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Abstract

Visual processing in the retina has been studied in great detail at all levels such that
a comprehensive picture of the retina’s cell types and the many neural circuits they
form is emerging. However, the currently best performing models of retinal func-
tion are black-box CNN models which are agnostic to such biological knowledge.
In particular, these models typically neglect the role of the many inhibitory circuits
involving amacrine cells and the biophysical mechanisms underlying synaptic
release. Here, we present a computational model of temporal processing in the
inner retina, including inhibitory feedback circuits and realistic synaptic release
mechanisms. Fit to the responses of bipolar cells, the model generalized well to
new stimuli including natural movie sequences, performing on par with or better
than a benchmark black-box model. In pharmacology experiments, the model
replicated in silico the effect of blocking specific amacrine cell populations with
high fidelity, indicating that it had learned key circuit functions. Also, more in
depth comparisons showed that connectivity patterns learned by the model were
well matched to connectivity patterns extracted from connectomics data. Thus,
our model provides a biologically interpretable data-driven account of temporal
processing in the inner retina, filling the gap between purely black-box and detailed
biophysical modeling.

1 Introduction

In the retina, light is transduced by the photoreceptors (PRs) and processed in two layers of neuropil
before the signal is sent to the brain (Fig. 1). In the outer plexiform layer, the output of PRs is shaped
by feedback of horizontal cells before it is passed to the bipolar cells (BCs). In mice, 14 types of BC
then relay the signal to the second synaptic layer, the inner plexiform layer (IPL). Here, the signal is
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Figure 1: Retinal circuit schematics. A. The signalling pathways in the retina: photoreceptors
(PRs) transmit the light signal to bipolar cells (BCs) before it is passed on to ganglion cells (GCs),
which project the signal to the brain. In between, the signal is shaped by two classes of mostly
inhibitory interneurons: horizontal cells (HCs) and amacrine cells (ACs). Figure adapted from [13].
B. Translation of the retinal circuit to a computational network model. We modeled two main groups
of ACs: more globally and more locally acting feedback neurons. C. Light stimulus-evoked responses
of four different types of BCs (two Off and two On cells); overlaid are traces for spatially extended
(full-field) and localized (local) chirp stimuli. For details, see [5].

shaped by a complex network of more than 45 different types of mostly inhibitory amacrine cells
(ACs) [1, 2, 3] and passed on to the retinal ganglion cells (RGCs), which in turn transmit the signals
to visual areas in the brain. Already at the level of BCs, different parallel pathways emerge, which
are tuned for specific features of the stimulus. While the different BC types have been well studied at
the morphological, genetic and functional level [4, 5, 6], a comprehensive understanding of how the
diverse AC types shape BC output is still missing and so far, only highly specialized AC circuits have
been studied extensively [7, 2].

At the same time, the currently best-performing systems identification models for retinal neurons only
account for feedforward drive and typically neglect ACs, even when mimicking the non-linear subunit
structure of retinal processing [8, 9, 10, 11]. Therefore, our knowledge about the computational role
of ACs is largely limited to basic principles: for example, GABA-releasing wide-field ACs mostly
provide lateral feedback, while glycinergic small-field ACs predominantly mediate vertical feedback
across different strata of the IPL and modulate wide-field AC input to BCs [2]. In addition, system
identification models typically neglect well-understood biophysical mechanisms involved in temporal
adaptation and therefore lack a clear link to the underlying biology. For example, the specialized
ribbon synapse, a feature of PRs and BCs, is known to dramatically shape the temporal structure of
the transmitted signal [12].

Here, we build on recent work modeling stimulus-response relationships of individual neurons
extending simple linear-nonlinear models to a full-scale network model of the IPL while keeping a
much higher degree of biophysical realism. Our contributions are:

1. We show how to train a network model of the IPL including ACs and a high degree of
biophysical realism end-to-end to reproduce the temporal responses of all 14 mouse BC
types on artificial stimuli (Figure 1 and 2).

2. We show that the predictive performance of this model is as good as that of deep recurrent
models on artificial as well as on natural stimuli (Figure 3).

3. We perform in silico pharmacological modulations and show that blocking different groups
of ACs has similar effects to what is observed in experiments (Figure 4).
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4. We compare the connectivity between the different types of BCs and ACs in our model
to connectomics data [14] and find that our model has learned the general rules of IPL
connectivity from functional data (Figure 5).

