation among the four sites within the LEF, fall under the Tabonuco 402 

forest category in terms of vegetation, dominated by the tree species Dacryodes excelsa (native 403 

to Puerto Rico). They are characterized by canopy cover and low light intensities at the ground 404 

level which account for the sparsely vegetated forest floor. However, these sites still harbor the 405 

richest flora of all sites (69). Palm Nido is characterized by unstable, wetter soils, steeper slopes 406 

and the vegetation is dominated by the Sierra Palm (Prestoea montana). The site at the highest 407 

elevation, Pico del Este (dwarf forest ecosystem or “elfin woodlands”) is characterized by higher 408 

winds, lower temperatures and the vegetation is enveloped by clouds (41, 70) and its main 409 

vegetation is comprised of moss and epiphytes. Furthermore, highly acidic soil and continuously 410 

water-saturated soils deficient in oxygen are some major characteristics of this ecosystem with 411 

most mineral inputs for plants become dissolved in the rain and fog. 412 

Three adjacent soil profiles were taken from each of the four LEF sites (4 sites 413 

encompassing 3 lifezones, Palo Colorado was not sampled).  For each profile, individual soil 414 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153866
http://creativecommons.org/licenses/by-nd/4.0/


 19 

cores were taken at each depth (0-5cm, 5-20cm, 20-30cm) using a 3-cm diameter x 15-cm length 415 

soil corer (AMS Inc, Idaho) that was decontaminated between samplings by washing with 70% 416 

ethanol.  Soil samples were stored in sterile Whirl-pak bags and kept on ice during transport and 417 

until storage at -80º C. The three cores at each sampling depth were pooled together for 418 

community DNA extraction, producing a total of twelve samples across the four sites.   419 

Soil pH was determined using an automated LabFit AS-3000 pH Analyzer, and soil 420 

extractable P, K, Ca, Mg, Mn, and Zn were extracted using the Mehlich-1 method and measured 421 

using an inductively coupled plasma spectrograph at the University of Georgia Agricultural and 422 

Environmental Services Laboratories (Athens, GA, USA). Soil extractable P using this method is 423 

interpreted as the bioavailable fraction of P. NH4-N and NO3-N were measured by first 424 

extracting them from soil samples with 0.1 N KCl, followed by the colorimetric phenate method 425 

for NH4 
+
 and the cadmium reduction method NO3. The physicochemical conditions at the sites 426 

during the time of sampling are provided in Supplementary Table (S1). 427 

 428 

Community DNA extraction and sequencing  429 

Total DNA from soil was extracted using the FastDNA SPIN KIT (MP Biomedicals, Solon, OH) 430 

following manufacturer’s procedure with the following modifications (71). Soils were air dried 431 

under aseptic conditions followed by grinding employing a mortar and pestle.  Cells were lysed 432 

by bead beating and DNA was eluted in 50 µl of sterile H2O. DNA sequencing libraries were 433 

prepared using the Illumina Nextera XT DNA library prep kit according to manufacturer’s 434 

instructions except the protocol was terminated after isolation of cleaned double stranded 435 

libraries. Library concentrations were determined by fluorescent quantification using a Qubit HS 436 

DNA kit and Qubit 2.0 fluorometer (ThermoFisher Scientific), and samples were run on a High 437 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153866
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Sensitivity DNA chip using the Bioanalyzer 2100 instrument (Agilent) to determine library insert 438 

sizes. An equimolar pool of the sequencing libraries was sequenced on an Illumina HiSeq 2500 439 

instrument (located in the School of Biological Sciences, Georgia Institute of Technology) using 440 

the HiSeq Rapid PE Cluster Kit v2 and HiSeq Rapid SBS Kit v2 (Illumina) for 300 cycles (2 x 441 

150 bp paired end). Adapter trimming and demultiplexing of sequenced samples was carried out 442 

by the HiSeq instrument. In total, 12 metagenomic datasets were generated (3 per site for the 443 

three depths), and statistic details on each dataset are provided in Supplementary Table S2.  444 

