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Abstract		
	

From	hand	tools	to	cyborgs,	humans	have	long	been	fascinated	by	the	opportunities	afforded	

by	augmenting	ourselves.	Here,	we	studied	how	motor	augmentation	with	an	extra	robotic	

thumb	(the	Third	Thumb)	impacts	the	biological	hand	representation	in	the	brains	of	able-

bodied	people.	Participants	were	tested	on	a	variety	of	behavioural	and	neuroimaging	tests	

designed	 to	 interrogate	 the	 augmented	 hand’s	 representation	 before	 and	 after	 5-days	 of	

semi-intensive	training.	Training	improved	the	Thumb’s	motor	control,	dexterity	and	hand-

robot	coordination,	even	when	cognitive	load	was	increased	or	when	vision	was	occluded,	

and	resulted	in	increased	sense	of	embodiment	over	the	robotic	Thumb.	Thumb	usage	also	

weakened	natural	kinematic	hand	synergies.	Importantly,	brain	decoding	of	the	augmented	

hand’s	motor	representation	demonstrated	mild	collapsing	of	the	canonical	hand	structure	

following	 training,	 suggesting	 that	 motor	 augmentation	 may	 disrupt	 the	 biological	 hand	

representation.	 Together,	 our	 findings	 unveil	 critical	 neurocognitive	 considerations	 for	

designing	human	body	augmentation.		
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Introduction		
There	are	many	things	that	we	could	do	better	if	we	had	more	fingers	in	our	hand.	Engineers	

are	currently	developing	extra	robotic	fingers	and	even	entire	arms	aimed	to	augment	our	

bodies	 by	 expanding	 our	 natural	 motor	 repertoire	 (1-5).	 Despite	 rapid	 advancements	 in	

augmentative	technologies,	 little	notice	 is	given	to	the	crucial	question	of	how	the	human	

brain	might	support	them.	The	augmentative	devices	aim	to	change	the	way	we	interact	with	

the	environment,	which	entails	changes	to	how	we	move	and	operate	our	biological	body.	

Here	we	asked	whether	the	human	brain	can	accommodate	motor	control	of	an	extra	robotic	

finger,	focusing	on	its	impact	on	the	neural	representation	of	the	biological	hand.		

	

Hand	representation	in	the	primary	sensorimotor	cortex	of	the	brain	has	a	well-established	

functional	structure	that	develops	very	early	on	(6,	7).	It	is	highly	consistent	within	(8)	and	

across	(9)	participants	and	is	preserved	even	after	severe	loss	of	motor	functions	due	to	e.g.	

stroke	 (9),	 spinal	 cord	 injury	 (10),	 disability	 (11)	 or	 even	 hand	 amputation	 (12-14).	 Hand	

representation	has	been	suggested	to	reflect	daily	hand	use	(9),	with	studies	showing	that	it	

may	 be	 altered	 under	 constrained	 circumstances.	Most	 notably	 in	musicians’	 dystonia,	 a	

clinical	condition	involving	increased	finger	enslavement,	the	individualised	representation	of	

single	fingers	has	been	shown	to	collapse	(15,	though	see	16).	

	

Here	we	trained	able-bodied	people	to	use	an	extra	robotic	thumb	(the	Third	Thumb,	created	

by	Dani	Clode	(17),	hereafter	“Thumb”)	over	the	course	of	5	days,	including	both	lab-based	

and	in-the-wild	daily	use.	The	Thumb	is	a	3D-printed	supernumerary	robotic	finger,	with	two	

degrees	of	freedom,	controlled	with	pressure	exerted	with	the	big	toes,	designed	to	extend	

the	 natural	 repertoire	 of	 hand	 movements	 (Figure	 1A-B).	 During	 training,	 we	 tracked	

(biological)	finger	coordination	and	compared	it	with	normal	hand	use.	We	tested	for	changes	

in	motor	control	and	embodiment	of	the	Thumb,	as	well	as	hand-Thumb	coordination	before	

and	after	training.	Augmented	participants	were	compared	to	a	control	group	that	underwent	

similar	training	regime	while	wearing	the	Thumb	without	being	able	to	control	 it.	We	also	

examined	how	the	sensorimotor	and	body	representation	of	the	augmented	hand	changed	

following	 Thumb	 training.	 We	 hypothesised	 that	 successful	 hand-robot	 cooperation	 and	
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subsequent	 change	 of	 finger	 co-use	 will	 update	 both	 biological	 and	 artificial	 body	

representation.		

	

Results		

Improved	motor	control,	hand-Thumb	coordination	and	Thumb	embodiment	

following	daily	Thumb	usage	

We	first	characterised	motor	performance	of	the	augmented	hand	throughout	the	5	days	of	

usage.	Augmentation	participants	completed	five	daily	in-lab	training	sessions	(1.58±0.22hr;	

mean±std)	and	were	additionally	encouraged	to	use	the	Thumb	outside	the	lab	(2.61±1.18hr;	

self-reported).	 The	 average	 use	 time,	 as	 quantified	 by	 the	 automatic	 usage	 logs,	 was	

2.95±0.84hr	per	day,	out	of	which	a	total	of	1.37±0.49hr	involved	active	Thumb	movement.		

	

	
Figure	1.	Experimental	design.	(A-B)	The	Third	Thumb	is	a	3D-printed	robotic	thumb.	Mounted	on	the	
side	 of	 the	 palm	 (1),	 the	 Thumb	 is	 actuated	 by	 two	motors	 (fixed	 to	 a	 wrist	 band),	 allowing	 for	
independent	 control	 over	 flexion/abduction.	 The	 Thumb	 is	 powered	 by	 (2)	 an	 external	 battery,	
strapped	around	the	arm	and	wirelessly	controlled	by	(3)	two	force	sensors	strapped	underneath	the	
participant’s	big	toes.	(C)	Experimental	design	for	the	augmentation	group.	(D-E)	Examples	of	the	in-
lab	 training	 tasks	used	 for	hand-Thumb	collaboration	 (building	 a	 Jenga	 tower),	 shared	 supervision	
(holding	a	plastic	cup	while	extracting	a	marble	with	a	spoon)	and	Thumb	individuation	(stacking	tapes	
with	the	Thumb	while	the	biological	hand	is	occupied).	Participants	showed	significant	performance	
improvements	across	training	session.	Asterisks	denote	significant	effect	of	time	at	***	p<0.001.		
	

During	daily	training	sessions,	participants	were	presented	with	a	variety	of	reaching,	grasping	

and	in-hand	manipulation	tasks	designed	to	create	different	challenges	for	the	Thumb	usage	

(see	 Supplementary	 Video	 1	 for	 examples).	 Augmentation	 participants	 showed	 significant	
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improvement	on	all	the	training	tasks	(main	effect	of	time	for	all	tasks:	p<0.001,	ηp2>0.5	Figure	

1D-E	&	Supplementary	Figure	S1).	Motor	control	was	further	assessed	using	a	hand-Thumb	

coordination	task,	requiring	participants	to	oppose	the	Thumb	to	their	biological	fingers.	Even	

though	controlling	the	Thumb	with	the	big	toes	may	seem	unusual,	participants	were	able	to	

successfully	perform	the	hand-Thumb	coordination	task	even	at	baseline	(Figure	2B),	though	

this	performance	was	significantly	 improved	after	 training.	Significant	 improvements	were	

observed	both	during	daily	training	(F(4,76)=28.24,	p<0.001,	ηp2=0.6	Figure	2A-C),	and	when	

comparing	the	performance	pre-	and	post-	the	5	days	of	training	using	a	sequential	variation	

of	 the	 same	 task	 (see	 Methods).	 Here,	 augmentation	 participants	 showed	 significant	

improvements,	 not	 only	 with	 vision	 (t(19)=8.96,	 p<0.001,	 ηp2=0.81),	 but	 also	 when	

blindfolded	 (t(19)=7.40,	 p<0.001,	 ηp2=0.74,	 Figure	 3A),	 indicating	 improved	 Thumb	

proprioception.	Importantly,	the	participant’s	motor	performance	with	the	Thumb	was	not	

impacted	 by	 increased	 cognitive	 load	 incurred	 during	 a	 dual-task	 involving	 numerical	

cognition	and	motor	control,	performed	during	the	first	and	last	days	of	the	training.	This	was	

demonstrated	by	the	 lack	of	significant	cognitive	 load	x	session	 interaction	(F(1,16)=0.003,	

p=0.959)	 and	 a	 non-significant	main	 effect	 of	 the	 cognitive	 load	 (F(1,16)=2.465,	 p=0.136;	

Figure	2D).	This	was	further	confirmed	using	a	one-tailed	Bayesian	t-tests,	which	yielded	a	

Bayesian	Factor	(BF)	of	0.13	and	0.14	for	the	first/last	day	of	training,	 indicating	moderate	

evidence	 in	 support	 of	 the	 null	 hypothesis.	 As	 such,	 participants	 learned	 to	 operate	 the	

Thumb	under	a	variety	of	circumstances,	extending	beyond	their	specific	training.			

	

We	also	assessed	the	perceived	sense	of	embodiment	over	the	Thumb	following	the	training	

period,	relative	to	baseline.	Participants	were	asked	to	respond	to	statements	relating	to	key	

embodiment	features	(18,	19).	Augmentation	participants	reported	a	significant	increase	of	

embodiment	in	each	of	the	four	categories	(body	ownership:	t(13)=6.57,	p<0.001,	ηp2=0.77;	

agency:	 t(13)=4.07,	 p<0.001,	 ηp2=0.56;	 body	 image:	 t(13)=5.215,	 	 p<0.001,	 ηp2=0.68;	

somatosensation:	t(13)=6.032	p<0.001,	ηp2=0.74;	Figure	3B).		

	

As	the	improvements	described	above	could	be	skewed	due	to	task	repetition,	we	also	tested	

a	group	of	11	control	participants,	who	underwent	similar	pre-	and	post-	tests	and	training	

regime	(see	Methods)	but	wore	a	static	version	of	the	Thumb	for	the	same	duration	of	time	-	

4.11±1.06hr	per	day	(t(29)=0.526,	p=0.6,	BF=0.39),	out	of	which	2.93±1.34	outside	of	the	lab-
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based	training	sessions	(t(29)=-0.697,	p=0.49,	BF=0.42	for	wear-time	group	comparison).	The	

control	 group	 showed	 significantly	 lower	 improvement	 on	 the	 pre-post	 sequential	 hand-

Thumb	 coordination	 (significant	 effect	 of	 group	 revealed	 by	 ANCOVA	 -	 with	 vision:	

F(1,27)=22.86,	p<0.001,	ηp2=0.44;	blindfolded:	F(1,27)=11.96,	p=0.002,	ηp2=0.28)	and	did	not	

embody	 the	 extra	 Thumb	 to	 the	 same	 extent	 as	 the	 augmentation	 group	 (agency:	

F(1,21)=10.013,	p=0.009,	ηp2=0.285;	body	image:	F(1,21)=11.16,	p=0.012,	ηp2=0.26).	For	body	

ownership,	 the	 group	 effect	 was	 trending	 (F(1,21)=4.07,	 p=0.057,	 ηp2=0.16),	 while	 for	

somatosensation	scores,	the	group	comparison	was	nonsignificant	(BF=0.48).	These	results	

indicate	that	active	usage	 is	critical	 for	developing	proprioception	and	embodiment	of	the	

robotic	Thumb.	