5. Finally, we use the biological realistic components of the model to make predictions on
biophysical properties of the ribbon synapses for individual BC types (Figure 6).

Thus, our model provides a biologically interpretable data-driven account of temporal processing
in the inner retina, filling the gap between purely black-box modeling and detailed biophysical
modeling.

2 Previous Work

Current models of neural processing in the retina broadly fall into two categories:

1. Neural system identification approaches [15] are designed to maximize the performance
when predicting the activity of a retinal neuron or a population of neurons from the visual
stimulus. Such models include statistical linear-nonlinear-Poisson models (LNP) and their
generalizations incorporating feedback terms and non-linear subunits [8, 9] as well as models
based on deep neural networks [11, 16, 17]. These approaches are able to predict the activity
of retinal neurons with remarkable accuracy and subunits in the respective models can
resemble presynaptic neurons [10, 18, 19, 20]. However, the models are often difficult to
interpret in terms of actual biological mechanisms. In addition, they typically fail to model
adaptive processes determining the temporal response kinetics in many retinal neurons.

2. Mechanistic models for retinal neurons are typically biophysically realistic models based
on Hodgkin-Huxley equations. For example, such models have been used to model the
activity of BCs and RGCs, and can do very well in accounting for adaptive processes, as
they incorporate the underlying biophysical mechanisms [21, 22]. Such models are based on
large amounts of biological detail and knowledge, thus enabling a mechanistic investigation
into a specific computation, but are time-consuming to simulate and notoriously hard to fit
to data.

To strike a middle ground between these two extremes, systems identification models have been
combined with an additional kinetic block that allows them to account for rapid release adaptation at
synaptic sites as well as other adaptive processes [23, 24]. Additionally, a single inhibitory pathway
has been incorporated in such models to account for the aggregate feedback from all ACs [25]. Here,
we advance such hybrid models and combine an interpretable linear-nonlinear-release (LNR) model
with a kinetic block [24] with the rich feedback structure of the whole AC network. Using this
network to model temporal processing in the IPL, we obtain accurate predictions of BC activity
across a wide range of stimuli while maintaining a high degree of biological interpretability. In
contrast to the often involved inference necessary for biophysically realistic models [22], our model
is completely differentiable and can be efficiently learned end-to-end with modern deep learning
frameworks.

3 Model

3.1 The Bipolar Cell Network model

Our BC network (BCN) model consists of two main parts: i) a vertical model of the 14 parallel
BC channels, and ii) a model of the AC feedback (Fig. 1B). The feedback consists of a local and
global pathway, activated by stimulation of center and surround component of BC receptive fields,
respectively. As data, we used light-evoked responses of BCs recorded with the genetically encoded
glutamate sensor iGluSnFr [5] (c.f. Appendix B). Therefore, we convolved our model output with the
iGluSnFR kernel as a final step, which allows for a direct comparison to the functional recordings of
BCs. In total, the model has 1,932 free parameters.

3.1.1 Model of the vertical pathway

The vertical pathway consists of a linear biphasic kernel, a sigmoidal non-linearity and a model of
the release machinery at a ribbon synapse. The linear stage accounts for the approximately linear
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Figure 2: Training Performance. A. Linear correlation of the output of the three models for all 14
BC types on the local (top) and the global (bottom) chirp stimulus. B. Summary of the correlation
across all types of BCs for the three models and two stimulus conditions. C. Model predictions for
the Off (type 4) and On (type 5t) BC from Fig. 1C. Cluster mean traces are shown in grey and ρ gives
Pearson correlation coefficients.

processing of light l in PRs and dendrites of BC i [26]:

BCin
i (t) =

∫ T

τ=0

l(t− τ) · κPR
i (τ)dτ.

The signal is then modulated by the local and global AC feedback (fbi(t), see Section 3.1.2) before it
is passed through a sigmoidal non-linearity to be converted into vesicle release probability pi (see
Appendix A for details):

pi(t) = σi
(
BCin

i (t)− fblocal,i(t)− fbglobal,i(t)
)
.

