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DEGAS 2 

We propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer 26 

learning framework, to transfer disease information from patients to cells. We call such 27 

transferrable information “impressions,” which allow individual cells to be associated with 28 

disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and 29 

ten diverse single cell and patient bulk tissue transcriptomic datasets from Glioblastoma 30 

Multiforme (GBM), Alzheimer’s Disease (AD), and Multiple Myeloma (MM), we demonstrate the 31 

feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on 32 

newly generated myeloma single cell transcriptomics led to the identification of PHF19high 33 

myeloma cells associated with progression. 34 

 35 

Keywords 36 

Prognostic models, Survival, Cox proportional hazards, Single cell RNA sequencing, scRNA-37 

seq, Machine Learning, Deep learning, Transfer learning, Multiple Myeloma, Alzheimer’s 38 

Disease 39 

 40 

Background 41 

The emergence of single cell RNA sequencing (scRNA-seq) in 2009 has revolutionized the 42 

medical research community with single cell level resolution, providing a much deeper 43 

understanding of transcriptomic heterogeneity in tissues and diseases. Now that scRNA-seq is a 44 

standard part of the biomedical research toolbox, increasing numbers of scRNA-seq studies have 45 

been published [1, 2], and databases have quickly accumulated with scRNA-seq data, such as 46 

Hemberg lab [3], scRNASeqDB [4], SCPortalen [5], Allen Institute Cell Types Database, and the 47 

NCBI Gene Expression Omnibus (GEO) [5]. Many methods have been developed to analyze 48 

scRNA-seq data, the most notable being Seurat, which includes ways to cluster and normalize 49 

cell expression as well as perform integrative analysis with other data types (e.g., CITE-seq and 50 

ATAC-seq) [6]. These methods are important for understanding many prognostic and diagnostic 51 
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disease attributes in scRNA-seq data. Here we use “disease attributes” as a broad term inclusive 52 

of many types of information and labeling such as diagnostic information, disease subtypes, 53 

disease status, prognostic information like survival, and responses to therapy. For Seurat and 54 

similar methods, while cell types/clusters can be identified and associated with disease attributes 55 

[7-10],  individual cells are unable to be associated in the same manner. This may result in failing 56 

to identify subsets of cells associated with disease attributes, especially if the disease-associated 57 

cells cluster together with non-disease-associated cells. 58 

 59 

Currently, disease associated cell types can be identified by transferring molecular heterogeneity 60 

information from cells to patients using single cell expression deconvolution [11-13]. However, 61 

this approach is limited as it focuses on the changes in relative abundance of subtypes of cells 62 

instead of transcription changes of these cells. The resolution of the cell subtyping is constrained 63 

by the clustering experiment.  Therefore, novel machine learning methods that can transfer 64 

information from patients to cells and identify latent links between them are sorely needed to 65 

leverage the relative strengths of single cell and patient level data. For example, in cancer studies, 66 

bulk transcriptomic data is ideal for studying inter-tumor heterogeneity and scRNA-seq is ideal for 67 

studying intra-tumor heterogeneity. However, such integration faces numerous challenges since 68 

different data modalities and different data sources can have different characteristics in terms of 69 

quantity, quality, distribution and resolution [1]. For instance, it is common to find studies with a 70 

large number of patient samples for bulk tissue RNA sequencing (RNA-seq), whereas studies 71 

with scRNA-seq data usually contain a small number of patient samples. Most scRNA-seq 72 

experiments generate a large number of cells per sample, making the scaling of such data to 73 

multiple tissue samples computationally difficult [1]. On the other hand, a large patient sample 74 

size is often required for statistical studies such as prediction of disease attributes [14]. If 75 

traditional methods were used, the resulting scRNA-seq data could end up with cell numbers on 76 

the scale of millions making such studies more difficult. 77 
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 78 

To address these challenges, previous studies have directly established associations of diseases 79 

with cell types derived from scRNA-seq without using deconvolution. These methods mainly 80 

utilize unsupervised methods and focused primarily on the number of differentially expressed 81 

genes (DEGs) in a given cell type corresponding to DEGs related to some disease attribute [15, 82 

16]. For example, Gawel et al. used enrichment of the cell cluster specific DEGs and multicellular 83 

disease models (MCDMs) to visualize the cell types for prioritization [7]. Muscat identified DEGs 84 

between treatment groups in scRNA-seq samples which were used to identify cell types related 85 

to sample treatment [17]. Alternatively, k nearest neighbor (kNN) graphs have been used to 86 

identify cell types that undergo transcriptional changes related to biological perturbations [18]. 87 

The cell type prioritization tool Augur did not primarily rely on DEGs, but still focused the biological 88 

resolution to the cell type level [19]. They trained classifiers on each cell type with respect to the 89 

disease state of the tissue from which those cells were sampled. The accuracy of the classifier in 90 

each cell type was used to prioritize its relation to the disease state of interest [19]. These methods 91 

rely on either prior knowledge to calculate enrichment of DEGs or require scRNA-seq data from 92 

both disease and normal samples. Furthermore, all of these existing methods are reliant on 93 

accurately defining the cell types within a scRNA-seq experiment. In summary, these methods 94 

assign disease associations to the previously defined cell types and not to the individual cells.  95 

 96 

To address such challenges as prioritizing individual cells in relation to disease with 97 

considerations on sample size and computational cost, we established the combined deep 98 

learning and transfer learning framework called DEGAS (Diagnostic Evidence GAuge of Single 99 

cells) to integrate scRNA-seq and bulk tissue transcriptomic data with the goal to transfer clinical 100 

information from patients to cells. The ability of DEGAS to assign patient-level disease attributes 101 

to single cells, among other functions, provides a flexible and useful tool to prioritize cells, cell 102 

types, patients, and patient subtypes in relation to disease attributes. In this paper, we focus on 103 
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the most relevant use case of associating disease attributes from patients to individual cells since 104 

there is no current state-of-the art technique to perform this task. 105 

 106 

We use transcriptomic data as an example where bulk expression is referred to as patients and 107 

scRNA-seq is referred to as cells. The rationale behind the DEGAS framework is that scRNA-seq 108 

data and patient-level transcriptomic data (e.g., RNA-seq with clinical information) share the same 109 

feature space (i.e., common set of genes). In addition, a natural connection exists between the 110 

two data types that can be leveraged to further identify the associations between patients and 111 

cells. Viewing this association as a graph (Fig. 1), we can connect the disease attributes in 112 

patients to individual cells, via a latent representation of the common feature space (selected 113 

genes). This latent representation fitting two datasets can be learned using a transfer learning 114 

technique called domain adaptation [20-23]. Domain adaptation applies linear or non-linear 115 

transformations on the features for both datasets so that their distributions are similar after the 116 

transformations. Our biological intuition is thus: the expression patterns of genes in cells and 117 

tissues should carry a portion of the same biological patterns such as molecular pathways, 118 

signaling cascades, and/or metabolic processes, making the information learned from this portion 119 

of gene expression patterns transferable between patients and cells. Our hypothesis is that the 120 

latent representation learned from these shared gene expression patterns will be simultaneously 121 

predictive of patient disease attributes and cellular subtypes. Similar hypotheses are already 122 

adopted to transfer information between different single cell experiments [6, 24-28] and to transfer 123 

information from bulk transcriptomic cell type atlases to single cell experiments [29]. 124 

 125 

In our DEGAS framework, we incorporate patient-level disease attributes information with cell 126 

type information from disparate datasets to perform cell prioritization on scRNA-seq data. These 127 

disease associations in cells can be attributed to disease-related biological perturbations 128 

identified in the patients. This novel deep transfer learning approach simultaneously trains a 129 
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model on single cell data and patient data along with their labels and learns a representation in 130 

which the cells and patients occupy the same latent space. Multitask learning, also known as 131 

parallel transfer learning, is precisely designed to achieve these two goals. Used extensively in 132 

computer vision, multitask learning learns a low dimensional representation of the input data to 133 

optimally address multiple tasks. Examples of such application in medical science include 134 

predicting benign versus malignant tumor samples and subclassification in breast cancer 135 

histology images [30, 31]. In this paper, we further extend this line of research to include datasets 136 

with patient disease attributes that can be trained simultaneously so that the disease attributes 137 

can be transferred (or cross-mapped) between single cells and patients. Specifically, our 138 

framework enables knowledge learned from patients using deep learning models to be transferred 139 

to single cells and vice versa. The major advantages of our transfer learning framework are that 140 

the single-cell gene expression data and clinical bulk gene expression data can come from 141 

different patient cohorts of the same disease without matched data while the disease associations 142 

can still be directly assigned to individual cells. This flexibility not only presents an ingenious way 143 

to integrate molecular omics data analysis in different levels, but also virtually merges them into 144 

the same cohort, which makes studying a broad variety of heterogeneous diseases possible.  145 

 146 

Various types of workflows can integrate the DEGAS framework, which can be tailored to user 147 

preference and data availability. These workflows consist of preprocessing, formatting data, 148 

training DEGAS models using the DEGAS framework, predicting disease associations in cells 149 

using the DEGAS framework, and downstream analysis (Fig. 1A). The DEGAS framework in its 150 

simplest form can be broken into three tasks during model training: 1) correctly labeling cells with 151 

a cellular subtype using multitask learning; 2) correctly assigning clinical labels to patients using 152 

multitask learning; and 3) generating a latent space in which patients and cells are comparable 153 

using domain adaptation (Fig. 1B). To perform DEGAS analysis, first we select representative 154 

gene features that are predictive of cell type, predictive of patient disease attributes, and present 155 
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at measurable levels in both scRNA-seq and bulk transcriptomic data. Secondly, we apply deep 156 

learning models to learn the latent representation of the single-cell and patient-level transcriptomic 157 

data, with the goal to simultaneously minimize cell type classification error, patient disease 158 

attribute prediction error, and the differences between cells and patients in their latent 159 

representation. Finally, the patient-level disease attributes such as survival and clinical subtypes 160 

is predicted in the single cells using the patient label output layer and cell types are predicted in 161 

patients using the cell type output layer (Fig. 1C). We call these transferrable label probabilities 162 

“impressions” since information from gene expression of disparate data types and studies can be 163 

extracted and the characteristics from one data type can be mapped to another. These 164 

impressions of disease attributes in single cells can be wide ranging characteristics of the patient 165 

samples but must be categorical or time to event. The most interesting of them that can be used 166 

in DEGAS are disease status, disease subtype, survival, and response to therapy. Disease status, 167 

subtype, and survival were used in our current experiments but there would also be much utility 168 

in identifying cells associated with poor response to treatment as the data become available. 169 

Furthermore, we emphasize the ability to make predictions of patient disease attributes in 170 

individual cells since there is a lack of such method to perform this task to the best of our 171 

knowledge. DEGAS is developed as a generalizable model generating deep transfer learning 172 

framework that can be applied to any disease data as long as the data contain clinical information 173 

for a cohort of patients or a separate clustering analysis result on sets of cells from single cell 174 

level omic experiments of the same disease. Since there is not an inherent limitation to the use 175 

of transcriptomic data, DEGAS can be potentially expanded to accommodate other modalities of 176 

data with proper normalization steps.  177 

 178 

To demonstrate the feasibility and effectiveness of the DEGAS framework, we first tested it on 179 

simulated data and glioblastoma (GBM) transcriptomic data, which contain ground-truth labels of 180 

cell types on single cell gene expression data and clinical labels for patient bulk tissue gene 181 
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expression data. Then we applied DEGAS to multiple Alzheimer’s disease (AD) gene expression 182 

datasets from Mount Sinai/JJ Peters VA Medical Center, Allen Institute, Grubmann et al. [32], and 183 