	

	
Figure	2.	Training	outcomes.	(A-C)	Augmentation	participants	showed	significant	daily	improvement	
on	the	hand-Thumb	coordination	task.	(D)	Motor	performance	with	the	Thumb	was	not	impacted	by	
increased	cognitive	 load	during	 the	 first	 and	 last	 training	days.	 (E)	Hand	kinematics	data	 collected	
during	 the	 training	 sessions.	 The	 first	 principal	 competent	 (synchronised	movement	across	 all	 five	
fingers)	 captured	 less	 variance	 in	 the	 augmentation	 group	 compared	 to	 controls,	 indicating	 less	
synchronised	movements.	(F-G)	The	augmentation	group	showed	lower	inter-finger	coupling,	relative	
to	controls	during	Thumb	use,	indicating	change	to	the	natural	finger	coordination.	The	bars	depict	
group	 means,	 error	 bars	 represent	 standard	 error	 of	 the	 mean.	 Individual	 dots	 correspond	 to	
individual	subjects’	average	inter-finger	(D1-D5)	coordination	scores	as	predicted	by	the	linear	mixed	
model	(see	Methods).	Asterisks	denote	significant	effects	at	*	p<0.05	and	***	p<0.001. 
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Hand	augmentation	impacts	motor	control	of	the	natural	hand		

Next,	we	investigated	the	impact	of	hand	augmentation	on	motor	control	of	the	augmented	

(right)	 hand.	 We	 first	 examined	 the	 complexity	 of	 the	 hand	 movements	 (i.e.	 kinematic	

synergies)	during	Thumb	use,	captured	with	a	Cyberglove	during	the	in-lab	training.	We	found	

that	 in	 general	 more	 principal	 components	 (kinematic	 synergies)	 were	 needed	 in	 the	

augmentation	group,	compared	to	the	control	group,	to	explain	the	80%	of	the	total	variance	

of	 the	 hand	 movements	 (F(1,22)=5.52,	 p=0.03,	 ηp2=0.2,	 Supplementary	 Figure	 S3B).	 This	

difference	was	 however	 strongly	 driven	 by	 the	 amount	 of	 variance	 explained	 by	 the	 first	

principal	component,	corresponding	to	the	coordinated	flexion	of	all	fingers	(Supplementary	

Figure	 S3A).	 Indeed,	 the	 variance	 explained	 by	 this	 inter-finger	 synergy	 was	 significantly	

decreased	in	the	augmentation	group	compared	to	controls	(F(1,22)=6.27,	p=0.02,	ηp2=0.22,	

Figure	 2E),	 while	 no	 difference	 was	 found	 between	 the	 first	 and	 the	 last	 day	 of	 training	

(F(1,22)=2.57,	p=0.12,	BF=0.62).	Since	the	remaining	principal	components	represent	more	

intricate	finger	movements,	the	decrease	of	variance	explained	by	the	first	kinematic	synergy	

suggests	more	 finger	 individuation	 in	 the	 augmentation	 group.	 To	 uncover	more	detailed	

changes	in	finger	coordination,	we	then	looked	at	the	degree	of	kinematic	coupling	between	

individual	digit	pairs.	Here	again,	no	differences	in	finger	coordination	were	found	between	

the	first	and	the	last	day	of	training	(main	effect	of	time:	F(1,23)=1.3,	p=0.27,	BF=0.17).	For	

the	 augmentation	 group,	 this	 finding	 indicates	 that	 the	 strategies	 implemented	 for	

incorporating	the	Thumb	into	the	motor	repertoire	during	day	1	were	generally	preserved	

throughout	training.	Consistent	with	the	PCA	results,	we	found	significant	differences	in	finger	

coordination	 implemented	 across	 groups	 (group	 x	 finger-pair	 interaction:	 F(9,414)=2.66,	

p=0.005),	with	an	overall	decrease	in	inter-finger	coupling	in	the	augmentation	group	relative	

to	controls	(main	effect	of	group:	F(1,23)=6.98,	p=0.01,	Figures	2F-G).	Together	these	results	

indicate	a	potential	breakage	of	natural	finger	synergies	during	Thumb	use.	

	

Changes	in	inter-finger	motor	control	were	further	investigated	through	force	enslavement	

(involuntary	force	production	by	non-intended	fingers),	measured	pre-	and	post-	Thumb	use	

(Figure	3C-D).	While	no	significant	changes	to	the	overall	pattern	of	the	force	enslavement	

were	found,	in	the	augmentation	group	there	was	a	trend	towards	increased	enslavement	

caused	by	the	biological	thumb	following	extra	Thumb	use	(F(1,17)=3.36,	p=0.08,	first	column	
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of	 the	 pre-post	 difference	 matrix	 in	 Fig3D).	 However,	 this	 effect	 was	 not	 robust,	 as	

demonstrated	 by	 a	 lack	 of	 significant	 time	 x	 group	 interaction	 when	 comparing	 the	

augmentation	group	with	controls	(F(1,27)=1.5,	p=0.23,	BF=0.57).		

	

	
Figure	3.	Behavioural	correlates	of	hand	augmentation.	(A)	Augmentation	participants	showed	greater	
improvement	 than	 controls	 on	 a	 hand-Thumb	 coordination	 task	 conducted	 before	 and	 after	 the	
training	 period.	 Participants	 showed	 improved	 performance	 even	 while	 blindfolded,	 indicating	
increased	Thumb	proprioception.	(B)	Self-reported	Thumb	embodiment	increased	significantly	in	the	
augmentation	group	following	Thumb	training.	(C-D)	Participants	performed	individuated	key	presses	
with	an	instructed	finger,	while	the	forces	exerted	with	the	non-instructed	fingers	were	measured	to	
obtain	 a	 5x5	 force	 enslavement	matrices.	Matrices	 presented	 here	 depict	 the	 group	 average.	 No	
significant	change	in	the	average	enslavement	was	observed.	Asterisks	denote	significant	effects	at	*	
p<0.05,	**	p<0.01,	***	p<0.001.	
	

We	also	examined	potential	changes	to	body	image	(perceptions	and	attitudes	concerning	

one's	body	representation;	(20)).		Using	a	tactile	distances	task,	we	found	no	significant	pre-	

to	post-	changes	in	tactile	biases	(t(18)=0.164,	p=0.87,	BF=0.24).	Similarly,	we	did	not	observe	

any	significant	changes	incurred	by	Thumb	usage	using	a	visual	hand	lateralisation	task.	While	

participants	did	get	faster	at	visual	hand	lateralisation	(F(1,16)=6.89,	p=0.018),	this	was	the	

case	for	 judgements	made	both	for	the	augmented	and	the	non-augmented	hand	(hand	x	

session	 interaction	 F(1,16)=0.019,	 p=0.89,	 BF=0.326).	 These	 findings	 indicate	 that	 hand	

augmentation	 does	 not	 influence	 all	 aspects	 of	 body	 representation,	 with	 body	 image	

remaining	stable	irrespective	of	Thumb	usage.	
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Canonical	representation	structure	shrinks	following	extra	Thumb	use	

Having	observed	that	augmentation	participants	show	changed	pattern	of	finger	coordination	

when	compared	to	the	controls,	we	sought	to	understand	whether	Thumb	usage	can	alter	

the	 biological	 hand	 representation	 in	 the	 sensorimotor	 cortex.	 As	 such,	we	 used	 fMRI	 to	

compare	 neural	 hand	 representation	 before	 and	 after	 Thumb	 use.	 During	 the	 scans,	

participants	 were	 required	 to	 make	 individuated	 finger	 movements	 with	 their	 biological	

fingers.	Note	that	due	to	MRI	safety	considerations,	participants	were	not	wearing	the	Thumb	

during	 the	 scans.	Here	we	also	 tested	 the	non-augmented	 (left)	hand,	providing	a	within-

participant	control.		

	

First,	we	used	a	univariate	approach	to	interrogate	activity	levels	within	the	(independently	

localised)	cortical	territory	of	the	biological	hands.	We	found	that	the	average	activity	was	

decreasing	from	the	pre-	to	post-	scan	(main	effect	of	time:	F(1,18)=7.89,	p=0.012,	ηp2=0.3).	

However,	 this	 decrease	 was	 not	 specific	 to	 any	 of	 the	 hands	 (hand	 x	 time	 interaction:	

F(1,18)=1.66,	p=0.21,	BF=0.37).		

 

	
Figure	4.	Canonical	hand	representation	shrinks	following	hand	augmentation.	(A)	The	sensorimotor	
ROI	was	defined	using	anatomically	defined	M1	hand	ROI	including	Broadmann	area	BA4	(Freesurfer	
segmentation),	 partially	overlapping	 the	 central	 sulcus.	 (B)	Group	mean	dissimilarity	matrix	of	 the	
right	(augmented)	hand	pre-	and	post-	training.	(C)	The	average	inter-finger	dissimilarity	of	the	right	
(augmented),	but	not	 the	 left	 (non-augmented)	hand	decreased	significantly	 following	Thumb	use.	
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The	 bars	 depict	 group	 mean,	 error	 bars	 represent	 standard	 error	 of	 the	 mean.	 Individual	 dots	
correspond	 to	 individual	 subjects’	 average	 distance	 as	 predicted	 by	 the	 linear	 mixed	 model	 (see	
Methods).	 (D)	 Multidimensional	 scaling	 (MDS)	 depiction	 of	 the	 left	 and	 right	 (augmented)	 hand	
representational	 structures.	 Ellipses	 indicate	 between-participant	 standard	 errors.	 Darker	 colours	
represent	the	post	scan,	whereas	lighter	colours	represent	the	pre	(baseline)	scan.	Red	=	D1,	Yellow	=	
D2,	 Green	 =	 D3,	 Blue	 =	 D4,	 Purple	 =	 D5.	 Asterisks	 denote	 significant	 effects	 at	 *	 p<0.05	 and	 ***	
p<0.001.		

	

To	 investigate	changes	to	the	augmented	hand’s	representational	structure,	we	estimated	

the	dissimilarity	between	activity	patterns	elicited	by	 individual	 fingers’	movements	 in	the	

sensorimotor	 cortex,	 as	measured	 using	 cross-validated	Mahalanobis	 distance	 (21).	 Small	

inter-finger	dissimilarity	values	 indicate	that	the	representation	of	 the	two	fingers	 is	more	

similar/overlapping,	 while	 larger	 dissimilarity	 implies	 more	 individuated	 finger	

representation.	Augmentation	participants	showed	significantly	reduced	dissimilarity	of	the	

augmented	 (right)	 hand	 representation	 in	 the	 sensorimotor	 cortex	 following	 Thumb	 use	

(t(25.1)=2.3,	p=0.03,	Figure	4).	This	shrinking	effect	was	specific	to	the	augmented	hand,	as	

demonstrated	by	a	significant	hand	x	time	interaction	(F(1,722)=12.89,	p<0.001,	Figure	4).		

The	reduction	of	inter-finger	dissimilarity	was	diminished	in	a	follow-up	scan,	conducted	7-10	

days	after	the	end	of	training,	collected	from	a	subset	of	available	participants	(n=12).	This	

was	supported	by	moderate	evidence	(BF=0.31)	for	a	null	difference	between	the	average	

distances	measured	during	pre-	and	follow-up	sessions,	indicating	that	the	shrinkage	of	the	

canonical	hand	representational	structure	depends	on	recent	Thumb	use	(note	however	that	

with	this	subset	of	participants	the	initial	difference	between	the	pre	and	post	sessions	was	

ambiguous	 –	 BF=0.58).	 We	 also	 examined	 the	 inter-finger	 representational	 structure’s	

typicality,	 that	 is	 the	 correlation	 of	 the	 individual’s	 representational	 dissimilarity	 matrix	

(RDM)	with	a	group	average	RDM,	computed	from	the	pre-	data,	and	found	no	significant	pre-	

to	post-	differences	(BF=0.67).	These	findings	show	that	using	the	extra	Thumb	not	only	alters	

the	motor	control	of	the	biological	hand,	but	also	impact	the	representational	similarity	of	

individual	 fingers’	 representation	 in	 the	 brain.	 Crucially,	 this	 effect	 was	 observed	 while	

participants	were	not	using	or	even	wearing	the	Thumb.			
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Effective	connectivity	between	hand	and	feet	motor	areas	remains	invariant	

Finally,	we	explored	the	relationship	between	the	hand’s	and	toes’	(controlling	the	Thumb’s	

movements)	representation	in	the	sensorimotor	cortex,	but	found	no	significant	differences	

following	training,	relative	to	baseline.	First,	we	used	a	univariate	approach	to	examine	feet-

specific	activity	within	 the	augmented	hand	territory,	and	 found	 that	 it	had	not	 increased	

significantly	 (t(18)=0.809,	 p=0.43,	 BF=0.27).	 Next,	 we	 examined	 the	 functional	 coupling	

between	the	sensorimotor	hand	and	feet	areas,	using	resting-state	functional	connectivity	

analysis.	 We	 extracted	 the	 mean	 time	 course	 from	 the	 augmented	 and	 non-augmented	

hands’	 territories,	 as	 well	 as	 from	 the	 feet	 territory,	 and	 used	 partial	 correlations	 to	

investigate	 the	 resting-state	 coupling	 between	 the	 augmented	 hand	 and	 the	 feet	 (while	

accounting	for	connectivity	between	the	two	hands;	t(19)=0.774,	p=0.45,	BF=0.3).	Together,	

these	results	suggest	that	while	augmentation	might	promote	plasticity	locally	(i.e.	between	

fingers),	the	global	homunculus	likely	remains	largely	unchanged.		
	