We mimic sensitivity adaptation in the retina by allowing the offset of the non-linearity to change
by shifting its operating point [25]. This allows different computations in the vertical pathway for
local and full-field stimuli. We used a deterministic version of the release model described in [24] to
model the BC’s synapse. In this model, vesicles move between three different pools in a probabilistic
fashion: At each time step, vesicles are first released from the ready releasable pool (RRP), then new
vesicles are moved from the intermediate pool (IP) to the RRP, and finally the IP is refilled from the
cytoplasm. To make the model deterministic, we replaced all random variables by their expected
value given the present state of the different pools. This results in three simplified equations for
vesicle movement:

release = p(t) · RRP, RRPrefill = k1 · IP, IPrefill = k2,

where k1 and k2 are constant over time. Additionally, maximal pool sizes were learned for the IP and
RRP. For better training performance, the occupancies of the pools were sent through a sigmoidal
non-linearity in in each time step and thus smoothly clamped at the maximal values.

3.1.2 Feedback model

The feedback structure is implemented by a network of ACs (Fig. 1B). Each AC is modeled by a LN
model, which receives input from all BC types with learned weights WBC AC. The LN part consists
of a double-exponential kernel κAC (see Appendix A for details) and a sigmoidal non-linearity σ
afterwards:

ACout
i (t) = σi

∫ T

τ=0

 14∑
j=1

wBC AC
ij · BCout

j (t− τ)

 · κAC
i (τ)dτ

 .
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Figure 3: Generalization Performance. A. Each point corresponds to the Pearson correlation
between recorded response and model response of a single BC terminal for the LN model (x axis)
and BCN model (y axis). Color indicates IPL depth (center at 0.5), straight line the identity. IPL
depth is a good proxy for On/Off separation, Off BCs are in higher depth (red), On cells deeper (blue).
B. Sample predictions for the best On and Off BC terminal (highest correlation across all models)
for the three models (recorded traces in grey). C., D. Same as A, B but for a sine flicker stimulus
of varying size. Note that the IPL depth had to be estimated differently for these recordings, which
might cause a difference in scaling compared to A. The dense regions of the stimulus have high
frequency sinusoidal oscillations.

We modeled both the local and global AC pathways, consisting of mostly glycinergic and mostly
GABAergic ACs, respectively. While both groups provide direct feedback to most BCs, local ACs
also act as a gate keeper for global ACs by modulating their output to BCs in an inhibitory manner
(cf. Figure 1B, [13]). The two AC groups further differ in their spatial tuning. Local ACs integrate
over small spatial regions (up to 300µm [2, 13]), whereas global ACs are better activated by larger
stimuli, complementing their smaller counterparts. Consequently in the model, global feedback is
only activated during full-field stimuli, whereas local feedback is present for all stimuli. We can thus
describe the feedback for each BC i in the following way:

fblocal,i(t) =
∑
j

wAClocalBC
ij · ACout

local,j(t) and

fbglobal,i(t) = 1global ·
(∑

j

w
ACglobalBC
ij · ACout

global,j(t)−
∑
j

w
AClocalACglobal
ij · ACout

local,j(t)
)
.

To be able to compare the learned connectivity structure, which is represented by the different weight
matrices W , with the connectivity structure found in electronmicroscopy data, we took the number of
ACs from [14] (45 ACs in total) and matched the ratio of local to global ACs to the ones identified in
[3] (10:35) (see Appendix F for details).

3.2 Benchmark models

LN model As a lower bound for performance, we used a linear-nonlinear model (LN). It consists
only of the two first stages of the LNR model. It has the same parameterization but does not
incorporate any feedback. Its parameters were optimized using the same training schedule (c.f.
Appendix C) as for the BCN model.

LSTM As an upper bound for performance, we used a standard long-short-term-memory (LSTM)
model (implemented in pytorch with torch.LSTMModel) with 18 hidden dimensions, and a linear
readout layer with 28 output dimensions for the 14 local and 14 global traces, respectively. The
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Figure 4: In silico pharmacological experiments. A. The model reproduces type-specific modula-
tions of BC responses induced by drug application, all showing local responses (model in red, data in
grey). B. Tonic release index for Off BCs under control condition and blocking of glycinergic (local)
ACs (errorbars indicating bootstrapped 95% confidence intervals, Model: p=0.004 for a paired t-test).
C. Tonic release index for Off BCs under control condition and blocking of the On BC pathway
(Model: p=0.002 for a paired t-test). All figures of experimental data adapted from [5].

number of hidden dimensions was chosen such that the number of parameters (2,044) approximately
matched the number of parameters of the BCN. The LSTM was trained on full length chirp traces.
See Appendix C for details.