In order to test for any DNA extraction biases of the kit used above, especially for the 445 

high iron/clay content that characterizes tropical forest soils and is known to affect the extraction 446 

step, four additional DNA extraction methods were performed in parallel on a small subset of 447 

samples collected in 2018 from the same sites (6 samples per extraction method for 5 ecxtraction 448 

methods covering the 4 sites). The methods included two manual (as opposed to kit-based) 449 

phenol-chloroform based methods (72, 73) as well as two other kit-based methods namely; 450 

DNeasy PowerSoil and DNeasy PowerSoil Pro (Qiagen Inc.). For this evaluation, the soils were 451 

first homogenized and subsequently in five subsamples to use with each method (including the 452 

FastDNA SPIN KIT-based method mentioned above). The libraries were constructed and 453 

sequenced the same way as described above for the FastDNA SPIN KIT method.  454 

All metagenomic datasets were deposited in the European Nucleotide Archive (ENA) under 455 

project PRJEB26500. Additional data is available at http://enve-omics.ce.gatech.edu/data/prsoils. 456 

 457 

Bioinformatics analysis of metagenomic reads and MAGs 458 

The paired end reads were trimmed and quality checked using the SolexaQA (74) package with a 459 

cutoff of Q>20 (>99% accuracy per base-position) and a minimum trimmed length of 50 bp.  460 
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i) Assembly and population genome binning: Co-assembly of the short reads from the same 461 

location was performed using IDBA-UD (75) and only resulting contigs longer than 500 bp in 462 

length were used for downstream analysis (e.g. functional annotation and MyTaxa 463 

classification). Genes were predicted on the co-assembled contigs using MetaGeneMark (76) and 464 

the predicted protein-coding regions were searched against the NCBI All Genome database using 465 

Blastp (77). Since the assembly of individual datasets resulted mostly in short contigs (data not 466 

shown), the contigs from the co-assembly (combining metagenomes from the three sampling 467 

depths, for each site) were used for population genome binning. Contigs longer than 1Kbp were 468 

binned using MaxBin (78) to recover individual MAGs (default settings). The resulting bins 469 

were quality checked for contamination and completeness using CheckM (79), and were further 470 

evaluated for their intra-population diversity and sequence discreteness using fragment 471 

recruitment analysis scripts as part of the Enveomics collection (62) essentially as previously 472 

described (80).  473 

ii) Functional annotation of MAGs: Genes were predicted for each MAG using MetaGeneMark 474 

and the predicted protein-coding regions were searched against the curated Swiss-Prot (81) 475 

protein database using Blastp (77). Matches with a bitscore higher than 60 or amino acid identity 476 

higher than 40% were used in subsequent analysis. The Swiss-Prot database identifiers were 477 

mapped to their corresponding metabolic function based on the hierarchical classification 478 

subsystems of the SEED subsystem category (Level 1) (82). The relative abundance of genes 479 

mapping to each function was calculated based on the number of predicted genes from each 480 

MAG assigned to the function (for read-based assessment, see below). Relative abundance data 481 

were plotted in R using the “superheat” package (https://arxiv.org/abs/1512.01524).  Individual 482 

biomarker genes for each step of the nitrogen cycling pathway were manually verified by 483 
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visually checking the alignment of the identified sequences by the pipeline outlined above 484 

against verified reference sequences.   485 

iii) Functional annotation of short reads: Protein-coding sequences present in short reads were 486 

predicted using FragGeneScan (83) using the 1% Illumina error model. The predicted genes were 487 

then searched against the Swiss-Prot database using Blastp (best match). Low quality matches 488 

(bitscore < 60) were excluded, and relative abundance of genes mapping to each function was 489 

determined as described in the previous section. 490 

 491 

Community diversity estimation 492 

i) Nonpareil: Nonpareil (60) was used to estimate sequence coverage, i.e., what fraction of the 493 

total extracted community DNA was sequenced and predict the sequencing effort required to 494 

achieve "nearly complete coverage"(≥95%). The default parameters in Nonpareil were used for 495 

all datasets. Only one of the two paired reads (forward) for each dataset was used to avoid 496 

dependency of the paired reads, which can bias Nonpareil estimates (60).  497 

ii) MASH and multidimensional scaling: MASH, a tool employing the MinHash dimensionality 498 

reduction technique to compare sample-to-sample sequence composition based on k-mers (84), 499 

was used to compute pairwise distances between whole metagenomic datasets and construct the 500 

distance matrix to be used in multidimensional scaling. Pairwise MASH distances between the 501 

metagenomic datasets were computed from the size-reduced sketches (default parameters). 502 