Discussion		
Here,	we	provide	the	first	comprehensive	demonstration	of	successful	motor	integration	of	a	

robotic	augmentation	device	(the	Third	Thumb)	and	explore	how	augmentation	impacts	the	

user’s	 sensorimotor	 hand	 representation	 in	 the	 brain.	 After	 only	 5	 days	 of	 Thumb	 use,	

participants	 showed	 significant	 improvements	 in	 six-fingered	 motor	 performance	 across	

multiple	tasks.	In	addition	to	individuated	control	of	the	extra	Thumb,	participants	were	able	

to	 integrate	 Thumb	 motor	 control	 with	 the	 movements	 of	 their	 natural	 hand,	 requiring	

collaboration,	 shared	 supervision	 and	 hand-robot	 coordination.	 Motor	 performance	 was	

greatly	 improved	 even	 without	 visual	 feedback	 and	 remained	 stable	 under	 increased	

cognitive	 load.	We	 further	 show	 that	 hand	 augmentation	 resulted	 in	 increased	 sense	 of	

embodiment	over	the	Thumb	-	a	key	goal	for	successful	augmentation	(22).		By	demonstrating	

successful	 adaptation	 to	motor	 augmentation	under	diverse	ecological	 task	demands,	our	

findings	constitute	a	leap	beyond	earlier	pioneering	proof-of-concept	accounts	of	successful	

usage	of	extra	robotic	fingers	(1,	4,	23-25)	or	arms	(3,	5)	under	restricted	circumstances.		

	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.151944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.151944
http://creativecommons.org/licenses/by/4.0/


	
	

Importantly,	successful	adoption	of	augmentative	technologies	relies	not	only	on	the	user’s	

proficiency	in	operating	the	robotic	device.	A	further	challenge	for	augmentation	is	to	ensure	

that	the	device	usage	will	not	impact	users’	ability	to	control	their	biological	body,	especially	

while	the	augmentative	device	 is	not	being	used.	Therefore,	a	critical	question	for	anyone	

interested	 in	 safe	motor	 augmentation	 is	 whether	 it	 would	 incur	 any	 costs	 to	 the	 user’s	

biological	body	representation.	This	concern	is	rooted	in	previous	research	of	brain	plasticity,	

demonstrating	that	our	motor	experience	shapes	the	structure	and	function	of	the	nervous	

system	(9).	As	such,	since	motor	augmentation	 is	designed	to	change	the	way	we	 interact	

with	the	environment,	it	is	reasonable	to	predict	that	it	will	reshape	the	neural	basis	of	our	

biological	body.	With	that	in	mind,	our	investigation	was	focused	on	changes	incurred	to	the	

biological	body	 representation	even	while	 the	Thumb	 isn’t	being	operated.	 This	 approach	

allows	for	our	findings	to	be	easily	generalised	to	any	other	form	of	human-robot	interfaces.	

	

Traditionally,	 body	 representation	 in	 the	 sensorimotor	 cortex	 is	 considered	 to	 be	 highly	

adaptive	 even	 in	 the	 adult	 brain	 (26,	 27)	 however	 recent	 research	 contributes	 a	 new	

perspective	on	its	malleability	(12,	13).	Tools	have	been	suggested	to	update	the	biological	

body	representation,	for	example	by	tool-body	 integration	(28-30).	Yet,	tools	are	normally	

used	to	replace	the	capacity	of	the	hand,	rather	than	to	accompany	it.	Therefore,	when	using	

a	tool,	one	is	not	required	to	radically	alter	their	hand	function	(for	example,	the	user	will	

choose	a	grip	for	the	tool’s	handle	that	fits	the	natural	synergies	of	the	fingers).	As	such,	tool-

use	 does	 not	 entail	 an	 updated	 representation	 of	 the	 hand	 itself.	 Conversely,	 motor	

augmentation	invites	the	user	to	reinvent	the	way	they	use	their	own	body.	This	challenge	is	

more	closely	akin	to	the	acquisition	of	a	new	and	complex	motor	skill	–	e.g.	learning	to	play	

the	piano.	Here,	research	has	demonstrated	that	long-term	training	leads	to	change	in	finger	

representations	 (31).	 Specifically,	 trained	 pianists	 (over	 the	 course	 of	 many	 years)	

demonstrate	 reduced	 representational	 selectivity	 (lower	 representational	 dissimilarity)	

relative	 to	novices.	This	evidence	 further	emphasises	 the	need	to	examine	how	 long-term	

motor	augmentation	can	impact	the	biological	hand	representation.			

	

Here,	we	used	a	variety	of	pre-	to	post-	measures	to	study	changes	in	body	representation	

following	5	days	of	Thumb	usage.	While	some	aspects	of	body	representation	(body	image,	

large	scale	connectivity	profile)	were	found	to	be	stable,	semi-intensive	Thumb	usage	(2.3–
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6.3	hours	per	day)	also	 resulted	 in	mild,	yet	 significant	changes	 to	 the	sensorimotor	hand	

representation.	 First,	motor	 integration	of	 the	Thumb	 resulted	 in	breakage	of	 the	natural	

finger	coordination	patterns	(kinematic	synergies)	during	Thumb	use,	previously	considered	

as	a	key	determinate	of	sensorimotor	brain	organisation	(9,	32,	33).	Such	an	abrupt	change	in	

finger	coordination	may	‘disorganise’	the	existing	hand	representation.	Evidence	for	altered	

sensorimotor	control	of	the	biological	hand	was	also	apparent	after	training,	when	the	Thumb	

was	not	being	used,	or	even	worn.	Specifically,	we	observed	a	reduction	of	representational	

selectivity	 (i.e.	 dissimilarity)	 between	 representational	 patterns	 of	 the	 5	 fingers,	 akin	 to	

increased	 inter-finger	 overlap	which	had	been	previously	 used	 as	 a	marker	 for	 decreased	

motor	control	(15).	This	effect	may	be	reversible	(as	indicated	by	the	follow-up	scan	taken	7-

10	days	after	Thumb	usage	had	ceased),	or	even	transient.	Yet,	this	evidence	nevertheless	

suggest	 that	 motor	 augmentation	 might	 incur	 some	 costs	 to	 the	 augmented	 hand	

representation.	 It	 is	 therefore	 crucial	 to	 consider	 what	 plasticity	 mechanisms	 might	 be	

triggered	 during	 Thumb	 use	 to	 cause	 the	 observed	 changes	 in	 the	 biological	 hand	

representation.		

	

The	 “maladaptive”	 plasticity	 account	 highlights	 the	 fact	 that	 neural	 resources	 devoted	 to	

hand	representation	are	limited,	and	thus	changes	to	the	existing	hand	representation	might	

incur	a	cost	on	motor	control	(15).	Here,	the	adoption	of	an	extra	robotic	thumb	by	an	adult	

with	a	stable	hand	representation	will	promote	a	change	to	existing	brain	organisation.	We	

used	 computational	 simulations	 to	 explore	 the	 feasibility	 of	 multiple	 potential	 plasticity	

mechanisms	 that	 could	 trigger	 the	observed	 fMRI	 results	 (reduction	 in	 pairwise	 distances	

between	fingers;	Supplementary	Figure	S2).	First,	based	on	information	processing	theories	

(34,	 35),	 the	 integration	 of	 a	 new	 additional	 finger	 into	 the	 hand’s	 motor	 control	 could	

impinge	on	the	existing	representation	of	the	biological	fingers.	Second,	the	change	in	finger	

coordination,	observed	during	training,	may	also	lead	to	abrupt	changes	in	excitability	profiles	

that	 can	 trigger	 homeostatic	 plasticity	 mechanisms	 and	 promote	 increased	 tonic,	 and	

relatively	wide-spread	inhibition	(36).		Thirdly,	changes	to	finger	coordination	during	Thumb	

use	can	result	in	increased	finger	individuation,	leading	to	increased	cortical	representation	

of	 individual	 fingers	 via	 Hebbian	 learning	 (cortical	 magnification,	 (37)).	 By	 simulating	

“neuronal	 activity”	over	 a	 fixed-size	ROI	 split	 into	 finger	 specific	 areas	 (see	Methods),	we	

found	that	each	of	these	processes	is	conceptually	capable	of	causing	the	observed	reduction	
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in	representational	selectivity	(Supplementary	Figure	S2).	It	is	also	possible	that	these	distinct	

mechanisms	interact	with	each	other	as	they	may	all	be	relevant	to	the	experience	of	using	

robotic	motor	augmentation.	This	 is	 in	stark	contrast	to	a	recent	report	of	 individuals	who	

were	born	with	a	6th	(fully	operational)	finger	and	could	harness	processes	of	developmental	

plasticity	 to	 establish	 normal	motor	 control	 across	 all	 six	 fingers	 (38).	 Finally,	 it	 is	 worth	

considering	adaptive,	rather	than	maladaptive	plasticity	processes	that	could	be	involved	in	

developing	motor	 control	over	 a	new	body	part.	 For	 instance,	by	 inducing	new	kinematic	

synergies,	learning	to	use	the	extra	Thumb	may	be	pushing	the	network	outside	of	its	existing	

manifold	 (39),	 to	 allow	 for	 formation	 of	 new	 neural	 activity	 patterns	 directed	 at	 optimal	

representation	of	the	Thumb	relative	to	the	rest	of	the	augmented	hand.		

	

To	 conclude,	emerging	 technologies,	designed	 to	assist,	 substitute	and	even	augment	our	

motor	 abilities	 hold	 tremendous	 promise	 for	 transforming	 the	 lives	 of	 both	 disabled	 and	

healthy	communities.	This	vision	depends	not	only	on	the	exciting	technological	innovations,	

it	also	critically	relies	on	our	brain’s	ability	to	learn,	adapt	and	interface	with	these	devices.	

Therefore,	 as	 technology	 becomes	 more	 integrated	 with	 the	 human	 body,	 we	 see	 new	

challenges	 and	 opportunities	 emerging	 from	 neural	 and	 cognitive	 perspectives.	 Critical	

questions	 arise	 as	 to	 how	 such	 human-machine	 integration	 can	 be	 best	 achieved,	 given	

expected	neurocognitive	bottlenecks	of	brain	plasticity.	Here,	we	demonstrate	that	successful	

integration	of	motor	augmentation	can	be	achieved,	with	potential	for	flexible	use,	reduced	

cognitive	reliance	and	increased	sense	of	embodiment.	Importantly,	though,	such	successful	

human-robot	 integration	may	have	consequences	on	 some	aspect	of	body	 representation	

and	motor	control	which	need	to	be	considered	and	explored	further.		
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Methods	
	

Participants		

36	healthy	volunteers	(23	females,	mean	age	=	23.1	±	3.89,	all	right	handed)	were	recruited	

from	internet-based	advertisements	and	randomly	assigned	to	either	augmentation	(n	=	24,	

14	females,	mean	age	=	22.9	±	4.12)	or	control	(n	=	12,	9	females,	mean	age	=	23.5	±	3.55)	

group.	All	participants	were	right-handed,	between	the	ages	of	18-35,	did	not	have	any	known	

motor	disorders	and	reported	no	counterindications	for	magnetic	resonance	imaging	(MRI).	

Professional	musicians	were	excluded	from	the	study.	Ethical	approval	was	granted	by	the	

UCL	 Research	 Ethics	 Committee	 (REC:	 12921/001).	 All	 participants	 gave	 their	 written	

informed	consent	before	participating	in	the	study.		

	

Due	to	scheduling	conflicts,	1	control	participant	and	3	augmentation	participants	dropped	

out	 of	 the	 study.	 Additionally,	 due	 to	 technical	 problems	 during	 data	 collection,	 1	

augmentation	participant	was	discarded	from	the	study.	

