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Summary 14 

Humans and other animals can identify objects by active touch, requiring the coordination of exploratory 15 

motion and tactile sensation. The brain integrates movements with the resulting tactile signals to form a 16 

holistic representation of object identity. We developed a shape discrimination task that challenged head-17 

fixed mice to discriminate concave from convex shapes. Behavioral decoding revealed that mice did this 18 

by comparing contacts across whiskers. In contrast, mice performing a shape detection task simply 19 

summed up contacts over whiskers. We recorded populations of neurons in the barrel cortex, which 20 

processes whisker input, to identify how it encoded the corresponding sensorimotor variables. Neurons 21 

across the cortical layers encoded touch, whisker motion, and task-related signals. Sensory 22 

representations were task-specific: during shape discrimination, neurons responded most robustly to 23 

behaviorally relevant whiskers, overriding somatotopy. We suggest a similar dynamic modulation may 24 

underlie object recognition in other brain areas and species.  25 
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Introduction 38 

Animals have evolved sophisticated abilities to recognize objects, such as landmarks around food 39 

sources. Peripheral sensory neurons detect low-level object features and the central nervous system 40 

integrates them into a holistic representation of shape, endowed with behavioral meaning. This integration 41 

can be over time, space, or even multiple senses. Moreover, animals choose how to move their sensory 42 

organs to most effectively gather information about the world (Gibson, 1962; Yang et al., 2016c). A key 43 

challenge in neuroscience is to understand the strategies animals use to explore the world and how they 44 

integrate those motor actions with the resulting sensory input. 45 

 46 

We investigated this problem in the mouse whisker system. Rodents rely on their whiskers 47 

(macrovibrissae) for social interaction and guiding locomotion (Grant et al., 2018; Gustafson and Felbain-48 

Keramidas, 1977; Stüttgen and Schwarz, 2018). The whiskers, like human fingertips, are moved together 49 

onto objects in order to identify them (Ahissar and Assa, 2016; Diamond, 2010). Head-fixation permits 50 

precise quantification of whisker motion and contacts in high-speed video, as well as a wealth of modern 51 

techniques for monitoring and manipulating neural activity (Adesnik and Naka, 2018). Moreover, the 52 

individual columns of barrel cortex that process input from each whisker are readily identifiable in vivo. 53 

Thus, the whisker system is well-suited to the study of active touch, given an appropriate behavioral task. 54 

 55 

The mouse’s ability to recognize novel objects is a model of cognition in health and disease (Lyon et al., 56 

2012), but the underlying sensorimotor strategies and neuronal mechanisms are not understood. This is in 57 

part due to a paucity of suitable behavioral paradigms. On the one hand, freely moving rodents use their 58 

whiskers to identify objects and obstacles (Brecht et al., 1997; Hutson and Masterton, 1986; Voigts et al., 59 

2015), but tracking multiple whiskers in freely moving animals is challenging (Petersen et al., 2020; Voigts 60 

et al., 2008). It is also difficult to ensure that freely moving rodents use only their whiskers, instead of 61 

vision, olfaction, or touch with skin (Mehta et al., 2007). On the other hand, most tasks for head-fixed mice 62 

focus on spatially simple features, like the location of a pole or the texture of sandpaper (Chen et al., 2013; 63 

O’Connor et al., 2010a). Indeed, the head-fixed mouse is often trimmed to a single whisker, though a few 64 

studies have considered multi-whisker behaviors (Brown et al., 2020; Celikel and Sakmann, 2007; 65 

Knutsen et al., 2006; Pluta et al., 2017). 66 

 67 

We asked how mice discriminate objects of different curvature (concave or convex). Curvature is one of 68 

the fundamental components of form, and discriminating curvature requires integrating information over 69 

space (Connor et al., 2007; Lederman and Klatzky, 1987). Shape discrimination has never been studied 70 

with precise whisker tracking (although cf. Anjum et al., 2006; Brecht et al., 1997; Diamond et al., 2008; 71 

Harvey et al., 2001; Polley et al., 2005). Curved stimuli have been used in the visual and somatosensory 72 

systems of primates, but typically in passive presentation (Nandy et al., 2013; Yau et al., 2009). Active 73 

sensation is critical for shape discrimination in humans and other species (Chapman and Ageranioti-74 

Bélanger, 1991; von der Emde, 2010; Klatzky and Lederman, 2011) yet the underlying neural mechanisms 75 

remain unknown. 76 

 77 

We set out to understand the sensorimotor strategies and neuronal representations of shape 78 

discrimination. We trained head-fixed mice to discriminate concave and convex shapes while tracking 79 

every contact they made on the shapes with an array of whiskers. For comparison, other mice were 80 

trained simply to report the presence or absence of the same shapes regardless of their identity. We used 81 

behavioral decoding to reveal which sensorimotor features were critical for their decisions. Shape 82 

discrimination mice compared contacts across whiskers whereas shape detection mice simply summed up 83 

contacts across whiskers. Population recordings in barrel cortex revealed a persistent representation of 84 

the mouse’s choice on individual trials in addition to other sensory, motor, and task variables. Most 85 
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importantly, during detection the neural population encoded contact by each whisker equally whereas 86 

during discrimination responses to behaviorally relevant whiskers were enhanced. Our multi-pronged 87 

approach of behavioral classification and neural encoding and decoding models reveals how the barrel 88 

cortex integrates fine-scale sensorimotor events into high-level representations of form. 89 

Results 90 

The shape discrimination and shape detection tasks 91 

We developed a novel behavioral paradigm for head-fixed mice that challenged them to discriminate 92 

shapes (Supplemental Video 1). On each trial, a linear actuator moved a curved shape (either convex or 93 

concave) into the range of the whiskers on the right side of the face, though mice had to actively whisk to 94 

contact it. The shape stopped at one of three different distances from the mouse (termed close, medium, 95 

or far; Fig 1A,B), ensuring recognition was position-invariant and that mice did not memorize the location 96 

of a single point on the object. Mice could also generalize to flatter, more difficult stimuli (Supplemental Fig 97 

1A). 98 

 99 

Mice learned to lick left for concave and right for convex shapes in order to receive a water reward. Two 100 

seconds after the shape started moving, and soon after it reached its final position, the “response window” 101 

began (Fig 1C). The first lick in the response window (the “choice lick”) determined whether the trial was 102 

correct or incorrect. Early licks had no effect, but mice increased their rate of correct licks and licks 103 

concordant with the eventual choice lick as the response window approached (Fig 1D), indicating the 104 

formation of their decision. Mice could learn the trial timing from the sound of the actuator, but whiskers 105 

were required to identify the shape (Supplemental Fig 1B).  106 

 107 

To unambiguously identify each whisker in videography, we gradually trimmed off whiskers on the right 108 

side of the face throughout training. The middle (C) row was spared: C1 is the caudal-most and longest 109 

whisker; C3 is the rostral-most and shortest whisker still capable of reaching the shapes. Mice were 110 

strongly impaired by each trim, falling to chance or near-chance levels, suggesting that they initially relied 111 

on many whiskers (data not shown). However, with retraining, many were able to discriminate shape with 112 

only these 3 whiskers. Some mice retained a straddler whisker (“C0”), but it rarely made contact and was 113 

excluded from analysis. 114 

 115 

We trained a separate group of mice on a “shape detection” task (Fig 1E) to determine whether the 116 

behavioral and neural responses were specific to shape discrimination or were simply due to the shapes 117 

themselves. In this control task, mice learned to lick right in response to either shape and to lick left on 118 

trials when the actuator presented an empty position with no shape. The shapes, trial timing, and trimming 119 

were identical to those for discrimination. 120 

  121 

Both groups of mice learned to perform well above chance (Fig 1F; n = 5 detection mice and 10 122 

discrimination mice). Detection mice more accurately reported the presence of a shape when it was closer 123 

(Fig 1G). Discrimination mice identified concave shapes equally well at all locations, but were more likely 124 

to identify convex shapes correctly when closer. Thus, shape discrimination relied on “detecting 125 

convexity”, an observation we return to below. 126 

 127 

The whisk cycle synchronizes contacts across multiple whiskers into packets 128 

To identify how mice identified the shapes, we acquired video of their whiskers at 200 frames per second. 129 

This large dataset—15 mice, 88.9 hours, 115 sessions, 18,514 trials, 63,979,800 frames—necessitated 130 

high-throughput automated tracking. To do this, we used the human-curated output of a previous-131 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.126631doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.126631
http://creativecommons.org/licenses/by/4.0/


 

5 

generation whisker tracking algorithm (Clack et al., 2012) to bootstrap the training of a deep convolutional 132 

neural network (Insafutdinov et al., 2016; Mathis et al., 2018; Pishchulin et al., 2015). This method 133 

successfully tracked the full extent of the whiskers even as they moved rapidly, became obscured, or 134 

contacted the shape (example frames: Supplemental Fig 2A). 135 

  136 

Trained mice whisked in stereotyped patterns that could differ widely across individuals (Fig 2A). We 137 

decomposed whisker motion into individual cycles (Fig 2B, n = 882,893 whisks from 15 mice, excluding 138 

inter-trial intervals). Individual whisks had a mean duration of 64.1 ± 4.0 ms, equivalent to a whisking 139 

frequency of 15.6 Hz, with an amplitude (peak-to-trough angular difference) of 10.6 ± 1.9° (mean ± 140 

standard deviation of the within-mouse average; Supplemental Fig 2B). Mice made contacts near the peak 141 

of the whisk cycle (Fig 2C), synchronously across whiskers (Fig 2D; cf. Sachdev et al., 2001). 142 

 143 

Compared with the detection group, mice performing shape discrimination made more single- and multi-144 

whisker contacts (Fig 2E). Both groups made C3 contacts less frequently because it was too short to 145 

touch the shapes at the further positions. However, the shape discrimination group made much longer 146 

duration contacts with the C3 whisker than the shape detection group (Fig 2F), suggesting an important 147 

role for this whisker in discrimination. During both tasks, performance increased with the number of 148 

contacts made on each trial (Fig 2G). In combination with the stereotyped whisking pattern, this suggests 149 

mice relied on a pre-planned motor strategy rather than an closed-loop strategy (Yang et al., 2016c; Zuo 150 

and Diamond, 2019a). In sum, the whisk cycle synchronizes contacts across multiple whiskers into 151 

discrete packets of sensory evidence, which mice use to identify shape. 152 

 153 

Mice rely on brief “tapping” of the stimuli 154 

The way mice contacted these shapes fundamentally differed from previous reports of mice and rats 155 

exploring different objects. We exclusively observed tip contact whereas mice localizing poles make 156 

contact with the whisker shaft (Hires et al., 2013, cf. a similar observation in rats discriminating texture in 157 

Carvell and Simons, 1990). We never observed mice dragging their whiskers across the objects’ surfaces, 158 

as they do with textured stimuli (Carvell and Simons, 1990; Jadhav et al., 2009; Ritt et al., 2008). 159 

 160 

Contacts were brief (median 15 ms, IQR 10-25 ms, n = 167,217; Supplemental Fig 2C). Whisker bending, 161 

a commonly used proxy for contact force (Birdwell et al., 2007) but see also (Quist et al., 2014), was 162 

dynamic (Fig 2H): a whisker could bend slightly while pushing into a shape and then bend in the other 163 

direction while detaching. Occasionally we observed double pumps, a signature of active exploration 164 

(Wallach et al., 2020).  165 

 166 

Strikingly, the contact forces we observed were much smaller than in previous reports of other tasks. The 167 

typical maximum bend (Δκ) was 5.1 +/- 1.0 m-1 for C1, 11.2 +/- 1.2 m-1 for C2, and 19.1 +/- 3.3 m-1 for C3 168 

(mean +/- SEM over mice; Fig 2I), much less bent than the 50-150 m-1 typical of pole localization or 169 

detection (Hires et al., 2015; Hong et al., 2018; Huber et al., 2012). This sensorimotor strategy of “minimal 170 

impingement” onto the shape is the mode used by freely moving rodents investigating objects and may 171 

thus be more naturalistic (Grant et al., 2009; Mitchinson et al., 2007).  172 

 173 

Behavioral decoding reveals the sensorimotor features that guide behavior 174 

To uncover the strategies mice used to perform this novel task, we turned to behavioral decoding. First, 175 

we quantified a large suite of sensorimotor features from the video (e.g., contact location, cross-whisker 176 

contact timing) as well as task-related variables (choice and reward history). Then we trained linear 177 

classifiers using logistic regression to predict either the stimulus identity (concave vs convex for 178 
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discrimination; something vs nothing for detection) or the mouse’s choice (lick left or lick right) on each trial 179 

using those features (Fig 3A).  180 

 181 

Predicting the stimulus indicated which features carried information about shape whereas predicting 182 

choice indicated which features might have influenced the mouse’s decision. However, an important 183 

challenge was to disentangle the extent to which each feature predicted stimulus or choice (Nogueira et 184 

al., 2017). These two variables are correlated; indeed, they are perfectly correlated on correct trials. To 185 

directly address this, we weighted error trials in inverse proportion to their abundance, such that correct 186 

and incorrect trials were balanced (i.e., equally weighted in aggregate). This notably improved our ability to 187 

predict the mouse’s errors (Supplemental Fig 3A). 188 

 189 

To identify the most important features, we compared the accuracy of separate decoders trained on every 190 

individual feature during shape discrimination (Fig 3B, left). The most informative feature for decoding both 191 

stimulus and choice was a two-dimensional binary array representing which whisker made contact at each 192 

timepoint within the trial, which we term “whisks with contact” (schematized in Fig 3A). The next most 193 

informative feature was “whisks without contact”: when the mouse whisked far enough forward to rule out 194 

the presence of some shapes but did not actually make contact. Together, these two variables constitute 195 

all “sampling whisks” that were sufficiently large to reach the closest possible shape position; the 196 

remaining “non-sampling whisks” could not be informative because they were too small to reach the 197 

shapes at any position. The “contact angle” feature was also useful for predicting the stimulus, likely due 198 

to the geometrical information it contains. It was less useful for predicting choice, suggesting that mice did 199 

not exploit the information despite its utility.  200 

 201 

The remaining 28 analyzed features were relatively uninformative about choice (Supplemental Fig 3B). 202 