Mathys et al. [15] in which certain cell type changes (microglia and neuron) are largely known [33-184 

39]. Finally, as an exploratory tool, we applied DEGAS to study multiple myeloma (MM) 185 

transcriptomic data, where the disease associated subtypes of cells are largely unknown.  186 

 187 

MM is a late stage of myeloma that stems from the proliferation of aberrant clonal plasma cells 188 

in the bone marrow that secrete monoclonal immunoglobulins and is the second most common 189 

blood cancer in the United States [40]. Patient level transcriptomic data for MM has been widely 190 

available for some time and has been used to identify subtypes of MM with different prognoses 191 

[41]. However, only recently has scRNA-seq become available for MM [9, 42, 43] and few 192 

studies have identified the most high-risk subtypes of cells [9]. Here we combined our newly 193 

generated late-stage myeloma scRNA-seq data from four local samples and bulk tissue data 194 

from the Multiple Myeloma Research Foundation CoMMpass study, and then applied DEGAS to 195 

infer clinical impressions for myeloma cell subtypes and successfully identified a PHF19high 196 

myeloma cell subgroup associated with a high-risk of progression. 197 

 198 

Methods 199 

Experimental design and datasets 200 

For a DEGAS cell prioritization experiment, one scRNA-seq dataset, one bulk expression dataset, 201 

and patient sample labels (matched with the bulk data samples) are required as input. After 202 

feature selection and scaling (see Feature selection and scaling) of the raw input expression 203 

data, there should be two expression matrices with rows corresponding to samples/cells and 204 

matching columns corresponding to genes. The bulk patient sample labels should be one-hot 205 

encoded in a matrix with rows corresponding to each sample and the columns corresponding to 206 

each class of label. For survival sample labels the first column should be time and the second 207 
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column should be the even indicator (1 event and 0 censored). If cell labels are also available, 208 

they should also be one-hot encoded with each row corresponding to a cell and each column 209 

corresponding to a class of label. The DEGAS models can be trained and predicted on these 210 

formatted data (Fig. 1A). 211 

 212 

In this study we analyzed simulated data and data from three different diseases, GBM, AD, and 213 

MM, to test the DEGAS framework and apply it for novel discoveries. The simulation, GBM, and 214 

AD experiments were primarily used as validation datasets since the ground truth is known. The 215 

simulated data were generated so that cell types are directly related to disease status in patients. 216 

For GBM data, we used scRNA-seq data for five tumors from Patel et al. [44] and microarray data 217 

for the GBM TCGA cohort [45] (Table 1). For AD data, we used human scRNA-seq from Allen 218 

Institute for Brain Science (AIBS) Cell Types Database (https://celltypes.brain-map.org/) and AD 219 

patient RNA-seq from the Mount Sinai/JJ Peters VA Medical Center Brain Bank (MSBB) study 220 

[46] (Table 1). 221 

 222 

Table 1. Summary of the clinical features in each patient cohorts used in training. * Final 223 

age category is >90 years. 224 

Glioblastoma Multiforme TCGA 

Feature Details 

Sex 74 Male, 37 Female 

Age (years) Range: 14-83, Mean: 56, Median: 58 

Clinical GBM subtype 34 Classical, 33 Mesenchymal, 9 Neural,  
35 Proneural 

Alzheimer’s Disease MSBB 

Feature Details 

Sex 90 Male, 131 Female 
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Age (years) Range: 61-90+, Mean* > 82, Median = 84 

AD diagnosis 135 AD, 86 Control 

Multiple Myeloma MMRF 

Feature Details 

Sex 387 Male, 260 Female 

Age (years) Range: 27-93, Mean: 64, Median: 64 

Relapse-free survival time (days) Range: 13-1753, Mean: 665.4, Median: 629 
200 patients progressed 

 225 

 226 

We further expanded our inquiry into MM, which served as a discovery study. Since the plasma 227 

cell subtypes are less understood in relation to MM clinical outcomes, we aimed to identify 228 

subtypes of plasma cells associated with worse prognosis. We first utilized 647 CD138+-229 

enriched bone marrow patient samples from the Multiple Myeloma Research Foundation 230 

CoMMpass study (MMRF). These data were generated as part of the Multiple Myeloma 231 

Research Foundation Personalized Medicine Initiatives (https://research.themmrf.org). The 232 

dataset consisted of tumor tissue RNA-seq data and corresponding clinical information including 233 

progression free survival (PFS) time and survival status. PFS was defined as the time taken for 234 

a patient to relapse, progress, or die after treatment of the initial tumor. The demographic 235 

information of the MMRF patients are shown in Table 1. The first scRNA-seq data used in this 236 

study were generated by us using samples consisting of CD138+ plasma cells purified from 237 

bone marrow from four myeloma patients including two MM patients.  238 

  239 
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There were six total samples collected from myeloma patients. Of these, four samples passed 240 

initial quality control checks. Sample 1 and 6 were dropped due to sample degradation and data 241 

quality issues. This in turn left with four usable samples, i.e., samples 2, 3, 4, and 5 for our 242 

study. The low number of patients was a good test case considering most scRNA-seq 243 

experiments frequently have few patients. The single cells were sequenced using 10x 244 

Genomics and Illumina NovaSeq6000 sequencer. CellRanger 2.1.0 245 

(http://support.10xgenomics.com/) was utilized to process the raw sequence data. Briefly, 246 

CellRanger used bcl2fastq (https://support.illumina.com/) to demultiplex raw base sequence 247 

calls generated from the sequencer into sample-specific FASTQ files. The FASTQ files were 248 

then aligned to the human reference genome GRCh38 with RNA-seq aligner STAR. The aligned 249 

reads were traced back to individual cells and the gene expression level of individual genes 250 

were quantified based on the number of UMIs (unique molecular indices) detected in each cell. 251 

The filtered gene-cell barcode matrices generated by CellRanger were used for further analysis. 252 

A second publicly available myeloma scRNA-seq dataset was used for validation, which 253 

consisted of NHIP (normal control), MGUS (monoclonal gammopathy of undetermined 254 

significance), SMM (smoldering multiple myeloma), and MM [42]. A second bulk tissue dataset 255 

was used for validating the proportional hazards modeling. This dataset consisted of bulk 256 

expression profiling by microarray of CD138+ plasma cells with overall survival (OS) information 257 

for 559 MM patients [41]. The detailed information of the four datasets is shown in Table 2. 258 

 259 

Table 2. Overview of all datasets used in the analysis. *The simulated patients were 260 

generated from the splatter simulated cells by combining known proportions of cell types. 261 

“None” is used to denote the lack of labels for the cells/samples in a given dataset. †Cells were 262 

down-sampled from the total number of cells because some cell types were over-represented. 263 

Study Dataset Sample size Data type Attribute 
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Simulation 
Simulated cells* 5000 cells scRNA-seq Cell type 

Simulated patients* 600 patients RNA-seq Disease status 

Glioblastoma 
Patel et al., 2014 532 cells 

(5 patients) 
scRNA-seq 

(SMART-seq) None 

TCGA GBM 111 patients Microarray GBM subtype 

Alzheimer’s 
disease 

AIBS 47,396 cells 
(11 patients) 

scRNA-seq 
(SMART-seq) Brain cell types 

Grubman et al., 
2019 

13,214 cells 
(12 patients) 

snRNA-seq 
(10x Genomics) 

AD and normal 
brain cell types 

Mathys et al., 2019 5288 cells† 
(48 patients) 

snRNA-seq 
(10x Genomics) 

AD and normal 
brain cell types 

MSBB 682 samples 
(221 patients) RNA-seq AD diagnosis 

Multiple 
myeloma 

MMRF 647 patients RNA-seq PFS 

IUSM 22,968 cells 
(4 patients) 

scRNA-seq 
(10x Genomics) 

Subtype 
cluster 

(Subtype 1-5) 

Ledergor et al., 2019 13,440 cells 
(35 patients) 

scRNA-seq 
(MARS-seq) 

Malignancy  
(NHIP, MGUS, 

SMM, MM) 

Zhan et al., 2006 559 patients Microarray OS 
 264 

Transfer learning using DEGAS 265 

Several types of labels including Cox proportional hazards, patient classification, and cell type 266 

classification, along with maximum mean discrepancy (MMD), a technique used to match 267 

distributions across different sets of data [22], were combined to create the multitask transfer 268 

learning framework DEGAS. 269 

  270 

The first step was to find a set of gene expression features that were both informative of cell type 271 

and of patient disease attribute (e.g., recurrence). The intersection of high variance genes found 272 

in the scRNA-seq and bulk expression data of patient samples are used for further analysis. The 273 
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definition of this gene set is up to the user but Seurat-CCA, LASSO selection, and even statistical 274 

tests such as t-test and f-test can be used to define the gene set. Since these features are the 275 

same between patients and single cells, the patients and cells share the same input layer. This 276 

makes it possible to predict proportional hazard and cell type regardless of the input sample type 277 

(patient or single cell data). 278 

 279 

All experiments in this manuscript use a five-bootstrap aggregated three-layer DenseNet-based 280 

implementation of DEGAS, but the simplest form of the DEGAS framework is a single layer 281 

network. In our description of the overall architecture below (shown in Fig. 1B,C), we used a 282 

single layer network for the purpose of simplicity. The following Eq. 1 can nevertheless be 283 

extrapolated to multiple layers and architectures, some of which we have already included in our 284 

open-source software package. First, a hidden layer was used to transform the genes into a lower 285 

dimension using a sigmoid activation function (Eq. 1). Where 𝑋 represents an input expression 286 

matrix, 𝜃!"##$% represents the hidden layer weights, and 𝑏!"##$% represents the hidden layer bias. 287 

 𝑓!"##$%(𝑋) = 	𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑋&𝜃!"##$% + 𝑏!"##$%) Eq. 1 288 

 289 

Next, output layers were added for both the patient output and for the single cell output. For the 290 

single cells, there could be classification output or no output. No output means there are no known 291 

labels for the single cells to match. Similarly, patients could have Cox proportional hazard output, 292 

classification output, or no output (implying no known labels for patients).  293 

 294 

The Cox proportional hazards estimates consisted of a linear transformation to a single output 295 

followed by a sigmoid activation function (Eq. 2): 296 

 𝑓'()(𝑋) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑓!"##$%(𝑋)&𝜃'() + 𝑏'()), Eq. 2 297 
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where the variable 𝑋 represents an input expression matrix, 𝜃'() represents the Cox proportional 298 

hazard layer weights [47], and	𝑏'() represents the Cox proportional hazard layer bias. The 299 

classification output consisted of a transformation to the same number of outputs as the number 300 

of labels, i.e., patient subtypes, cellular subtypes, using a softmax activation function (Eq. 3).  301 

 𝑓'*+,,(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥3𝑓!"##$%(𝑋)&𝜃'*+,, + 𝑏'*+,,4, Eq. 3 302 

𝜃'*+,, represents the classification layer weights and 𝑏'*+,, represents the classification layer bias. 303 