	

Experimental	design	

To	 assess	 the	 effects	 of	 hand	 augmentation	 on	 body	 representation,	 we	 implemented	 a	

longitudinal	experimental	design	(see	Figure	1C),	involving	8	experimental	sessions	conducted	

across	7-9	days.	All	participants	undertook	(i)	a	1-hour	familiarisation	session,	introducing	the	

equipment	and	the	behavioural	tasks;	(ii),	a	4-hour	baseline	(pre-test)	session	consisting	of	

behavioural	 testing	and	an	MRI	 scan;	 (iii)	5	2-hour	 training	sessions	conducted	over	 the	5	

subsequent	days	(1	session	per	day);	(iv)	a	final	4-hour	post-test	session	corresponding	to	the	

baseline	 session.	 Additionally,	 12	 of	 the	 participants	 from	 the	 augmentation	 group	 also	

undertook	a	secondary	follow-up	MRI	session	conducted	7-10	days	after	the	end	of	training.	

Due	 to	scheduling	 issues,	1	augmentation	participant	and	1	control	participant	completed	

only	4/5	training	sessions.		

	

All	study	participants	were	asked	to	wear	an	extra	robotic	thumb	(the	Third	Thumb;	Figure	

1A)	on	their	right-hand	throughout	the	day.	Participants	were	instructed	to	wear	the	Thumb	
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during	the	in-lab	training	sessions	and	to	continue	wearing	it	outside	of	the	lab	for	at	least	4	

hours	per	day.	The	augmentation	group	had	full	motor	control	over	the	Thumb	and	needed	

to	actively	use	it	to	complete	the	training	tasks.	They	were	also	encouraged	to	use	it	as	much	

as	possible	outside	of	 the	 lab	 for	 a	 free-style	environment	exploration	 (‘in	 the	wild’).	 The	

control	group	wore	a	static	(not-moving)	version	of	the	Thumb	and	completed	the	training	

tasks	without	 being	 able	 to	 control	 it.	 Due	 to	 initial	 equipment	 issues,	 the	 first	 2	 control	

participants	did	not	wear	the	Thumb	during	training.	

	

The	Third	Thumb		

The	Third	Thumb	is	a	3D	printed	robotic	thumb	designed	by	Dani	Clode	(17)	to	extend	the	

abilities	of	the	biological	hand	by	increasing	the	natural	repertoire	of	finger	synergies.	The	

Thumb	is	worn	over	the	ulnar	side	of	the	right	palm,	opposite	to	the	user’s	natural	thumb	

(Figure	1A).	It	is	actuated	by	two	motors,	allowing	the	control	over	2	independent	degrees	of	

freedom	-	flexion/extension	and	adduction/abduction.	The	motors	are	mounted	on	a	wrist	

strap	(Figure	1B-1)	and	powered	by	an	external	battery	pack	worn	around	the	arm	(Figure	1B-

2).	The	movement	of	the	Thumb	is	controlled	with	pressure	sensors	taped	underneath	the	

big	 toes	 of	 the	 user’s	 feet.	 The	 pressure	 sensors	 are	 powered	 by	 the	 external	 batteries	

strapped	around	the	ankles	(Figure	1B-3).	A	wireless	communication	protocol	is	used	to	send	

the	signal	from	the	pressure	sensors	to	the	motors	actuating	the	Thumb.	Pressure	exerted	

with	the	right	toe	controls	flexion	of	the	Thumb	while	the	pressure	exerted	with	the	left	toe	

controls	 the	 abduction.	 The	 extent	 of	 Thumb	movement	 is	 proportional	 to	 the	 pressure	

applied.	

	

Usage	measures	‘in	the	wild’	

To	monitor	Thumb	usage	outside	the	lab,	self-reported	wear	time	and	Thumb	usage	examples	

were	collected	daily	from	all	wearers/users.	Daily	reports	were	averaged	across	days	and	an	

independent	 samples	 t-test	 was	 used	 to	 test	 for	 differences	 in	 wear-time	 between	 the	

augmented	and	control	group.	In	addition,	both	pressure	sensors	were	equipped	with	a	SD-

card	data	 logger.	While	 the	Thumb	was	on,	both	 sensors	were	 logging	 the	 corresponding	

motor’s	position	and	the	associated	timestamp	to	the	SD	cards.	If	the	participant	turned	the	

Thumb	 off	 during	 the	 day,	 the	 recording	 was	 paused	 and	 resumed	 after	 the	motor	 was	
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restarted.	Those	recordings	were	used	to	further	quantify	the	number	of	hours	participants	

spent	using	the	Thumb	per	day.	Use	time	was	defined	as	the	time	spent	wearing	the	extra	

Thumb	with	the	motors	of	the	Thumb	switched	on,	while	movement	time	was	defined	as	the	

time	spent	actively	exerting	pressure	with	the	big	toes	while	the	Thumb	was	switched	on.	Due	

to	initial	equipment	issues,	the	sensors’	data	from	first	3	augmentation	participants	were	not	

recorded.		

	

Training	protocol	

During	 the	 training	 sessions,	 participants	 were	 asked	 to	 complete	 a	 set	 of	 reaching	 and	

grasping	tasks.	These	tasks	were	designed	to	be	purposefully	challenging	when	performed	

with	only	one	hand.	The	task	execution	was	restricted	to	the	augmented	(right)	hand.	The	

augmentation	group	was	instructed	to	use	the	extra	Thumb	to	complete	the	training	tasks.	

The	control	group,	wearing	the	static	version	of	the	Thumb	was	instructed	to	complete	the	

training	tasks	using	only	their	natural	fingers,	i.e.	without	using	the	Thumb.	For	all	of	the	tasks,	

participants	were	seated	at	a	desk	facing	the	camera	recording	their	hand	movements.	Each	

task	was	conducted	for	10-15	minutes	and	repeated	on	2-4	separate	training	days,	with	the	

exception	of	the	hand	robot	coordination	task	(see	below),	which	was	performed	during	each	

of	the	training	sessions.	

	

Collaboration	tasks	

In	 the	 collaboration	 tasks,	 participants	 had	 to	 use	 the	 extra	 Thumb	 in	 collaboration	with	

another	 finger	to	pick	up	multiple	objects.	The	collaboration	tasks	 included	building	Jenga	

tower,	sorting	Duplo	blocks,	sorting	shapes	and	manipulating	multiple	balls.	

	

Building	a	Jenga	tower	

A	 mixed	 jumble	 of	 wooden	 Jenga	 blocks	 was	 placed	 in	 a	 shallow	 box.	 Augmentation	

participants	were	instructed	to	pick	up	2	Jenga	blocks	at	a	time,	using	the	Thumb	to	hold	or	

support	one	of	the	blocks,	and	build	a	2x2	Jenga	tower.	Control	participants	were	instructed	

to	use	their	biological	fingers	to	hold	and	support	both	of	the	picked	up	Jenga	blocks.	The	

experimenter	recorded	the	number	of	2-block	floors	built	in	1	minute.		
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Sorting	Duplo	blocks	

Participants	were	presented	with	a	set	of	colourful	Duplo	blocks	and	four	colour-coded	boxes.	

The	 goal	 of	 the	 task	 was	 to	 sort	 all	 the	 Duplo	 blocks	 into	 the	 matching	 colour	 boxes.	

Augmentation	 participants	were	 instructed	 to	 pick	 up	 four	 blocks	 at	 a	 time	 (one	 of	 each	

colour),	with	one	block	being	held	or	supported	with	the	extra	Thumb.	Control	participants	

were	instructed	to	use	their	biological	fingers	to	hold	and	support	all	of	the	Duplo	blocks.	The	

experimenter	recorded	the	time	taken	to	complete	the	task	

	

Sorting	shapes	

Participants	were	given	a	wooden	box	with	differently	 shaped	holes	and	a	 set	of	wooden	

blocks	matching	the	shapes.	Picking	up	two	blocks	at	a	time,	one	with	their	biological	fingers	

and	one	with	 the	extra	Thumb,	augmentation	participants	had	 to	 sort	 the	blocks	 into	 the	

corresponding	holes.	Control	participants	were	instructed	to	used	their	biological	fingers	to	

hold	and	support	both	of	the	blocks.	The	experimenter	recorded	the	time	taken	to	complete	

the	task.	

	

Manipulating	multiple	balls		

3	small	foam	balls	were	placed	in	shallow	boxes	in	front	of	the	participants.	All	participants	

were	asked	to	pick	up	all	3	balls	with	their	right	hand,	starting	from	the	ball	in	the	rightmost	

box,	and	to	place	them	down	in	a	different	configuration.	Augmentation	participants	were	

instructed	to	use	the	extra	Thumb	to	pick	up	and	hold	one	of	the	balls.	Control	participants	

were	 instructed	 to	 pick	 up	 and	 hold	 all	 of	 the	 balls	 with	 their	 biological	 fingers.	 The	

experimenter	recorded	the	number	of	shuffles	performed	in	1	minute.		

	

Shared	supervision	tasks	

In	the	shared	supervision	tasks,	participants	had	to	use	the	extra	Thumb	to	extend	the	natural	

grip	of	the	hand	and	to	free	up	the	use	of	their	biological	fingers.	Shared	supervision	tasks	

included	picking	up	multiple	wine	glasses,	plugging	cables	and	stirring	cups.	
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Wine	glasses	

5	plastic	wine	glasses	were	placed	upside-down	in	front	of	the	participants.	All	participants	

were	instructed	to	pick	up	all	5	glasses	with	their	right	hand	and	to	place	them	upright	in	a	

row,	on	the	marked	positions.	Augmentation	participants	were	instructed	to	use	the	extra	

Thumb	 to	 hold	 one	 of	 the	 glasses.	 Control	 participants	were	 instructed	 to	 only	 use	 their	

biological	fingers.	The	experimenter	recorded	the	time	taken	to	place	all	5	of	the	glasses	on	

the	 correct	 positions,	 the	 number	 of	 glasses	 that	were	 dropped	 and	 the	 accuracy	 of	 the	

placement.		

	

Plugging	cables	

Participants	were	given	4	long	USB	cables	and	a	USB	hub	with	4	separate	ports.	All	participants	

were	instructed	to	pick	up	the	USB	hub	and	plug	in	all	4	USB	cables,	while	holding	the	hub	in	

the	air.	Augmentation	participants	were	instructed	to	use	the	extra	Thumb	to	complete	the	

task.	 Control	 participants	 were	 instructed	 to	 only	 use	 their	 biological	 fingers.	 The	

experimenter	recorded	the	time	needed	to	plug	in	all	of	the	USB	cables.	

	

Stirring	cups	

3	small	marbles	were	placed	in	3	plastic	cups.	All	participants	were	asked	to	pick	up	one	cup	

at	a	time	and	scoop	out	the	marble	with	a	plastic	spoon,	whilst	holding	the	cup	in	the	air.	

Augmentation	 participants	 were	 instructed	 to	 hold	 the	 cup	 using	 the	 Thumb.	 Control	

participants	were	instructed	to	only	use	their	biological	fingers.	After	the	first	day	of	training,	

the	 cups	 were	 filled	 with	 the	 Styrofoam	 balls	 to	 increase	 the	 difficulty	 of	 the	 task.	 The	

experimenter	recorded	the	time	taken	to	scoop	out	each	of	the	marbles.	

	

Robotic	Thumb	individuation	task		

	

Stacking	tape	rolls	

In	the	individuation	task	participants	had	to	work	on	the	fine	motor	control	of	the	Thumb,	

while	having	their	hand	fully	occupied	with	a	task-irrelevant	object.	Specifically,	participants	

were	given	6	tape	rolls,	a	foam	ball	and	a	wooden	pole	fixed	to	the	desk.	While	holding	the	

ball	with	their	biological	fingers,	augmentation	participants	had	to	use	the	extra	Thumb	to	
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pick	 up	 the	 tape	 rolls	 and	 place	 them	 on	 the	 wooden	 pole.	 Control	 participants	 were	

instructed	to	use	their	biological	thumb	to	pick	up	the	tapes	while	holding	the	ball	with	the	

remaining	digits.	 The	experimenter	 recorded	 the	 time	 taken	 to	place	all	 the	 tapes	on	 the	

wooden	pole	and	the	number	of	dropped	tapes	per	trial.		