3.3 Training

The models were trained on the mean traces of the 14 BC types in response to local/global chirp
stimulus (Fig. 1C). The data was recorded in the IPL using two-photon imaging of BC output with the
genetically encoded fluorescent glutamate sensor iGluSnFr and clustered into functional types using
an anatomy-guided clustering approach [5] (Appendix B). The training objective was to maximize the
correlation between model predictions and recorded responses across all cell types and stimuli (local
and global chirp). Letting yi,s, ŷi,s denote the (mean-centered) recorded and predicted response of
type i to stimulus s, our loss function was

Lcorrelation = −
14∑
i=1

∑
s∈{local,global}

yTi,sŷi,s

||yi,s||2||ŷi,s||2
.

We minimized this loss function to train the LN and LSTM model.2 For the BCN model,
we encouraged sparse connections between different types of neurons as observed in real EM
data [14], by additionally adding a sparse penalty, minimizing the 1-norm of all connectiv-
ity matrices W j : Lsparsity =

∑
j ||W j ||1. Finally, we weighted the two terms and optimized

Ltotal = Lcorrelation + βLsparsity. All models were written in PyTorch [27] and optimized using
the Adam optimizer [28] (see Appendix C for details about hyper-parameter search and learning
schedule).

4 Results

4.1 Model Performance

We found that the BCN model learned to predict BC chirp responses for both local and global chirps
nearly perfectly when evaluated on the training data, with performance reaching almost that of the
LSTM model (Fig. 2A, B; Table 1). In contrast, the LN model performed noticeably worse, failing to
capture salient response features such as a slowly decaying response during the first onset of light
(Fig. 2C). The BCN model was able to model this adaptative process accurately. While the LSTM
model likewise captured this process and even achieved slightly higher correlation values, it showed
signs of over-fitting as it predicted little noise ripples in the data (Fig. 2C, 4, left) .

2As two-photon imaging data is on an arbitrary scale, we did not learn the final linear transformation that
minimizes the squared error of our model predictions

∑
t(yt − atŷt)

2. This linear transformation can simply be
computed after fitting by setting at =

yt
ŷt

.
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Figure 5: Connectivity analysis. A. Example weights of the best model and the EM data from [14]
for BC to ACglobal connectivity WBC ACglobal . See Appendix F for the full weight matrices. Orange
lines indicating classification as On-cell. B. Connectivity matrices reduced to On/Off entries.

To probe the generalization performance of the model to unseen stimuli, we used additional recordings
of BC terminals in response to natural movies and to sinusoidal flickering stimuli of constant and
varying spatial size. To obtain a time series approximating the contrast statistics across the spatial
receptive field of a single BC for the spatially inhomogeneous stimuli, we filtered these stimuli with a
spatial difference of Gaussian kernel (see Appendix B) .

We found that the BCN performed better than the LN model and as good or better than the LSTM
on the hold out data (Fig. 3; Table 1). In particular, we found a more pronounced performance gain
for Off compared to On BCs. Note that in general, the correlation levels are lower than for the chirp
data, as for both stimuli we had only few (natural movies) or even just one (sine stimulus) repetition
and data was not averaged across recorded terminals. Additional data sets with variations of the sine
stimuli are shown in Appendix D.

4.2 In silico Pharmacological Manipulations

We tested three different pharmacological manipulations in silico and compared their effects to
previously obtained experimental results [5]. See Appendix E for details of the implementation.
Blocking of local feedback led to more transient responses in On BCs and an increased modulation of
release below baseline for Off BCs, in line with experimental findings (Fig. 4A, B). This is thought
to result from an increase in tonic glutamate release caused by blocking cross-over inhibition from
the On pathway mediated by small-field, glycinergic ACs. To confirm this idea, we additionally
in silico blocked On BCs, that provide the excitatory drive for cross-over inhibition, and observed
similar effects consistent with experimental data (Fig. 4C). This suggests that our model learned the
circuit motif of cross-over inhibition. In addition, blocking local feedback decreased the correlation
of local and global chirp responses of model BCs significantly (p = 0.036) due to dis-inhibition of
global feedback (Appendix E). While the decrease in correlation was less pronounced in the model
compared to experimental BC responses, this suggests that the model learned the gating of global
by local feedback. Finally, blocking global feedback instead resulted in an increase in correlation
between local and global chirp responses compared to the control condition, matching experimental
data (Appendix E).

