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Abstract 

Purpose: 

We introduce FSL-MRS, an end-to-end, modular, open-source magnetic resonance spectroscopy 

analysis toolbox. FSL-MRS provides spectroscopic data conversion, pre-processing, spectral 

simulation, fitting, quantitation and visualisation. 

Theory and Methods: 

FSL-MRS is modular. FSL-MRS programs operate on data in a standard format (NIfTI) capable of 

storing single voxel and multi-voxel spectroscopy, including spatial orientation information.  

FSL-MRS includes tools for pre-processing of raw spectroscopy data, including coil-combination, 

frequency and phase alignment, and filtering. A density matrix simulation program is supplied for 

generation of basis spectra from simple text-based descriptions of pulse sequences. 

Fitting is based on linear combination of basis spectra and implements Markov chain Monte Carlo 

optimisation for the estimation of the full posterior distribution of metabolite concentrations. 

Validation of the fitting is carried out on independently created simulated data, phantom data, and 

three in vivo human datasets (257 SVS and 8 MRSI datasets) at 3T and 7T.  

Interactive HTML reports are automatically generated by processing and fitting stages of the 

toolbox. FSL-MRS can be used on the command line or interactively in the Python language.  

Results: 

Validation of the fitting shows low error in simulation (median error 11.9%) and in phantom (3.4%). 

Average correlation between a third-party toolbox (LCModel) and FSL-MRS was high (0.53-0.81) in 

all three in vivo datasets. 

Conclusion: 

FSL-MRS is designed to be flexible and extensible to new forms of spectroscopic acquisitions. 

Custom fitting models can be specified within the framework for dynamic or multi-voxel 

spectroscopy. FSL-MRS will be available as part of the FMRIB Software Library.  
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Introduction 
Recent years have seen the emergence and rapid progress of new magnetic resonance spectroscopy 

(MRS) technologies, including spectral editing (1), MRS imaging (2,3), time-resolved functional MRS 

(4), diffusion-weighted MRS (5), and MRS fingerprinting (6). MRS is therefore starting to have a 

range of techniques comparable to those of conventional proton MRI, but with the added benefit of 

being able to quantify specific chemical compounds. However, unlike modern MRI-based 

neuroimaging, MRS lacks standard data formats (e.g. NIfTI (7)), as well as standard pre-processing 

and analysis pipelines suitable for use by non-expert users (e.g. FSL (8), SPM (9), or AFNI (10)). This 

restricts the use of MRS in research, particularly in neuroscience, by requiring expertise in MRS 

acquisition, data analysis, and computing. Current processing toolboxes are typically linear and 

linearly dependent, lacking modularity or a standardised data format. It is therefore difficult to 

customise processing pipelines, inspect the results of single steps of a pipeline, or combine steps 

from different toolsets.  

The tools currently available and commonly in use for processing, fitting and visualisation of spectra 

(e.g. (11-16)) suffer from one or more of several limitations, namely: 

• They may be black-box, closed-source implementations, sometimes with monetary cost. 

• They may require licenced software to run, which is not universally deployable. 

• They often require high user interaction, either through a GUI or the need for setting and 

understanding many options. 

• They have fixed forward fitting models. Modifications require MRS and computing expertise. 

• They have limited or no handling of MRSI data, with no parallelisation available. 

For these reasons currently available software is not easily extensible to new forms of MRS, for 

example high-resolution, high-voxel count MRSI, or time-series modelling of functional MRS (fMRS), 

or diffusion-weighted MRS (dwMRS). 

In this work we present a new Python-based MRS fitting and processing tool, FSL-MRS. The toolbox 

is open-source, free as part of the FSL software package (8), and operates with a scriptable 

command line or interactive interface. It implements a modular approach to spectroscopy analysis 

with a common data format, allowing integration with other neuroimaging tools. Steps are 

parallelisable for MRSI data. FSL-MRS is end-to-end, comprising modules for data conversion, pre-

processing, basis spectra simulation, fitting, quantification, and visualisation. 