PCoA (Principal coordinate analysis) and NMDS (Non-metric multidimensional scaling) were 503 

employed to visualize the distance matrix and evaluate the physicochemical parameters driving 504 

community diversity, respectively.  Furthermore, dbRDA (distance based redundancy analysis), 505 
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was used to obtain a finer resolution on the observed compositional variation. All of the above 506 

startistical analysis were performed using the vegan package in R (85), with default settings.  507 

iii) 16S rRNA gene fragments recovered from shotgun metagenomes: 16S ribosomal rRNA (16S) 508 

gene fragments were extracted from the metagenomic datasets using Parallel-META (86). 16S-509 

carrying reads were classified taxonomically using the GreenGenes database.  510 

Recovered 16S fragments were clustered (‘closed-reference OTU picking’ strategy using 511 

UCLUST (87)) and taxonomically classified based on their best match in the GreenGenes 512 

database (88) at an ID ≥ 97% in QIIME (89, 90). The relative abundance of the OTUs were 513 

calculated based on the number of reads assigned to each OTU. Community composition was 514 

assessed based on OTU taxonomic assignments at the genus and the phylum ranks and was 515 

compared between the sites based on the relative abundance of OTUs at each site.  516 

 517 

Identification of N cycling genes using ROCker 518 

ROCker (91) was employed for a precise identification and quantification of nosZ (encoding 519 

nitrous oxide reductase), norB (encoding respiratory nitric oxide reductase, cytochrome bc 520 

complex associated), nirK (encoding nitrite reductase), narG (encoding nitrate reductase), nrfA 521 

(encoding nitrite reductase, DNRA related) amoA (encoding ammonia monooxygenase) and nifH 522 

(encoding nitrogenase) encoding metagenomic reads (http://enve-523 

omics.ce.gatech.edu/rocker/models). Briefly, the short-read nucleotide sequences were searched 524 

(using Blastx) against a training set for each abovementioned protein; training sets were 525 

manually curated to encompass experimentally verified reference sequences as suggested 526 

previously (91). The resulting matching sequences were then filtered using the ROCker compiled 527 

model (model for 150bp-long reads for PR and OK soils and 100 bp model for IL soils). Protein 528 
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abundances (based on the number of reads assigned to the protein) were normalized by 529 

calculating genome equivalents. For the latter, the ROCker-filtered read counts were normalized 530 

by the median length of the sequences of each protein reference, and the corresponding genome 531 

equivalents were calculated as the ratio of NosZ (or another protein of interest) read counts to the 532 

RNA polymerase subunit B (rpoB), a universal single copy marker, read counts.  533 

 534 

NosZ phylogenetic analysis 535 

The NosZ reference protein sequences were aligned were aligned using CLUSTAL Omega (92) 536 

and a maximum likelihood reference tree was created using RAxML v 8.0.19 (93) with a general 537 

time reversible model option, gamma parameter optimization and ‘-f a’ algorithm. The ROCker 538 

identified NosZ-encoding reads were extracted from all datasets, translated into protein 539 

sequences using FragGeneScan, and then added to the reference alignment using Mafft (94). The 540 

reads were placed in the phylogenetic tree using RAxML EPA algorithm and visualized using 541 

iTOL (95).  542 

 543 

Intra-population diversity assessment based on recovered MAGs 544 

The taxonomic affiliation of individual contig sequences of a MAG was evaluated based on 545 

MyTaxa, a homology based classification tool (96).  The MiGA (Microbial Genomes Atlas, 546 

www.microbial-genomes.org) webserver was used for the taxonomic classification of the whole 547 

MAG using the ANI/AAI concept.  To assess intra-population diversity and sequence 548 

discreteness, each target population MAG was searched against all the reads from each location 549 

by Blastn (only contigs longer than 2Kbp were used). Fragment recruitment plots were 550 

constructed based on the Blastn matches (threshold values: nucleotide identity 75% and 551 
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alignment length 80bp) using the Enveomics collection of scripts (62). The evenness of 552 

coverage and sequence diversity of the reads across the length of the reference genome sequence 553 

were used to evaluate the presence and discreteness of the population in the chosen dataset.   554 