Notably, mechanical/kinematic variables like speed or contact-induced whisker bending, cross-whisker 203 

variables like relative timing, and task variables like choice history contained little or no information about 204 

stimulus and choice. Similarly, contact time within the trial or whisk cycle was relatively uninformative 205 

compared with the spatiotemporal “whisks with contact” feature. 206 

 207 

We next assessed whether these features contained unique information and which features sufficed for 208 

maximal prediction accuracy by gradually adding features in decreasing order of their usefulness until the 209 

model’s performance plateaued (Fig 3C). Unique information was present in whisks with contact, whisks 210 

without contact, and contact angle, and these three features together performed as well as the full model 211 

with all measured features. Therefore we used this reduced model (the “optimized behavioral decoder”; 212 

dashed box, Fig 3C) for all further analyses. 213 

 214 

This decoder accurately predicted either stimulus or choice on both correct and error trials during both 215 

detection (Fig 3D; stimulus: 84.0 ± 3.2%; choice: 78.3 ± 3.6%; mean ± SEM) and discrimination (stimulus: 216 

88.2 ± 1.8%; choice: 77.4 ± 1.3%). It outperformed the mice on shape discrimination (Fig 3E), indicating 217 

that the mice were unable to access or use some of the information in the contact pattern.  218 

 219 

Thus, this decoder constitutes a model of behavior capable of either identifying the stimulus or predicting 220 

the mouse’s choice, even on error trials. Reflecting the mice’s “tapping” strategy, this model primarily 221 

required binary information about which whiskers made contact rather than the fine temporal dynamics of 222 

those contacts. 223 

 224 
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Shape detection and discrimination engage distinct motor strategies 225 

The results from classifying stimulus and choice in the shape detection task differed strikingly from shape 226 

discrimination: the total contact count summed over whiskers explained stimulus and choice better than 227 

any other variable (Fig 3B, right). Total contact count was far less informative during discrimination. This 228 

reflects the fundamental difference between these tasks: detection requires the mouse only to know that 229 

contacts occurred whereas discrimination requires additional information—most critically, the identities of 230 

the contacting whiskers.  231 

 232 

To test whether mice adapted their whisking strategies to the task, we asked whether shapes could be 233 

classified from the data of mice performing the shape detection task, even though these mice did not 234 

actually need to identify the shapes. We used the optimized behavioral decoder for discrimination (Fig 3C, 235 

dashed box) to predict shape identity from detection sessions. Its ability to decode shape identity during 236 

the detection task was poor compared with during the discrimination task (Fig 3F), despite the fact that the 237 

shapes in both cases were identical. Thus, mice adapt their whisking to the task at hand, collecting more 238 

information about shape identity when behaviorally relevant. 239 

 240 

Mice compare contacts across whiskers to discriminate shape 241 

Whether predicting stimulus (Fig 3G) or choice (Supplemental Fig 3C), the behavioral decoder assigned 242 

strikingly different weights to contacts made by each whisker. For shape detection, all weights were 243 

positive, meaning contact by any whisker indicated that a shape is present (Fig 3G, left). In sharp contrast, 244 

weights of different whiskers had opposite signs during shape discrimination (Fig 3G, right). This indicates 245 

that they conveyed opposite information: each C1 contact indicated a greater likelihood of convex whereas 246 

each C3 contact indicated a greater likelihood of concave.  247 

 248 

Thus, mice compare contacts across whiskers to discriminate an object’s curvature whereas they sum up 249 

contacts across whiskers to detect an object. Critically, this is not because any given whisker can only 250 

reach one of the shapes; all whiskers can touch both shapes (Fig 3H). Instead, the whisking strategy 251 

employed for discrimination biases contact prevalence across whiskers, which the decoder exploits to 252 

predict the mouse’s choice.  253 

 254 

To visualize this process of spatial sampling, we registered all of our whisker video into a common 255 

reference frame (Fig 3I). As expected, the whiskers reliably sampled different regions of shape space (Fig 256 

3J). Interestingly, the C1 whisker sampled the region in which contacts indicated convexity and absence of 257 

contacts indicates concavity (Fig 3K). The reverse was true for C3. The location that mice chose to sample 258 

even in the absence of contacts was also informative about their upcoming choice (Supplemental Fig 3D-259 

F; Dominiak et al., 2019). 260 

 261 

In summary, behavioral decoding produced a computational model of the distinct sensorimotor strategies 262 

that mice adopted in two different tasks. Inspection of the weights revealed that mice summed up contacts 263 

across whiskers to detect shapes whereas they compared contacts across whiskers to discriminate shape 264 

identity. This analysis could be used to dissect active sensation in other modalities as well. 265 

 266 

Barrel cortex neurons encode movement, contacts, and choice 267 

We next examined how barrel cortex encoded these sensorimotor events as well as cognitive variables 268 

like reward history, using an extracellular electrode array to record across all layers of cortex 269 

simultaneously (Fig 4A-D; Supplemental Video 2). We recorded 675 neurons from 7 mice performing 270 

shape discrimination and 301 neurons from 4 mice performing shape detection. Putative inhibitory 271 

interneurons were identified from their narrow waveform width (Fig 4B). Neurons with broad waveforms 272 
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are mostly excitatory, though a small population of inhibitory neurons are similarly broad (Bruno and 273 

Simons, 2002; Gouwens et al., 2019; Yu et al., 2019). 274 

 275 

Neurons exhibited rapid transient responses to whisks with contact but not to whisks without contact (Fig 276 

4E). These contact responses were stronger in the superficial layers and in inhibitory neurons, likely 277 

reflecting greater thalamocortical input to this cell type (Bruno and Simons, 2002; Cruikshank et al., 2007). 278 

Firing rates on timescales longer than the whisk cycle nevertheless tracked whisking amplitude, especially 279 

in deep inhibitory neurons (Fig 4F). 280 

 281 

To determine whether these neurons contained information about stimulus or choice, we used neural 282 

decoding of resampled pseudopopulations to predict stimulus and choice from the entire neural population 283 

(Methods; Rigotti et al., 2013). Stimulus and choice could be decoded with a similar timecourse and 284 

accuracy (Fig 4G, left) but, as we addressed in the behavioral analysis, this could be an artifact of the 285 

correlation between them. We therefore applied a similar approach of “balancing”, i.e. weighting error trials 286 

in inverse proportion to their abundance, to completely decorrelate stimulus and choice. This revealed that 287 

information about choice grows gradually throughout the trial whereas information about stimulus 288 

increases stepwise early during the trial (Fig 4G, middle).  289 

 290 

Finally, we asked whether this information was “local” (contained in individual whisk cycles; Isett et al., 291 

2018) or continuous (integrated over the trial). We removed information from “sampling whisks” (those 292 

large enough to reach the shapes at their closest position) by setting the spike count to zero on those 293 

whisks, again using trial balancing to disentangle stimulus and choice. This largely abolished the encoding 294 

of stimulus but preserved the encoding of choice (Fig 4G, right), demonstrating that barrel cortex only 295 

transiently carries stimulus information during sampling whisks but encodes choice on longer timescales.  296 

 297 

In sum, barrel cortex neurons respond to movements and contacts on fine timescales, and cognitive 298 

variables like choice can be decoded from these neurons on broad timescales. We next sought to 299 

understand the relationship of neural activity to choices. 300 

 301 

Distributed coding of sensorimotor and cognitive variables 302 

To understand how individual neurons participate in the transformation of sensorimotor signals to 303 

decisions, we used regression to assess how they encoded local sensorimotor features and task-related 304 

features like choice. Specifically, we regressed the firing of each individual neuron onto each variable on 305 

individual whisk cycles using generalized linear models (GLMs; Fig 5A; Supplemental Fig 6A), similar to 306 

receptive field mapping by reverse correlation with natural stimuli (Park et al., 2014; Sharpee, 2013). 307 

Because neurons also encode movement and choice, this approach is needed to disentangle 308 

sensorimotor variables rather than simply attributing all responses to the presence of the shape (Fassihi et 309 

al., 2020). 310 

 311 

We treated the whisk as the fundamental unit of analysis rather than using arbitrary time bins because this 312 

granularity was useful for identifying behavioral strategies (Fig 3) and because contacts (Fig 2C) and 313 

spikes (Fig 4E) are highly packetized by the whisk cycle. Therefore we predicted total spike count on each 314 

whisk cycle for each neuron. 315 

 316 

We again used model selection to quantify the importance of each feature for predicting neural responses. 317 

Different GLMs were trained on individual families of features—contact (“whisks with contact” as above), 318 

whisking (amplitude and set point), and task-related (choice and outcome of current and previous trial)—319 

and their goodness-of-fit (i.e., accuracy with which they predicted neural responses on held-out data) 320 
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compared. Each family of features alone had explanatory power, and a combined “task + whisking + 321 

contacts” model surpassed any individual family (Fig 5B). 322 

 323 

By individually dropping each family from the “task + whisking + contacts” combined model, we were able 324 

to assess whether explanatory power was unique to each family or instead shared across families due to 325 

their correlation. In each case, this significantly lowered the goodness-of-fit (Fig 5C), indicating that each 326 

family contained some unique information. Goodness-of-fit varied widely across the population but was in 327 

general highest in inhibitory and deep-layer neurons (Fig 5D). 328 

 329 

Individual neurons could have been selective for specific features or broadly tuned for all features. We 330 

found that a plurality of neurons were significantly modulated by all three families (task, whisking, or 331 

contacts; Fig 5E). The results were strikingly similar across both discrimination and detection tasks. Thus, 332 

across behaviors, individual neurons in barrel cortex are broadly tuned for a mix of sensorimotor and task-333 

related variables. 334 

 335 

Finally, we investigated the dynamics of task-related variables over the course of the trial. Early in the trial, 336 

neurons encoded the outcome (rewarded or unrewarded) of the previous trial (Fig 5F), even though the 337 

previous trial could have been up to 12 s prior (e.g., after an error timeout). This is surprising because the 338 

behavioral analysis revealed no effect of trial history on the mouse’s choice. Later in the trial, many 339 

neurons also encoded the choice on the current trial. This timecourse was similar to that of neural 340 

decoding (Fig 4G), which could not distinguish between coding for choice per se versus coding for the 341 

sensorimotor signals (contacts or whisking) that might correlate with choice. The GLM analysis 342 

disentangles these variables and demonstrates that, in addition to coding for sensorimotor variables, 343 

barrel cortex neurons also code for choice and outcome, persistently and on long timescales. 344 

 345 

Cell type-specific encoding of movement and contact 346 

The tuning of individual neurons varied with cell type (excitatory or inhibitory) and laminar location 347 

(superficial or deep). The most prominent effect was that whisking strongly drove deep-layer inhibitory 348 

neurons (Fig 6A-C). Indeed, almost all (94 / 107 = 87.9%) inhibitory neurons in the deep layers were 349 

significantly excited by whisking (mean increase in firing rate: 23.9% per 10° of whisking amplitude). 350 

Excitatory neurons and superficial inhibitory neurons also encoded whisking, but were as likely to be 351 

suppressed as excited.  352 

 353 

In contrast, whisker contacts on the shapes more strongly excited superficial neurons, including both L2/3 354 

and L4, relative to their baselines than those in deep layers (Fig 6D-F). Suppression by contact was less 355 

frequent than excitation in all cell types. Thus, movement and contact appear to have their greatest impact 356 

on the deeper and superficial layers, respectively. 357 

  358 

Contact responses are dominated by whisker identity, not finer sensorimotor parameters 359 

We next asked which features of these contacts drove neurons and how this related to shape 360 

discrimination. Barrel cortex is arranged topographically with neurons in each cortical column typically 361 

responding to the corresponding whisker. Therefore preference for specific whiskers (somatotopy) was a 362 

clear candidate, but barrel cortex neurons are also tuned for multiple whiskers, contact force, whisking 363 

phase, cross-whisker timing, and global coherence, among other features (Brumberg et al., 1996; Drew 364 

and Feldman, 2007; Ego-Stengel et al., 2005).  365 

 366 

Feature importance was assessed by comparing the goodness-of-fit of GLMs that had access to each 367 

feature. Whisker identity (which whisker made contact) was the most critical element determining neural 368 
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firing (Fig 6G). The exact kinematics of contacts were less important. Of all the kinematic parameters we 369 

considered, contact force explained the most neural activity, but even this effect was relatively small 370 

compared to whisker identity. 371 

 372 

We considered the possibility that some alternative kinematic feature that was not measured (e.g., due to 373 

limitations in viewing angle or frame rate) might be driving neural activity. We therefore fit a model that 374 

also included the identity of the shape (concave or convex) on which each contact was made. If any 375 

unmeasured kinematic feature drove neural activity differently depending on the stimulus, this feature 376 

should capture some neural variability. Instead, it only slightly improved the model (Fig 6G), even less 377 

than including whisker bending (which did not strongly differ between the stimuli). This rules out, at least in 378 

a GLM framework, a latent variable that differentiates the stimuli and strongly drives neural activity.  379 