Table 1: Training and generalization performance. All numbers indicate mean Pearson’s corre-
lation, standard deviations are written in brackets (minimum clipped to 0.01). Best model in each
column indicated in bold.

Training Generalization
Model Local Chirp Global Chirp Natural Vary Sine Small Sine Large Sine

LN 0.80 (0.09) 0.70 (0.17) 0.18 (0.06) 0.06 (0.05) 0.02 (0.02) 0.02 (0.02)
LSTM 1.00 (0.01) 0.99 (0.01) 0.24 (0.06) 0.09 (0.07) 0.03 (0.03) 0.03 (0.03)
BCN 0.96 (0.02) 0.96 (0.02) 0.24 (0.06) 0.10 (0.08) 0.03 (0.03) 0.04 (0.03)
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4.3 Connectivity Analysis

Next, we compared the connectivity weights in our model to the connectivity of the IPL. For this, we
used an EM data set consisting of all contacts between neurons of the inner retina [14] (for processing
of the data set, see Appendix F). These contacts only represent potential synaptic contacts, as the data
set does not contain any synaptic markers.

In order to compare ACs between model weights and connectivity data, we ordered them according
to the ratio of Off to On BC input (Fig. 5A). ACs which predominately received input from On
BCs were classified as On ACs, and vice versa.The connectivity matrices revealed a block diagonal
structure in both the model and the EM data (Fig. 5A; see Appendix Fig. 10 for full connectivity
matrix), which was even more striking if all connections of cells with same response polarity (On/Off)
were combined (Fig. 5B). This suggests that feedback across On and Off layer is an important
processing feature in the IPL. Overall, the learned connectivity weights were slightly sparser than
in the EM data (Fig. 9A). To assess whether the similarity between model and EM connectivity
matrix was due to chance, we constructed a random connectivity model, in which we drew random
samples for each entry from the EM data distribution and preprocessed the matrix in the same way as
before. However, the correlation of the model connectivity and the EM data was significantly higher
than the correlation with the random model (Fig. 9B,C, p = 0.019, p = 0.002 for the best model
respectively). We also found that the fraction of On ACs among global ACs (Fig. 9D) and the ratio of
On to Off AC input to the BCs (Fig. 9 E) matched the EM data well. In contrast, the fraction of On
ACs among local ACs was more comparable to the random model, suggesting that this feature of IPL
connectivity could not be learned from the current limited functional data.

4.4 Model-based Prediction of Biophysical Properties

Figure 6: Model-based Predictions. A. Global
transience index (as in [5]) and RRP capacity of
the ribbon block. B. Model parameters of the
ribbon block by BC type for the best 20 models.
Red/yellow Off BCs, blue/green On BCs. See Ap-
pendix E for detailed color code.

Finally, we show how our interpretable BCN
model can be used to make predictions about
cellular properties on the biophysical level. In-
specting the model parameters for the synaptic
release of BCs, we found that RRP capacity was
correlated with the global transience index (Pear-
son, ρ = 0.48, p < 10−10, 20 best models, Fig.
6A), a measure of the ratio of activity decay
after a large activation (computed on the exper-
imental data; for details, see [5]). Interestingly,
the RRP capacity together with the transfer rate
from IP to RRP divided the BC types into clearly
distinguishable clusters (Fig. 6B), suggesting
that measuring these parameters experimentally
would be important for understanding the emer-
gence of different temporal processing channels
in the inner retina.

5 Discussion

We trained a network model of temporal processing in the IPL including known structural constraints
as well as biophysically inspired mechanisms to predict the functionally distinct responses of all
14 mouse BC types to different stimuli. It generalizes well and performs on par with a recurrent
black-box model. Importantly, in silico pharmacology manipulations revealed that the model learned
“cross-over inhibition” and “gating of global by local feedback” from the functional data, two of
the central circuit motifs of the IPL. In addition, the connectivity structure of the model closely
resembled that found in EM data. Furthermore, the model predicts that the 14 BC types can be
clearly distinguished by the parameters of their synaptic release cascade, a prediction which remains
to be tested. We emphasize that such predictions would not be easily possible from a pure systems
identification approach.