 304 

To train the DEGAS model, we need to compute three types of loss functions for the Cox 305 

proportional hazards output, classification output, and MMD [22] respectively. The Cox 306 

proportional hazards loss [47] was calculated only for the patient expression data (𝑋-+.) using the 307 

followup period (𝐶), and event status (𝑡) (Eq. 4). Similarly, the patient classification loss was only 308 

calculated for the patient data (𝑋-+.) using the patient labels (𝑌-+.). Alternatively, the cellular 309 

classification loss was only calculated for the single cell expression data (𝑋'$**) and true subtype 310 

label (𝑌'$**) (Eq. 5). The MMD loss was calculated between the patient expression data (𝑋-+.) and 311 

the single cell expression data (𝑋'$**) (Eq. 6), which is the key for mapping the distributions of the 312 

data representations between the single-cell and patient bulk tissue data. 313 

 𝐿𝑜𝑠𝑠'() =	∑ :𝑓'()(𝑋-+.)" −∑ (exp	(𝑓'()(𝑋-+.)/).!0." ?'(")34  Eq. 4 314 

 𝐿𝑜𝑠𝑠'*+,, =
4
%
∑ :∑(𝑌.56$," − 𝑓'*+,,3𝑋.56$4")? 	𝑤ℎ𝑒𝑟𝑒	𝑡𝑦𝑝𝑒	𝜖	{𝑃𝑎𝑡, 𝐶𝑒𝑙𝑙}
%
"34  Eq. 5 315 

 𝐿𝑜𝑠𝑠889 = 𝑀𝑀𝐷(𝑋'$** , 𝑋-+.) Eq. 6 316 

Besides the three losses, we also add a L2-regularization loss term to constrain for the complexity 317 

of the model. The overall loss function was the weighted sum of the four types of loss using the 318 

hyper-parameters	𝜆: (single cell loss function), 𝜆4 (patient loss function), 𝜆; (MMD loss), and 𝜆< 319 

(regularization loss), so that the importance of each loss term and regularization term could be 320 

adjusted (Eq. 7):  321 

 𝐿𝑜𝑠𝑠'*+,,'() =	𝜆:𝐿𝑜𝑠𝑠'*+,, + 𝜆4𝐿𝑜𝑠𝑠'()+𝜆;𝐿𝑜𝑠𝑠889 + 𝜆<‖𝜃‖;;. Eq. 7 322 
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 323 

To address more diverse scenarios, we can also adapt Eq. 7 for two classification outputs (Eq. 324 

8), a single classification output without patient disease attribute (Eq. 9), a single classification 325 

output without cell type label (Eq. 10), or a single Cox output without cell type label (Eq. 11): 326 

 𝐿𝑜𝑠𝑠'*+,,'*+,, =	𝜆:𝐿𝑜𝑠𝑠'*+,, + 𝜆4𝐿𝑜𝑠𝑠'*+,, + 𝜆;𝐿𝑜𝑠𝑠889 + 𝜆<‖𝜃‖;;, Eq. 8 327 

 𝐿𝑜𝑠𝑠'*+,,=*+%> =	𝜆:𝐿𝑜𝑠𝑠'*+,, + 𝜆;𝐿𝑜𝑠𝑠889 + 𝜆<‖𝜃‖;;, Eq. 9 328 

 𝐿𝑜𝑠𝑠=*+%>'*+,, =	𝜆4𝐿𝑜𝑠𝑠'*+,, + 𝜆;𝐿𝑜𝑠𝑠889 + 𝜆<‖𝜃‖;;, Eq. 10 329 

 𝐿𝑜𝑠𝑠=*+%>'() =	𝜆4𝐿𝑜𝑠𝑠'() + 𝜆;𝐿𝑜𝑠𝑠889 + 𝜆<‖𝜃‖;;. Eq. 11 330 

  331 

In summary, a common hidden layer was used to merge the single cells and patient data. Next, 332 

an output layer was added to predict the proportional hazards or classes of the patient samples 333 

[47]. The loss function for the proportional hazards prediction or patient classification was back-334 

propagated across both layers for each patient. The single cells also had an output layer 335 

consisting of a softmax output to predict the cellular subtype of each cell. Error was back-336 

propagated across both layers from the label output for each cell. Finally, a model was learned 337 

that can model both the single cells and the patients. To perform this task, we utilized the MMD 338 

method [22] to reduce the differences between patients and cells in a low dimensional 339 

representation. Both single cell and patient bulk tissue data were combined into a single group 340 

such that the MMD loss was minimized between patient bulk tissue data and single cell data from 341 

multiple patients. Because there are many different combinations of these outputs, i.e., single cell 342 

output followed by patient output, we implemented ClassCox, ClassClass, ClassBlank, 343 

BlankClass, and BlankCox models based on equations (7)-(11) in the current version but intend 344 

to provide more options in the future. 345 

 346 
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To keep the analyses consistent, we used the same network architecture and hyperparameters 347 

throughout all of the experiments. Specifically, we used a three-layer DenseNet architecture 348 

bootstrap aggregated five times such that Eq. 1 would consist of a DenseNet instead of a single 349 

layer feedforward network and five such models were trained. The same set of hyper-parameters 350 

were used in all of the experiments in this study, except for the robustness to hyper-parameters 351 

experiment, where they were intentionally altered to test the influences on the output results. 352 

These are considered the default hyper-parameters in the DEGAS package but can be changed. 353 

They are: training steps 2000, single cell batch size 200, patient batch size 50, hidden layer nodes 354 

50, drop-out retention rate 50%, single cell loss weight (𝜆:) 2, patient loss weight (𝜆4) 3, MMD 355 

loss weight (𝜆;)	3, and L2-regularization weight (𝜆<) 3. 356 

 357 

Feature selection and scaling 358 

There are already multiple feature selection techniques available in a wide range of general 359 

statistical packages and scRNA-seq packages. For this reason, DEGAS does not focus mainly 360 

on feature selection, data cleaning, scRNA-seq clustering, but rather on transferring clinical traits 361 

from patient to cells for the purpose of prioritizing those cells. For these reasons, a wide range of 362 

feature selection techniques can be used before the DEGAS framework is applied. 363 

 364 

Data from scRNA-seq experiments are generally very sparse. As a result, there are few genes 365 

with viable expression for any given cell. Due to this, it is necessary to perform feature selection 366 

to remove genes that are lowly expressed or have very low variance. When we select for high 367 

variance and expressed genes in the bulk expression data, more genes are filtered out. After the 368 

intersection of these two gene sets of expressed and high variance genes, we are left with less 369 

than 1000 genes. It is worth noting that such number of gene features is comparable to Seurat 370 

analysis, when usually hundreds to a couple of thousand highly variable genes are selected. The 371 

feature selection steps were tailored to each dataset because the data sparsity and variance vary 372 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 24, 2021. ; https://doi.org/10.1101/2020.06.16.142984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.142984
http://creativecommons.org/licenses/by-nc-nd/4.0/


DEGAS 17 

greatly from one another, thus the tailored selection insured that enough genes with high enough 373 

variability were available to train on. The feature selection steps are described individually in each 374 

of the simulated, GBM, AD, and MM experiment sections. 375 

 376 

For each experiment, the final feature scaling steps were consistent. The gene expression was 377 

converted to sample-wise z-scores because it allows the genes to be more comparable between 378 

samples and has been performed in multiple other studies [27, 48-50]. As the input to our deep 379 

learning models, we scaled these z-scores to a range of [0,1]. This form of z-score scaling and 380 

[0,1] scaling is commonly used in machine learning and deep learning to help model training [51-381 

53]. We follow this same convention for our deep learning models. 382 

 383 

Disease association scores 384 

The final DEGAS output is either the output of a sigmoid or a softmax activation. For these 385 

reasons, it can be useful to convert the [0,1] label output to an association score which can be 386 

interpreted like a correlation coefficient. For these reasons, the output probability matrix from 387 

DEGAS can be converted to a [-1,1] value using the toCorrCoeff function in the DEGAS package. 388 

This function transforms the [0,1] output value matrix (𝑃) with 𝑘 labels to [-1,1] using Eq. 12.389 

 𝑑𝑖𝑠𝑒𝑎𝑠𝑒	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 = 2S
-?#$
;?%$

+ 4
;
T − 1 Eq. 12 390 

 391 

Validating DEGAS using Simulated single cell data 392 

First we generated 5,000 single cells in four cell types where the cell type 4 had two subtypes 393 

(cell type 4 disease and cell type 4 normal). Each of these five groups described above contains 394 

1,000 cells. We split randomly these cells into 2 parts with 2,000 cells used for patient bulk tissue 395 

data generation and 3,000 cells to use directly as single cell data. The 2,000 single cells used to 396 

generate 600 patients across three different experiments (designated as simulation 1, 2, and 3) 397 
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where in simulation 1 the cell type 1 is associated with disease, in simulation 2 only the cell type 398 

4 disease is associated with disease, and in simulation 3 the entire cell type 4 is associated with 399 

disease. Each patient bulk tissue data was generated by randomly combining 400 single cells 400 

using the proportions in Table 3. 401 

 402 

Table 3. Patient cellular makeup for simulation experiments. The abbreviations are: 403 

Simulation (sim), Normal (N), and Disease (D). The high-risk cell types are in bold. 404 

 Cell type 1 Cell type 2 Cell type 3 Cell type 4N Cell type 4D 
Patients sim1D 50.0% 16.6% 16.6% 16.6% 00.0% 
Patients sim1N 25.0% 25.0% 25.0% 25.0% 00.0% 
Patients sim2D 25.0% 25.0% 25.0% 00.0% 25.0% 
Patients sim2N 25.0% 25.0% 25.0% 25.0% 00.0% 
Patients sim3D 16.6% 16.6% 16.6% 30.0% 20.0% 
Patients sim3N 25.0% 25.0% 25.0% 25.0% 00.0% 

 405 

We then performed 10-fold cross validation by training the DEGAS ClassClass models using cell 406 

type and disease attribute. A total of 1000 gene features were used during training. We evaluated 407 

the model capacity for mapping patient labels on patients and cell type labels on single cells using 408 

PR-AUC and ROC-AUC. We then recapitulated the known cell type associations in each 409 

simulation by overlaying disease association onto the simulated cells. As a comparison, we also 410 

deconvoluted the patients using the 4 cell types using least squares. Deconvolution should be 411 

able to correctly identify the cells of interest in simulation 1 and simulation 3. In contrast, cell type 412 

prioritization using Augur [19] should be able to correctly identify the disease associated cell types 413 

in simulation 2. In the simulation 1 Augur experiment, cell type 1, cell type 2, cell type 3, and cell 414 

type 4 normal were randomly assigned to the disease or normal groups. In the simulation 2 Augur 415 

experiment, cell type 1, cell type 2, and cell type 3 were randomly assigned to disease or normal 416 

groups. The cell type 4 disease cells were all assigned to the disease group and the cell type 4 417 

normal cells were all assigned to the normal group. In the simulation 3 Augur experiment, cell 418 

type 1, cell type 2, and cell type 3 were randomly assigned to disease and normal groups. The 419 
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cell type 4 cells assigned to the disease group consisted of 60% cell type 4 normal and 40% cell 420 

type 4 disease and cell type 4 cells assigned to the normal group consisted of 100% cell type 4 421 

normal. These cell type proportions match those in the simulation 3 patients used by DEGAS. 422 

The Augur output for each cell type is an ROC-AUC score that reflects how much a cell type 423 

changes transcriptionally between disease and normal samples. To make the comparison fair 424 

between our two methods, we use the output of our algorithm scaled from [0,1] where 0.5 implies 425 

no association, 0 implies a negative association, and 1 implies a positive association. ROC-AUC 426 

is on the same scale. In this way we compare the strength of signal between Augur and our 427 

method to identify that cell type 4 has cell-intrinsic changes related to disease. 428 