 380 

Thus, during shape discrimination, contact responses are mainly driven by the identity of the whisker 381 

making contact. This was also the key feature for decoding stimulus and choice from the behavioral data, 382 

suggesting that contact responses might be dynamically modulated by task demands. 383 

 384 

Task-specific representation of contacts 385 

Given that the identity of the contacting whisker was so critical for explaining neural responses, we 386 

examined each neuron’s tuning using the weights that the GLM assigned to each whisker. Neurons were 387 

spatially tuned, exhibiting whisker preferences (Supplemental Fig 6B,C). We did not select for responsive 388 

neurons, but rather included all neurons for which we had at least 10 contacts from each whisker.  389 

 390 

During shape detection, the population of recorded neurons as a whole responded nearly equally to 391 

contacts made by C1, C2, and C3 (Fig 6H, left). Individual neurons could prefer any of the three whiskers, 392 

and in keeping with the somatotopy of barrel cortex, superficial neurons tended to prefer the whisker 393 

corresponding to their cortical column (Supplemental Fig 6D). 394 

 395 

In marked contrast, we observed a widespread and powerful bias during shape discrimination: at the 396 

population level, neurons responded much more strongly to C1 contacts than to contacts by C2 or 397 

especially C3 (Fig 6H, right). Neurons preferring C1 were more prevalent in all cell types and in all 398 

recording locations, including the C2 and C3 cortical columns (Supplemental Fig 6E,F; individual neurons 399 

in Fig 6I). In an apparent violation of somatotopic organization, neuronal preference across columns was 400 

dominated by C1 regardless of the anatomical location. Because this preference was specific to the 401 

discrimination task, it could not be a trivial artifact of the shape stimuli or our analysis. Thus, whisker 402 

tuning was task-specific and strong enough to override somatotopy. 403 

 404 

Whisker-specific tuning explains the population choice signal 405 

This somatotopic remapping during shape discrimination corresponds with the different weights assigned 406 

to each whisker by the behavioral classifiers (Fig 3G; C1 indicates convex). This correspondence 407 

suggests that neurons are retuned to C1 contacts in order to promote convex choices. It would have been 408 

equally plausible for neurons to prefer C3 contacts in order to promote concave choices, but this was not 409 

observed. This mirrors our behavioral observation (Fig 1G) that mice seemed to rely on a “convexity 410 

detection” strategy (cf. the "yes/no" tasks in Jang et al., 2009; Schulman and Mitchell, 1966).  411 

 412 

We asked whether neurons’ choice preferences could be explained by their whisker tuning. Specifically, 413 

we assessed the tuning of two subpopulations of neurons preferring either concave or convex choices 414 

(i.e., those assigned positive or negative weights by the decoder in Fig 4G). Indeed, the convex-preferring 415 

subpopulation strongly preferred C1 contacts (Fig 6J, red bars).  416 
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 417 

In summary, our neural encoder model (Fig 5-6) explains how the neural decoder (Fig 4G) was able to 418 

predict stimulus and choice: neurons were tuned for sensory input that the mouse had learned to 419 

associate with convex shapes. These representations were task-specific (Fig 6H) and could not be 420 

explained solely by simple geometrical aspects of the stimuli or whiskers. Indeed, the representations 421 

match weights used by the behavioral decoders to identify shapes. Our results link the tuning of individual 422 

neurons for fine-scale sensorimotor events to the more global and persistent representations of shape and 423 

choice. This bridging of local features to global identity is the essential computation of shape recognition. 424 

Discussion 425 

In this study, we developed a novel head-fixed shape discrimination behavioral paradigm. Mice 426 

accomplished this task by comparing contacts made across whiskers. Barrel cortex neurons exhibited 427 

distributed coding of sensory, motor, and task-related signals. Deep inhibitory neurons encoded motion 428 

signals, and all neurons coded for contacts with a bias toward the whisker (C1) that preferentially 429 

contacted convex shapes. In mice performing shape detection, we observed similar coding of exploratory 430 

motion signals and of choice and outcome-related signals, but not the somatotopic bias. Thus, the barrel 431 

cortex relies partly on computational principles that are shared across tasks, and partly on task-specific 432 

coding that permits readout of behaviorally relevant variables. 433 

 434 

Behavioral decoding reveals sensorimotor strategies 435 

Understanding neural mechanisms and computations begins with defining the subject’s behavioral goals 436 

and elucidating its strategy for achieving them (Krakauer et al., 2017; Marr and Poggio, 1976). Our 437 

approach was to measure many sensorimotor parameters about how mice interacted with the shapes and 438 

then to use behavioral decoding to predict the stimulus and choice from these data. This agnostic 439 

approach allowed us to rule out variables that contained little or no relevant information, identify from 440 

weights how animals interpreted informative variables, and form hypotheses for interpreting the neural 441 

data. We probed only one aspect of shape discrimination here, but this approach may easily be extended 442 

to other objects and tasks. 443 

 444 

In two-alternative and go/nogo tasks stimulus and choice are correlated, especially when the subject’s 445 

accuracy is high. We disentangled stimulus and choice through trial balancing—overweighting incorrect 446 

trials so that in aggregate they are weighted the same as correct trials. This was crucial for interpreting the 447 

behavior. Some variables, such as contact count, were important for both stimulus and choice, indicating 448 

they were useful and actually used by the mouse. Others, such as contact angle, were more useful for 449 

predicting stimulus than choice, suggesting that mice did not (or could not) effectively exploit it. This effect 450 

is likely due to the incomplete information mice have about the instantaneous location of the whisker tips 451 

(Fee et al., 1997; Hill et al., 2011; Moore et al., 2015; Severson et al., 2019).  452 

 453 

There are other approaches to disentangling stimulus and choice: separately fitting correct and incorrect 454 

trials, comparing stimulus prediction with choice, etc. (Campagner et al., 2019; Isett et al., 2018; 455 

Waiblinger et al., 2018; Zuo and Diamond, 2019a). We prefer trial balancing because it jointly optimizes 456 

over correct and incorrect trials. Regardless of the method chosen, the correlation between stimulus and 457 

choice must be considered, both in behavioral strategy analysis and in neural decoding.  458 

 459 

Mice compare contact counts across whiskers to discriminate shape 460 

Shape discrimination fundamentally differs from pole localization and texture discrimination because it 461 

explicitly requires integration over different regions of space. Thus, comparing input across whiskers was a 462 
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reasonable strategy for mice to pursue. Although mice can perform other tasks better with multiple 463 

whiskers (Carvell and Simons, 1995; Celikel and Sakmann, 2007; Knutsen et al., 2006; O’Connor et al., 464 

2010a), those cases likely reflect statistical pooling of similar information from multiple sensors as in our 465 

shape detection control task (Krupa et al., 2001).  466 

 467 

Our results go beyond statistical pooling. We are not aware of any published examples of mice assigning 468 

opposite behavioral meaning to input from different nearby whiskers. This strategy more closely captures 469 

the way primates compare across fingers when grasping objects (Davidson, 1972; Thakur et al., 2008) 470 

and suggests key roles for cross-columnar integration in somatosensory cortex (Petreanu et al., 2012; 471 

Thakur et al., 2012). 472 

 473 

For shape discrimination, the identity of the contacting whiskers was the most important feature 474 

determining both behavioral choice and neural responses. Although cross-whisker timing has been 475 

hypothesized to be an important parameter for shape discrimination (Benison et al., 2006; cf. primate 476 

fingertips in Johansson and Flanagan, 2009), it was uninformative about shape in our task. This may be 477 

because whisker mechanics (“floppiness”) during movement add too much variability to cross-whisker 478 

contact latency. It has also been proposed that the pattern of forces over the whisker array as they “grasp” 479 

an object could be informative about shape (Bush et al., 2016; Hobbs et al., 2016a). We did not observe 480 

whisker bending to be particularly informative, but finer measurements of the moments and forces at the 481 

follicle may shed light on this (Yang and Hartmann, 2016).  482 

 483 

In sum, we find that whisker identity during contact alone to be the critical parameter for shape 484 

discrimination. We cannot exclude the possibility that mice employed this strategy because we had 485 

trimmed off the other rows of whiskers, but a similar observation has been made in freely moving rats with 486 

all of their whiskers (Hobbs et al., 2016b), albeit not during goal-directed behavior. 487 

 488 

Efficient motor exploration strategies simplify the sensory readout 489 

Reflecting this difference in strategy, mice interacted with the shapes in a fundamentally different way than 490 

in many previous tasks. In our task, mice lightly tapped the stimuli with the tips of multiple whiskers 491 

simultaneously. This “minimal impingement” approach (Mitchinson et al., 2007) is likely the natural mode 492 

of the whisker system (Grant et al., 2009; Ritt et al., 2008). Multiple light touches could also engage 493 

adaptation circuits within the somatosensory pathway, enhancing their ability to perform fine discrimination 494 

(Wang et al., 2010). In contrast, mice locate and detect poles by contacting them with high enough force to 495 

cause substantial whisker bending (Hong et al., 2018; Pammer et al., 2013). This likely amplifies the 496 

corresponding neural signal, an efficient strategy for detection (Campagner et al., 2016; O’Connor et al., 497 

2010b; Ranganathan et al., 2018) though perhaps more useful for nearby poles than for surfaces. 498 

 499 

A common thread running through the entire literature of whisking behavior is that animals learn a motor 500 

exploration strategy optimized for the task at hand: targeting whisking to a narrow region of space to 501 

locate objects (Cheung et al., 2019; O’Connor et al., 2010a), rubbing whiskers along surfaces to generate 502 

the high-acceleration events that correlate with texture (Isett et al., 2018; Jadhav et al., 2009; Schwarz, 503 

2016), or targeting contacts to specific whiskers in the present work. Thus, animals pursue a motor 504 

strategy that simplifies the sensory readout, e.g. to a threshold on spike count (O’Connor et al., 2013). 505 

Performance is consequently limited by errors in motor targeting rather than in sensory detection (Cheung 506 

et al., 2019). Similarly, humans learn efficient motor strategies for directing gaze and grasp (Gamzu and 507 

Ahissar, 2001; Yang et al., 2016b). 508 

 509 
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The challenge of these tasks may lie in learning a skilled action that enhances active perception rather 510 

than in drawing fine category boundaries through sensory representations as in classical perceptual 511 

learning. Behavior may thus be considered a motor-sensory-motor sequence combining purposive 512 

exploration and sensory processing to guide further actions (Ahissar and Assa, 2016). 513 

 514 

Timescales of integration in barrel cortex and beyond 515 

At the sensory periphery neurons encode moment-to-moment sensory input whereas high-order brain 516 

structures encode object identity persistently and often with spatial invariance. Barrel cortex, an 517 

intermediate stage in this process, can be driven by extreme <5 ms synchrony (Bruno and Sakmann, 518 

2006), the previous ~50 ms of sensory input (Bale and Maravall, 2018; Fassihi et al., 2020; Ramirez et al., 519 

2014), whisker motor movements at ~100 ms (Fee et al., 1997), and even task-related features like reward 520 

over >1 s timescales (Lacefield et al., 2019).  521 

 522 

Barrel cortex is thus well-situated to bind precise sensory information to longer-lasting internal states. 523 

Rather than generating decisions per se, its role may be to format sensorimotor information in a task-524 

specific way, furnishing the results to downstream areas like secondary somatosensory cortex, primary 525 

motor cortex, parietal cortex, or striatum (Chen et al., 2013; Mohan et al., 2019; Sippy et al., 2015; Yang et 526 

al., 2016a; Zuo and Diamond, 2019b). In support of this formatting hypothesis, we find that neurons 527 

encode short-timescale events like contacts and whisks, but that decoders can also read out stimulus 528 

identity and choice over the course of the trial. 529 

 530 

Previous trial outcome, which had little effect on the mouse’s choice, prominently modulated neural 531 

activity. This could reflect arousal or a long-lasting effect of reward (Lacefield et al., 2019; McGinley et al., 532 

2015; Vinck et al., 2015). Persistent representations of choice and outcome have been observed in 533 

prefrontal, parietal, and motor cortex; the thalamus; and indeed throughout the brain (Akrami et al., 2018; 534 

Hattori et al., 2019; Lavzin et al., 2020; Nogueira et al., 2017; Tsutsui et al., 2016; Waiblinger et al., 2018). 535 

Recent work in artificial neuronal networks suggests that distributed outcome signals may be a general 536 

principle of reinforcement learning (Dabney et al., 2020). 537 

 538 

Motor signals in barrel cortex 539 

In natural behavior, active sensing is the norm: animals explore by moving their heads, eyes, and ears and 540 

by sniffing, chewing, or grasping objects. Motor signals should perhaps be expected in sensory areas 541 

because they provide context for interpreting sensory input. We found that movement was generally the 542 

largest signal in barrel cortex activity, stronger even than responses to whisker contacts. Recent studies 543 

have variously found that barrel cortex neurons respond to whisking onset (Muñoz et al., 2017; Yu et al., 544 