Of course, our BCN model is but a first step in a comprehensive model of the IPL. On a technical
level, it would be highly desirable to perform inference for BCN parameters using recent advances in
Approximate Bayesian Computation [29, 30]. However, these approaches are typically limited to
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models with dozens of parameters [22, 24]. When the technical challenges involved have been solved,
this will allow for the identification of degenerate solutions and dependencies in the parameter space.
Further, the BCN neglects most forms of more involved spatial processing or processing across light
levels. In both cases, different sets of ACs are recruited across different stimulus conditions [2].
Therefore, including data from such conditions may be key in further understanding in how far the
connectivity structure of the IPL follows computational demands.

Broader Impact

We present a model for temporal processing in the inner retina that combines system identification
approaches with biophysically interpretable modules. The investigation of these modules allowed us
to not only reproduce earlier experimental observations but also make predictions for the underlying
biological system. First, this firmly grounds predictive models of neural activity in the biology of
the underlying neural system, which is of high interest from a theoretical perspective. Second, the
developed techniques for combining predictive and mechanistic models can likely be applied in other
regions of the central nervous system, as the necessary data to provide the mechanistic constraints
become available. Finally, our model may provide a first step towards establishing data driven in silico
experiments for assessing the mechanisms of retinal degeneration and may inform future generations
of targeted therapies aimed at curing the underlying diseases. At this time, we cannot envision any
negative consequences to arise of this research.
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Appendix

A Model details

A.1 Vertical Pathway

The linear filter κPR in the vertical pathway was modeled as a biphasic filter [31, 32] which depends
on a rise and decay constant (τr and τd) and additional phase parameters (φ and τphase). We used
additionally one free parameter γ as in [24], which is stretching/compressing the kernel on the time
axis and inferred from the data. This leads to the kernel

κPR(t, γ) =
−
(

t
γτr

)3
1 + t

γτr

· exp

(
−
(

t

γτd

)2
)
· cos

(
2πt

γφ
+ τphase

)
,

which was normalized to have norm one. The remaining parameters were held constant:
τr = 0.05, τd = 0.05, τphase = 100 and φ = −π/7.

We used a sigmoidal non-linearity σ with two parameters for the offset and the slope (x0 and k):

σ(x) =
1

1 + exp(−k(x− x0))
.

A.2 Amacrine Cell Feedback

The synaptic integration of ACs was modelled as a double exponential kernel κAC with two time
parameters for rise and decay (τr and τd) per AC:

κAC(t) = exp

(
−t
τd

)
− exp

(
−t · (τd + τr)

τd · τr

)
.

As non-linearity we took the same sigmoidal non-linearity as in the vertical pathway.

B Data

We used three different sets of data. Published recordings in response to the chirp stimulus (for
details, see [5]) were used for model fitting. To test generalization performance, we used published
recordings in response to sine flicker (for details, see [33]) as well as newly recorded responses to
natural movies (see Section B.2).

B.1 Chirp

The model was trained on the cluster mean traces of the 14 BC types recorded and clustered in [5] in
response to local/full-field chirp stimulus (Fig. 1C). The chirp stimulus was slightly intensity and
time corrected (as in [22]) to account for slight deviations in frame rate of the projector (not exactly
at 60 Hz) and an offset between digital synchronization signal ("trigger") and stimulus presentation
(∼34 ms), as well as for the gamma distortion of the projector.

B.2 Natural Movies

The natural movie consisted of 108 5-second sequences (64x64 pixels, 7µm pixel size) extracted
from several Hollywood movies displayed at 30 Hz. Next to these “training” sequences, which were
displayed in a randomized order to avoid adaptation artefacts, 5 5-second “test” sequences were
displayed in a fixed order at 3 time points (beginning, middle and end). This allowed quantifying
response consistency during the time of stimulus presentation. We recorded BC responses to these
movies in n=1 PvalbCre mouse (Jackson laboratory, JAX 008069) using two-photon glutamate imaging
in vertical optical slices (64x56 pixels @11.16 Hz) of the IPL, as described previously [34, 5]. All
animal procedures were approved by the governmental review board (Regierungspräsidium Tübingen,
Baden-Württemberg, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany) and performed according
to the laws governing animal experimentation issued by the German Government. Regions-of-
interest (ROIs) were determined using local image correlation and glutamate traces of single ROIs
corresponded to the output of single BC axon terminals (for details, see [5]).
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To transform the videos into 1D temporal input sequences, we fitted a difference-of-Gaussians (DoG)
filter of the same spatial size as the movies:

Γσ,Kσ(x, y) = I ∗
(

1

2πσ2
e−(x

2+y2)/(2σ2) − 1

2πK2σ2
e−(x

2+y2)/(2K2σ2)

)
by maximizing the correlation between the input and the recorded traces.