The FSL-MRS fitting module works on the principle of linear combination of pre-calculated basis 

spectra (13). In keeping with FSL’s tradition of favouring Bayesian inference approaches (17), our 

tool calculates full posterior distributions of the fitted metabolite concentrations using a Markov 
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chain Monte Carlo (MCMC) algorithm, specifically Metropolis-Hastings (18). The full posterior 

distributions can be utilised in further analysis, allowing efficient propagation of fitting uncertainties 

into downstream modelling and statistical analyses. Parameter covariances are also available from 

the fitting output, and point estimates of concentration and uncertainties may be calculated using 

appropriate summary statistics. FSL-MRS incorporates an interactive reporting interface which uses 

modern data-science visualisation tools. 

In this work we describe the FSL-MRS components, interface and output, and describe the fitting 

model and approach. A validation of the tool’s fitting estimates is carried out on widely available 

simulated data, in phantom and on three in vivo datasets at 3T and 7T, spanning 265 subjects. 

Theory & Methods 
Data conversion and format 
FSL-MRS operates on a modular processing principle. Modularity allows custom third-party additions 

to the processing pipeline without the need to alter the FSL-MRS package or adhere to FSL-MRS 

imposed code conventions, languages, or possible limitations. 

To enable this workflow FSL-MRS processing and fitting operates on MRS data stored in the 

Neuroimaging Informatics Technology Initiative (NIfTI) format (7). The NIfTI format permits the 

storage of data resolved into three spatial dimensions, in addition to a time dimension and two 

further unspecified dimensions. MRS and MRSI time-domain data may therefore be stored using the 

format (and it will also allow analysis of fMRS and dwMRS data in the future). Data is loaded from, 

and written to, file after each operation. Additional required meta-data is stored in, read from, and 

written to JavaScript Object Notation (JSON) “sidecar” files, as specified by the Brain Imaging Data 

Structure (BIDS) format (19). 

FSL-MRS provides the spec2nii program to convert from existing data formats to NIfTI. Spec2nii 

currently supports seven formats specified in the supporting information (Supporting Table 1). 

Spectroscopy volume position information is translated into the NIfTI “qform” field where it is 

available in the original format. 

Modular end-to-end processing 
FSL-MRS provides a complete set of command line tools for spectroscopy analysis. Here we define 

processing as the steps required to make single voxel spectroscopy or reconstructed MRSI k-space 

data ready for fitting. Basis spectra creation is the process of using quantum mechanical simulations 

(or other methods) to create numerical descriptions of a metabolite’s response to a specific MRS 

pulse-sequence. Fitting is the process of estimating relative metabolite concentrations from the 

processed spectrum and the basis spectra. Quantification turns those relative concentrations into 
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real-world interpretable units of concentration. Display incorporates viewing of the data and results 

at all stages of the process. Figure 1 shows an overview of the tool’s workflow. 

 

Figure 1 – FSL-MRS organisation and workflow. Raw data in proprietary or other 

formats are converted to NIfTI by spec2nii. Processing can then be carried out in 

stages, operating on NIfTI files, using fsl_mrs_proc, or in a single python script 

fsl_mrs_preproc for standard SVS sequences. Basis spectra can be generated for 

fitting using fsl_mrs_sim given a json description for the sequence. Fitting and 

quantitation are then carried out by fsl_mrs and fsl_mrsi as appropriate. Interactive 

HTML reports are generated for viewing in the user’s browser. Spectroscopy data in 

NIfTI format can be viewed overlaid with other MR contrasts in FSLeyes. 

Processing 
FSL-MRS provides tools for all the processing operations recommended in the community-driven 

consensus paper (tables 2, 3 and 4 of reference (20)). These tools are accessed through the 
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command line by fsl_mrs_proc and are described briefly in Table 1. Coil combination is performed 

through the wSVD algorithm (21,22), spectral alignment by spectral registration (23), and nuisance 

peak removal by HLSVD (HLSVDPRO)(24). fsl_mrs_proc operations are applied sequentially to data 

stored in NIfTI format. Operations can be combined, in order, to form a repeatable batch processing 

script. 

fsl_mrs_proc 

operation 

Description Reference 

coilcombine Combine individual coils of receiver phased array. (21,22) 

average              Average FIDs, with optional complex weighting.  

align                Phase and frequency align FIDs using spectral registration. (23) 

align-diff Phase and frequency align sub-spectra based on addition or 

subtraction of sub-spectra (e.g. for ISIS localisation). 