2016), that whisking phase modulates contact responses (Curtis and Kleinfeld, 2009; Hires et al., 2015), 545 

or that whisking simply has mixed effects on neuronal firing (Ayaz et al., 2019; O’Connor et al., 2010b; 546 

Peron et al., 2015). Technical limitations of whisker tracking perhaps explain these disparate results  547 

(Krupa et al., 2004). 548 

 549 

In resolving this, we found that multiple features of whisking are encoded simultaneously: whisking set 550 

point and amplitude (global signals shared across whiskers) and whisking pose (the relative angle of each 551 

whisker to the others, cf. hand posture in Goodman et al., 2019). This encoding was widespread but with a 552 

strong cell type-specific bias: inhibitory neurons in the deep layers were robustly and consistently excited 553 

in proportion to whisking amplitude. This is consistent with studies of parvalbumin-positive neurons in layer 554 

4 and 5B/6 (Yu et al., 2016), as well as in other classes of inhibitory interneurons throughout all layers 555 

(Muñoz et al., 2017; Yu et al., 2019). However, these studies focused on responses around whisking 556 

onset rather than the continuous and graded encoding of whisking that we describe here. 557 
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 558 

One theory is that whisker motion should be encoded in inhibitory signals so that the brain can predict and 559 

account for the sensory consequences of movement (Yu et al., 2016), as in the auditory cortex (Schneider 560 

et al., 2018). The inhibitory neurons of the deep layers receive direct input from primary motor cortex 561 

(Kinnischtzke et al., 2014) and can potently suppress the entire cortical column (Bortone et al., 2014; 562 

Frandolig et al., 2019). A subtraction could account for simple stimuli, but increasingly complex stimuli like 563 

shapes may require mixed selectivity and distributed coding of sensorimotor signals (Rigotti et al., 2013). 564 

This perhaps explains the diverse tuning for whisking that we observed in excitatory neurons. 565 

 566 

More generally, whisker motion signals may be analogous to the preparatory saccade signals identified in 567 

visual cortex. The brain may exploit the synchronization and discretization of sensory signals to make 568 

judgments about the external world. Like whisking, saccades are a motor action directed toward collecting 569 

information, and the cortex predicts the resulting change in sensory input (Steinmetz and Moore, 2010).  570 

 571 

Barrel cortex formats contact representations for reading out shape 572 

At first glance, the whisker system may appear to be a labeled line system due to its somatotopic 573 

organization at the level of the brainstem, thalamus, and cortex. Indeed, neurons in thalamorecipient layer 574 

4 typically respond best to stimulation of an anatomically corresponding whisker. However, outside of L4 575 

the preference for any particular whisker is much weaker (Brecht et al., 2003; Clancy et al., 2015; Jacob et 576 

al., 2008; De Kock et al., 2007; Peron et al., 2015; Pluta et al., 2017; Ramirez et al., 2014), and indeed 577 

attending to whisker input decreases somatotopy (Wang et al., 2019). 578 

 579 

Rather than maintaining a labeled-line code, the barrel cortex may encode multi-whisker sequences, a 580 

map of scanned space, or entire tactile scenes (Laboy-Juárez et al., 2019; Pluta et al., 2017; Vilarchao et 581 

al., 2018; reviewed in Estebanez et al., 2018). Similarly, auditory cortex is now thought to encode high-582 

level sound features rather than strict tonotopy (Bandyopadhyay et al., 2010; Carcea et al., 2017; 583 

Rothschild et al., 2010). Ethologically, integrating information across sensors would seem far more useful 584 

than maintaining in higher-level areas a strict segregation based on peripheral organization. In keeping 585 

with this, we observed a substantial diversity across individual neurons in their tuning for contacts by each 586 

whisker, and an over-representation of behaviorally relevant whiskers during shape discrimination. 587 

 588 

Task-specific coding for efficient sensorimotor identification 589 

We suggest that the barrel cortex learns to code preferentially for the sensory features that are most 590 

relevant for the animal’s goals (Ramalingam et al., 2013). In shape discrimination, mice learned to 591 

compare the space sampled by the C1 whisker with the space sampled by the C3 whisker. One way to 592 

“detect convex” shapes is to preferentially enhance C1 contacts (overrepresented on convex shapes) and 593 

suppress C3 contacts, essentially implementing a cross-whisker subtraction. Thus the neural responses to 594 

contacts are reweighted to permit the detection of convexity. This computation relies on both a motor 595 

strategy (targeting contacts on each shape to specific whiskers) and a neural coding mechanism 596 

(enhancing responses to contacts on specific whiskers). Further studies are needed to assess the degree 597 

to which neural mechanisms depend on local plasticity versus descending input from higher areas. 598 

 599 

One intriguing possibility is that these computations may be related to efficient coding. Within the 600 

timescale of a single trial, mice may refine increasingly accurate models of the shape, as they learn to 601 

predict future sensory input from earlier input in the trial. In turn, they could adopt exploratory motion 602 

strategies to test their current prediction. These prediction signals are thought to be represented by 603 

different cortical layers (reviewed in Adesnik and Naka, 2018), and deficits in predictive coding have been 604 
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hypothesized to explain the differences in the autistic and schizophrenic brains (Keller and Mrsic-Flogel, 605 

2018; Robertson and Baron-Cohen, 2017).  606 

 607 

The superficial and deep layers of cortex can encode sensory stimuli independently (Constantinople and 608 

Bruno, 2013) but they can also strongly interact (Pluta et al., 2019). We observed stronger touch 609 

responses in the superficial layers and stronger whisking responses in the deep layers, potentially useful 610 

for simulating the effects of motor exploration (Brecht, 2017). The superficial layers may also encode 611 

mismatch signals like unexpected contacts (Keller et al., 2012; although cf. Ayaz et al., 2019). Further 612 

work will be necessary to determine how and when this translaminar circuit implements active sensation. 613 

 614 

Although the details of these effects are specific to this task and stimulus geometry, we suggest that 615 

analogous computations in other brain areas and species could implement object recognition by 616 

comparing input across different sensors in the context of exploratory motion. Recent results have 617 

demonstrated an unexpectedly widespread coding for motion across the brain (Musall et al., 2019; 618 

Stringer et al., 2019). These motion signals could be critical for interpreting sensory input in the context of 619 

behavioral state. The common structure of cortex across regions of disparate functionality (Douglas and 620 

Martin, 2004) may be a signature of this common computational goal.  621 
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Figures (with legends) 647 

Figure 1. Mice learned either a shape discrimination or a shape detection task. 648 

 649 

A)  Diagram of the behavioral apparatus. A motor (black) rotated a shape (orange) into position, and a linear actuator (green) 650 

moved it into the whisker field. Mice reported choice by licking left or right pipes. 651 

B)  Example high-speed video frames. Shapes were presented at one of three different positions (pink and cyan lines labeled 652 

close, medium, and far). We tracked whiskers C0 (β or γ), C1, C2, and C3. 653 

C)  Trial timeline. At t = -2 s, the linear actuator began moving the shape toward the mouse’s whisker field and reached its final 654 

position between t = -1.0 and -0.5 s. The response window opened at t = 0 s (pink arrow) and ended at the “choice lick” (cyan 655 

arrow). 656 

D)  Left: the total lick rate (regardless of lick direction). Right: the probability that licks were correct (solid line) or congruent with 657 

the choice lick (dashed line). Correct licks increased with trial feedback (correct or incorrect) after t = 0 s. 658 

E)  Task rules. Mice trained on shape discrimination licked right for convex and left for concave shapes. Mice trained on shape 659 

detection licked right for either shape and left on trials when no shape is presented. 660 

F)  Mouse performance (fraction of correct trials) on both tasks exceeded chance (dashed line). 661 

G)  Mouse performance by task, stimulus, and position. On the “nothing” condition, the actuator moves to the correct position, but 662 

no shape is present. Performance significantly improves with proximity on convex shapes during discrimination and on any 663 

shape during detection (one-way repeated-measures ANOVA).  664 

 665 

Throughout the manuscript: * p < 0.05; ** p < 0.01; *** p < 0.001. 666 

Error bars: SEM over mice. 667 

  668 
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Figure 2. Mice employ brief taps with multiple whiskers to discriminate shape. 669 

 670 

A)  Angular position of the C2 whisker on three representative correct trials from ten mice performing shape discrimination. 671 

B)  Angular position of C1, C2, and C3 over a single trial using timescale defined in Fig 1C. Colored bars: whisker contacts. 672 

C)  Left: mean angle of each whisker aligned to the C2 whisk cycle peak. Right: probability that each whisker was in contact, 673 

aligned to the same time axis as on left. For both, n = 94,999 whisk cycles during which ≥1 whisker made contact. 674 

D)  Autocorrelation of contact times within each whisker (solid) and cross-correlation of contact times across pairs of adjacent 675 

whiskers (dashed), expressed as probability of contact at each lag. 676 

E)  Left: the mean number of contacts made by each whisker during both tasks. Discrimination mice made significantly more 677 

contacts with C2 and C3 than detection mice did. Right: Discrimination mice made significantly more contacts with a single 678 

whisker alone and with multiple whiskers simultaneously than detection mice did (two-sample t-test). 679 

F)  Mean duration of contacts in panel E. C3 contacts are significantly longer during discrimination (two-sample t-test). 680 

G)  Performance versus the number of contacts in the detection (left) or discrimination (right) task. Multi-whisker contacts were 681 

counted as a single contact event. Orange circle: trials during detection when no shape is present. We excluded mice from 682 

any bin in which they had <10 trials. 683 

H)  Mean whisker bending (Δκ) over time during each contact aligned to its onset and relative to the pre-contact baseline (dashed 684 

line), plotted separately for each whisker (row) and contact duration (column). Shaded area: duration of contact. Not all mice 685 

made contacts of all possible durations; data points with <10 contacts per mouse were excluded. 686 

I)  Whisker bending quantified as the minimum, maximum, and standard deviation of Δκ over the duration of each contact. 687 

 688 

Error bars: SEM over mice.  689 

All panels include 10 discrimination mice. E-G also include 5 detection mice. 690 

  691 
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Figure 3. Mice compare contacts across whiskers in order to determine shape. 692 

 693 

A)  A large suite of behavioral features was used to train behavioral decoders to predict the stimulus (concave or convex) or 694 

choice (direction of choice lick). Left: Example frame showing the peak of a whisk in which whiskers C1-C3 protracted far 695 
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enough to reach the shapes at some positions (pink lines). In this example, C1 and C2 were scored as “with contact” and C3 696 

as “without contact”. All three are considered “sampling whisks” because they protracted far enough to reach the shapes at 697 

their closest position. Middle: Features were extracted into sparse two-dimensional arrays of whisker (rows) versus 250 ms 698 

time bins (columns). Black squares indicate a whisk with contact (top) or without contact (bottom). Features could be binary 699 

(e.g., contact by a specific whisker) or continuous (e.g., angle or force). Right: Logistic regression classifiers predicted 700 

stimulus or choice. 701 

B)  Feature importance quantified by the accuracy of a behavioral decoder trained on that feature alone to identify stimulus 702 

(green) or choice (pink). During shape detection (right), the total number of contacts (black arrow) was the most informative 703 

feature; this same parameter was much less useful during discrimination.  704 

C)  Accuracy of decoders trained on combinations of features: first whisks with contact only, then also including whisks without 705 

contact, then including angle of contact, then including all features in the entire dataset. The third model (dashed box, 706 

“optimized behavioral decoder”) is used for the remainder of this figure, because it performs as well as the full model while 707 

using far fewer features.  708 

D) The optimized behavioral decoder predicts stimulus (green) and choice (pink) well during both shape discrimination and 709 

detection. Filled bars: correct trials; open bars: incorrect trials. 710 

E)  Accuracy of the decoder (y-axis) versus performance of each mouse (x-axis) when decoding the stimulus (left) or choice 711 

(right) during discrimination (circles) or detection (X’s). The decoder identifies stimulus (left panel) significantly more 712 

accurately than the mouse does (left panel) during discrimination (p < 0.001, paired t-test) but not during detection (p > 0.05). 713 

F) Accuracy of decoders trained to distinguish concave from convex shapes using data from shape discrimination (top) or shape 714 

detection (bottom) tasks. The decoders were significantly more able to identify shape during discrimination (p < 0.001, 715 

unpaired t-test), indicating that the whisking strategy mice employed for shape discrimination extracted more information 716 

about the shape’s identity. 717 

G)  The weights assigned by the decoder to the “whisks with contact” feature, separately plotted by which whisker made contact. 718 

Weights were relatively consistent over the trial timecourse (data not shown) and are averaged over time here for clarity. 719 

They are expressed as the change in log-odds (logits) per additional contact. 720 

H)  The mean number of contacts per trial for each whisker during shape discrimination, separately by shape identity (concave or 721 

convex) and position (far, medium, or close indicated by shading; cf. Fig 1B). Although each whisker may touch one shape or 722 

the other more frequently, no whisker touches a single shape exclusively. 723 

I)  Videos for all sessions and mice were registered into a common reference frame based on shape positions. Top: single frame 724 

showing whisker identity and location of whisker pad for reference. Bottom: location of the concave (blue) and convex (red) 725 

shapes in the common reference frame, with average location of whisker pad marked. 726 