 429 

Validating DEGAS using GBM data 430 

The scRNA-seq data from the Patel et al. study [44] were downloaded from NCBI Gene 431 

Expression Omnibus (GSE57872). The single cell expression values were previously normalized 432 

to TPM containing 5,948 genes with mean(log2(TMP))>4.5 retained in the data table. The top 20% 433 

variance genes were retained for training. These values were converted to z-scores then 434 

standardized to a range of [0,1] for each sample. The TCGA GBM microarray expression data 435 

was downloaded from Firebrowse (http://firebrowse.org/). Microarray data were used since it 436 

contains more patient samples for training with GBM subtype information than RNA-seq data. 437 

Likewise, the top 20% variance genes were retained for training and these expression values 438 

were converted to z-scores then standardized to a range of [0,1] for each sample. The GBM 439 

subtype labels for the TCGA patients were downloaded from Verhaak et al. [54]. The intersection 440 

of genes between single cells and patients (199 genes) were used for the final model training. 441 

Since subtype labels were only available for the GBM patient samples, we trained a BlankClass 442 

DEGAS model (Eq. 10). This model minimizes the MMD loss between single cells and patients 443 

while minimizing the classification loss only in GBM patients. We split the dataset into 10 groups 444 

and performed 10-fold cross-validation by leaving out a single patient group during training. After 445 
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cross-validation, we converted the [0,1] DEGAS output to an association [-1,1] using the DEGAS 446 

toCorrCoeff function. These association scores were overlaid on the GBM single cells and now 447 

referred to as GBM subtype association scores because GBM subtype from patients is overlaid 448 

on single cells. We plotted these association scores stratified by GBM subtype for each tumor 449 

individually. We then compared the proportions of these cell types to the previously defined GBM 450 

types from the original publication were marked with red boxes. We also visualized the GBM 451 

subtypes association in single cells by calculating a low dimensional representation using tSNE 452 

and overlaying the kNN smoothed GBM subtype associations. To make the scatter plots of cells 453 

and patients more informative, kNN smoothing was used by averaging each point’s GBM subtype 454 

association value with its five nearest neighbors in tSNE. The model performance was shown with 455 

the PR-AUC and ROC-AUC for each of the GBM subtype labels in the TCGA patients from cross-456 

validation. 457 

 458 

In a second analysis on the GBM scRNA-seq and bulk expression data, using the same input 459 

features, we overlaid risk derived from the overall survival in the TCGA GBM cohort onto the 460 

individual cells from the Patel et al. study [44]. GBM has an extremely low 5-year survival rate 461 

resulting only three patients being censored. We introduced more censoring in the data by 462 

generating a uniformly distributed random vector of censoring times in the range 1 to 1063 days, 463 

where 1063 days is the 90th percentile of survival times. If the censor time was lower than the 464 

survival time, the patient was censored at that time instead of having an event at their true survival 465 

time. We then trained 10 BlankCox DEGAS models based on the patient survival input during 10-466 

fold cross validation. The output from these DEGAS models were kNN smoothed based on the 467 

tSNE coordinates using the DEGAS knnSmooth function and converted to death associations 468 

using the DEGAS toCorrCoeff function. To highlight the differences in death association of cells, 469 

these associations were centered to 0 using the DEGAS centerFunc function. We evaluated the 470 
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accuracy of the labels in patients using a rank-sum test based on the cox output in the GBM 471 

patients. 472 

 473 

Validating DEGAS and exploration using AD data 474 

For AD datasets, we were primarily interested in identifying known relationships between cell 475 

types and AD diagnosis. For these reasons, we downloaded all of the adult Human scRNA-seq 476 

data from the AIBS. Only inhibitory neurons, excitatory neurons, oligodendrocytes, astrocytes, 477 

microglia, and oligodendrocyte progenitor cells (OPCs) were retained in the analysis due to the 478 

extremely low sample sizes for the remaining cell types. The inhibitory and excitatory neuron 479 

groups were merged into a single neuron group. These data were then log2 transformed, 480 

converted to sample-wise z-scores, and then standardized to [0,1] by each sample. In the primary 481 

analysis, only the top 50 up-regulated DEGs for each cell type (calculated by Seurat) were 482 

retained in the single cell data (see RESULTS). In a distinct secondary analysis, features were 483 

selected with >25% non-zero samples and top 20% variance genes (see Supplementary 484 

Materials).  The labels for the single cells consisted of the major cell types listed above. The AD 485 

brain data was downloaded from Mount Sinai/JJ Peters VA Medical Center Brain Bank 486 

(https://www.synapse.org/#!Synapse:syn3157743). Each of the RNA-seq samples were either 487 

from an AD patient’s brain sample or a normal control brain sample. The binary disease attribute 488 

of AD case or normal were used as the label for the model. Like in the previous experiment, the 489 

RNA-seq values were log2 transformed, converted to sample-wise z-scores, and standardized to 490 

[0,1] for each sample. The top 50% variance genes were retained for training to keep the feature 491 

set larger. The intersection of the patient genes and single cell genes (Primary analysis: 169 492 

genes, Secondary analysis: 456 genes) were using to train the final models. Using the cell type 493 

classification for each AIBS single cell and the AD/normal classification for each MSBB patient 494 

we were able to train a DEGAS ClassClass model (Eq. 8). The performance was evaluated using 495 

10-fold cross-validation by leaving out each group during training once. As in the GBM 496 
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experiments, we converted the DEGAS output to an association using the DEGAS toCorrCoeff 497 

function for each single cell so that each single cell now had an AD association. Correlation 498 

analysis was performed on AD association scores for different cells with each cell type by taking 499 

the median score and calculating the p-value by treating it as a correlation. In addition, single cells 500 

were plotted overlaid with kNN smoothed AD association. Furthermore, to evaluate DEGAS 501 

performance, PR-AUC and ROC-AUC were computed for the single cells during cross-validation 502 

for each cell type in the single cell data. Similarly, AD diagnosis PR-AUC and ROC-AUC were 503 

computed from the MSBB patient RNA-seq. For both the primary and secondary AIBS analysis, 504 

DEGs were identified for the high AD association astrocytes and microglia based on the median 505 

AD association then compared to their respective disease associated astrocyte (DAA) [55] 506 

(Supplementary File 1), human Alzheimer’s microglia (HAM) gene markers [56] 507 

(Supplementary File 2), or disease associated microglia (DAM) gene markers [57] 508 

(Supplementary File 3). A detailed description of these gene lists can be found in the 509 

Supplementary Materials DAA, HAM, and DAM markers section. 510 

 511 

To further highlight the cellular associations to AD, we also performed experiments using a 512 

scRNA-seq dataset from Grubman et al. [32]. Since this dataset was sparser, genes were used 513 

with >25% non-zero samples then the top 50% variance genes were selected from these. For the 514 

MSBB data, the same initial feature selection was used (top 50% variance). The same 515 

normalization and standardization procedure as the AIBS scRNA-seq and MSBB were used 516 

again. The intersecting genes between Grubman et al. scRNA-seq constituted the final feature 517 

set (61 genes). 10-fold cross validation was performed using a ClassClass model and the AD 518 

associations were overlaid onto the Grubman et al. scRNA-seq in the same fashion as the 519 

previous experiment. In addition, a targeted analysis on only the microglia cells was performed. 520 

A single BlankClass model was trained using the same 61 features on the entire Grubman et al. 521 

microglia scRNA-seq and MSBB RNA-seq. For both analyses, the AD associations were overlaid 522 
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onto the cells, AD associations were compared between cells from AD and normal patient 523 

samples, and DEGs were identified for the high AD association astrocytes and microglia based 524 

on the median AD association then compared to their respective DAA [55] (Supplementary File 525 

1), HAM gene markers [56] (Supplementary File 2), or DAM gene markers [57] (Supplementary 526 

File 3). For the targeted analysis on only microglia, correlation tests were performed between AD 527 

associations and HAM gene markers [56] (Supplementary File 2). Also, DEGs were identified 528 

for the high AD association microglia based on the median AD association then compared to the 529 

HAM gene markers [56] (Supplementary File 2) and DAM gene markers [57] (Supplementary 530 

File 3). 531 

 532 

Lastly, DEGAS analysis was performed on the Mathys et al. scRNA-seq dataset [15]. In this 533 

analysis, the same gene set as the AIBS Primary analysis, i.e., all overlapping genes (157 genes) 534 

were used as input features. 1000 cells or all cells if total number was less than 1000 were 535 

sampled from each cell type since some cell types were over-represented. The same 536 

normalization and standardization procedure was used as the previous analyses. 10-fold cross 537 

validation was performed using these cells from Mathys et al. and the MSBB patient RNA-seq 538 

data using cell type and patient AD status as outcomes respectively. These outcomes represent 539 

a ClassClass DEGAS model. From the cross-validation results, the ROC-AUCs and PR-AUCs for 540 

each cell type label and the patient AD status were calculated. AD associations were calculated 541 

in the same fashion as all previous analyses. The Disease associations were then compared with 542 

AD status of the scRNA-seq donors and across the cell types. DEGs were identified for the high 543 

AD association astrocytes and microglia based on the median AD association then compared to 544 

their respective DAA [55] (Supplementary File 1), HAM gene markers [56] (Supplementary File 545 

2), or DAM gene markers [57] (Supplementary File 3). 546 

 547 

Preprocessing of MM scRNA-seq 548 
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The scRNA-seq data were first combined into a dataset using Seurat-CCA [28]. This initial dataset 549 

integration allowed conserved subtypes of cells to be identified across datasets. All four patient 550 

dataset counts were loaded into a Seurat object. Seurat normalized, scaled, removed poor quality 551 

cells, and identified high variance genes. Using the union of high variance genes, multi-canonical 552 

correlation analysis was run across all four datasets, the subspaces were aligned across patients, 553 

the aligned single cells were plotted with tSNE [58], and clusters of cells were identified. The raw 554 

expression values for the high variance genes identified by Seurat were log2 transformed, 555 

converted to z-scores, and then scaled to [0,1]. 556 

 557 

Furthermore, each IUSM scRNA-seq patient was individually clustered using Seurat to check the 558 

replicability of the clusters and were plotted with UMAP [59]. We used Rand, Fowlkes and 559 

Mallows's index (FM), and Jaccard index (JI) to measure the cluster consistency between single 560 

patient clustering experiments and the merged all-patient clustering results. The four single 561 

patient clustering results, one for each IUSM scRNA-seq patient, were used as input into 562 

BERMUDA [25] to visualize and evaluate the original Seurat clustering. 563 

  564 

Preprocessing of MMRF patient data 565 

MMRF patients with bulk tissue RNA-seq and clinical data were used in MM analysis. We used 566 

PFS as the disease attribute of interest. TPM values for the MMRF patient gene expression data 567 

and the PFS data were used as the input for DEGAS, these values were log2 transformed, 568 

converted to z-scores, and scaled to [0,1]. The union of the features (502 genes) identified by 569 