(23) 

ecc   Eddy current correction using a water phase reference scan. (25) 

remove Remove peak (typically residual water) using HLSVD. (24) 

tshift shift/resample in time domain.  

truncate             Truncate/pad time-domain data by an integer number of points.  

apodize              Apply choice of apodizeation function to the data.  

fshift               Frequency domain shift.  

unlike               Identify outlier FIDs and remove based on similarity metric. (14) 

phase                Zero-order phase spectrum by phase of maximum point in range  

subtract             Subtract two FIDs  

add                  Add two FIDs  

Table 1: Processing operations avai lable using the fsl_mrs_proc command line tool 

In addition to the flexibility offered by this script, FSL-MRS also provides a pre-packaged processing 

pipeline for non-edited single voxel data – fsl_mrs_preproc, which runs all appropriate steps with 

one command-line operation. 

Basis spectra simulation 
Fitting in FSL-MRS works on the principle of Linear Combination (LC) modelling (see Bayesian Fitting). 

LC modelling requires that the user provides the algorithm with simulated (or measured) numerical 

responses of metabolite spin systems to the MRS pulse sequence being used. These responses are 

specific to the pulse sequence, the sequence timings, and the sequence radio frequency (RF) pulse 

envelopes and are known as basis spectra. Basis spectra must preserve the relative signal amplitude 

between metabolites. 

FSL-MRS provides an interface (fsl_mrs_sim) for the creation of basis spectra when provided with a 

description of the sequence timings, RF pulses, slice selection gradients and rephasing gradient 

areas. RF pulses may have arbitrary amplitude and phase modulation (i.e. be non-ideal). The 
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description is provided in a JSON format, examples are provided in the software documentation. The 

simulation is based on the extended 1D projection implementation of density matrix simulations 

(26). Unwanted coherences are removed with a coherence order filter (27). Standard literature 

values for common spin system chemical shifts and coupling constants are included in the software 

(28,29). 

fsl_mrs_sim outputs a JSON file for each simulated metabolite which may be loaded by FSL-MRS’s 

fitting modules. FSL-MRS also accepts LCModel (.BASIS) and jMRUI (.txt) basis spectra formats. 

Fitting & Quantification 
Fitting in FSL-MRS is provided by two command-line interfaces: fsl_mrs (for single voxel 

spectroscopy [SVS] data) and fsl_mrsi (for MRSI data). Additional interfaces will be added in the 

future for other types of MRS (e.g. diffusion-weighted MRS, functional MRS). Fitting is carried out on 

each voxel of data independently. The user may optionally specify: the limits of fitting (in ppm), the 

order of the complex polynomial baseline (see Standard fitting model), whether to add default 

macromolecular peaks (at 0.9, 1.2, 1.4, 1.7 and 2.08 & 3.0 ppm), the optimisation algorithm (see 

Optimisation). Metabolites in the basis spectra file may be optionally excluded by the user and, for 

output purposes only, metabolites may be combined. 

For meaningful quantification the user must supply a processed unsuppressed water dataset, and 

for transverse relaxation-compensated concentrations the user must supply the sequence echo time 

and tissue volume fractions (30,31). The scripts svs_segment and mrsi_segment can calculate tissue 

volume fractions within each voxel given an appropriate T1-weighted structural image. Default 

values for water concentration, tissue-water densities, and water and metabolite T2 time constants 

are provided for 3T and 7T field strengths. These defaults may be overridden in the interactive or 

python interface. Concentrations can be expressed as a ratio to an arbitrary internal reference 

metabolite (or combination of metabolites) or in molar (mol/dm
3
) or molal (mol/kg) units.   