	

Hand-Thumb	coordination	(Thumb	opposition)	

To	monitor	 daily	 changes	 in	 hand-Thumb	 coordination,	 we	 used	 a	 finger	 opposition	 task	

(previously	used	 to	monitor	hand	 function	 in	healthy	and	clinical	 cases,	as	well	as	 robotic	

finger	operation,	(4,	12,	13)).	This	task	was	conducted	at	the	start	of	each	training	session.	

Participants	were	seated	in	front	of	a	computer	screen	that	displayed	task	stimuli.	

	

Augmentation	participants	were	instructed	to	move	the	Thumb	to	touch	the	tip	of	a	randomly	

specified	finger	on	the	augmented	(right)	hand.	Control	participants	performed	a	modified	

version	of	this	task	in	which	they	were	instructed	to	use	their	biological	thumb	to	oppose	the	

remaining	digits	of	 the	 right	hand.	All	participants	were	 instructed	 to	attempt	 to	make	as	

many	successful	hits	as	possible	within	a	1	minute	block.	Participants	completed	a	total	of	10	

blocks.	A	MATLAB	script	was	used	to	randomly	select	a	target	finger	(thumb,	index,	middle,	

ring	or	little)	and	to	display	the	finger	name	on	the	computer	screen	in	front	of	the	participant.	

The	experimenter	manually	advanced	the	program	to	the	next	stimulus	when	the	participant	

successfully	touched	the	tip	of	the	target	finger	with	the	extra	Thumb	or	with	biological	thumb	

(hit);	or	when	a	wrong	finger	has	been	touched	(miss).		

	

To	quantify	the	improvement	of	the	augmentation	group	on	each	of	the	training	tasks,	the	

outcome	measure	of	each	training	task	was	averaged	for	each	participant	and	each	training	

session.	 As	 different	 participants	 had	 slightly	 different	 training	 regimes,	 in	 terms	 of	

distribution	of	tasks	across	the	days,	we	sorted	the	average	scores	based	on	the	order	of	task	

repetition	(i.e.	1st,	2nd,	3rd	time	the	task	was	repeated	regardless	of	which	days	it	was	repeated	

on).	These	data	were	then	analysed	using	a	repeated	measures	ANOVA	in	SPSS.	One	of	the	

shared	 supervision	 tasks	 (plugging	 cables)	 was	 not	 analysed	 due	 to	 inconstancies	 in	 task	

execution.		
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Numerical	cognition		

To	assess	the	cognitive	load	related	to	Thumb	use,	a	numerical	cognition	task	was	performed	

twice,	 on	 both	 the	 first	 and	 the	 last	 training	 sessions	 (40-42).	 Participants	were	 asked	 to	

perform	a	cooperation	task,	building	a	Jenga	tower	(described	above),	while	simultaneously	

presented	with	a	set	of	low	and	high	pitch	auditory	tones	played	from	a	laptop.	The	tones	

were	presented	every	1-6s	in	a	randomised	order,	for	a	total	duration	of	1	minute	per	block.	

Starting	with	a	number	10,	participants	were	instructed	to	add	1	to	the	current	number	after	

hearing	a	high	tone,	and	subtract	1	from	the	current	number	after	hearing	a	low	tone	After	

each	 mathematical	 operation,	 participants	 were	 instructed	 to	 verbally	 respond	 with	 the	

resulting	number.	Participants	performed	5	blocks	of	the	numerical	cognition	task	during	each	

session.	 Numerical	 cognition	 blocks	were	 always	 preceded	 and	 followed	with	 5	 blocks	 of	

normal	(baseline)	building	a	Jenga	tower	task	(5	baseline	blocks,	5	numerical	cognition	blocks,	

5	baseline	blocks).	Note	that	the	first	3	participants	did	not	complete	the	numerical	cognition	

task.		

	

For	each	participant,	 the	average	number	of	 Jenga	floors	built	was	calculated	from	all	 the	

numerical	cognition	blocks	in	which	the	correct	mathematical	operations	were	performed.	

Trials	in	which	a	wrong	number	was	given	were	discarded	(on	average	15-19%	of	trials	were	

discarded	 per	 participant).	 To	 determine	whether	 the	 extra	 cognitive	 load	 caused	 by	 the	

numerical	cognition	task	had	any	impact	on	participants’	motor	performance	when	using	the	

extra	 Thumb,	 the	 average	 score	 from	 the	 numerical	 cognition	 task	was	 compared	 to	 the	

baseline	score.	This	was	done	separately	for	the	first	and	the	last	day	of	training.	The	baseline	

score	was	calculated	as	the	average	number	of	Jenga	floors	built	across	the	two	blocks	(10	

trials)	that	proceeded	and	followed	the	numerical	cognition	task.		

	

Tracking	hand	movements	

To	 assess	 the	 changes	 in	 finger	 coordination	 across	 all	 training	 tasks,	 we	 tracked	 the	

kinematics	 of	 the	 augmented	 (right)	 hand	 using	 flex	 sensors	 embedded	 in	 a	 dataglove	

(CyberGlove,	 Virtual	 Technologies,	 Palo	 Alto,	 CA,	 USA).	 Finger	 kinematics	 have	 been	

previously	shown	to	 reflect	 the	brain	organisation	better	 than	EMG-derived	measures	 (9).	

Here,	the	sensors	of	the	dataglove	were	associated	with	19	degrees	of	freedom	of	the	hand	
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and	 included	 the	metacarpal-phalangeal	 (MCP),	 proximal	 interphalangeal	 (PIP)	 and	 distal	

interphalangeal	(DIP)	joint	angles	for	the	four	fingers	(index,	middle,	ring	and	little	finger),	the	

carpometacarpal,	(CMC)	metacarpal-phalangeal	(MCP)	and	interphalangeal	joint	(IP)	angles	

for	the	biological	thumb,	the	three	relative	abduction	angles	between	the	four	fingers	and	

the	abduction	angle	between	the	biological	thumb	and	the	palm	of	the	hand.	Sensors	were	

sampled	 continuously	 at	 100	 Hz	 using	 Shadow	 Robot’s	 (https://www.shadowrobot.com)	

CyberGlove	interface	for	the	Robot	Operating	System	(ROS,	https://www.ros.org).	

	

Participants	wore	the	CyberGlove	underneath	the	extra	Thumb	throughout	all	of	the	training	

sessions.	 Kinematics	 associated	with	 each	 of	 the	 training	 tasks	 performed	 during	 a	 given	

session	 were	 recorded	 onto	 a	 separate	 file.	 Due	 to	 initial	 equipment	 issues,	 the	 first	 4	

augmentation	participants	did	not	wear	the	CyberGlove	during	training.	

	

Cyberglove	calibration		

The	CyberGlove	was	calibrated	for	each	participant	at	the	beginning	of	each	training	session,	

using	 a	min-max	 pose	 calibration	 procedure	 provided	with	 the	 ROS	 CyberGlove	 package.	

During	the	calibration,	participants	were	presented	with	a	set	of	carefully	selected	hand	poses	

and	given	a	 few	seconds	to	shape	their	hand	accordingly.	For	each	hand	pose,	 the	sensor	

values	were	sampled	and	averaged	over	one	second	of	recording.	Averaged	sensor	values	

were	 then	 saved	 alongside	 the	 actual	 joint	 angles,	 determined	 based	 on	 the	 hand	

configuration.	 Once	 all	 hand	 poses	 have	 been	 recorded,	 a	 linear	 regression	 was	 used	 to	

calculate	the	mapping	from	the	sensor-values	to	the	joint	angles.	

	

Hand	kinematics	analysis		

We	focused	the	hand	kinematics	analysis	on	the	data	recorded	during	the	first	and	last	days	

of	training.	Recorded	data	from	the	19	sensors	were	calibrated	using	the	established	mapping	

from	the	sensor-values	to	the	joint	angles.	The	joint	angles	were	smoothed	using	a	3rd	order	

Savitzky-Golay	 filter,	 with	 a	 window	 length	 of	 151	 samples.	 Angular	 velocities	 were	 then	

calculated	from	the	first	difference	of	the	filtered	joint	angle	data	divided	by	the	time	step.	

Since	most	of	the	finger	movements	employed	during	the	training	tasks	were	executed	using	

the	PIP	joints,	to	simplify	the	analysis	(9),	only	data	from	these	five	joints	were	analysed.	Due	
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to	 acquisition	errors,	 for	2	 augmentation	participants	 and	2	 control	participants,	 the	data	

recorded	during	the	first	day	of	training	was	unavailable.	Therefore,	for	these	participants,	

the	data	from	the	second	day	of	training	was	used	instead.	Similarly,	when	the	data	from	the	

last	day	of	training	was	unavailable	(3	augmentation	participants,	2	control	participants),	the	

data	from	the	penultimate	day	of	training	was	used	instead.	Due	to	calibration	 issues,	the	

hand	 kinematics	 data	 of	 1	 augmentation	 and	 2	 control	 participants	were	 discarded	 from	

subsequent	analysis.	

	

To	quantify	the	complexity	of	the	hand	movements	across	both	groups,	we	first	conducted	a	

Principal	Components	Analysis	(PCA)	of	the	angular	velocities	of	the	PIP	joints.	Prior	to	PCA,	

the	angular	velocities	were	z-normalised	(43)	note	however	that	similar	results	were	obtained	

with	 not	 normalised	 data	 (44).	 The	 extracted	 principal	 components	 (PCs)	 were	 ordered	

according	 to	 the	 amount	 of	 variance	 explained	 by	 each	 component.	 Consistent	 with	 the	

literature	(44,	45),	we	found	that	the	first	PC	accounted	for	more	than	40%	of	total	variance	

and	reflected	a	coordinated	movement	of	all	the	fingers	(Figure	2A	and	Supplementary	Figure	

S3	 for	 all	 the	 PCs).	 	 To	 quantify	 the	 dimensionality	 of	 the	 hand	 movements,	 for	 each	

participant	and	day,	we	recorded	the	number	of	PCs	needed	to	explain	80%	of	total	variance	

(46).	These	were	then	compared	across	groups	in	a	repeated-measures	ANOVA	with	time	(day	

1,	 day	 5)	 as	 a	within-subjects	 factor	 and	 group	 (augmented,	 control)	 as	 between-subject	

factor.	Next,	to	quantify	the	contribution	of	the	all-digit	movements	to	the	complexity	of	the	

hand	kinematics,	we	compared	the	amount	of	variance	explained	by	the	first	PC	across	both	

groups	using	the	same	repeated-measures	ANOVA	design.		

	

Next,	to	interrogate	more	detailed	changes	to	the	finger	cooperation	pattern	caused	by	the	

hand	augmentation,	we	looked	at	the	degree	of	coupling	between	digit	pairs,	adapting	the	

methods	used	in	(44).	We	used	linear	regression	to	fit	the	angular	velocity	data	of	a	given	digit	

as	a	 function	of	the	angular	velocity	of	each	of	the	other	digits	 individually.	This	yielded	a	

single	determination	coefficient	 (R2)	 for	each	digit	pair,	expressing	 the	proportion	of	 total	

variance	of	each	digit’s	angular	velocity	that	could	be	explained	by	a	linear	reconstruction,	

based	 on	 its	 paired	 regression	with	 each	 of	 the	 other	 four	 digits.	 Qualitative	 comparison	

between	the	results	obtained	in	the	control	group	(who	did	not	use	the	extra	Thumb	during	

the	 training)	 and	 outcomes	 of	 previous	 hand	 kinematics	 research	 conducted	 during	 free	
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movement	 (44),	 	 confirmed	 that	 the	 conducted	 analysis	 resulted	 in	 a	 typical	 finger	

coordination	profile.		

	

To	 assess	 the	 effect	 of	 Thumb	 use	 on	 the	 finger	 coordination	 profile	 across	 groups,	 we	

performed	 a	 linear	 mixed	 model	 analysis	 (LMM)	 with	 fixed	 factors	 of	 time,	 group	

(augmentation	 vs	 controls)	 and	 digit	 pair,	 a	 random	 effect	 of	 participant	 and	 a	 random	

participant-specific	 slope	 of	 time.	 The	 LMM	 was	 evaluated	 in	 R	 (version	 3.5.2)	 under	

restricted	 maximum	 likelihood	 (REML)	 conditions	 with	 Satterthwaite	 adjustment	 for	 the	

degrees	of	freedom.	