J)  Location of the peak of each whisk with contact (top) or without contact (bottom) in the common reference frame. Each 727 

whisker (C1, C2, and C3; blue, green, and red) samples distinct regions of shape space (gray ovals). 728 

K)  The same data from panel (J), but now colored by their strength of the evidence about shape (red: convex; blue: concave) 729 

using the decoder weights. Top: C1 (C3) contacts occur in a region that is more likely to contain a convex (concave) shape. 730 

Bottom: On whisks without contact, the mapping between whisker and shape identity is reversed. Note that the sampled 731 

areas can contain either shape, so sampling one area alone is not sufficient to perform the task. 732 

 733 

Error bars: SEM over mice.  734 
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Figure 4. Barrel cortex neurons respond to whisking and contacts. 735 

 736 

A)  Schematic of the multi-electrode array we used that spans all layers of cortex. Background: barrel cortex neurons labeled with 737 

NeuN. 738 

B)  The distribution of extracellular waveform half-widths (i.e., the time between peak negativity and return to baseline) of 739 

recorded neurons. The distribution is strongly bimodal, permitting nearly unambiguous classification into narrow-spiking 740 

(putative inhibitory; blue) and broad-spiking (putative excitatory; red) cell types. Inset: normalized average waveforms from 741 

individual neurons. In panels B-F, n = 976 neurons from both tasks, pooled because the results were similar. 742 

C)  Relative fraction of excitatory (dark) and inhibitory (light) neurons recorded in each layer. 743 

D)  Mean firing rates over the entire session of individual neurons versus their depth in cortex. Inhibitory and deep-layer neurons 744 

typically exhibit higher firing rates. Lines: smoothed with a Gaussian kernel. 745 

E)  Firing rate gain (responses divided by each cell’s mean firing rate over a session) locked to the whisk cycle for superficial 746 

(L2/3 and L4; dashed lines) and deep (L5 and L6; solid lines) neurons, separately plotted for whisks with contact (left) and 747 

without contact (right). Absolute firing rates shown in Supplemental Fig 4. Error bars: SEM over neurons. 748 

F)  Firing rate gain of each cell type on individual whisk cycles without contact (y-axis) versus the amplitude of that whisk cycle 749 

(x-axis). Deep inhibitory neurons (solid blue line) are modulated most strongly. Error bars: SEM over neurons. 750 

G) Stimulus (green) or choice (pink) can be decoded from a pseudopopulation (n = 450 neurons) aggregated across shape 751 

discrimination sessions  (timescale defined in Fig 1C). Left: With a naive (unbalanced) approach, stimulus or choice can be 752 

decoded with similar accuracy. Middle: Equally balancing correct and incorrect trials decouples stimulus and choice. Right: 753 

Removing spike counts from all sampling whisks (i.e., whisks sufficiently large to reach the shapes) largely abolishes stimulus 754 

information while choice information remains. Dashed line: chance. Error bars: 95% bootstrapped confidence intervals. 755 

 756 
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Figure 5. Heterogeneous coding of sensorimotor and task-related features. 757 

 758 

A) We used features from contacts (whisker identity), whisking (amplitude and set point), and task (choice and reward history) to 759 

train a GLM to predict neural responses on individual whisk cycles in held-out data. Bottom left: Example model predictions of 760 

firing rate (pink) for an example neuron (black raster: recorded spikes) given the position of each whisker (colored traces) and 761 

contacts (colored bars). This L6 neuron mainly responded to whisking, regardless of contacts. Bottom right: This L2/3 neuron 762 

mainly responded to contacts regardless of whisking. On this trial, it spiked only once. 763 

B) The goodness-of-fit (i.e., ability to predict neural responses) of the GLM using features from the task, whisking, or contact 764 

families. Each feature family significantly improves the log-likelihood over a null model that used only information about 765 

baseline firing rate (p < 0.001, Wilcoxon test). The full model (“task + whisking + contacts”) outperforms any individual feature 766 

family. Similar results are obtained when testing on the entire dataset (left) or only on whisks with contact (right). n = 301 767 

neurons during shape detection and n = 675 neurons during shape discrimination, pooled because the results were similar. 768 

C) The effect on goodness-of-fit of leaving out one family at a time from the full “task + whisking + contacts” model. Removing 769 

any of these feature families significantly decreases the goodness-of-fit, showing that each family contains unique information 770 

that cannot be obtained from the other families. 771 

D) Goodness-of-fit versus cortical depth (left) and grouped by cell type (right) in the “task + whisking + contacts” model. 772 

E)  Top: Proportion of neurons that significantly encoded each variable during each task (p < 0.05, permutation test). Bottom: 773 

Venn diagram showing percentage of neurons significantly encoding features from task (red), whisking (green), and contact 774 

(blue) families during each task. In both tasks, a plurality of neurons encoded all three. <1% of neurons did not significantly 775 

encode any of the features. 776 

F)  Proportion of neurons significantly modulated by the outcome or choice of the previous (dashed) or current (solid) trial during 777 

shape discrimination. Timescale defined in Fig 1C. 778 

 779 

Error bars: 95% confidence intervals, obtained by bootstrapping (B-D) or from a fit to a binomial distribution (F).  780 
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Figure 6. The formatting of contact responses facilitates decoding of shape identity. 781 

 782 

A)  Proportion of neurons that are significantly excited (dark bars), suppressed (light bars), or unmodulated (open) by whisking 783 

amplitude, separately by cell type (p < 0.05, permutation test). In (A-C), n = 301 neurons during shape detection and n = 675 784 

neurons during shape discrimination, pooled because the results were similar. 785 

B)  Firing rate gain per each additional 10 degrees of whisking amplitude, grouped by cell type. Gain of 1.0 indicates no effect. 786 

C)  Data in (B) for individual neurons plotted versus cortical depth. Blue and red lines: smoothed with a Gaussian kernel. Left: 787 

firing rate gain; right: change in absolute firing rate.  788 

D-F)Like panels (A-C), but for whisker contacts (averaged across C1, C2, and C3 whiskers). In (D-H), n = 235 neurons during 789 

shape detection and n = 675 neurons during shape discrimination. We excluded neurons for which too few whisker contacts 790 

occurred to estimate a response. 791 

G)  Goodness-of-fit of models using different kinematic features about contacts, compared to the “task + whisking + contacts” 792 

model (top row, “baseline”). Removing whisker identity (second row) markedly decreases the quality of the fit. Adding 793 

additional kinematic parameters provides only a small increase in fit quality. The last row includes stimulus identity. 794 

H)  Response to contacts of each whisker. Left: During shape detection, the population responds nearly equally to each whisker 795 

(p > 0.05; one-way ANOVA). Right: During shape discrimination, the population strongly prefers C1 contacts (p < 0.001). 796 

I)  Responses to contacts made by each whisker for every recorded neuron during shape discrimination (n = 675), split by 797 

columnar location of the neuron. Tuning is diverse but neurons preferring C1 contacts are more common. 798 

J)  The data in (H) broken into subpopulations that responded more during convex choices (n = 110; red) or concave choices (n 799 

= 76; blue), as assessed by the decoder analysis in Fig 4G. Neurons that fire more for convex choices respond much more 800 

strongly to C1 contacts than to C3 contacts, similar to the weights used by the optimized behavioral decoder (cf. Fig 3G).  801 

 802 

Logarithmic y-axis in B-C, E-F, H, and J. Error bars: 95% bootstrapped confidence intervals in B, E, and G; SEM in H and J.  803 
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STAR Methods 804 

Resource Availability 805 

Materials Availability 806 

This study did not generate any unique reagents. 807 

 808 

Data and Code Availability 809 

Upon publication of this manuscript, all data and code necessary to generate the results presented here 810 

will become publicly available at github.com and crcns.org. 811 

 812 

Experimental Model and Subject Details 813 

We report data here from 17 adult mice (11 females and 6 males) of the C57BL6/J strain bred in the 814 

Columbia University animal facilities. 11 mice were used for shape discrimination, 5 for shape detection, 815 

and an image was used from 1 mouse from a different, anatomical study (Fig 4A). Of these, one shape 816 

discrimination mouse was discarded from all video analysis because of poor video quality, but was still 817 

used for behavioral performance data in Supplemental Fig 1A. 818 

 819 

Mice in our colony are continuously backcrossed to C57BL6/J wild-type mice from Jackson Laboratories. 820 

Some mice expressed Cre, CreER, Halorhodopsin, Channelrhodopsin2, and/or EGFP for ongoing and 821 

unpublished studies. We noted no difference in the results regardless of the genes expressed and 822 

therefore pooled the data here. Mice were group-housed (unless they did not tolerate this) and lived in a 823 

pathogen-free barrier facility.  All experiments were conducted under the supervision and approval of the 824 

Columbia University Institutional Animal Care and Use Committee. 825 

 826 

Method Details 827 

Surgeries 828 

Mice were implanted with a custom-designed stainless steel headplate (manufactured by Wilke Enginuity) 829 

between postnatal day 90 and 180. They received carprofen and buprenorphine and were anesthetized 830 

with isoflurane throughout the stereotaxic procedure. Using aseptic technique, we removed the scalp and 831 

fascia covering the dorsal surface of the skull. We then positioned the headplate over the skull and affixed 832 

it with Metabond (Parkell).  833 

 834 

After behavioral training (see below), some mice underwent another procedure to permit 835 

electrophysiological recording. First, we used a dental drill to thin the cement and skull over barrel cortex, 836 

rendering it optically transparent, and coated it with cyanoacrylate glue (Vetbond). We used intrinsic 837 

optical signal imaging (described below) to locate the cortical columns of the barrel field corresponding to 838 

the whiskers on the face. We then used a scalpel (Fine Science) to cut a small craniotomy directly over 839 

the columns of interest. Between recording sessions, the craniotomy was sealed with silicone gel (Dow 840 

DOWSIL 3-4680, Ellsworth Adhesives) and/or silicone sealant (Kwik-Cast, World Precision Instruments). 841 

 842 

Intrinsic signal optical imaging 843 

Individual barrel-related cortical columns were located with intrinsic imaging. While the mice were 844 

anesthetized with isoflurane, individual whiskers were deflected one at a time by a piezoelectric stimulator 845 

(8 pulses in the rostral direction at 5 Hz, with ~30 s between trains). We used custom software written in 846 

LabView (National Instruments) to acquire images of the cortical surface through the transparent thinned 847 

skull under a red light source with a Rolera CCD camera (QImaging). Videos were averaged over 20-60 848 

trains of pulses. We repeated this procedure for the C1, C2, and C3 whiskers to locate the region of 849 

maximal initial reflectance change corresponding to each. 850 

  851 
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Behavioral apparatus 852 

The behavioral apparatus was contained within a black box (Foremost) with a light-blocking door. It was 853 

built with posts (Thorlabs) and custom-designed laser-cut plastic pieces on an aluminum bread board 854 

(Edmund Optics, Thorlabs, or Newport). A stepper motor (Pololu 1204) rotated a custom-designed curved 855 

shape 3D-printed with ABS plastic (Shapeways) into position, and a linear actuator (Actuonix L12-30-50-6-856 

R) moved it within reach of the mouse’s whiskers. Rewards (~5 μL of water, chosen based on the mouse’s 857 

weight and how many trials it typically completed) were delivered by opening a solenoid valve (The Lee 858 

Co. LFAA1209512H) that allowed water to flow to the mouse from a reservoir to a thin stainless steel tube 859 

(McMaster).  860 

 861 

An Arduino Uno, in communication with a desktop computer over a USB cable, controlled the motors. It 862 

also monitored licking by sampling beam breaks of the mouse’s tongue through infrared proximity 863 

detectors (QRD1114, Sparkfun) or capacitive touch sensors (MPR121, Sparkfun) in front of and slightly to 864 

the left or right of the mouse’s mouth, inspired by a published two-choice design (Guo et al., 2014). 865 

Between trials only, the Arduino activated a white “house light” (LE LED; Amazon B00YMNS4YA) that 866 

prevented mice from fully dark-adapting, preventing the use of visual cues. A computer fan (Cooler 867 

Master; Amazon B005C31GIA) continuously blew air slowly over the shape such that the mouse’s nose 868 

was upwind from the shape, preventing the use of olfactory cues. We never observed mice exploiting 869 

auditory or vibrational cues from the motors and thus no masking noises were necessary. 870 

 871 

At a fine timescale the trial structure was controlled by the Arduino using a custom-written sketch. At the 872 

level of individual trials, the desktop PC chose the stimulus and correct response and logged all events 873 

read from the Arduino to disk using custom Python code. The training parameters for each mouse were 874 

stored in a custom-written django database and updated manually or semi-manually by the experimenters 875 

depending on each mouse’s progress. 876 

 877 

Behavioral training 878 

Throughout, the mice were denied access to water in the home cage and learned to receive their water 879 

during behavioral training. We closely monitored their water intake, weight, and general health to ensure 880 

they did not become dehydrated. Ad libitum water was provided if necessary to ensure health. 881 