FSL-MRS fitting outputs the signal-to-noise ratio (SNR) and linewidths (full width at half maximum) 

for each fitted metabolite. The SNR ratio is calculated as the ratio of the peak height of the fitted 

metabolite basis spectrum over the standard deviation of a pure noise region of the spectrum after a 

matched filter has been applied to both (32). The matched filter and linewidth are calculated for 

each metabolite as the FWHM peak width in hertz, as calculated from the most prominent peak in 

the fitted basis spectrum. If the MCMC algorithm is used the quality control metrics are calculated 

over all samples. 
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Reporting & Display 
FSL-MRS modules generate self-contained interactive HTML reports (Plotly, Montreal, Canada) 

which can be viewed and interacted with in the user’s web browser. All components of the 

processing module (Table 1) produce short HTML reports which can be combined into a single 

interactive report for each instance of data by using the packaged merge_mrs_reports. 

An interactive report is generated for each fit displaying the fitted spectrum, model fit, residuals and 

concentrations (Fig 1) and concentration posterior distributions, metabolite covariances and scaled 

basis spectra (Fig 2). The user therefore can quickly assess the quality of SVS data and fit visually in 

one location. Results of the fitting are also available as comma-separated values (CSV) files from the 

command-line programs and as Pandas objects in memory (33).  

Visualisation of both time and frequency domain MRSI data alongside structural imaging data can be 

achieved using the FSL package tool FSLeyes (34) (see Figure 3). 

Interactive FSL-MRS 
In addition to the command line tools described in the previous sub-section, FSL-MRS may be run in 

an “interactive” way by loading the underlying python libraries into an interactive IPython 

environment. The same functionality and reporting interfaces that are available on the command-

line are also available interactively. In this way FSL-MRS allows prototyping of new processing 

pipelines and tools whilst also providing familiarity for users of interactive scripting languages. 

Bayesian fitting 
FSL-MRS implements linear combination modelling for fitting of basis spectra to data using Bayesian 

statistics to find an optimal solution. This method of fitting is robust whilst also outputting full 

posterior distributions of fitted metabolite concentrations to estimate concentration covariances 

and uncertainties. 

The fitting module contains a standard fitting model appropriate for the fitting of a single 

independent spectrum. However, the fitting framework can accept an arbitrary forward model. 

Standard fitting model 
The model for the complex-domain spectrum is 

Y��� � B��� � exp���
� � �
��� � � ��,�
��

���

��

���

��,���; γ�, ��, ��� #�1�  

��,���; ��, ��� � �� �,��!� exp"#���� � ���!� � ����!$%#�2�  

Where � denotes frequency, B��� describes an n
th

-order complex polynomial estimate of the 

baseline, the second term applies a global 0th and 1st order phase and the final term is the sum of all 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.16.155291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155291
http://creativecommons.org/licenses/by-nc/4.0/


Submitted to Magnetic Resonance in Medicine 

scaled, shifted and broadened metabolite basis spectra ��,���; �� , 
� , ���. To avoid overfitting there 

is no flexibility in the metabolite line-shapes beyond shifting (ε) and broadening (γ, σ), which can be 

flexibly applied to NG groups of metabolites (where each metabolite belongs to one and one only 

group). 
 is the Fourier transform and ml,g(t) is the inverse Fourier transform of ��,���; 0,0,0�. 

No prior information or constraints on relative metabolite scaling is incorporated.  

Optimisation 
Initialization is achieved using the truncated Newton algorithm as implemented in the SciPy package 

(35,36). The final fit is carried out over all model parameters using Metropolis-Hastings (a Markov 

Chain Monte Carlo algorithm) (18). The truncated Newton initialization can be used independently 

of the subsequent MCMC fit to provide a fast point-estimate of the metabolite concentration. In this 

work and in the summary reports generated by FSL-MRS, point-estimates of the metabolite 

concentrations from the MCMC algorithm are the arithmetic mean of the posterior distribution. 

The forward model in Eq 1. is combined with an additive Gaussian white noise to produce the 

Likelihood function (which combines both real and imaginary part of the model prediction and data). 

The noise variance parameter is integrated out with a Jeffrey’s (1/x) prior. Priors on the 

concentration parameters are set to broad zero-mean half-Gaussians (i.e. with positivity constraint). 