	

Pre-post	testing	protocol	

To	assess	the	neural	correlates	of	hand	augmentation	we	used	a	set	of	pre-	to	post-training	

comparison	 measures,	 consisting	 of	 both	 behavioural	 and	 neuroimaging	 tasks.	 To	

characterise	the	emerging	representation	of	the	extra	Thumb,	we	probed	the	proprioception	

and	motor	control	of	the	Thumb	using	a	sequential	variation	of	the	hand-Thumb	coordination	

task.	 We	 also	 assessed	 perceived	 (phenomenological)	 embodiment	 of	 the	 Thumb	 using	

questionnaires.	 To	 interrogate	 changes	 to	 the	 natural	 hand	 representation,	we	measured	

biological	 finger	 co-dependencies	 using	 finger	 kinematics	 and	 force-enslavement	 task.	

Changes	 to	body	 image	were	probed	using	 tactile	distance	and	hand	 laterality	 judgement	

tasks.	Finally,	fMRI	was	used	to	track	the	hand	representation	in	the	sensorimotor	cortex	of	

the	 brain	 and	 to	 interrogate	 changes	 to	 the	 relationship	 between	 the	 hand	 and	 feet	

representations.	With	the	exception	of	the	hand-Thumb	coordination	task,	participants	were	

not	wearing	the	Thumb	during	testing.		

	

Hand-Thumb	coordination	(sequential)	

To	probe	changes	to	implicit	motor	control	of	the	Thumb,	a	sequential	variation	of	the	hand-

Thumb	 coordination	 (finger	 to	 Thumb	 opposition)	 task	 has	 been	 used.	 In	 this	 task,	

participants	sequentially	opposed	the	Thumb	to	the	tip	of	each	of	 the	five	 fingers	of	 their	

augmented	hand,	starting	with	the	 little	 finger.	Participants	were	 instructed	to	repeat	this	

movement	cycle	as	many	times	as	possible	within	a	1-minute	block,	while	maintaining	high	

accuracy.	 The	 task	 consisted	 of	 5	 blocks.	 To	 assess	 the	 proprioception	 of	 the	 Thumb,	
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participants	were	further	asked	to	perform	5	blocks	of	the	same	task	while	blindfolded.	The	

experimenter	 recorded	 the	 number	 of	 successful	 hits	 per	 block.	 For	 each	 participant,	 an	

average	 score	 (number	of	hits)	was	 calculated	 separately	 for	each	 session	 (pre,	post)	 and	

vision	 condition	 (with	 vision,	 blindfolded).	 Due	 to	 a	 data	 acquisition	 mistake,	 1	 control	

participant	was	not	included	in	the	analysis.		

	

Embodiment	questionnaires	

To	assess	changes	 in	 the	phenomenological	embodiment	of	 the	Thumb,	participants	were	

asked	to	complete	an	embodiment	questionnaires	before	the	first	training	session	and	again	

after	the	last	training	session.	Due	to	data	collection	issues,	5	augmentation	participants	and	

1	 control	 participant	 only	 completed	 the	 post-training	 embodiment	 questionnaire.	

Participants	were	asked	to	rate	their	agreement	with	12	statements	(based	on	(19))	on	a	7-

point	Likert-type	scale	ranging	from	-3	(strongly	disagree)	to	+3	(strongly	agree).	Statements	

were	 clustered	 into	4	main	 categories,	probing	different	aspects	of	embodiment,	namely:	

body	ownership,	agency,	body	image	and	somatosensation.		

	

Table	1.	Embodiment	questions	divided	into	4	separate	embodiment	categories	
Body	ownership	

1. “It	seems	like	the	robotic	finger	belongs	to	me”	
2. “It	seems	like	the	robotic	finger	is	a	part	of	my	hand”	
3. “It	seems	like	the	robotic	finger	is	a	part	of	my	body”	
4. “It	seems	like	the	robotic	finger	is	a	foreign	body”	(negative)	
5. “It	seems	like	the	robotic	finger	is	fused	with	my	body”	
6. “It	seems	like	I	have	six	fingers”	

Agency	
1. “It	seems	like	I	can	move	the	robotic	finger	if	I	want”	
2. “It	seems	like	I	am	in	control	of	the	robotic	finger”	

Body	Image	
1. “It	seems	like	I	am	looking	directly	at	my	own	finger,	rather	than	a	prosthesis”	
2. “It	seems	like	the	robotic	finger	begins	to	resemble	my	other	fingers”	

Somatosensation	
1. “I	can	feel	temperature	in	the	robotic	finger”	
2. “I	can	feel	the	posture	of	the	robotic	finger”	
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For	each	participant,	questionnaire	scores	were	averaged	within	each	embodiment	category.	

Note	that	in	the	body	ownership	category,	the	opposite	(negative)	value	of	the	‘foreign	body’	

statement	 has	 been	 used	 while	 computing	 the	 average.	 1	 augmentation	 participant	 was	

discarded	 from	 this	 analysis,	 as	 their	 averaged	 agency	 score	was	 classified	 as	 a	 statistical	

outlier	(different	from	the	mean	score	by	more	than	3	standard	deviations).	

	

Force	enslavement	

To	 estimate	 the	 degree	 of	 co-dependency	 across	 the	 biological	 fingers,	 a	 custom-built	

keyboard	 (previously	 used	 in	 (9))	was	 used	 to	measure	 isometric	 finger	 forces	 generated	

during	individuated	finger	presses.		

	

During	the	pre	and	post	testing	sessions,	participants	performed	individuated	force	presses	

with	 instructed	 fingers,	 while	 forces	 produced	 with	 all	 of	 the	 fingers	 were	 recorded.	

Participants	were	instructed	to	always	keep	all	of	their	fingers	on	the	keys	of	the	keyboard.	A	

visual	representation	of	the	force	exerted	with	all	5	fingers	was	presented	on	a	screen	(Figure	

3C).	Following	the	methods	described	in	(9),	the	experiment	began	by	estimating	the	strength	

of	each	finger,	by	measuring	two	repetitions	of	the	maximum	voluntary	force	(MVF)	of	each	

digit.	All	subsequent	trials	required	the	production	of	isometric	fingertip	forces	at	a	75%	of	

the	maximum	voluntary	force	for	the	instructed	digit	(9).	At	the	start	of	every	trial,	a	force	

target-zone	 (target-force	 ±	 25%)	was	 highlighted	 in	 green	 in	 the	 visual	 display.	 This	 cued	

participants	 to	make	a	 short	 force	press	with	 the	 instructed	 finger	 in	order	 to	match	and	

maintain	the	target-force	for	1s	while	keeping	the	uninstructed	fingers	as	stable	as	possible.	

The	trial	was	stopped	if	force	of	the	instructed	digit	did	not	reach	the	target-zone	within	the	

2s	following	the	stimulus	onset.	Single	trials,	presented	in	a	randomised	order	were	grouped	

in	blocks,	with	each	block	consisting	of	40	trials	(8	trials	per	finger).	Participants	performed	4	

force-enslavement	blocks	during	each	session.	The	data	of	 two	augmentation	participants	

were	excluded	from	the	subsequent	analysis,	as	those	participants	produced	extraordinarily	

low	MVF	forces	(below	2N).	

	

For	each	participant,	the	recorded	force	data	was	first	filtered	with	a	3rd	order	Savitzky-Golay	

filter	with	a	window	length	of	51	samples.	The	data	was	then	separated	into	individual	trials	
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(finger	presses).	Trials	in	in	which	the	force	produced	with	the	instructed	finger	did	not	reach	

the	target	force	were	discarded	from	the	analysis.	Within	each	trial,	a	linear	regression	was	

used	to	fit	the	force	generated	by	the	instructed	digit	as	a	function	of	the	force	generated	by	

each	of	the	other	digits.	The	resulting	determination	coefficients	(R2)	were	averaged	across	

trials	to	yield	a	5x5	matrix	force	enslavement	matrix,	expressing	the	involuntary	force	changes	

across	non-instructed	fingers	during	the	presses	of	the	instructed	finger.		

	

To	 estimate	 gross	 changes	 to	 finger	 co-dependency,	we	 performed	 a	 linear	mixed	model	

analysis	(LMM)	with	fixed	factors	of	time,	group	(augmentation	vs	controls)	and	digit	pair,	a	

random	effect	of	participant	and	a	random	participant-specific	slope	of	time.	The	LMM	was	

evaluated	using	the	same	parameters	as	the	ones	used	for	finger	co-use	modelling	(see	Hand	

kinematics	analysis).	To	test	the	assumption	that	having	an	extra	robotic	Thumb	would	impact	

the	independence	of	the	biological	thumb,	a	similar	 linear	mixed	model	was	created	using	

only	the	force	enslavement	caused	by	the	thumb	(4	values,	one	for	each	enslaved	finger).	

	

Tactile	distance	perception	

To	 examine	 whether	 Thumb	 usage	 would	 lead	 to	 incorporating	 it	 into	 the	 body	

representation,	 we	 tested	 participants’	 ability	 to	 discriminate	 between	 tactile	 distances	

applied	 over	 their	 wrist	 and	 forearm.	 The	 design	 was	 inspired	 by	 a	 previous	 study	 (47)	

showing	greater	biases	in	spatial	tactile	perception	when	tested	across	a	joint.	Prior	to	the	

experiment,	the	experimenter	marked	the	midpoint	of	the	participant’s	forearm,	as	well	as	

the	basepoint	of	the	extra	Thumb	with	a	pen.		

	

During	the	experiment,	participants	were	seated	in	an	armchair,	with	their	right	elbow	rested	

on	an	elevated	foam	padding	with	the	forearm	at	full	flexion	and	their	left	hand	placed	on	a	

mouse	 connected	 to	 the	 experimental	 computer.	 The	 tactile	 stimuli	 (hereafter	 distances)	

comprised	of	custom-made	callipers	with	acrylic	pins	fixed	at	distances	of	50,	60	and	70	mm.	

In	each	trial,	two	distances	were	presented	sequentially	–	one	over	the	marked	basepoint	of	

the	 Thumb,	 one	 over	 the	midpoint	 of	 the	 ventral	 side	 of	 the	 forearm	 (both	 in	 the	 same	

orientation).	 The	 experimenter	 presented	 the	 distances	 manually	 ensuring	 that	 the	 two	

points	 of	 each	 calliper	 touched	 the	 skin	 simultaneously.	 Participants	 were	 instructed	 to	
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indicate	which	of	the	distances	they	perceived	as	larger	by	pressing	the	left	(distance	over	the	

Thumb’s	base	perceived	as	 larger)	or	right	(distance	over	the	forearm	perceived	as	 larger)	

mouse	 button	with	 their	 left	 hand.	 The	 task	 consisted	 of	 3	 blocks.	 Each	 block	 included	 5	

presentations	of	each	of	the	following	ratios	of	distances	in	a	randomised	order:	50/70mm,	

50/60mm,	60/70mm,	60/60mm,	70/60mm,	60/50mm,	and	70/50mm).	

	

Following	the	methods	described	in	(47),	we	measured	the	proportion	of	responses	in	which	

the	stimuli	applied	over	the	basepoint	of	the	Thumb	was	judged	as	larger,	as	a	function	of	the	

ratio	of	the	length	of	the	stimuli.	Cumulative	Gaussian	curves	were	fit	to	the	data	using	Matlab	

(v.	2017b).	Point	of	subjective	equality	(PSE)	was	calculated	separately	for	each	participant	

and	 session,	 as	 the	 ratio	 of	 stimuli	 at	which	 the	 psychometric	 function	 crossed	 the	 50%.	