 882 

Mice were trained to perform either the shape discrimination or detection tasks using a process of gradual 883 

behavioral shaping described below. Some mice were additionally trained to discriminate flatter, more 884 

difficult shapes. 885 

 886 

1. “Lick training.” Mice initially learned to lick to receive water. They were advanced through each step 887 

of this stage only once they learned to receive sufficient daily water from the apparatus. First, they 888 

were placed in the apparatus without head-fixing and allowed to drink freely from the water pipes, 889 

which rewarded every lick. Next, we head-fixed the mice directly in front of a single lick pipe and 890 

rewarded every lick. Finally, mice were presented with two lick pipes (left and right) and learned to 891 

lick alternately from each of them, first in blocks of ten licks and gradually decreasing to a single 892 

lick on each side. This stage required 12.5 sessions on average. 893 

2. “Forced alternation”. We introduced the complete trial structure for the first time, presenting shapes 894 

and rewarding the mouse only for correct responses and punishing it with a timeout for incorrect 895 

responses. During this stage the shape on each trial was not random; instead, mice were 896 

repeatedly presented with the same shape trial after trial until it gave the correct response. After a 897 

correct response, the other stimulus was presented. Thus, mice could perform at 100% by 898 
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alternating responses from trial to trial. The timeout was initially 2 s and then increased to 5 s and 899 

finally 9 s as the mice became accustomed to it. This stage required 11.3 sessions on average. 900 

3. “Stimulus randomization with bias correction”. During this stage, stimulus identity was randomized 901 

on each trial and only presented at the closest position. Each session began with 45 trials of 902 

“forced alternation” to ensure that mice were able to lick both directions. After that, trials were 903 

generally random. The software continuously monitored their performance for biases; when a 904 

strong bias was detected, it stopped presenting trials randomly and began presenting trials 905 

designed to counteract the bias. For instance, if mice responded on the left ≥20% more than on the 906 

right, the software would deliver only right trials. Alternatively, if the mice showed a significant 907 

perseverative bias (ANOVA “choice ~ stimulus + side + previous_choice”, p < 0.05 on 908 

previous_choice), the software would deliver “forced alternation” trials. Critically, we only ever 909 

analyzed truly random trials from the session. Non-random trials were used only for behavioral 910 

shaping and were discarded from behavioral and neural analyses. 911 

4. “Range of positions”. We now presented shapes at the first 2 positions (close and medium) and 912 

then all 3 positions (close, medium, and far). Position was randomized across trials. The same 913 

automatic training and bias-prevention procedures as before were used. 914 

5. “Flatter shapes”. Some mice were now presented with flatter shapes as well as the shapes of the 915 

original curvature. Other mice skipped this stage and were never presented with flatter shapes. 916 

6. “Whisker trimming”. We gradually trimmed whiskers off the right side of the face: first we trimmed 917 

the A and E rows, then the B row, then the D row. After any trimming, we allowed mice to recover 918 

to high performance before trimming additional rows. We retrimmed previously trimmed whiskers 919 

as necessary to ensure they could not reach the shapes. Stages 3-6 required a total of 109.1 920 

sessions on average. 921 

  922 

Sometimes it was necessary to return mice to an earlier stage of training temporarily to facilitate learning 923 

(e.g., reducing the number of positions at which the shapes were presented or returning to “forced 924 

alternation” trials only). Mice that successfully progressed through all stages of the training procedure—925 

those who could identify both shapes at all three positions with only the C-row of whiskers—were deemed 926 

fully trained. We only took high-speed video or neural recordings from fully trained mice. 927 

 928 

Videography 929 

For videography and electrophysiology, we moved the behavioral setup to a different light-blocking box 930 

mounted on a vibration-isolating air table (TMC). We took video of fully trained mice using a high-speed 931 

camera (Photonfocus DR1-D1312IE-100-G2-8) with a 0.15 ms exposure time to prevent motion blur. We 932 

used a lens with a 25 cm focal length (Fujinon HF25HA-1B) to prevent “fisheye” distortion. An aperture (F-933 

stop) of approximately 6.0 optimized depth of field.  934 

 935 

We designed and built a custom infrared backlight with a 7x8 grid of high-power surface-mount infrared 936 

(850 nm) LEDs (Digikey VSMY2853G) soldered to a custom-designed PCB (manufactured by OSH Park) 937 

that allocated power to each LED through current-limiting resistors. Diffusion paper mounted above the 938 

LEDs homogenized the light. The backlight was placed below the mouse and pointed toward the camera 939 

so that the whiskers would show up as high-contrast black on a white background. The Arduino pulsed 940 

this backlight off for 100 ms at the beginning of each trial, allowing us to synchronize the behavioral and 941 

video data. We used Matlab’s Image Acquisition Toolbox to store the video data to an SSD. 942 

 943 

Electrophysiology 944 

To record neural activity, we head-fixed the mouse in the behavioral arena as usual and removed the 945 

temporary sealant over the craniotomy. We lowered an electrode array (Cambridge Neurotech H3) using a 946 
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motorized micromanipulator (Scientifica PatchStar), noting its depth at initial contact and at final position. 947 

We used an OpenEphys acquisition system with two digital headstages (Intan C3314) to record 64 948 

channels of neural data at 30 kHz at the widest possible bandwidth (1 Hz to 7.5 kHz). The backlight sync 949 

pulse was acquired with an analog input to synchronize the neural, behavioral, and video data. 950 

 951 

We used KiloSort (Pachitariu et al., 2016) to detect spikes and to assign them to putative single units. 952 

Single units had to pass both subjective and objective quality checks. First, we used Phy (Rossant et al., 953 

2016) to manually inspect every unit, merging units that appeared to be from the same origin based on 954 

their amplitude over time and their auto- and cross-correlations. Units that did not show a refractory period 955 

(i.e. a complete or partial dip in the auto-correlation within 3 ms) were deemed multi-unit and discarded. 956 

Second, single units had to pass all of the following objective criteria: ≤5% of the inter-spike intervals less 957 

than 3 ms; ≤1.5% change per minute in spike amplitude; ≤20% of the recording at <5% of the mean firing 958 

rate; ≤15% of the spike amplitude distribution below the detection threshold; ≤3% of the spike amplitudes 959 

below 10 μV; ≤5% of the spikes overlapping with common-mode artefacts.  960 

 961 

We identified inhibitory neurons from their waveform half-width, i.e. the time between maximum negativity 962 

and return to baseline on the channel where this waveform had highest power. Neurons with a half-width 963 

below 0.3 ms were deemed narrow-spiking and putatively inhibitory. We measured the laminar location of 964 

each neuron (using the boundaries in Hooks et al., 2011) based on the manipulator depth and the channel 965 

on which the waveform had greatest RMS power. Neuron in L1 or the cortical subplate were discarded 966 

from this analysis because they were difficult to sort and showed variable properties across mice. 967 

 968 

Histological reconstruction of recording locations 969 

We used a camera mounted on a surgical microscope to take a picture of the area around barrel cortex on 970 

every session from the time of intrinsic signal imaging to the end of the experiment. We aligned all of these 971 

images with each other using the TrakEM plugin (Cardona et al., 2012) in Fiji using surface vasculature. 972 

These images, referenced to individual barrel column locations determined by intrinsic signal imaging, 973 

were used to guide the placement of the craniotomy and the electrode. We also photographed and aligned 974 

images of the location of the implanted electrode array each day.  975 

 976 

On the last day, we inserted a glass pipette coated with DiI (Sigma-Aldrich 468495) into the barrel field 977 

twice to leave two landmarks, one anterior and one posterior, which were also photographed and aligned. 978 

At the conclusion of the experiment, we deeply anesthetized the mice with pentobarbital, transcardially 979 

perfused them with 4% paraformaldehyde, and removed the brain for histological processing. 980 

 981 

The left hemisphere was sectioned tangentially to the barrel field using a Vibratome or freezing microtome 982 

to cut 50 or 100 μm sections. We stained for barrels with fluorescently conjugated streptavidin and imaged 983 

the sections on an epifluorescent microscope to reveal the location of the barrels and the DiI landmarks. In 984 

this way we confirmed the exact location of each recording site with respect to both the anatomical and 985 

functional barrel map. 986 

 987 

Quantification and statistical analysis 988 

Statistics 989 

Throughout this manuscript, “*” indicates p < 0.05; “**” indicates p < 0.01; “***” indicates p < 0.001; and 990 

“n.s.” indicates “not significant”. 991 

 992 

To non-parametrically estimate the width of certain non-normal distributions, we used “bootstrapped 993 

confidence intervals”. This means resampling the data with replacement 1000 times, taking the average of 994 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.126631doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.126631
http://creativecommons.org/licenses/by/4.0/


 

28 

each resampled dataset, and then taking the interval that spans the central 95% of this distribution of 995 

averages across resampled datasets. 996 

 997 

Whisker video analysis 998 

We used a lightly modified fork of the `pose-tensorflow` package (Insafutdinov et al., 2016; Pishchulin et 999 

al., 2015) to train and use a deep convolutional neural network to identify and track whiskers in the video. 1000 

This network is based on Resnet (He et al., 2015) and is the same “feature detector” network incorporated 1001 

into the first version of DeepLabCut (Mathis et al., 2018). We generated an initial training set using the 1002 

software `whisk` (Clack et al., 2012) to track individual whiskers and custom semi-automated code to 1003 

classify them.  1004 

 1005 

Eight equally spaced points along each tracked whisker were provided as the “joints” for the neural 1006 

network to identify. We iteratively improved the neural network by evaluating it on new frames, choosing 1007 

difficult frames from the result, semi-automatically improving the labels, swapping in the results from 1008 

`whisk` as necessary, and then using this new training set to train a new version of the network. Whiskers 1009 

of below-threshold confidence or below-threshold smoothness at any joint were discarded. We optimized 1010 

these thresholds with a cross-validated grid search. 1011 

 1012 

Sessions with inaccurate labeling were discarded: we required that every whisker be labeled in ≥95% of 1013 

the frames, that ≤2% of the contact events contained even a single frame with a missing label, and that 1014 

the arcs traced out over the entire session by the whisker contained no discontinuities or jumps suggestive 1015 

of tracking errors. In the remaining well-traced sessions we interpolated whiskers over any missing 1016 

frames.  1017 

 1018 

We identified the shape stimulus in each frame by thresholding and segmenting the frame and selecting 1019 

the segment of the appropriate size and location. We identified contacts on the shape based on proximity 1020 

(≤10 pixels Cartesian distance) between the tip of each whisker and the edge of the shape.  1021 

 1022 

To estimate each whisker’s bending moment, we first fit a spline through its 8 identified joints and used the 1023 

“measure” function of `whisk` to estimate curvature (κ). κ is the rate of change of direction of the whisker at 1024 

each point along its length, i.e. the reciprocal of the radius of curvature at that point, and is measured in 1025 

units of m-1. `whisk` averages κ over the entire length of the traced whisker and we followed this 1026 

convention. For comparison with other studies, we note that 1 m-1 is equal to 0.001 mm-1 due to this 1027 

reciprocal. κ = 0 for a straight line. In our study, κ > 0 for a whisker pushing into a shape and κ < 0 for the 1028 

reverse curvature, typically encountered while detaching from the shape.  1029 

 1030 

To register all videos within a common reference frame for visualization (Fig 3I-K), we extracted the 1031 

location of the shape edge at each location (close, medium, or far). Because we knew the exact distance 1032 

between edges in reality, we used the vector between adjacent locations in the image to measure the 1033 

angle and scale for that particular video. After compensating for this angle and scale, we used the peak in 1034 

the 2D cross-correlation to find the offset that best aligned the videos with each other. 1035 

 1036 

Decomposition of individual whisks 1037 

We defined the whisker’s angle as the Cartesian angle between base and tip. We decomposed the 1038 

whisking signal into individual whisk cycles with the Hill transform (Hill et al., 2011). Briefly, we 1039 

bandpassed the data from 8 to 50 Hz and applied the Hilbert transform to extract phase. Peaks and 1040 

troughs were defined as frames where the phase crossed zero or pi. We defined set point as the angle of 1041 

each whisker at the trough of each whisk cycle, and amplitude as the angular difference between peak 1042 
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and trough on each cycle for the C2 whisker. The whisking amplitude was very consistent across 1043 

whiskers, so we used the amplitude of the C2 whiskers cycle only throughout. In contrast the relative set 1044 

point of each whisker could vary, so we used the set point of each as regressors in the neural GLM 1045 

analysis. To smooth these amplitude and set point parameters, we applied a triangular window that 1046 

weighted one cycle before and after half as much as the current cycle. 1047 

 1048 

To identify sampling whisks (those large enough to reach the shapes if they had been at their closest 1049 

position), we aligned the frames to the response window and found the convex hull of the edges of the 1050 

shape (i.e., the boundary of closest points to the whisker pad) versus time from the response window. A 1051 

“whisk without contact” was one on which the whiskers crossed this boundary. This could happen if, for 1052 

instance, the C3 whisker investigated the space where the medial portion of the closest concave shape 1053 

would be, but actually a convex shape was present or a concave shape at a further position (example: Fig 1054 

3A). A “whisk with contact” is any whisk on which contact was made. Sampling whisks are defined as 1055 

either “whisks with contact” or “whisks without contact”. All other whisks (non-sampling whisks) are those 1056 

which did not cross the convex hull described above and did not make contact with the shapes. Not all 1057 

trials contained contacts, but the vast majority of trials included at least one sampling whisk. 1058 