Line broadening parameters are set to broad Gaussians with a small positive centre (5Hz) and 

positivity constraints. Shift and phase priors are set to broad Gaussians centred at zero with no 

additional constraints. The baseline parameters are estimated in the initial nonlinear fitting then 

kept fixed in the MCMC stage. 

Validation of fitting 
All methods in this work refer to version 1.0.0 of FSL-MRS. 

Simulation 
Independently created simulated data was used to validate FSL-MRS. The simulated data was 

created by Malgorzata Marjanska, Dinesh Deelchand, and Roland Kreis for the ISMRM MRS Study 

Group’s Fitting Challenge (37). The data comprises 21 datasets (without artefacts) with varying SNR, 

linewidths, line shapes, metabolite concentrations and macromolecule content. Briefly: datasets 0-2 

have increasing widths of Lorentzian line-shapes; 3-5 have increasing widths of Gaussian line-shapes; 

6-9 vary the concentration of GABA/GSH; 10 has no macromolecular content; 11-13, 14-16; 17-19, 

and 20 have different spectral SNR (20, 30, 40 & 160 respectively).  The data simulates a 3T PRESS 

sequence with a TE of 30 ms. 

Both water-suppressed and unsuppressed data is provided in an already pre-processed state. Basis 

spectra for 20 metabolites, including a macromolecular baseline, were provided by the challenge 
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authors. True concentration values for each metabolite in each dataset were supplied by the Fitting 

Challenge authors in a private communication. 

Fitting was assessed for both the Newton and MCMC algorithms. The polynomial baseline was 

restricted to 0
th

 order and fitting was carried out between 0.2 and 4.2 ppm. After fitting, scaling of 

the raw metabolite concentrations was carried out using the unsuppressed water data, and 

concentration values were scaled accounting for provided tissue volume fractions (31). 

Fitting performance was assessed using the mean and median percentage difference and absolute 

concentration difference from the true concentration values for each metabolite in all datasets. In 

addition, a summary statistic for each metabolite in each spectrum was calculated from the MCMC 

estimated posterior distribution as follows: 

µ��� � �M���	


�M�

 , #�3�  

where ���� , 
���  are the mean and standard deviation of the fitted concentration of metabolite M 

and [M]True is its true value. Intuitively this statistic can be interpreted as “how many standard 

deviations away from the true value is our estimate”. 

Phantom 
Validation of unsuppressed, water scaled concentrations was carried out in a uniform aqueous 

phantom (SPECTRE, Gold Standard Phantoms, London, UK) containing six metabolites (NAA, Cr, Cho, 

Ins, Glu and Lac) using a previously published STEAM sequence at 7T (38,39). The sequence 

parameters were: 11 ms TE, 32 ms mixing time (TM), 10 s repetition time, 4096 samples, 6000 Hz 

bandwidth. Basis spectra were created using FSL-MRS, using a spatial resolution of 30 points in each 

dimension. The concentrations of six metabolites was determined from 5 Hz exponentially line-

broadened spectra from the phantom. An additional doublet near 1.4 ppm was observed in the 

spectrum. It was established to be contaminant of the lactate feedstock used to create the phantom. 

It was fitted as alanine and included in the lactate concentration. Absolute concentrations were 

calculated from referencing the integral of the scaled creatine spectrum to an unsuppressed water 

spectrum taken to be equivalent to 55.5 M H2O. T2s were estimated from water and an average of 

metabolite singlet linewidths and concentrations were scaled for metabolite and water T2 relaxation.   

In vivo 
FSL-MRS fitting was validated against LCModel (Version 6.3-1M) (13) in three in vivo datasets. The 

datasets covered different brain regions, sequences, and field strengths and are summarised in 

Table 2. Datasets one and two are single voxel sequences using STEAM and SPECIAL (40) sequences 

respectively and dataset three is 2D multi-voxel MRSI data collected using density-weighted 
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CONCEPT with a semi-LASER volume selection module (2). STEAM and SPECIAL data were processed 

using fsl_mrs_proc respectively. 

All subjects in these datasets were recruited in a manner approved by the appropriate Research 

Ethics Committee for each originating study (see references in Table 2). 