Additionally,	the	interquartile	range	(IQR)	–	that	is	the	difference	between	the	points	on	the	

x-axis	where	the	psychometric	function	crosses	25%	and	75%	-	was	calculated	as	a	measure	

of	the	precision	of	participant’s	judgements.	One	augmentation	participant	and	two	control	

participants	 were	 excluded	 from	 further	 analysis	 due	 to	 poor	 goodness	 of	 fit	 coefficient	

(R2<0.15)	for	the	psychometric	function	in	the	pre-	session.	The	remaining	R2	scores,	averaged	

across	participants,	showed	an	excellent	fit	to	the	data	(R2=0.88±0.15		

	

Hand	Laterality	Judgement	

To	 examine	 whether	 Thumb	 usage	 leads	 to	 changes	 in	 body	 image,	 participants	 were	

presented	with	drawings	of	hand	outlines,	adapted	from	(48)	and	asked	to	decide	whether	

the	hand	drawings	corresponded	 to	a	 right	or	a	 left	hand.	Participants	were	 instructed	 to	

respond	verbally	by	indicating	the	hand	laterality	(left	or	right)	of	each	presented	image	as	

fast	as	possible,	while	maintaining	high	accuracy.	The	stimuli	 included	drawings	of	left	and	

right	hands,	presented	in	four	different	postures	(dorsal	view,	palm	view,	side	from	thumb	

view,	and	palm	from	wrist	view)	and	at	7	different	angles	(upright	0°,	30°,	90°,	150°,	210°,	

270°,	and	330°	 in	a	clockwise	direction).	Participants	completed	 four	experimental	blocks,	

each	 including	all	of	the	56	hand	 images.	Hand	 images	were	presented	 in	a	random	order	

using	Psychopy	software.	Participants	were	seated	comfortably	in	front	of	a	laptop	computer	

with	their	hands	obstructed	by	a	black	cape.	Each	hand	drawing	was	preceded	by	1	second	

presentation	of	a	fixation	cross	and	disappeared	either	after	a	verbal	response	was	provided	
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or	after	10	seconds	of	no	response.	Time	from	the	start	of	the	image	display	to	voice	onset	

was	recorded	as	the	participants’	reaction	time	(RT).	Audio	files	with	participant’s	responses	

were	recorded	for	off-line	accuracy	analysis.	Due	to	equipment	malfunction,	2	augmentation	

participants	and	1	control	participant	did	not	complete	the	hand	laterality	judgement	task.	

	

All	audio	recordings	and	the	appropriate	classification	of	reaction-times	were	verified	offline	

by	a	naive	experimenter.	Trials	with	noisy	recordings	were	excluded	from	further	analysis.	

Accuracy	was	computed	as	the	proportion	of	correct	response	of	all	valid	trials.	Only	trials	

with	correct	responses	were	included	in	the	RT	analysis.	RTs	were	logarithmically	transformed	

in	order	to	correct	for	the	skewed	RT	distribution	and	to	satisfy	the	conditions	for	parametric	

statistical	 testing.	 Transformed	 RTs	 deviating	 more	 than	 3	 standard	 deviations	 from	 the	

participants’	means	(separately	for	each	session)	were	discarded.		

	

Statistical	analysis	

All	statistical	analysis	was	performed	using	IBM	SPSS	Statistics	for	Macintosh	(Version	24),	R	

(for	linear	mixed	models)	and	JASP	(Version	0.11.1).	Tests	for	normality	were	carried	out	using	

a	Shapiro-Wilk	test.	Training	data	that	were	not	normally	distributed	were	log-transformed	

prior	 to	 further	 statistical	 analysis.	 With	 the	 exception	 of	 hand	 kinematics	 and	 force	

enslavement	datasets,	that	were	analysed	using	linear	mixed	models	(LMM),	all	the	within	

group	 comparisons	 were	 carried	 out	 using	 paired	 t-tests	 or	 repeated	 measures	 ANOVAs	

(training	 tasks	 data).	 Between	 group	 comparisons	 were	 carried	 out	 using	 ANCOVAs	 with	

group	(augmentation,	controls)	as	a	fixed	effect	and	the	pre-	score	used	as	a	covariate	(49).	

All	non-significant	results	were	further	examined	using	corresponding	Bayesian	tests.	

	

Scanning	procedures	

Both	pre-	and	post-	neuroimaging	sessions	were	comprised	of	the	following	functional	scans:	

(i)	 a	 resting	 state	 scan,	 (ii)	 a	 motor	 localiser	 scan	 and	 (iii)	 four	 finger-mapping	 scans.	

Additionally,	a	structural	scan	and	field	maps	were	obtained	during	each	scanning	session.		
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Resting	state	scan	

Participants	were	instructed	to	let	their	mind	wander	while	keeping	their	eyes	loosely	focused	

on	a	fixation	cross	for	the	duration	of	the	scan	(5	min).	

	

Motor	localiser	scan	

Participants	were	instructed	to	move	the	right/left	hand	(all	fingers	flexion	and	extension),	

right/left	 foot	 (unilateral	 toe	movements),	or	 lips	 (blowing	kisses)	as	paced	by	visual	 cues	

projected	 into	 the	 scanner	 bore.	 Each	 condition	 was	 repeated	 four	 times	 in	 a	 semi-

counterbalanced	protocol	alternating	12s	of	movement	with	12s	of	rest.	Participants	were	

trained	 before	 the	 scan	 on	 the	 degree	 and	 form	 of	 the	 movements.	 To	 confirm	 that	

appropriate	movements	were	made	at	the	instructed	times,	task	performance	was	visually	

monitored	 online.	 Due	 to	 data	 acquisition	 issue,	 motor	 localiser	 data	 of	 1	 augmentation	

participant	was	discarded	from	the	analysis.	

	

Finger-mapping	scans	

Participants	were	instructed	to	perform	visually	cued	movements	of	individual	digits	of	either	

hand,	bilateral	toe	movements	and	lips	movements.	The	different	movement	conditions,	as	

well	 as	 rest	 periods	 were	 presented	 in	 9s	 blocks.	 The	 individual	 digit	 movements	 were	

performed	in	the	form	of	button	presses	on	MRI-compatible	button-boxes	(4	buttons	per	box)	

secured	on	the	participant’s	thighs.	The	movements	of	either	of	the	(biological)	thumbs	were	

performed	by	tapping	them	against	the	wall	of	the	button	box.	Instructions	were	delivered	

via	a	visual	display	projected	into	the	scanner	bore.	Ten	vertical	bars,	representing	the	fingers	

flashed	individually	in	green	at	a	frequency	of	1	Hz,	instructing	movements	of	a	specific	digit	

at	that	rate.	Toe	and	lips	movements	were	cued	by	flashing	the	words	“Feet”	or	“Lips”	at	the	

same	 rate	 of	 1	 Hz.	 Each	 condition	 was	 repeated	 4	 times	 within	 each	 run	 in	 a	 semi-

counterbalanced	order.	Participants	performed	4	 runs	of	 this	 task.	Due	 to	 timing	 issues	3	

augmentation	participants	and	1	control	participants	completed	only	3	 runs	of	 the	 finger-

mapping	 task.	 Additionally,	 due	 to	 a	 data	 acquisition	 issue,	 the	 finger-mapping	 data	 of	 1	

control	participant	was	discarded.	
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MRI	data	acquisition	

MRI	images	were	acquired	using	a	3T	Prisma	MRI	scanner	(Siemens,	Erlangen,	Germany)	with	

a	32-channel	head	coil.	Functional	 images	were	collected	using	a	multiband	T2*-weighted	

pulse	sequence	with	a	between-slice	acceleration	factor	of	4	and	no	in-slice	acceleration.	This	

provided	the	opportunity	to	acquire	data	with	high	spatial	(2	mm	isotropic)	and	temporal	(TR:	

1450	ms)	 resolution,	covering	 the	entire	brain.	The	 following	acquisition	parameters	were	

used:	 TE:	 35ms;	 flip	 angle:	 70°,	 72	 transversal	 slices.	 Field	 maps	 were	 acquired	 for	 field	

unwarping.	A	T1-weighted	sequence	(MPRAGE)	was	used	to	acquire	an	anatomical	image	(TR:	

2530	ms,	TE:	3.34	ms,	flip	angle:	7°,	spatial	resolution:	1	mm	isotropic).	

	

MRI	analysis	

MRI	analysis	was	 implemented	using	tools	 from	FSL	 (50,	51)	and	Connectome	Workbench	

(humanconnectome.org)	software,	in	combination	with	Matlab	scripts	(version	R2016a),	both	

developed	 in-house	 (including	 FSL-compatible	 RSA	 toolbox	 (52))	 and	 as	 part	 of	 the	 RSA	

Toolbox	 (21).	 Cortical	 surface	 reconstructions	 were	 produced	 using	 FreeSurfer	 ((53,	 54),	

freesurfer.net).	

	

fMRI	pre-processing	

Functional	 data	was	 first	 pre-pre-processed	 using	 FSL-FEAT	 (version	 6.00).	 Pre-processing	

included	motion	correction	using	MCFLIRT	(55),	brain	extraction	using	BET	(56),	temporal	high	

pass	filtering,	with	a	cut	off	of	150s	for	the	finger-mapping	scans	and	100s	for	resting-state	

and	motor	 localiser	scans,	and	spatial	smoothing	using	a	Gaussian	kernel	with	a	FWHM	of	

3mm	for	the	finger-mapping	and	5mm	for	resting-state	and	motor	localiser	scans.		

	

To	make	 sure	 that	 the	 scans	 from	 the	 two	 scanning	 sessions	were	well	 aligned,	 for	 each	

participant	we	calculated	a	midspace	between	 their	pre-	and	post-	 scans,	 i.e.	 the	average	

space	in	which	the	images	are	minimally	reoriented.	Each	scan	was	then	aligned	to	this	pre-

post	midspace	using	FMRIB’s	Linear	Image	Registration	Tool	(FLIRT,	(55,	57)).	This	registration	

was	performed	separately	for	the	structural,	motor	localiser,	resting	state	and	finger	mapping	

scans,	resulting	in	4	separate	midspaces	per	participant.	All	the	within-subject	analyses	were	
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done	 in	 the	 corresponding	 functional	 midspace.	 To	 allow	 for	 the	 co-registration	 of	 the	

functional	 data	 and	 the	 anatomical	 ROIs	 (see	below)	 the	 functional	midspaces	were	 then	

aligned	 to	 each	 participant’s	 structural	 midspace	 using	 FLIRT,	 optimised	 using	 Boundary-

Based	Registration	(BBR,	(58)).	Finally,	when	interrogating	finger-specific	activations	on	the	

group-level,	 the	 individual	 structural	 midspaces	 were	 transformed	 into	 MNI	 space	 using	

FMRIB’s	Nonlinear	Image	Registration	Tool	(FNIRT,	(57))	

	

Low-level	task-based	analysis		

For	 task-based	 datasets,	 voxel-wise	General	 Linear	Model	 (GLM)	 analysis	was	 carried	 out	

using	FEAT,	to	identify	activity	patterns	related	to	the	movement	of	each	digit/body	part.	The	

design	was	convolved	with	a	double-gamma	hemodynamic	response	function	(HRF)	and	its	

temporal	derivative.	The	six	motion	parameters	were	included	as	regressors	of	no	interest.		In	

case	of	large	movement	between	volumes	(>1	mm)	additional	regressors	of	no	interest	were	

included	in	the	GLM	to	account	for	each	of	these	instances	individually.	

	

For	the	finger-mapping	scans,	12	contrasts	were	set	up:	each	digit	versus	rest,	feet	against	

rest	 and	 lips	 against	 rest.	 The	 estimates	 from	 the	 four	 finger	 mapping	 scans	 were	 then	

averaged	voxel-wise	using	fixed	effects	model	with	a	cluster	forming	z-threshold	of	3.1	and	

family-wise	error	corrected	cluster	significance	threshold	of	p<0.05,	creating	12	main	activity	

patterns	for	each	session	and	participant.		

	

For	the	motor	localiser	scans,	4	main	contrasts	were	set	up:	right/left	hand	against	lips,	rand	

right/left	foot	against	lips.	The	activity	patterns	associated	with	those	6	contrasts	were	then	

used	to	define	functional	regions	of	interest	(ROIs,	see	below).	