Seurat in the single cell data and the features selected in the MMRF patient data were used as 570 

the final feature set. The features retained in the MMRF data were identified by fitting an elastic-571 

net Cox model [60] to the TPM values based on the PFS. 572 

 573 

Evaluate DEGAS performance on MM datasets 574 
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PR-AUC and AUC were calculated for each of the output labels for the single cells and for patient 575 

labels if a classification output was used for the patient data. Cox proportional hazard output was 576 

used on patients, a log-rank test was calculated for each patient so that the hazard ratio and p-577 

value could be evaluated based on patient stratification by median proportional hazard. 578 

Additionally, the same models were used to predict risk in the GSE2658 dataset which had 579 

information on OS. The output for each GSE2658 sample averaged across all 10 DEGAS models 580 

and stratified by median risk to show the robustness of the cox output across datasets. 581 

 582 

Identification of CD138+ cell types associated with MM prognosis 583 

The single cells from MM patients can be assigned proportional hazards based on the MMRF Cox 584 

output of the model. Each single cell in the validation set was assigned progression association 585 

by feeding those samples through the Cox output layer. In this way, we can infer the association 586 

with progression risk of specific cell types as well as the cell type enrichment contained in each 587 

MMRF sample. Since the Cox output is a proportional hazard, we centered the outputs to zero 588 

for each step of cross validation to produce a PFS association using the DEGAS centerFunc. We 589 

plotted these relationships and conducted Student’s t-tests on the subtype vs. PFS association in 590 

IUSM single cells, PFS association vs. MM malignancy from Ledergor et al., and subtype 2 591 

enrichment vs. MM malignancy from Ledergor et al [42]. 592 

 593 

Analysis of differential gene expression in prognostic cell types 594 

T-tests were calculated cell subtype 1 vs all cell subtypes and cell subtype 2 vs. all cell subtypes 595 

using the batch corrected gene expression values from Seurat. These values were stored in 596 

(Supplementary File 4 and Supplementary File 5) respectively. For the marker set of PHF19, 597 

HELLS, EZH2, TYMS, ZWINT, and MKI67 we performed t-tests for each patient individually. 598 

 599 

Evaluation of DEGAS robustness to hyper-parameters in GBM 600 
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Using the GBM dataset, we evaluated the robustness of DEGAS model outputs to hyper-601 

parameters by repeating 10-fold cross-validation 100 times with randomly generated hyper-602 

parameters following a uniform distribution. The range of hyper-parameters used in training 603 

consisted of training steps 1,000-3,000, single cell batch size 100-300, patient batch size 20-100, 604 

hidden features 10-100, drop-out retention rate 0.1-0.9, Cell loss weight (𝜆:) held at constant 2, 605 

Patient loss weight (𝜆4) 0.2-5, MMD loss weight (𝜆;) 0.2-5, L2-regularization weight (𝜆<) 0.2-5. 606 

 607 

Using these outputs, we performed two tests. One was to evaluate the loss in performance based 608 

on changing the hyper-parameters where performance was measured with ROC-AUC among the 609 

TCGA GBM patients labeled by patient GBM subtype (Mesenchymal, Classical, Proneural, 610 

Neural). In this test, we calculated the spearman correlation and plotted the scatter plot between 611 

the AUC of each of the four GBM subtype labels and the hyper-parameters used.  612 

 613 

Next, we evaluated whether or not the correct GBM subtype labels (Mesenchymal, Classical, 614 

Proneural, Neural) could be recapitulated in the GBM scRNA-seq tumors that had known GBM 615 

subtypes (MGH26: Proneural, MGH28: Mesenchymal, MGH29: Mesenchymal, MGH30: 616 

Classical). To do this for each tumor (MGH26, MGH28, MGH29, MGH30), the rank of the 617 

correct label was calculated by calculating the mean of each GBM subtype association across 618 

all of the cells in that tumor. This resulted in each of the 100 random hyper-parameters having a 619 

rank for each GBM subtype for each of the GBM scRNA-seq tumors (4 highest ranked, 1 lowest 620 

ranked). Ideally all GBM scRNA-seq tumors would have a rank of 4 indicating the correct GBM 621 

subtype was ranked the highest regardless of hyper-parameters. Similarly, we also calculated 622 

the spearman correlation and plotted the scatter plot between correct label rank and the hyper-623 

parameters used. 624 

 625 

Evaluation of domain adaptation for DEGAS disease association transfer 626 
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We evaluate the necessity for domain adaptation to transfer disease associations to single cells 627 

using 30 total experiments. These experiments evaluated disease associations in cells by 628 

training with MMD loss vs. those without MMD loss for a variety of biases added between the 629 

cells and patients. It is important to highlight the fact that without bias between different 630 

datasets, in this case cells and patients, there is no need for domain adaptation. Practically in 631 

real transcriptomic data, there will always be bias between datasets. For these reasons we 632 

added bias for these 30 experiments. These experiments were conducted for every combination 633 

of MMD loss (with and without MMD), simulation (three simulations), and cellular subtype (five 634 

total subtypes since cell type 4 has two subtypes) totaling 30 combinations. The experiments 635 

were conducted as follows. In each experiment, the counts of 300 cells from a given subtype 636 

were aggregated together and multiplied by 1000 constituting a large systematic bias 637 

associated with a single subtype. This bias vector was added to all of the patients in the given 638 

simulation, both disease and normal. A single three-layer DenseNet DEGAS model with five-fold 639 

bootstrap aggregation was trained on all the cells and all the patients then the disease 640 

associations were predicted in the cells. We evaluated error by subtracting the expected 641 

disease association from the predicted disease associations, e.g., cell type 1 in simulation 1 642 

should be 1. We then compared the error rates between the DEGAS models with and without 643 

MMD using a t-test. 644 

 645 

Evaluation of regularization in DEGAS performance 646 

Regularization is an important method in machine learning to prevent model overfitting. Here we 647 

utilized three such techniques to prevent overfitting, namely, L2-regularization, dropout, and 648 

bootstrap aggregation. Since all of these techniques may work better or worse in different 649 

scenarios, we perform a simple experiment where all of these regularization techniques are 650 

removed and compared with the regularized results. We performed experiments using each of 651 

the simulated datasets. To evaluate the robustness of our models we performed 10-fold cross 652 
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validation in each simulation. The simulated cells were split into 10 groups and the simulated 653 

patients were split into 10 groups. For each fold of cross validation, our default DEGAS three-654 

layer DenseNet model with L2-regularization, dropout, and bootstrap aggregated 5 times was 655 

trained then a three-layer DenseNet DEGAS model was trained on the same data without L2-656 

regularization, dropout, and bootstrap aggregation. Both models were then used to predict the 657 

patient disease attributes in the holdout group of patients, the cell types in the hold out group of 658 

cells, and the patient disease attributes in the cells. We compare the performances using ROC-659 

AUC and PR-AUC for patient disease status in patients and cell type in cells. Furthermore, we 660 

evaluate the label transfer of patient labels to cells by calculating the error based on the 661 

expected cell type association for each cell. We compare between the regularized and 662 

unregularized error in cells with a t-test. 663 

 664 

Results 665 

DEGAS clinical impression framework 666 

In this study, we applied DEGAS to integrate and analyze scRNA-seq, bulk gene expression, and 667 

clinical data (Fig. 1) from simulated data as well as three different diseases: GBM, AD, and MM. 668 

The simulated, GBM, and AD datasets primarily served as validation to demonstrate the feasibility 669 

and universality of the DEGAS transfer learning approach since the ground truth of the simulated 670 

data was known, the correct GBM subtypes were known, and neuron loss with microglia gain in 671 

AD brains were also known. We then further expand our study to MM data, which serves as the 672 

discovery dataset, since the myeloma cell subtypes and high-risk factors related to MM are not 673 

as well understood at the single-cell level. In the MM study, we applied DEGAS on patient data 674 

from the Multiple Myeloma Research Foundation CoMMpass study (MMRF) and scRNA-seq data 675 

that we generated from myeloma patients. Our aim was to identify the cell subtypes using the 676 

impressions of progression risk on the single cells. We then applied the results to two separate 677 

MM validation datasets, one of which contained plasma cells from normal bone marrow (NHIP), 678 
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two MM precursor conditions - monoclonal gammopathy of undetermined significance (MGUS) 679 

and smoldering multiple myeloma (SMM), and MM.  We tested if DEGAS assignment of 680 

progression risk to cell subtypes were higher for more malignant conditions. An additional external 681 

validation dataset of patient level expression data with OS was used to evaluate whether the 682 

patient stratification learned by DEGAS was robust enough to be generalized to an external 683 

survival dataset. 684 

 685 

DEGAS correctly identifies high-risk cell types and subtypes in simulated data 686 

To evaluate DEGAS in a controlled context, 5,000 single cells were generated with Splatter [61] 687 

(Fig. 2A) where 2,000 of the cells were held-out to generate simulated patients. Using this group 688 

of held-out cells, 600 simulated patients were generated by aggregating sets of 400 simulated 689 

cells (Fig. 2B-D). We conducted three simulation experiments, denoted Simulation 1, Simulation 690 

2, and Simulation 3, where the single cells were aggregated in known proportions for each patient 691 

so that we could generate a “disease” patient group with different cellular composition than the 692 

“normal” patient group (see Methods). To highlight the utility of DEGAS, the experiments were: 693 

Simulation 1: cell type 1 is enriched in disease patients (Fig. 2B); Simulation 2: one subtype of 694 

cell type 4, i.e., cell type 4 disease, is enriched in disease patients (Fig. 2C); and Simulation 3: 695 

both subtypes of cell type 4 are enriched in disease patients (Fig. 2D).  696 

 697 

Please note that the optimal number of clusters for the simulated single cells would be 698 

determined to be four based on a standard scRNA-seq workflow (i.e., tSNE followed by K-699 

Medoids where optimal cluster number is selected based on average silhouette width) (Fig. 2E). 700 

This would cluster the cells into the four cell types while ignoring the two subtypes in the cell 701 

type 4 (Fig. 2F). As a result, deconvolution algorithms will not be able to detect the subtype 702 

level risk associations. Fortunately, cell type prioritization algorithms like Augur can detect these 703 

changes within cell types due to disease. However, for situations that do not have a new cell 704 
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type or missing cell type in the disease (simulation 1), Augur cannot detect the association 705 

between cell type 1 and disease since there is no disease associated cell type change (Fig. 706 

2G). Augur can detect the disease-associated cell type 4 in simulation 2 (Fig. 2H). In simulation 707 

3 where there is a mix of disease and normal subtypes for the cell type 4 in the disease group, 708 

Augur again has difficulty in identifying the cell type 4 disease association (Fig. 2I). In contrast 709 

to Augur, deconvolution can easily identify the correct cell type for Simulation 1 (Fig. 2J) and 710 

Simulation 3 (Fig. 2L) but not for simulation 2 (Fig. 2K). In comparison, DEGAS not only 711 

identified the correct cell type and subtypes in each experiment, it also correctly detected all of 712 

the simulated disease associations (Fig. 2G-L). Additionally, DEGAS had high precision-recall 713 

area under the curve (PR-AUC) predicting disease status of simulated patients (0.96-0.98) 714 