 1059 

Lick rates (Fig 1D) 1060 

We recorded the times of all licks, even those before the response window that had no effect on the trial 1061 

outcome. In rare cases our detector recorded a single lick as many licks (the “switch bouncing” effect) and 1062 

so for analysis we binned licks in 100 ms bins and discarded any surplus licks above one per bin.  1063 

 1064 

To plot the rate of correct or concordant licks, we calculated the rate of licking on each side on every trial 1065 

and defined each lick as “correct/incorrect” depending on whether it matched the correct side, and as 1066 

“concordant/discordant” depending on whether it matched the direction of the choice lick (i.e., the first lick 1067 

in the response window, which determined trial outcome). We then meaned the lick rates for each trial 1068 

type (correct, incorrect, concordant, discordant) within each mouse. Finally we divided the rate of correct 1069 

licks by the rate of all licks, and the rate of concordant licks by the rate of all licks, to generate the results 1070 

plotted in Fig 1D.  1071 

 1072 

Behavioral decoding analysis (Figure 3) 1073 

We first selected only trials in which the mouse responded within the first 0.5 s of the response window in 1074 

order to ensure that behavior was roughly aligned across trials. This procedure excluded only a small 1075 

fraction of trials. In some sessions we used optogenetic stimulation for separate studies; any trial with 1076 

optogenetic stimulation was discarded from all analysis in this manuscript. In some sessions we also 1077 

presented flatter shapes (performance data: Supplemental Fig 1A) but for behavioral decoding and all 1078 

neural analyses we discarded any trials with the flatter shapes. 1079 

 1080 

We then extracted all whisking and contact data from each trial from -2.0 to +0.5 s of the opening of the 1081 

response window and obliviated (set to zero or the mean value) all data after the time of the choice lick to 1082 

ensure that only pre-choice activity was included in the analysis. Each feature was measured on every 1083 

individual whisk (e.g., presence of contact, cross-whisker latency within that contact, interaction terms for 1084 

multiple-whisker contact; complete list in Supplemental Table 1). We then aggregated each feature within 1085 

250 ms bins locked to the response window opening, so that trials with different numbers of whisks could 1086 

be directly compared. Most features were aggregated by meaning within the bin, but count-related 1087 

features (like contact count) were aggregated by summing within the bin. Finally we concatenated some 1088 

task-related features like previous choice and previous outcome that did not depend on the whisk cycle. 1089 

 1090 
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If a feature was not defined for a time bin (for instance, cross-whisker contact timing and contact-induced 1091 

bending have no meaning if no contacts occurred), it was left as null (NaN). Because these parameters 1092 

were only measured during contacts, they implicitly contained information that a contact had occurred. 1093 

Specifically, they were null at all times other than during contact. During feature standardization (described 1094 

below), we ensured that these features could have no effect on the coefficients or fit when they were null. 1095 

The net result of this procedure is that these features could only be informative conditioned on the 1096 

presence of a contact. This permits their interpretation as modulating the information gleaned by the 1097 

mouse about each contact, above and beyond the mere presence of a contact per se. 1098 

 1099 

The result of this feature selection process was 725 features per trial, some of which (e.g., contact count) 1100 

depended on time bin and some of which (e.g., previous choice) did not. For each session, we 1101 

standardized all features by scaling them to zero mean and unit standard deviation. At this point we 1102 

imputed null (NaN) features with zero, so that they could not affect the coefficients obtained. We used the 1103 

same procedures to fit individual features (Fig 2B) or combinations of features (Fig 2C). 1104 

 1105 

Cross-validation scheme: Each session was fit separately. We grouped the trials into 4 separate “strata”, 1106 

with one stratum for each combination of choice and stimulus (concave/convex for discrimination; 1107 

something/nothing for detection). We split the data into 7 “folds” for cross-validation, equally sampling 1108 

trials from each stratum. Each trial was in the “testing” set for one fold, the “tuning” set for one fold, and 1109 

the “training” set for five folds. For each fold, we fit a logistic regression model 1110 

(`sklearn.linear_model.LogisticRegression`) on the training set over a range of different regularization 1111 

parameters. We then evaluated the model on the held-out tuning set and chose the regularization that 1112 

optimized classifier accuracy over all sessions. Finally we evaluated the model with the chosen 1113 

regularization on the doubly held-out testing set and took that score as the model’s overall accuracy.  1114 

 1115 

To analyze the weights of the classifier for the session as a whole, we averaged the weights across folds. 1116 

To analyze the prediction on an individual trial, we used the classifier for which that trial was in the testing 1117 

(doubly held-out) set. Because each trial was in the testing set in exactly one fold, there was only one 1118 

unique prediction per trial. 1119 

 1120 

Trial balancing to decorrelate stimulus and choice: We weighted every trial inversely to its prevalence in 1121 

the dataset, using the `sample_weight` argument. Essentially, if correct trials were three times more 1122 

common than errors, then we weighted each individual error three times as much, so that the total weight 1123 

assigned to correct and incorrect trials was equal. This balancing effectively decoupled the correlated 1124 

target labels stimulus and choice. We validated this approach by comparing the results to other balancing 1125 

schemes like undersampling to the size of the smallest stratum or over-sampling by bootstrapping (data 1126 

not shown). 1127 

 1128 

Aggregation: To aggregate results across mice (e.g., Fig 3D,F) we averaged the accuracy of the classifier 1129 

across sessions within each mouse first. The sample size for error bars and statistical tests was then 1130 

equal to the number of mice.  1131 

 1132 

To plot the weights of the classifier in Fig 3G, we first averaged the weights over time for simplicity. 1133 

Because the coefficients plotted in Fig 3G are related to contact counts, we multiplied the coefficients by 1134 

the standard deviation of the corresponding column in the feature matrix before standardization. This 1135 

effectively reverse the normalization, and puts the coefficient in more-interpretable “per contact” units 1136 

rather than “per standard deviation of contact count” units. This was for visualization only and did not 1137 

affect the results.  1138 
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 1139 

To plot the evidence in Fig 3K, we applied the weights of the decoder to each individual whisk cycle and 1140 

meaned this evidence over all whisks with a peak within that spatial bin. For visualization in this panel, we 1141 

used a model that incorporated the peak angle of whisks without contact. 1142 

 1143 

Neural decoding analysis (Fig 4G) 1144 

To decode stimulus and choice from neural activity, we used a resampling/bootstrapping approach to 1145 

combine neural data across sessions and mice. First the trials were split into five equally sized “folds”, one 1146 

of which was the “test fold” and the rest “train folds”. No tuning set was necessary because we fixed the 1147 

regularization at 1.0 in this analysis. For each shape (concave or convex), we randomly chose a single 1148 

trial with that shape from the test fold in each session. We concatenated all of the neural data from those 1149 

trials into a “pseudopopulation” as if all the neurons had been recorded simultaneously. We then repeated 1150 

this process 30 times to construct 30 pseudotrials of the test fold. Then, we repeated the process for the 1151 

train folds, to generate 120 pseudotrials of the train folds. By construction, the same trial could never be 1152 

included in both the test and train folds.  1153 

 1154 

The classifier was trained on the train fold and evaluated on the test fold. Because correlations can have a 1155 

strong impact on the amount of information encoded by a neuronal population (Nogueira et al., 2020), we 1156 

maintained the correlation structure between simultaneously recorded neurons. Specifically, for each 1157 

pseudotrial we sampled the same trial from each simultaneously recorded neuron. The entire process was 1158 

repeated 100 times to generate the bootstrapped confidence intervals displayed in the plot. 1159 

 1160 

We call the procedure above the “naive" approach because it does not balance hits and errors; hence, it 1161 

confounds stimulus and choice. This naive approach is used in the left panel of Fig 4G. We also used a 1162 

“balanced” approach to disentangle stimulus and choice in the middle and right panels of Fig 4G. 1163 

Specifically, we first divided all the trials into 4 strata (concave hit, concave error, convex hit, convex error) 1164 

instead of the 2 strata (concave or convex) used in the naive approach. We then repeated the same 1165 

resampling approach to draw pseudotrials from each of the 4 strata. This ensures equal weighting of 1166 

correct and incorrect trials; hence, it is balanced. We used disjoint train and test folds just as in the naive 1167 

approach. 1168 

 1169 

In all cases, to train the classifier we first standardized the firing rate of each neuron in the 1170 

pseudopopulation to zero mean and unit variance. We provided these normalized firing rates to a classifier 1171 

(`sklearn.linear_model.LogisticRegression`) and trained it to predict either the stimulus or choice on each 1172 

trial. We trained separate classifiers on every time bin in the training fold. We used the classifiers to 1173 

predict stimulus or choice on each trial in the held-out test fold.  1174 

 1175 

For both naive and balanced classifiers, we repeated the entire procedure five times, such that each trial 1176 

was included in the test fold exactly once (and in the training fold the other four times). We averaged the 1177 

classifier’s accuracy over each of the four held-out test sets (never including the training set) and reported 1178 

this as the classifier’s overall cross-validated accuracy in Fig 4G. 1179 

 1180 

Finally, for the right panel of Fig 4G, we zeroed out the spikes on all “sampling whisks” (defined above in 1181 

the videographic methods). We also zeroed out spikes on the cycle preceding and the two cycles following 1182 

each sampling whisk to ensure complete removal of whisk-locked stimulus information. This procedure 1183 

removed phasic contact-evoked or whisk-evoked stimulus responses, but spared long-timescale persistent 1184 

representations. 1185 

 1186 
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Neural encoding analysis (Fig 5, 6) 1187 

For this analysis, we began with the same features (contact count, etc.) from the behavioral analysis. 1188 

Rather than aggregate within arbitrary time bins, we used the feature measurements on individual whisk 1189 

cycles. We added some additional features that could affect neural firing: the amplitude (peak-to-trough 1190 

angle) of each whisk and the set point (start angle) of each individual whisker at the beginning of each 1191 

whisk.  1192 

 1193 

We also added some additional trial-related features: current choice, previous choice, current outcome 1194 

(rewarded or not), and previous outcome. Because the effect of these features could vary over the course 1195 

of the trial, we used separate temporal indicator variables (Park et al., 2014). Specifically, we divided all 1196 

whisks into 500 ms bins with respect to the response window opening. If the current choice was “left”, we 1197 

marked the temporal indicator variable corresponding to left choices within that whisk’s bin as 1, and left 1198 

all other variables as zero. We repeated this for each task variable. 1199 

 1200 

Finally, we added two “nuisance features” for firing rate drift and cycle duration. For firing rate drift, we 1201 

divided each session into 10 blocks and assessed the mean firing rate of each neuron within that block. 1202 

We provided the logarithm of this value as a feature to the GLM. The timescale of each block was far too 1203 

long (~several minutes) to contain any information about individual whisks, but it captured the baseline 1204 

firing rate of the neuron, as well as any long-timescale variations, for example due to satiety. The second 1205 

nuisance feature was the logarithm of the duration of each individual whisk cycle. This is because a whisk 1206 

cycle that is twice as long should be expected to emit twice as many spikes, all else equal. The use of a 1207 

logarithm in both cases accounts for the exponential link function in the GLM. Both of these nuisance 1208 

features are highly predictive of neural firing by design and were important for fitting the data but were not 1209 

analyzed further for scientific conclusions. 1210 

 1211 

We fit the data using a GLM for Poisson data like spike counts (i.e., with an exponential link function) 1212 

using the `pyglmnet` module (Jas et al., 2020). We used 5-fold cross-validation, ensuring that each trial 1213 

was in the test set exactly once and evaluating the GLM on these held-out test sets only. We always used 1214 

L2 regularization but we varied the strength of this regularization. We typically used the regularization 1215 

value that optimized the model fit for that neuron, but when comparing coefficients across neurons (e.g., 1216 

Fig 6) the same value of regularization was used for all neurons to ensure coefficients were on the same 1217 

scale. 1218 

 1219 

In order to obtain the null distributions of each coefficient and thereby significance, we also trained 40 1220 

additional GLMs for each neuron using permuted features. Specifically we permuted the rows but not the 1221 

columns of the feature matrix, which maintains the correlation structure of the features but randomizes the 1222 

mapping to neural responses. The distribution of each coefficient over permutations had a near-zero mean 1223 

but a non-zero standard deviation. To assess significance of individual coefficients (e.g. Fig 5E-F) we 1224 

divided the actual coefficient by the standard deviation of the coefficients obtained on the permutations to 1225 

obtain the z-score of the coefficient. We then converted this into a two-tailed p-value by integrating the 1226 

standard normal beyond this z-score. We validated that this approach controlled the false positive rate at α 1227 

= 0.05 by including a spurious regressor that was drawn from a random distribution and ensuring that the 1228 

random regressor was found significant no more than 5% of the time (indeed, that the resulting p-value 1229 

distribution was uniform; data not shown). 1230 

 1231 

To assess goodness-of-fit of any GLM, we took the log-likelihood of the data under the best fit and 1232 

compared it to the log-likelihood of the data under a null model. The null model had access only to the 1233 