B.3 Sine Flicker

The sine flicker stimulus consisted of three different conditions: in the first condition the retina was
stimulated with a small spot (with a diameter of 100µm) with varying frequencies and intensities,
in the second condition with a large spot (with a diameter of 800µm) with varying frequencies and
intensities and in the last condition the spot size changed additionally randomly between 10 different
diameters (from 100 to 800µm). The intensity varied between 10% and 100% contrast and the
frequency between and 1Hz and 8Hz, all parameters were constant over trials one second. See [33]
for more details.

For the stimulus of varying size we collapse the spatial dimension with a normalized one dimensional
DoG filter Γ which was fitted to maximize the correlation between the stimulus and collapsed
responses. The un-normalized filter had the form

Γσ1,σ2,w(x) = e−x
2/σ1 − w · e−x

2/σ2 .

C Random Search and Training Details

All models were trained using the Adam optimizer [28] and an adaptive learning rate schedule for
which we performed a random search over hyperparameters. The schedule is as follows: 1) draw
an initial learning rate from Log-Uniform (0.01, 1); 2) Train until the loss has not increased for N
steps; 3) lower the training rate by 0.5; 4) iterate over 2) and 3) for M epochs. Where (N,M) are
hyperparameters that are randomly selected from (5, 100) and (3, 10) respectively. At 1, 000 steps
the optimization was stopped regardless of convergence (most top performing models converged at
around 200− 500 steps).

For the BCN model, we added two regularization parameters to ensure biologically plausible solutions.
The first was a loss on the variance of the biphasic kernel speeds. Without this, we observed speed
difference of up to 3x which is not biologically plausible (the biological range being (1− 1.5) [34]).
Secondly, we also minimized the variance of the mean and variance of the release output (after the
ribbon block) for each BC type. Without this loss, we had observed that the different types learned
drastically different scalings (due to the scaling invariance introduced by the final normalization).
This made the learned weights difficult to compare and sometimes shifted the operating range for
local and global responses in an artificial way. Each of these regularizers was weighted with a
hyperparameter that was included in the random search.

D Training Results

D.1 Results for local and global flicker stimulus

Figure 7: Generalization performance for local and global sine flicker stimulus. Left, same as
Fig. 3 A for small sine flicker stimulus. Right, same as Fig. 3 C for large sine flicker stimulus.
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D.2 Full Training Performance

Off BC

Model, Data 1 2 3a 3b 4

LN, Local 0.67 0.67 0.72 0.69 0.70
LSTM, Local 0.99 0.99 1.00 0.99 0.99
BCN, Local 0.97 0.96 0.95 0.95 0.92

LN, Global 0.53 0.71 0.69 0.45 0.58
LSTM, Global 0.99 0.99 0.99 0.99 0.98
BCN, Global 0.98 0.97 0.96 0.96 0.90

On BC

Model, Data 5t 5o 5i X 6 7 8 9 R

LN, Local 0.67 0.67 0.72 0.69 0.70 0.86 0.83 0.84 0.85
LSTM, Local 0.99 0.99 1.00 0.99 0.99 1.00 1.00 1.00 1.00
BCN, Local 0.97 0.96 0.95 0.95 0.92 0.97 0.97 0.96 0.93

LN, Global 0.53 0.71 0.69 0.45 0.58 0.39 0.78 0.76 0.78
LSTM, Global 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
BCN, Global 0.98 0.97 0.96 0.96 0.90 0.95 0.98 0.97 0.95

D.3 Selection of the Best Models

For later analysis we took all models within a 2% performance range of the highest correlation and
under these the 20 models we took the ones with the largest weighted sum of penalty weights (β and
weights for the kernel speed and variance of the release and mean output (described in C)). For the
best model we took the highest penalized model within a 1% performance range.

E Details for in silico Pharmacological Manipulations

Figure 8: Correlation between local and global traces in response to the chirp stimulus. A.
Blocking global feedback. Colors coding different BC types. For data: black dot is the mean
correlation of the cluster mean traces, grey is the mean correlation of the single trials. (errorbars
indicating bootstrapped 95% confidence intervals, Model: p = 0.025, paired t-test). B. Blocking the
local feedback (Model: p = 0.036, paired t-test) All data plots are adapted from [5].