(Table S1) and almost perfectly predicted the cell type of simulated cells (~1.0) during cross-715 

validation (Table S2). Since DEGAS directly assigns disease risk to cells, many of the problems 716 

with cell type level analyses can be avoided and the correct groups of cells can be identified by 717 

overlaying impressions of disease risk. 718 

 719 

DEGAS correctly mapped single cells to corresponding GBM subtypes 720 

We first demonstrate DEGAS in a straightforward case to show the performance of our framework 721 

using real data from GBM. We use single-cell data from Patel et al. [44], in which researchers 722 

assigned four major GBM tumor subtypes (Proneural, Mesenchymal, Classical, and Neural) to 723 

the scRNA-seq data obtained from five GBM tumors. Of the five tumor samples, four had been 724 

labeled in the original publication with a single subtype based on the major proportion of cells 725 

assigned to each GBM subtype. For GBM bulk tumor tissue expression data, we obtained 726 

microarray data for 111 GBM patients from The Cancer Genome Atlas (TCGA), for which the 727 

same labels of GBM subtypes were also provided. The OS was also available in a subset of 109 728 

patients. As the simplest form of validation, we used these two datasets as input for the DEGAS 729 

model to test if it could re-identify the same GBM subtypes for both single cells and the TCGA 730 
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GBM cohort simultaneously. Then we overlaid OS-derived death associations onto the cells to 731 

visualize their association with OS. The resulting DEGAS models also proved to be accurate with 732 

high PR-AUCs (0.79-0.97) when predicting each of the GBM subtypes in the TCGA patients 733 

during 10-fold cross validation (Table S3). The OS BlankCox DEGAS models were able to stratify 734 

the patients into high and low risk groups based on median patient risk (log-rank p-value < 0.05). 735 

DEGAS correctly re-identified the same labels for all four tumors by overlaying GBM subtypes 736 

associations on each single cell, as indicated by the groups of cell subtypes with the highest 737 

association score determined by the median value (indicated with a red box) (Fig. 3A-D). For the 738 

fifth tumor sample, MGH31, it was labeled as a combination of multiple GBM subtypes in the 739 

original study, so we did not use it in our evaluation although DEGAS identified mesenchymal as 740 

its most associated GBM subtype (Fig. 3E). Additionally, these relationships can be visualized by 741 

plotting the single cells and overlaying the GBM subtype association or OS-derived death 742 

association. It is clear that MGH28 and MGH29 have a high association with the mesenchymal 743 

GBM subtype (Fig. S1A) and contain populations of cells with high death associations (Fig. 3F). 744 

 745 

DEGAS identifies increased microglia, reduced neuron populations, DAAs and DAMs 746 

Aside from GBM, AD also has well documented characteristics that can be used as a test bed for 747 

DEGAS. Specifically, there is a well-documented reduction in neurons [36-38], increase in 748 

microglia [33-35, 39], and more recently, AD subtypes of astrocytes [55] and microglia [56, 57]. 749 

AD brain scRNA-seq data was obtained from the AIBS and bulk AD RNA-seq were retrieved from 750 

MSBB [46]. During 10-fold cross-validation, DEGAS models for both primary and secondary AIBS 751 

analyses achieved high AD diagnosis status PR-AUC (0.82 and 0.76) in MSBB patients (Table 752 

S4) and high cell type prediction PR-AUCs (>0.99) for AIBS single cells (Table S5).   753 

 754 

From the AIBS primary analysis DEGAS results, we confirmed that at the single cell level, the 755 

AD associations were negative in neurons as previously described [62], which is shown by the 756 
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dark shade of neurons compared to other cell types (Fig. 3G, Table 4). In contrast, we 757 

observed positive AD associations in microglia cells (Fig. 3G, Table 4). A strength of the 758 

DEGAS framework is that it can detect intra-cell type differences in disease risk. Within the 759 

astrocyte cell type, we identified an astrocyte subtype that had a positive association with AD 760 

(Fig. 3G) that corresponded to the Astro L1 FGFR3 FOS subtype from the AIBS brain cell atlas 761 

(i.e., FOS is a DAA marker) [63] (Fig. 3H), had up-regulated DAA marker GFAP (Fig. 3I) [55], 762 

and was enriched for DAA markers (OR = 30.93, Fisher’s exact p-value < 2.2•10-16, Table S6). 763 

Furthermore, the high AD association microglia were enriched for DAM markers (OR = 17.07, 764 

Fisher’s exact p-value = 2.11•10-10, Table S7). In the secondary AIBS analysis using high 765 

variance genes, we again identified the strong negative AD association for neurons (Fig. S2A), 766 

positive AD association in microglia (Fig. S2A), high AD association astrocytes enriched for 767 

DAA markers (OR = 5.65, Fisher’s exact p-value < 1.66•10-8, Fig. S2B,C, Table S8), and high 768 

AD association microglia enriched for DAM markers (OR = 14.34, Fisher’s exact p-value < 769 

4.01•10-11, Table S9). When we performed DEGAS analysis on a separate dataset from 770 

Grubman et al. [32] with single cells from both AD and normal brains, we found that the major 771 

cell types from AD brains were significantly more associated with AD than their counterparts in 772 

normal brains as judged by median value (Fig. 3J).  773 

 774 

Table 4 Comparison of AD association scores in single cells between cell types as 775 

visualized in Fig. 3G. The DEGAS models were trained using neuron, oligodendrocyte, 776 

astrocyte, OPC, and microglia cell types. The single cells were split into groups based on their 777 

cell type and the mean AD associations of each cell type was evaluated as a correlation. The 778 

neuron and microglia groups are bolded to highlight their much higher mean AD association. P-779 

values are calculated by treating the association score as a pearson correlation coefficient. 780 

Cell type Cell-type mean association Number of cells p-value 
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Neuron -0.35 1329 <2.2•10-16 

Oligodendrocyte 0.05 1795 3.42•10-2 

Astrocyte 0.03 809 3.94•10-1 

OPC -0.12 738 1.09•10-3 

Microglia 0.22 741 1.42•10-9 
 781 

In the Grubman et al. scRNA-seq data, the astrocytes in AD brains were highly positively 782 

associated with AD (AD association = 0.22, pearson correlation p-value = 7.89•10-7) whereas 783 

the astrocytes in normal brains were negatively associated with AD (AD association = -0.06, 784 

pearson correlation p-value = 1.06•10-2, Fig. 3J). Astrocytes from AD brains also expressed 785 

GFAP at greater levels than astrocytes from normal brains (t-test p-value < 2.20•10-16) and high 786 

AD association astrocytes were significantly enriched for DAA markers (OR = 21.90, Fishers 787 

exact p-value = 2.21•10-12, Table S10). Furthermore, the high AD association microglia were 788 

moderately enriched for DAM markers (OR = 4.15, Fishers exact p-value = 4.11•10-2, Table 789 

S11). This provides evidence for DAA and DAM cells in the Grubman et al. dataset. 790 

 791 

DAM and HAM marker enriched high AD association cells were independently identified in the 792 

targeted analysis of the Grubman et al. microglia cells (Fig. 3K). AD associations were higher in 793 

cells derived from AD patient samples than Normal patient samples (Fig. 3L, t-test p-value = 794 

6.66•10-12), HAM up-regulated markers were more likely to be significantly positively correlated 795 

to AD association than HAM down-regulated markers (Fig. 3M, t-test p-value = 2.63•10-3). The 796 

HAM marker APOE [56, 57] was positively correlated with AD association (Table S12, 797 

PCC=0.18, p-value = 1.15•10-4). High AD association microglia were significantly enriched for 798 

HAM markers (OR = 21.47, Fishers exact p-value = 6.33•10-4, Table S13) and DAM markers 799 

(OR = 11.52, Fishers exact p-value = 1.50•10-11, Table S14). It is important to note that there 800 

was no overlap between the input feature set used to train the DEGAS model and HAM marker 801 
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genes that were identified, which shows DEGAS is a useful tool to identify disease associated 802 

cells within a single cell type even without prior knowledge of marker genes. 803 

 804 

After applying DEGAS to the Mathys et al. scRNA-seq dataset, the DEGAS models achieved 805 

high AUCs for patient AD status (0.77), patient AD status PR-AUC (0.81), cell types (>0.98), as 806 

well as cell type PR-AUCs (0.82-0.99) during cross validation (Table S15-16). The positive AD 807 

association of microglia and negative AD association of neurons were recapitulated (Fig. S3A, 808 

Table S17). Within the astrocyte cluster, there existed a subset of astrocytes with higher AD 809 

association (Fig. S3B). High AD association astrocytes were significantly enriched for DAA 810 

markers (OR = 14.75, Fishers exact p-value = 3.16•10-15, Table S18). A closer comparison of 811 

the scRNA-seq revealed that the top 10% AD association astrocytes, had 2.5 times higher 812 

GFAP expression than the other astrocytes (t-test p-value = 6.36•10-8, Fig. S3C).  In fact, like 813 

the Grubman et al. analysis, the AD association scores were higher in cells coming from AD 814 

patients than normal patients for every cell type in the Mathys et al. analysis (Table S17). 815 

Notably, we see increased AD association in AD derived astrocytes and microglia likely 816 

representing DAAs and HAMs respectively (Table S17). Furthermore, high AD association 817 

microglia were highly enriched for DAM markers (OR = 19.35, Fishers exact p-value < 2.2•10-16, 818 

Table S19) and high AD association in astrocytes correlated well with neuritic plaque count, a 819 

marker for disease severity in AD patients (PCC = 0.22, p-value = 6.36•10-12, Table S17). 820 

Again, the Mathys et al. analysis provides another example to demonstrate that DEGAS 821 

recapitulates the findings from the AIBS and Grubman et al. analyses and shows that DEGAS 822 

models can capture cell type level as well as intra-cell type differences in disease association. 823 

 824 

Identification of plasma cell subtypes in CD138+ scRNA-seq of MM 825 

In the MM study, unlike the previous two datasets, there were no predefined cell type labels, but 826 

DEGAS was still capable of analyzing such data and give clinical perspective to the clusters of 827 
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cells in the MM scRNA-seq data. In order to cluster cells into groups, we first used Seurat [28], a 828 

commonly used scRNA-seq data analysis tool, to merge and cluster all the CD138+ bone marrow 829 

cells from four patients (two SMM and two MM) whose samples were collected at the IUSM. Using 830 

Seurat, five major clusters of cells were identified (Fig. 4A). Cluster 1 consisted of the majority of 831 

the cells in each sample and was most likely the main clone in each of the patients. Cluster 2 was 832 

present in many of the patients and is described in detail after the DEGAS analysis. Cluster 3 and 833 

5 were only present in patient 2 representing possible subclones in patient 2. Cluster 4 was shared 834 

between multiple patients. These five clusters were used as the subtype labels in the DEGAS 835 

framework. We verified these cell clusters by clustering cells from each patient individually with 836 

Seurat and another scRNA-seq normalization tool BERMUDA (Batch Effect ReMoval Using Deep 837 

Autoencoders) [25] for all four patients. We found that the individual clustering results closely 838 

mirrored the Seurat-CCA clusters (Fig. S4A-D, Table S20) and that the subtype 2 was consistent 839 

across all MM patients using BERMUDA (Fig. S4E). For bulk tissue data from MMRF, the clinical 840 

outcomes of PFS for 647 patients were used as the patient-level input to DEGAS and overlaid 841 

onto the CD138+ single cells from the four IUSM patients (Fig. 4B).  842 

 843 

DEGAS patient stratification and cell type classification on MM 844 

A DEGAS model was trained on IUSM patient scRNA-seq data with subtype labels defined above 845 

and MMRF patients with bulk tissue data and PFS information. The performance metrics were 846 

calculated via 10-fold cross-validation. It is worth noting that for PR-AUC, random no skill 847 

classifiers will achieve a performance equal to the percentage of the class of interest and in the 848 

case of uncommon classes like subtype 4, the random classifier performance will be close to zero 849 