“nuisance features” described above: baseline firing rate and whisk cycle duration. We subtracted the log-1234 
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likelihood of the null from the log-likelihood of the fit model, and divided by the total number of whisks in 1235 

that session in order to permit comparison across datasets of different duration. We used a logarithm of 1236 

base 2 to permit presentation in “bits”. This is not an estimate of the information contained by the neural 1237 

spike train, but rather an estimate of the change in the KL-divergence between [the true (unknown) 1238 

distribution of the data and the distribution predicted by the model under consideration] versus [the same 1239 

quantity, but replacing the model under consideration with the null model]. 1240 

 1241 

Analysis software 1242 

We used the Python packages ipython (Perez and Granger, 2007), pandas (McKinney, 2010), numpy 1243 

(Van Der Walt et al., 2011), scipy (Virtanen et al., 2020), scikit-learn (Pedregosa et al., 2011), scikit-image 1244 

(Van Der Walt et al., 2014), statsmodels, pyglmnet (Jas et al., 2020), and matplotlib (Hunter, 2007) to 1245 

investigate, analyze, and present the data.   1246 
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Supplemental Information  1551 

Supplemental Figure 1, related to Figure 1.  1552 

Generalization to more difficult stimuli and no-whisker controls. 1553 

 1554 

A)  We trained a subset of mice on more difficult stimuli with a larger radius of curvature (pink). After some retraining, mice were 1555 

able to perform well at these new stimuli, though at a slightly lower performance than for the original stimuli. Error bars: SEM 1556 

over mice. 1557 

B)  Effect of trimming all whiskers on the performance of n = 10 mice performing the shape discrimination or detection tasks. 1558 

“Pre”: average performance on the three sessions preceding whisker trim. “Post”: performance on the first session after 1559 

whisker trim. Thin lines: individual mice. Thick line: average. Performance significantly decreased (paired t-test, p < .001) 1560 

from 80.0% to 53.2%, near chance (50%, dashed line). 1561 
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Supplemental Figure 2, related to Figure 2.  1563 

High-speed videography and whisking/contact statistics. 1564 

 1565 

A)  Example frames demonstrating the quality of the whisker tracking. Within each pair of frames, the left frame is the raw frame 1566 

(annotated with the region of interest) and the right frame shows the result of the whisker tracking algorithm. Performance 1567 

was good (i.e., the correct whiskers were tracked throughout their extent) even when:  1568 

 1) the whisker was obscured by a paw;  1569 

 2) whiskers were nearly overlapping;  1570 

 3) a “doublet” whisker emerged from the same follicle;  1571 

 4) the whisker was nearly out of frame;  1572 

 5) motion blurred the tips;  1573 

 6) a similar-looking distractor hair was attached to the end of the whisker. 1574 

 1575 

B) Distribution of amplitudes of individual whisk cycles, with each line representing an individual mouse. Distributions were 1576 

similar across mice, regardless of the task (top: detection; bottom: discrimination). 1577 

 1578 

C) Distribution of contact durations. Data were similar across tasks and therefore pooled. Most contacts were short but there was 1579 

a long tail of longer contacts. Contact durations are quantized at the frame rate of 5 ms. 1580 
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Supplemental Figure 3, related to Figure 3.  1582 

Behavioral decoding analysis. 1583 

 1584 

A) Accuracy of the behavioral decoders with and without trial balancing. The version described in the main manuscript uses 1585 

balancing to equally weight correct and incorrect trials, and is plotted on the y-axis. We also trained a separate classifier that 1586 

did not apply any balancing, but simply optimized its prediction of choice over all trials equally as in standard logistic 1587 

regression; that accuracy is plotted on the x-axis. In both cases, the decoders had access to the full set of behavioral 1588 

features. Here, we show the performance only on decoding choice on incorrect trials. Trial balancing improved the accuracy 1589 

on this trial type in almost all cases and was always greater than 50%. On correct trials (data not shown), trial balancing 1590 

slightly impaired performance, but was still quite high (cf. Fig 3D). 1591 

B) (Related to Fig 3B) The performance of classifiers trained on every individual feature. See Supplemental Table 1 on the 1592 

following page for descriptions of each features. 1593 

C) (Related to Fig 3G) The weights used to predict choice from whisks with contact. The results were qualitatively similar to the 1594 

weights used to predict stimulus (Fig 3G). During discrimination, C1 and C3 weights have opposite sign. 1595 

D,E) Replotted from Fig 3I,K for comparison. 1596 

F)  The same data (top: whisks with contact; bottom: whisks without contact) now colored by the evidence they contain about 1597 

choice, i.e. whether the mouse would report the shape to be concave (blue) or convex (red). The top panel is similar to the 1598 

analogous panel in (E), indicating that mice correctly interpret whisks with contact in accordance with the ideal stimulus 1599 

decoding. In the bottom panel, some whisks without contact are correctly interpreted by the mouse (that is, they look the 1600 

same as in the analogous panel in (E)), but others are not. Specifically, in area 1, whisks without contact around the location 1601 
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of the closest convex shape indicate that the mouse would report convex. In area 2, whisks without contact around the 1602 

location of the closest concave shape indicate that the mouse would report concave. This suggests that the mouse may be 1603 

sampling these areas preferentially because it believes the corresponding shape is present. 1604 

 1605 

Supplemental Table 1 1606 

Defines the variables used in Supplemental Fig 3B, the entire list of features considered for inclusion in the behavioral decoders. 1607 

contact_binarized Referred to as “whisks with contact” in the main text. A two-dimensional (whisker x time) 
binary array representing when each whisker was in contact over the course of the trial. 

contact_count_by_whisker The sum of the rows of “contact_binarized”, so the number of contacts over the entire trial 
made by each whisker. 

contact_count_by_time The sum of the columns of “contact_binarized”, so the number of contacts in each time bin 

contact_count_total The sum of the “contact_binarized”, a single integer representing the total number of 
contacts made by all whiskers over all timepoints 

anti_contact_count Like “contact_binarized”, but for whisks without contact. 

anti_contact_count_by_whisker Like “contact_count_by_whisker”, but for whisks without contact. 

contact_interaction Like “contact_binarized”, but for simultaneous contact made by two whiskers. The rows are 
all adjacent pairs of whiskers, and the columns are still time. We did not consider non-
adjacent pairs as such contacts were quite infrequent. 

contact_interaction_count_by_label The sum of “contact_interaction” over time, so the total number of simultaneous contacts by 
each possible pair of whiskers over the entire trial. 

anti_contact_count_by_time Like “contact_count_by_time’, but for whisks without contact. 

angle Referred to as “contact angle” in the main text. A two-dimensional (whisker x time) array 
representing the angle of contact of each whisker at each time in the trial. Contains null 
values where no contact occurred. When multiple contacts made by a whisker within a 
certain time bin, uses the average angle. 

anti_contact_count_total Like contact_count_total, but for whisks without contact 

anti_contact_count_by_whisker Like contact_count_by_whisker, but for whisks without contact 

anti_angle_max Like “angle”, but for whisks without contact. Uses the peak angle of the whisk without 
contact.  

anti_angle Like “anti_angle_max”, but instead of using the peak angle, uses the angle at which the 
whisk crossed the boundary where the shapes could have been present. 

anti_contact_duration Like “contact_duration”, but for whisks without contact. The time during which the whisker 
was beyond the boundary where the shapes could have been present. 

contact_duration A two-dimensional (whisker x time) array representing the duration of contacts made by 
each whisker in that time bin. Contains null values where no contact occurred. When 
multiple contacts made by a whisker within a certain time bin, uses the average duration. 

frame_start_wrt_peak A two-dimensional (whisker x time) array representing the time of each contact relative to 
the peak of the whisk cycle on which it occurred. Contains null values where no contact 
occurred. When multiple contacts made by a whisker within a certain time bin, uses the 
average of each contact. 

xw_angle Cross-whisker angle. Like contact_interaction, but instead of a binary variable, it is the 
difference in angle between the two contacting whiskers at the time of contact. Contains 
null values where no such simultaneous contact occurred. 

phase Like “angle”, but the phase of the contact. 

kappa_min Like “angle”, but the minimum value of delta kappa achieved during the contact. 

anti_frame_start_wrt_peak Like “frame_start_wrt_peak”, but for whisks without contact. 

cycle_duration A one-dimensional array versus timebins. The average duration of each whisk cycle. 

kappa_std Referred to as “contact-induced bending” in the manuscript. Like “kappa_min”, but the 
standard deviation of delta kappa within the contact. 

kappa_max Like “kappa_min”, but the maximum value of delta kappa within the contact. 

touching Like “contact_binarized”, but nonzero whenever the whiskers is in contact, rather than just 
at the onset of the contact. Thus, it will be nonzero whenever “contact_binarized” is 
nonzero, but also on bins when the whisker maintained contact for more than one cycle. 

velocity2_tip Like “angle”, but the angular velocity of the whisker averaged over the two frames 
preceding contact. 

xw_latency_on Like “xw_angle”, but the time between contact onset of the two adjacent whiskers. 

xw_duration Like “xw_angle”, but the mean duration of the contact onset of the two adjacent whiskers. 

xw_latency_off Like “xw_angle_on”, but for the contact offset times. 

protract_ratio Like “cycle_duration”, but the ratio between protraction time and the entire cycle duration. 

task Three variables: previous choice (left or right), previously rewarded side (left, right, or null if 
previous trial was not rewarded), and previously unrewarded side (left, right, or null if 
previous trial was rewarded). 

contact_surplus Like “contact_binarized”, but the number of contacts on each whisk cycle minus one 
(instead of just a binary yes/no about contact). 
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Supplemental Figure 4, related to Figure 4.  1609 

Neural responses to whisks with and without contact. 1610 

 1611 

 1612 

 1613 

The same data from Fig 4D, but plotted in Hz instead of normalized to baseline. The results are qualitatively similar, but the 1614 

inhibitory cells (blue) show a much higher baseline firing rate than the excitatory cells (red).  1615 

 1616 

Error bars: SEM over neurons. 1617 
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Supplemental Figure 6, related to Figure 6.  1619 

Task-specific contact responses and somatotopy. 1620 

 1621 

A) Feature correlation matrix. We concatenated the features over all sessions and calculated Pearson’s ρ between every pair of 1622 

features. For clarity, task-related temporal indicator variables are not included here because they are orthogonal by design, 1623 

and auto-correlation values along the diagonal are masked.  1624 

B) Left: Similar to Fig 6E, but showing the response to the best whisker (i.e., the whisker that evokes the strongest response in 1625 

each neuron) instead of the average across C1-C3. The pattern is the same as in the main text: superficial neurons respond 1626 

more strongly. Right: the selectivity of each neuron, parameterized as the response to the best whisker divided by the 1627 

response to the worst whisker. Error bars: 95% bootstrapped confidence intervals. 1628 

C) Principle component analysis (PCA) applied to the response of each neuron to contacts made by each whisker. The first PC 1629 

(blue) is nearly equal on all whiskers whereas the second PC tracks the anterior-posterior position of whiskers C1-C3. Thus, 1630 

the first PC captures overall response strength and the second PC captures topographic preference (C1>C3 or vice versa). 1631 

These two PCs capture 63% and 28% of the variance in contact responses. 1632 

D) The response to contacts by each whisker during shape detection, separately plotted by the cortical column in which they 1633 

were recorded (C1, C2, C3, or “off-target”, meaning all other columns). Superficial neurons (top) show somatotopy, typically 1634 

preferring their topographically aligned whisker (dark bars) over all others (light bars). Deep neurons (bottom) show weaker 1635 

responses and less somatotopy. Error bars: SEM over neurons. 1636 

E) Similar to (D), but for the shape discrimination task. The preference for C1 contacts (blue bars) dominates somatotopic 1637 

responses (dark bars). 1638 

F)  Similar to (D) and (E), but pooling over recording locations and separately plotting by cell type (excitatory: red; inhibitory: 1639 

blue). All populations prefer C1 contacts during discrimination (right). 1640 

 1641 

n = 235 neurons during detection and 675 neurons during discrimination. We excluded sessions in which too few contacts were 1642 

made by any whisker (C1-C3) to estimate the response. Logarithmic y-axis in B (left) and D-F. 1643 
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Supplemental Video 1 1645 

 1646 

 1647 

 1648 

 1649 

This video demonstrates some example trials of the shape discrimination behavior. A single frame is shown here for illustration. 1650 

The whisker tracking is overlaid (C0, blue; C1, green; C2, red; C3, cyan; circles indicate individually tracked “joints”). Yellow 1651 

circles appear when any tip contacts the edge of the shape (pink line). Four example correct trials (two concave and two convex) 1652 

are included. The playback speed is 0.15x real-time. 1653 
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Supplemental Video 2 1655 

 1656 

 1657 

 1658 

 1659 

This video demonstrates simultaneously recorded neural activity and behavior. A single frame is shown here for illustration. The 1660 

left half of the frame shows the behavior, as in Supplemental Video 1 (excluding the tracked joints for clarity). The right half of the 1661 

frame shows the neural spiking, synchronized with the behavior. Individual neurons (red: excitatory; blue: inhibitory) are plotted as 1662 

separate rows. Neurons are sorted from superficial (top) to deep (bottom). The small text labels next to each row indicate the unit 1663 

number and, in parentheses, the depth in microns from the cortical surface. An audio track plays the spikes from single example 1664 

neurons, as annotated throughout the video. As in Supplemental Video 1, the playback speed is 0.15x real-time. 1665 
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