We performed three different pharmacological experiments in silico: (1) blocking global feedback
from wide-field ACs (in vitro using a combination of the GABA receptor blockers TPMPA and
gabazine), (2) blocking local feedback from small-field ACs (in vitro using the glycine receptor
antagonist strychnine), and (3) selective blocking of the On BC pathway (in vitro using L-AP4, an
agonist of the mGluR6 receptors expressed by On BCs).

Blocking of global feedback We modified the parameters of the best model by setting WACglobalBC

to zero. Therefore, we blocked the global AC feedback, but the global and local models still differed
by the offset parameters of the non-linearities of the vertical pathway.
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Blocking of local feedback We modified the parameters of the best model by setting WAClocalBC

and WAClocalACglobal to zero. Therefore we blocked the direct local feedback as well as the gating
function of the local ACs for the global ACs.

Blocking of the On pathway We modified the parameters of the best model by setting the entries
corresponding to the On cells of WBC ACglobal and WBC AClocal to zero. Therefore we blocked the On
input to both local and global ACs, and looked then only at the responses of the Off BCs.

Tonic Release Index To calculate the Tonic Release Index (TRI), we followed the definition in
[5]: We took the model responses to the chirp stimulus and subtracted first the baseline for each cell
(response to the stimulus step of low light intensity) to get the baseline corrected response r. We than
calculated

TRI =

∑
t |r−(t)|∑

t |r+(t)|+
∑
t |r−(t)|

,

where r− = r · 1r<0 and r+ = r · 1r>0 .

F Connectivity analysis

Figure 9: Connectivity analysis. A. Connectivity weight distribution after normalization for EM
data and the best model. B. Correlation of the weight matrices between the 20 best models and the
EM data/1,000 randomly sampled (and sorted) weight matrices. Red dot indicating best model. C.
Correlation of the On/Off collapsed weight matrices (as in B) between the 20 best models and the EM
data/1,000 random samples. Red dot indicating best model. D. Fraction of local and global ON-ACs
for the EM data (black) and the mean of the 20 best models (red) and randomly sampled matrices
(grey boxplot). The models did not show high variations and we omit to show the spread of the data.
E. Histogram over Off/On input ratios for all ACs of the data and the best model.

F.1 Preprocessing of the EM data

To compare the learned model weights with the contact areas of the EM in [14], we processed the
data in the following way. Firstly, we extracted contacts involving ACs and BCs (excluding ones with
a contact area above 5 µm2 as they likely do not correspond to synapses). We summarized these
contacts according to cell type, resulting in a connectivity matrix of BC and AC types. We found
that three types of cells (On and Off starburst amacrine cells, rod bipolar cells) dominated the matrix.
Thus, we normalized the corresponding entries in the matrix such that their mean would match the
mean of the remainder of the matrix (non-zero elements). As the dominant functionalities of these
cell types, motion detection and signal transmission during low light levels, are not exploited by the
stimulus used in our experiments, we believe this normalization step makes the comparison to the
model weights more reasonable. The ACs in the “Helmstaedter dataset” are not classified as local
or global ACs. Therefore, we choose 9 small-field and 1 medium-field AC (characterized in [35]),
which were also identified in the Helmstaedter dataset to be local ACs. Furthermore, we verified that
they used glycine as their neurotransmitter, if possible in mouse [36, 37], and otherwise in another
mammalian species [38, 39]. For 8 out of the 10 cells, we were able to confirm glycine as their
neurotransmitter in this way. By this procedure, we think that we separated the identified ACs in [14]
into local and global ACs as good as possible with the currently limited knowledge about AC types.
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F.2 Preprocessing of the Model Weights

Before normalizing and ordering the connectivity matrices of the model as described in the main text,
we additionally adjusted the input weights to the ACs with the magnitude of the BC output. More
precisely we scaled the weights of WBCAClocal and WBCACglobal which are corresponding to BC i
with the standard deviation of the output of BC i. The AC to BC connections were not scaled, since
the output of the ACs are all on a same scale due to the used sigmoidal non-linearity.

F.3 Complete Connectivity Matrices

Figure 10: Complete connectivity matrices. A. Weights for the best model. Orange bars indicating
classification as On cell. B. Preprocessed connectivity matrix for the EM data. Orange bars indicating
classification as On cell.
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