(0.02). When predicting cellular subtype label in single cells, DEGAS was able to achieve a PR-850 

AUC between 0.44-0.98 for all of the five CD138+ cellular subtypes identified in the above scRNA-851 

seq data while the PR-AUC for subtype 2 reached 0.91 (Table S21). The receiver operating curve 852 

AUCs (ROC-AUCs) were between 0.90-0.98 for these five subtypes (Table S21). Due to class 853 
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imbalance some of the subtypes did not perform as well as others based on PR-AUC but all of 854 

the PR-AUCs were substantially greater than a purely random model. Aside from correctly 855 

classifying the single cells, DEGAS was able to stratify the MMRF patients into high and low risk 856 

groups based on median progression risk (log-rank p-value = 4.72•10-10, Fig. 4C). We then 857 

applied the trained model on an external patient transcriptomic dataset from Zhan et al. [41] for 858 

validation. We demonstrated that the Cox proportional hazards portion for patient OS time of the 859 

DEGAS model was robust across datasets, and the impressions extracted from the DEGAS 860 

framework were capable of stratifying patients into low- and high-risk groups in the validation 861 

dataset (log-rank p-value = 1.12•10-3, Fig. 4D). 862 

 863 

DEGAS identifies CD138+ cellular subtypes with high progression association 864 

The MM scRNA-seq data provided an example of an exploratory analysis with DEGAS which 865 

can be used to generate hypotheses for future studies. The DEGAS model for the MM study 866 

transfers clinical impressions to single cells (i.e., single cells were directly assigned a 867 

progression association score), as well as transfers cellular/molecular impressions to patients 868 

(i.e., patients are assigned subtype enrichment score). We found that the subtype 2 cells were 869 

the most associated with prognosis (Fig. 4B) based on the DEGAS results. Specifically, the 870 

subtype 2 cells were associated with a shorter time to progression (Fig. 4E, t-test p-value < 871 

2.2•10-16). On an external validation scRNA-seq dataset from Ledergor et al. [42], the 872 

progression association increased from NHIP (no disease) to SMM (Fig. 4F, t-test p-value = 873 

1.50•10-2) and MM (Fig. 4F, t-test p-value = 1.70•10-2), which is consistent with the order of 874 

precursor conditions for MM (NHIP ® MGUS ® SMM ® MM). In addition, the enrichment of the 875 

subtype 2 cells increased from NHIP to near-MM stage SMM (Fig. 4G, t-test p-value = 3.10•10-876 

2) and MM (Fig. 4G, t-test p-value = 3.40•10-2). 877 

 878 

MM prognostic subtypes have distinct gene signatures 879 
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Differential gene expression analysis was performed between subtype 2 and all other subtypes 880 

(Supplementary File 5), and we found that subtype 2 had significantly up-regulated PHF19 881 

expression in all four of the patients (Fig. 4H). PHF19 is a known marker for malignant disease in 882 

MM [64]. Besides PHF19, its associated markers such as HELLS, EZH2, TYMS, ZWINT, and 883 

MKI67 were also significantly up-regulated in subtype 2. These results suggested the possible 884 

existence of a more malignant CD138+/PHF19high subpopulation of plasma cells represented by 885 

the subtype 2 cluster. It is important to notice that the gene feature set that was used as input into 886 

DEGAS only contained the HELLS gene, which further highlights the ability of DEGAS to predict 887 

high-risk cellular subtypes that can be further studied. 888 

 889 

DEGAS is robust to hyper-parameter choice 890 

To assess the robustness of DEGAS, we also analyzed how the hyper-parameter choices 891 

influence its results using a set of 100 randomly generated hyper-parameters with 10-fold cross-892 

validation on each set of those 100 sets of hyper-parameters on the GBM datasets. The hyper-893 

parameters that we evaluated include: the number of training steps, batch size for single cells, 894 

batch size for patients, number of hidden layer nodes, drop-out retention rate (the percentage of 895 

nodes randomly retained at the hidden layer), patient loss weight, MMD loss weight, and L2-896 

regularization weight. The detailed information about the range of hyper-parameters that were 897 

randomly sampled can be found in subsection titled Evaluation of DEGAS robustness to hyper-898 

parameters in the Methods section while the default parameters used for all previous experiments 899 

can be found in the subsection titled Transfer learning using DEGAS. We discovered that among 900 

the eight hyper-parameters, the majority of them did not significantly affect the ROC-AUC for 901 

predicting GBM subtypes in TCGA GBM patients with the exception of three hyperparameters – 902 

namely the drop-out retention rate, number of hidden layer nodes, and L2-regularization weight 903 

with spearman correlation p-value < 0.1 (Fig. S5, Table S22). Similarly, the majority of hyper-904 

parameters did not significantly affect the correct assignment of subtype to GBM scRNA-seq 905 
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tumor, except for a few exceptions in training steps, patient loss weight, and MMD loss weight 906 

with spearman correlation p-value < 0.1 (Fig. S6, Table S22). We therefore suggest users to keep 907 

default settings for at least patient loss weight, MMD loss weight, and L2-regularization weight. 908 

The percentage of GBM subtype labels ranking in the top two predicted labels improves from 74% 909 

to 82% if the default parameters or greater values are used for patient loss weight, MMD loss 910 

weight, and L2-regularization weight (Fig. S7). 911 

 912 

Domain adaptation improves DEGAS disease association transfer 913 

Without any bias, MMD and no MMD performances were not different from one another. After 914 

bias was added, MMD did improve the ability of DEGAS to transfer disease associations onto 915 

cells (Fig. S8). MMD is important for our algorithm because the bias added to the patients 916 

represents the types of systematic bias that are present between bulk and single cell 917 

transcriptomic data. In the example of simulation 2 with cell type 2 bias added, it is clear that all 918 

of the patients tended to cluster adjacent to the cell type 2 cluster (Fig. S8A). We defined high-919 

risk cells in this example as cells with a disease association >0.2 on a [-1,1] scale. Once the 920 

DEGAS model had been trained and the disease associations overlaid onto the cells, the 921 

DEGAS model trained without MMD predicted many cells in cell types other than cell type 1 as 922 

being high-risk (Fig. S8B). In contrast, the DEGAS model trained with MMD only identified cell 923 

type 1 cells opposed to other cell types as high-risk (Fig. S8C). Over all 30 experiments, we 924 

found that the disease association error was lower in the DEGAS models with MMD than in the 925 

DEGAS models without MMD (t-test p-value < 2.2•10-16, Fig. S8D). When the cells were 926 

ordered by their error, there was no experiment where the DEGAS model without MMD 927 

consistently outperformed the DEGAS model with MMD (Kolmogorov-Smirnov p-value < 2.2•10-928 

16, Fig. S8E). 929 

 930 

Regularization improves the robustness of DEGAS models 931 
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Regularization is an important part of the DEGAS model which prevents the data from being 932 

overfit. Without regularization, DEGAS models perform worse during cross-validation (Table. 933 

S24-25, Fig. S9). There is no case where an unregularized model performed better than a 934 

regularized model in predicting patient labels during cross validation. Specifically, in simulation 935 

3, the unregularized models performed 5% worse in PR-AUC when predicting patient labels in 936 

patients (Table. S24). Similarly, the unregularized DEGAS models performed 9% worse in PR-937 

AUC when predicting cell type labels in cells (t-test p-value = 4.34•10-3, Table. S25). The 938 

regularization also improved the transfer of disease associations to the cells in 2/3 simulations 939 

(Fig. S9). 940 

 941 

Discussion  942 

In this work, we developed the transfer learning framework DEGAS to integrate scRNA-seq and 943 

patient-level transcriptomic data in order to infer the transferrable “impressions” between patient 944 

characteristics in single cells and cellular characteristics in patients. Using transfer learning, we 945 

trained a model with both scRNA-seq and patient bulk tissue gene expression data, then reduced 946 

the differences between the distributions of the representations for the two data types in the final 947 

hidden layer of our model via domain adaptation. This process allows information about patient 948 

disease attributes as well as cell types to be transferred between the two data types. We focus 949 

on the transfer of patient disease attributes to cells because there are far fewer available methods 950 

addressing this task than deconvolution. We tested and validated the DEGAS framework on 951 

datasets from one simulation and two diseases: GBM, which contained ground truth tumor 952 

subtype labels, and AD, which contained ground truth cell type-disease associations.  953 

 954 

These experiments on validation datasets demonstrate the necessity for DEGAS especially as it 955 

relates to the current methods that rely on accurate clustering, cell type annotation, or case-956 

control scRNA-seq. For datasets that contain case and control scRNA-seq data, tools like Augur 957 
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are very effective to prioritize cell types. When no patient level transcriptomic data is available but 958 

case-control scRNA-seq is available, tools like Augur should be used since DEGAS requires 959 

patient level transcriptomic data. If patient level transcriptomic data and single cell transcriptomic 960 

data are available and there is a necessity to overlay disease associations onto individual cells, 961 

then only DEGAS can be used. Furthermore, if the scRNA-seq dataset does not contain case and 962 

control samples then DEGAS needs to be used instead of Augur since Augur requires case and 963 

control samples. The DEGAS framework in this sense can be used in a wide variety of study 964 

designs as long as there is scRNA-seq and patient transcriptomic data. 965 

 966 

Another challenging issue in scRNA-seq analysis is that it is difficult to determine the best 967 

clustering options. In our simulation examples, we can determine that the correct number of 968 

clusters based on average silhouette width would be four clusters. However, if the number of 969 

clusters was increased in the clustering algorithm there would be a stronger correlation between 970 

some clusters and disease. Therein lies the challenge – should the clustering results be optimized 971 

to reflect the relative transcriptomic signals or should they be optimized to create the greatest 972 

correlations with disease state? Furthermore, the different resolutions of clusters may capture 973 

different correlations with disease. For these reasons, assigning disease associations directly to 974 

cells alleviates some of these problems with cluster resolution decisions. Assigning disease 975 

associations directly to cells not only solves the cluster resolution problem but also allows 976 

simultaneous identification of cell-intrinsic and cell proportional changes. 977 

 978 

The DEGAS algorithm can identify both cell-intrinsic changes and cell proportional changes as 979 

demonstrated in the simulation examples and the AD study. In simulation 1, the disease is 980 

associated with proportional changes in cell type 1. In simulation 2, the disease is associated 981 

with a cell-intrinsic change of cell type 4. In simulation 3, there are both cell-intrinsic changes 982 

and cell proportional changes in cell type 4. In the AD experiments, two of the single-cell 983 
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datasets did include data from both AD and normal brains [15, 32]. The cells that came from the 984 

AD patients tended to have a higher association with AD, which indicates the detection of cell-985 

intrinsic changes. The importance of cell prioritization at the individual cell level is highlighted in 986 

simulation and AD examples. Simulation 2 shows an example where cell level associations are 987 

necessary due to clustering results that do not capture the disease associations. Specifically, 988 

there are cases where cells will cluster together but have dissimilar associations to disease. If 989 

the cells of cell type 4 are not evaluated individually, the association of the cell type 4 disease 990 

subtype with disease could be lost.  In the AD example, the astrocyte cell type is overall not 991 

associated with AD. However, a subset of astrocytes expressing markers for DAAs were found 992 

to have a positive disease association while still clustering with the astrocytes that were not 993 

associated with disease. Similarly, microglia cells are broadly positively associated with AD but 994 

the highest AD association microglia were enriched for DAM markers. When a targeted analysis 995 

was performed on only microglia from AD and normal brains, highest AD association microglia 996 

were enriched for both HAM and DAM markers. These examples show how DEGAS can identify 997 

disease associated cells that cluster within a larger cell type. 998 

 999 

In short, the DEGAS analysis on AD data further validated our model by correctly identifying the 1000 

decreased neuron and increased microglia proportions in AD patients. Aside from these known 1001 

characteristics of AD pathology, we also identified a GFAP+ astrocyte subtype taken from normal 1002 

human brain tissue that is associated with AD and is supported from AD mouse models [55]. We 1003 

further validated this by finding that GFAP expression in Astrocytes was significantly increased in 1004 