 555 
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TABLES: 567 

Table 1: Proportion of total microbial community diversity explained by measured soil 568 

environmental factors. 569 

  Inertia Proportion Rank 

 Total 0.1092 1 

  Constrained 0.0876 0.8021 6 

 Unconstrained 0.02161 0.1978 5 

  

Site, sampling depth, pH, total nitrogen, total carbon, moisture data were considered in the 

analysis 

 570 

FIGURE LEGENDS 571 

 572 

Fig. 1: Sampling location map and microbial community diveristy among the study sites. A. 573 

Map of the four sampling sites within the Luquillo Experimental Forest (LEF). B. Principal co-574 

ordinate analysis (PCoA) plots based on MASH distances, colored by sampling site, C. 575 

Nonmetric multidimensional scaling (NMDS) plot with the soil physicochemical parameters 576 

incorporated. The arrow lengths are proportional to the strength of the correlations obtained 577 

between measured soil physicochemical parameters and each ordination axis. 578 

 579 

Fig. 2: Abundance of N cycling genes and their distribution across soil ecosystems. A. 580 

Abundance of hallmark genes for denitrification, DNRA and nitrogen fixation pathways, 581 

represented as genome equivalents (% of total bacterial genomes sampled that carry the gene) in 582 

the metagenomes studied (see Figure key). B. Frequency of genomes carrying the respective 583 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.15.153866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.153866
http://creativecommons.org/licenses/by-nd/4.0/


 27 

denitrifying gene across the three ecosystems studied. Genes denoted by the same letter are not 584 

statistically significantly different between ecosystems (ANOVA Tukey test). Statistical 585 

significance reported at p < 0.05. Note that nitrification genes were not detected in any of the 586 

Puerto Rico sites. 587 

 588 

Fig. 3: Phylogenetic diversity of nosZ-encoding sequences recovered in each soil ecosystem. 589 

nosZ sequences were identified by the ROCker pipeline and placed in a reference nosZ 590 

phylogeny as described in the Materials and Methods section. The radii of the pie charts are 591 

proportional to the number of reads assigned to each sub-clade and the colors represent the 592 

sampling sites from each ecosystem (see Figure key). Sub-clades highlighted in grey indicate the 593 

most abundant sub-clades across all three ecosystems whereas the ones highlighted in blue were 594 

abundant only in agricultural soils (IL). A. nosZ reads from every sampling site recruiting to 595 

atypical (Clade II) clades. B. nosZ reads recruiting to typical (Clade I) clades. Inset shows the 596 

most abundant sub-clade (Opitutus terrae) from panel A and its distribution across all sites. Note 597 

that in all three ecosystems most of the reads recruit to atypical sub-clades. Suppl. Fig. S7 shows 598 

the distribution of the reads among the most abundant sub-clades in detail. 599 

 600 

Fig. 4: Functions encoded by the recovered population MAGs. Heatmap showing the relative 601 

abundance of genes encoding the major metabolic functions (Level 1 of the SEED subsystem 602 

category) for each MAG recovered from the four sites in Puerto Rico. The taxonomic 603 

classification of each MAG based on MiGA is shown on the bottom left. The symbols at the 604 

bottom of the heatmap denote the presence (or absence) of specific N-cycling genes, namely 605 
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denitrification and nitrogen fixation. No genes involved in nitrification were detected in any of 606 

the bins. 607 

FIGURES 608 

 609 

 610 

 611 
 612 

Figure 1: Sampling location map and microbial community diveristy among the study sites. 613 
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 616 

 617 

 618 

 619 

 620 
Figure 2: Abundance of N cycling genes and their distribution across soil ecosystems. 621 

 622 

 623 
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 625 

626 

 627 
Figure 3: Phylogenetic diversity of nosZ-encoding sequences recovered in each soil 628 

ecosystem. 629 

 630 
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 631 

 632 
Figure 4: Functions encoded by the recovered population MAGs.   633 
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