	

Regions	of	Interest	(ROI)	definition	

Changes	to	representational	structure	of	the	hand	were	studied	using	anatomical	ROIs,	as	

previously	practiced	 in	related	studies	 (13,	59,	60).	Structural	T1	 images,	registered	to	the	

structural	midspace,	were	used	to	reconstruct	the	pial	and	white-grey	matter	surfaces	using	

Freesurfer.	 Surface	 co-registration	 across	 hemispheres	 and	 participants	 was	 done	 using	

spherical	alignment.	Individual	surfaces	were	nonlinearly	fitted	to	a	template	surface,	first	in	
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terms	of	the	sulcal	depth	map,	and	then	in	terms	of	the	local	curvature,	resulting	in	an	overlap	

of	the	fundus	of	the	central	sulcus	across	participants	(61).	The	anatomical	sensorimotor	ROI,	

used	 for	 the	 multivariate	 analysis	 were	 defined	 on	 the	 group	 surface	 using	 probabilistic	

cytotectonic	maps	aligned	to	the	average	surface	(62).	These	ROI	was	then	projected	into	the	

individual	 brains	 via	 the	 reconstructed	 individual	 anatomical	 surfaces.	 Since	 we	 were	

primarily	interested	in	the	motor	representation	of	the	hand,	we	have	focused	our	anatomical	

ROI	on	M1,	selecting	all	surface	nodes	with	the	highest	probability	for	BA4	spanning	a	2cm	

strip	medial/lateral	to	the	anatomical	hand	knob	(13,	63).	However,	we	note	that,	given	the	

probabilistic	nature	of	these	masks,	the	dissociation	between	S1	and	M1	is	only	an	estimate,	

and	thus	our	ROI	should	be	treated	as	a	sensorimotor	one.		

	

For	 our	 univariate	 analyses,	 we	 also	 defined	 functional	 ROIs	 based	 on	 the	 sensorimotor	

representations	of	the	left/right	hand	and	feet	for	each	participant.	Unlike	the	cross-validated	

RSA	 analysis,	 these	 analyses	 require	 more	 spatially-restricted	 ROIs.	 We	 therefore	 used	

condition-specific	contrasts	from	the	motor	localiser	scans	(as	previously	practiced	in	e.g.	(12,	

64-66)	To	 this	extend,	 the	relevant	 (right/left	hand	vs	 lips,	 right/left	 foot	vs	 lips)	 low-level	

contrasts	were	first	averaged	across	both	(pre	and	post)	scans.	To	create	left/right	hand	ROIs,	

for	each	participant,	the	200	most	active	voxels	were	selected	from	the	averaged	left/right	

hand	vs	lips	contrast.	For	the	individual	feet	ROIs,	a	similar	procedure	was	employed,	selecting	

the	100	most	active	voxels	from	the	averaged	left/right	foot	vs	lips	contrast.	Voxel	selection	

was	restricted	to	the	primary	somatosensory	(S1)	and	motor	(M1)	cortices	as	derived	from	

the	maximum	probabilistic	maps	(thresholded	at	25%)	of	the	Juelich	Histological	Atlas	(67).	

Voxels	 from	 both	 feet	 ROIs	 were	 combined	 into	 a	 single	 region	 of	 interest	 used	 in	 the	

subsequent	analyses.	

	

Resting	state	

To	account	for	non-neuronal	noise	that	might	bias	functional	connectivity	analyses	(68,	69),	

we	regressed	out	the	six	motion	parameters,	as	well	as	the	BOLD	time	series	of	white-matter	

and	cerebrospinal	fluid	(CSF)	from	the	pre-processed	resting	state	data.	For	this	purpose,	the	

T1-weighted	structural	scans,	registered	to	anatomical	midspace,	were	segmented	into	grey	

matter,	white	matter,	and	CSF,	using	FSL	FAST	 (70).	To	avoid	 the	 inclusion	of	grey	matter	
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voxels	 in	 the	nuisance	masks,	 the	 resulting	masks	 included	only	voxels	 identified	as	white	

matter/CSF	with	probability	of	1,	and	were	eroded	by	one	voxel	in	each	direction.	For	both	

the	white	matter	and	CSF	maps,	the	first	 five	eigenvectors	were	then	calculated	using	the	

unsmoothed	resting	state	time	series	(68,	69).	Together	with	the	motion	parameters,	these	

16	regressors	of	no	interest	were	regressed	out	from	the	pre-processed	resting	state	time	

series.	 The	 resulting	 time	 series	 (residuals)	were	 used	 in	 all	 the	 subsequent	 resting	 state	

analyses.		

	

The	level	of	resting-state	coupling	(functional	connectivity)	between	the	augmented	(right)	

hand	ROI	and	the	feet	ROIs	was	examined	by	correlating	the	time-course	of	the	augmented	

hand	ROI	with	the	time-course	of	the	feet	ROI,	while	partialling	out	the	time-course	of	the	

left-hand	ROI.	The	resulting	sets	of	partial	correlations	were	Fisher	z-trasformed,	and	group-

level	statistical	comparisons	were	conducted	using	two-tailed	paired	t-tests.	

	

Multivariate	representational	structure	(RSA)	

We	 used	 RSA	 (71)	 to	 assess	 the	 multivariate	 relationships	 between	 the	 activity	 patterns	

generated	across	digits	and	sessions.	The	dissimilarity	between	activity	patterns	within	the	

M1	anatomical	hand	ROI	was	measured	for	each	digit	pair	using	the	cross-validated	squared	

Mahalanobis	distance	(21).	We	calculated	the	distances	using	each	possible	pair	of	imaging	

runs	within	a	single	scanning	session	(pre,	post)	and	then	averaged	the	resulting	distances	

across	run	pairs.	Before	estimating	the	dissimilarity	for	each	pattern	pair,	the	activity	patterns	

were	pre-whitened	using	the	residuals	from	the	GLM.	Due	to	the	cross-validation	procedure,	

the	 expected	 value	 of	 the	 distance	 is	 zero	 (or	 below)	 if	 two	 patterns	 are	 not	 statistically	

different	 from	 each	 other,	 and	 larger	 than	 zero	 if	 the	 two	 representational	 patterns	 are	

different.	The	resulting	10	unique	inter-digit	representational	distances	were	put	together	in	

a	representational	dissimilarity	matrix	(RDM).	

	

To	 assess	 the	 effect	 of	 5-day	 Thumb	 usage	 on	 the	 overall	 representation	 structure	

(dissimilarity),	we	performed	a	linear	mixed	model	analysis	(LMM)	with	fixed	factors	of	time,	

hand	and	digit	pair,	a	random	effect	of	participant	and	a	random	participant-specific	slope	of	

time.	 The	 LMM	 was	 evaluated	 in	 R	 (version	 3.5.2)	 under	 restricted	 maximum	 likelihood	
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(REML)	 conditions	with	Satterthwaite	adjustment	 for	 the	degrees	of	 freedom.	We	 further	

assessed	the	typicality	of	the	representational	structure	of	the	post	scan	RDM,	by	calculating	

the	 Spearman’s	 rho	 correlation	 between	 each	 participant’s	 RDM	 and	 the	 group	 average	

computed	from	the	pre-scan	data	using	a	leave-one-out	procedure.	The	typicality	values	were	

then	z-normalised	and	the	typicality	of	the	representational	structure	of	the	right	hand	(post-

scan)	was	then	compared	to	the	typicality	of	the	left	hand’s	representational	structure	(post-

scan)	 using	 paired	 t-test.	 Because	 the	 representational	 structure	 can	 be	 related	 to	

behavioural	 aspects	 of	 hand	 use	 and	 is	 highly	 invariant	 in	 healthy	 individuals	 (average	

correlation	 r	 =	 0.9,	 (9)),	 this	 measure	 serves	 as	 a	 proxy	 for	 how	 ‘normal’	 the	 hand	

representation	is.		

	

As	an	aid	to	visualising	the	RDMs,	we	also	used	classical	multidimensional	scaling	(MDS).	MDS	

projects	the	higher-dimensional	RDM	into	a	lower-dimensional	space,	while	preserving	the	

inter-digit	dissimilarity	values	as	well	as	possible.	MDS	was	performed	on	data	from	individual	

participants	and	averaged	after	Procrustes	alignment	(without	scaling)	to	remove	arbitrary	

rotation	induced	by	MDS.	Note	that	MDS	is	presented	for	intuitive	visualisation	purposes	only,	

and	was	not	used	for	statistical	analysis.	

	

Numerical	modelling	of	inter-digit	dissimilarity	

To	aid	the	interpretation	of	the	neuroimaging	findings,	we	have	created	a	simple	numerical	

simulation,	modelling	the	potential	effects	of:	(i)	cortical	magnification,	(ii)	inhibition	and	(iii)	

adding	a	new	digit	representation;	onto	the	canonical	hand	representational	structure.	

	

We	aspired	to	simulate	activity	patterns	within	the	hand	ROI	by	creating	an	abstract	structure	

(comprised	of	3000	“voxels”),	divided	into	5	equisized	finger-selective	regions,	and	simulating	

activity	 elicited	 by	 individuated	 movements	 of	 each	 of	 the	 fingers.	 During	 each	 trial	

(simulation	run),	the	moving	finger	activated	the	“voxels”	within	the	assigned	finger-selective	

region	(with	inherent	noise),	while	also	partially	activating	the	“voxels”	assigned	to	the	other	

4	fingers.	More	specifically,	within	a	trial,	the	activity	of	each	“voxel”	was	randomly	sampled	

from	a	Gaussian	distribution,	with	mu=1	for	trials	involving	the	“voxel’s”	preferred	finger	and	

ranging	from	0.1408	to	0.3846	for	trials	involving	a	movement	of	a	different	finger.	The	values	
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of	 mu	 were	 chosen	 based	 on	 the	 inter-finger	 relationship	 derived	 from	 the	 average	

representational	structure	(RDM)	of	the	dominant	hand	of	an	independently	acquired	cohort	

of	participants	(13).	The	noise	level	(sigma=0.5)	was	constant	across	all	trials	and	activations.		

The	simulation	was	run	10,000	times,	separately	for	each	of	the	5	fingers,	resulting	in	50,000	

patterns	of	finger	specific	“activations”.	

	

To	model	 the	cortical	magnification	phenomenon,	we	 increased	 the	mu	values	associated	

with	all	the	non-moving	fingers	by	10%	(activation	modifier,	see	Table	2).	This	introduced	the	

idea	that	increased	individuation	of	the	finger	movements	(based	on	Figure	2	above)	results	

in	increased	representation	of	the	fingers	(37)	Similarly,	modelling	the	homeostatic	inhibition,	

we	decreased	all	 the	mu	values	by	10%	 (see	Table	2).	 This	 interrogates	 the	 idea	 that	any	

changes	triggered	by	the	changed	finger	co-use	would	be	offset	by	tonic	inhibition,	that	will	

impact	the	entire	hand	map	(36).	Finally,	to	investigate	the	theoretical	effect	of	accounting	

for	 a	 new	 (6th)	 digit	 representation	 added	 into	 the	 hand	 representational	 structure,	 we	

decreased	the	number	of	“voxels”	assigned	to	each	of	the	5	fingers,	in	order	to	create	a	new	

equisized	 digit-specific	 region.	 Since	 we	 didn’t	 have	 any	 a	 priori	 assumptions	 on	 the	

representational	relationship	between	the	extra	Thumb	and	the	rest	of	the	fingers,	this	area	

was	set	to	be	activated	equally	in	all	trials,	with	mu	set	to	an	average	activation	value	for	the	

not-moving	fingers	(sigma=0.5,	mu=0.2193).	

	

For	each	simulation	run	and	each	model,	we	computed	the	Euclidean	distances	between	the	

activity	 patterns	 associated	with	 each	digit’s	movement.	We	 then	 averaged	 the	distances	

across	all	10	digit	pairs	to	obtain	an	average	dissimilarity	measure.	Finally,	we	compared	the	

average	distances	computed	for	each	of	the	models	to	the	ones	calculated	for	the	canonical	

hand	model,	using	independent	samples	t-tests.	
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Table	 2.	 Parameters	 used	 for	 the	 numerical	 simulation	 of	 cortical	 magnification,	 homeostatic	
inhibition	and	addition	of	a	new	digit.	
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Parameters	/	
simulation	

Canonical	
Cortical	

magnification	
Homeostatic	
inhibition	

New	digit	

Number	of	voxels	
per	digit	

600	 600	 600	 500	

Noise	level	(sigma)	 0.5	 0.5	 0.5	 0.5	
Mean	activation	of	
the	moving	finger		

1	 1	 0.9	 1	

Activation	modifier	
for	the	non-moving	

fingers 

1	 1.1	 0.9	 1	
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