Astrocytes taken from AD patients and concluded that there may be an expansion of this Astrocyte 1005 

subtype in AD. This is also a convincing example of the utility of DEGAS as it assigned disease 1006 

association at the single cell level, allowing us to identify intra-cell type differences in disease risk 1007 

that constitute disease-associated cells. 1008 

 1009 
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For the GBM single cell patient cohort, each GBM tumor, from which scRNA-seq data was 1010 

generated, had a GBM subtype label [44]. The DEGAS results showed that the majority of cells 1011 

in each tumor were labeled with the same GBM subtype as previously defined in Patel et al. [44]. 1012 

Specifically, DEGAS correctly mapped Proneural, Mesenchymal, Classical, and Neural GBM 1013 

subtypes to single cells in four GBM tumor samples. This experiment also shows the broad 1014 

applicability of the model since the single cells had no labels and the patient samples had 1015 

multiclass labels. DEGAS is highly flexible and allows for different categories of output labels to 1016 

be combined, which may include but are not limited to classification labels, Cox proportional 1017 

hazard, and even no labels. This allows for a wide variety of applications to adopt the DEGAS 1018 

framework so that impressions are not limited to only one type of disease attribute. 1019 

 1020 

To explore disease with less understood cellular subtypes, we applied DEGAS to multiple MM 1021 

datasets. The models were able to assign PFS metrics to individual cells and subtype populations 1022 

of CD138+ cells identified by cell type clustering methods Seurat [28] and BERMUDA [25]. Among 1023 

the identified subtypes of cells, subtype 2 was the most consistent between patients visualized 1024 

by BERMUDA (Fig. S4E). Furthermore, we found that the subtype 2 cell population appeared to 1025 

have a gradient of cells moving away from the main subtype 1 group, possibly associated with a 1026 

certain degree of differentiation (Fig. S4A-D). We did experience a lower PR-AUC for subtype 4 1027 

than the other subtypes used during model training. However, this subtype was extremely 1028 

uncommon in the samples and as a result the random PR-AUC would be close to zero making 1029 

the PR-AUC of 0.44 well above random. Considering that subtype 4 was not found to be highly 1030 

associated with progression, the lower PR-AUC did not greatly affect our interpretation of the 1031 

data, which mainly focused on subtype 1 and subtype 2. We believe that DEGAS could be 1032 

improved for highly imbalanced data.  1033 

 1034 
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Upon further examination, we found evidence that the subtype 2 cells may represent a population 1035 

of malignant plasma cells expressing high levels of PHF19. PHF19 is known to play a role in 1036 

hematopoietic stem cell state and differentiation [65-67] and is a marker for aggressive disease 1037 

in MM [64]. Furthermore, knock down of PHF19 has been shown to shift myeloma cells into a less 1038 

proliferative state [64]. The subtype 2 cells express SDC1 (also known as CD138) and showed 1039 

significantly increased PHF19 expression in comparison to the other subtypes. Since all of the 1040 

IUSM MM cells in our study had already been FACS sorted for CD138+, it is possible we have 1041 

identified a subpopulation of CD138+/PHF19high cells in MM tumors. This could prove a useful 1042 

finding since currently the association between PHF19 and tumor aggressiveness is at the patient 1043 

level whereas our results imply that only a fraction of malignant plasma cells in a MM tumor 1044 

actually overexpress PHF19. 1045 

 1046 

This subtype could be targeted using precision immunotherapies that are not restricted to a single 1047 

patient since the CD138+/PHF19high cells (i.e., subtype 2) were found to be present in multiple 1048 

(3/4) patients. Of the three patients with detectable levels of subtype 2 in the CD138+ fraction, 1049 

two patients (patient 2 and patient 4) had relapsed MM at time of biopsy and the other patient 1050 

(patient 5) was SMM at biopsy and later progressed to MM. The other patient (patient 3) had little 1051 

to no detectable subtype 2 cells in the CD138+ fraction and was SMM at time of biopsy and has 1052 

not progressed to MM. These signs again seem to indicate a common cellular phenotype 1053 

associated with progression in MM. 1054 

 1055 

Based on the validated results in a variety of disease data analyses, we find that DEGAS has 1056 

broad applications in virtually all diseases with available patient-level and single cell level omic 1057 

data. The tensorflow [68] machine learning code is integrated with a simple R package interface 1058 

(https://github.com/tsteelejohnson91/DEGAS) which will facilitate researchers to manipulate 1059 

scRNA-seq and bulk expression data on their own. 1060 
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 1061 

Conclusion 1062 

DEGAS is a powerful transfer learning tool for integrating different levels of omic data and 1063 

identifying the latent molecular relationships between populations of cells and disease 1064 

attributes, which we refer to as impressions. We validated the DEGAS framework on simulated 1065 

data, GBM and AD by showing DEGAS models were capable of accurately predicting patient 1066 

characteristics at single-cell level. We then leveraged this transfer learning approach on MM 1067 

data and identified a CD138+/PHF19high subtype population in MM that was significantly 1068 

associated with disease progression. This subtype contains unique RNA profiles and gene 1069 

correlations that could be both leveraged as a prognostic biomarker and possibly targeted 1070 

directly to reduce the risk of progression. We believe that DEGAS can be a powerful solution to 1071 

overcome the challenge of integrating patient single-cell data with bulk tissue data so that 1072 

researchers can identify populations of cells associated with an disease attribute of interest. 1073 

Furthermore, DEGAS can accommodate flexible data types. This makes it a highly general 1074 

framework that can be applied in multiple diseases and data types to identify cellular 1075 

populations that are associated with prognosis or treatment response, or to identify specific 1076 

patient groups with certain cell subtypes for personalized treatment. 1077 
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 1107 

Figure legends 1108 

Fig. 1 A workflow diagram of the DEGAS framework. A) The workflow for a typical experiment 1109 

with DEGAS. Note that DEGAS is not meant to replace the abundant packages available to load, 1110 

preprocess, select features, cluster, and visualize scRNA-seq data. It is rather meant to augment 1111 

these packages to assign disease associations to cells.  B) The scRNA-seq and patient 1112 
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expression data are preprocessed into expression matrices. Next, Bootstrap aggregated 1113 

DenseNet DEGAS models are trained using both single cell and patient disease attributes using 1114 

a multitask learning neural network that learns latent representation reducing the differences 1115 

between patients and single cells at the final hidden layer using maximum mean discrepancy 1116 

(MMD). C) The output layer of this model can be used to simultaneously infer disease attribute 1117 

impressions in single cells and cellular composition impressions in patients. 1118 

 1119 

Fig. 2 Simulation study and baseline comparisons of DEGAS framework. A) 5,000 simulated 1120 

cells from Splatter with 4 cell types where one of the cell types has two subtypes. Cell type 4 is 1121 

composed of two subtypes that are specific to either disease or normal patients. 2,000 of these 1122 

cells were used to generate the 600 simulated patients in B-D and 3,000 were used as the cell 1123 

input to our DEGAS models. E) Optimal cluster number (4 clusters) based on average silhouette 1124 

width for the 3,000 cells not used to generate patients. F) The same 3,000 cells used as the 1125 

cellular input colored by their cluster. G) DEGAS comparison to Augur in simulation 1. H) DEGAS 1126 

comparison with Augur in simulation 2. I) DEGAS comparison with Augur in simulation 3. J-L) 1127 

DEGAS-calculated disease association from each simulation overlaid onto 3,000 cells. The violin 1128 

plot in the bottom left corner is deconvolution cell type proportion for cell type 1 in simulation 1 1129 

patients (J), cell type 4 proportion in simulation 2 patients (K), and cell type 4 proportion in 1130 

simulation 3 patients (L). 1131 

 1132 

Fig. 3 DEGAS validation in GBM and AD. DEGAS output of the distribution of GBM subtypes 1133 

in single cells from five GBM tumors. Four of the five tumors had known GBM subtype information 1134 

from Patel et al. (MGH26: Proneural, MGH28: Mesenchymal, MGH29: Mesenchymal, and 1135 

MGH30: Classical, indicated by red boxes) which were recapitulated by DEGAS. The subtype 1136 

information for the tumors, MGH26, MGH28, MGH29, and MGH30 were derived from Patel et al. 1137 

where MGH31 did not have a clearly defined GBM subtype. The association of cells assigned to 1138 
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each subtype were plotted for each tumor; A) MGH26, B) MGH28, C) MGH29, D) MGH30 and E) 1139 

MGH31. Median values are marked by a diamond in each of the violin plots. F) The death 1140 

association centered around 0 is overlaid on all of the single cells from the five tumors (indicated 1141 

by color). G) DEGAS output of AD association for each single cell. The AD association score is 1142 

indicated by the color and is overlaid onto AIBS single cells. This plot shows the negative AD 1143 

association in neuron cells and positive AD association in Microglia. H-I) There also appeared to 1144 

be a subpopulation of astrocytes with positive AD association. The astrocytes were plotted 1145 

separately and colored by AIBS Astrocyte subtypes (H) and GFAP expression, a disease-1146 

associated astrocyte marker (I). J) Comparison of DEGAS-derived AD associations for single 1147 

cells from AD and Normal control samples from Grubman et al. K-M) Targeted analysis of 1148 

microglia from Grubman et al. including the AD associations overlaid onto microglia (K), AD 1149 

association comparing AD status of patient sample from which the cells were sampled (L), and 1150 

PCC between AD association with HAM marker genes comparing up- and down-regulated HAM 1151 

marker genes (M). Significance values: n.s. (not significant), • (0.1), * (0.05), ** (0.01), *** (0.001). 1152 

 1153 

Fig. 4 Association between subtypes and progression risk in MM. IUSM CD138+ scRNA-1154 

seq subtype clusters generated from Seurat colored by A) cluster, i.e., subtype and B) 1155 

progression association. C) Kaplan-Meier curves of PFS from cross-validation for the MMRF 1156 

patients stratified by median proportional hazard. D) Kaplan-Meier curves of OS from Zhan et al. 1157 

external dataset stratified by median proportional hazard. E) Progression association for IUSM 1158 

CD138+ subtypes F) Progression association for NHIP, MGUS, SMM, and MM in the external 1159 

dataset Ledergor et al. G) Subtype 2 enrichment for NHIP, MGUS, SMM, and MM in the 1160 

external dataset Ledergor et al. NHIP: normal hip bone marrow, MGUS: monoclonal 1161 

gammopathy of undetermined significance, SMM: smoldering multiple myeloma, MM: multiple 1162 

myeloma. Significance values: • (0.1), * (0.05), ** (0.01), *** (0.001). All plots were generated 1163 
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using the default parameters for the DEGAS package described in the section of Methods: 1164 

Transfer learning using DEGAS. 1165 

 1166 
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