# Sequence B0 (T) Subjects Voxels (brain regions) Measured MM? Vendor Ref 

1 STEAM 7 37 3 (ACC, OCC, putamen) Yes Siemens (39)  

2 SPECIAL 3 220 1 (PCC) Yes Siemens (41) 

3 CONCEPT 3 8 126 (calcarine sulcus) No Siemens (42) 

Table 2. Description of in vivo datasets used for val idation. ACC = anterior cingulate 

cortex, OCC = occipital cortex, PCC = posterior cingulate cortex.  

Identical basis spectra were used in both FSL-MRS and LCModel. Basis spectra for datasets one and 

two were created in FSL-MRS using fully described RF pulses, coherence filtering and with 30 spatial 

points in each dimension. The basis spectra comprised 19 and 17 simulated metabolites respectively 

to match previous analyses. Previously measured macromolecular spectra from metabolite-

inversion-nulled sequences were included in the basis spectra. For dataset three existing basis 

spectra (as described in Ref (42)) were used. They were simulated in the simulation module of VeSPA 

(Versatile Simulation, Pulses and Analysis)(43) and comprise 19 simulated metabolites. 

Macromolecular spectra were not included; instead eight LCModel or FSL-MRS-simulated Gaussian 

macromolecule resonances were included in the analysis at the following positions: 0.91, 1.21, 1.43, 

1.67, 1.95, 2.08, 2.25 and 3.00 ppm. For all datasets default “Concentration Ratio Priors” (also 

referred to as soft constraints) for metabolites were specified for the LCModel fit. The baseline 

flexibility parameter DKNTMN was set to 0.25, slightly above the default (0.15). 

Datasets one and two were fitted using LCModel and FSL-MRS (MCMC algorithm). Dataset three was 

fitted in LCModel and FSL-MRS (Newton algorithm) for speed. Highly correlated peaks (correlation 

coefficientT<T−0.5) were combined (e.g. Cr+PCr, NAA+NAAG, PCh+GPC, Glu+Gln). Metabolite 

concentrations were expressed as a ratio to total creatine (Cr+PCr) and as molality concentrations 

using unsuppressed water as an internal reference. T2 relaxation was accounted for, but the 

unsuppressed water peak was assumed to correspond to pure water as anatomical images for tissue 

segmentation were not available for all datasets.  

Data was compared voxel-wise for each metabolite in each dataset using the Pearson correlation 

coefficient and Bland-Altman bias and limits of agreement (44). Bias is calculated as a percentage of 

the mean value, and the limits of agreement are the width of the 95% confidence intervals 
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expressed as a percentage of the mean value. In the comparisons, data was excluded if the 

estimated percentage Cramer Rao lower bounds on the metabolite concentrations exceeded 100% 

for either FSL-MRS or LCModel, or if the fitted value was more than four standard deviations from 

the mean value for that metabolite in that dataset. Metrics were calculated for both the water-

scaled concentrations (water) and metabolite ratios (tCr); for all metabolites excluding the combined 

values (all) and for all metabolites including combined values but excluding those which were 

combined (combined). 

Results 
Output and reports 
Figure 2 shows extracts of an example FSL-MRS fitting report. The extracts include a summary of the 

fit and metabolite concentrations, MCMC-estimated correlations between metabolite 

concentrations, and visualisations of the MCMC estimated distributions of the metabolite 

concentrations. Example fully interactive HTML reports for both fitting and processing are attached 

as supporting information. The same reports can be generated from example data included in the 

FSL-MRS package. 
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Figure 2 – Extracts of the interactive HTML fitting report. Top:  Metabolite 

concentrations summary and fit overlaid on data. Individual plots can be toggled on 

and off interactively. Bottom: correlations between metabolite concentrations from 

the Monte Carlo sampling (MCMC) and marginal posterior distributions of the 

metabolite concentrations. A full interactive fitting and pre-processing report is 

attached as supplementary information. 

Figure 3 shows the results of fitting an MRSI grid of voxels from a single density weighted CONCEPT 

from dataset three (Table 2). NIfTI format viewers such as FSLeyes can be used to simultaneously 

view anatomical images, fitted metabolite concentrations, the spectral data and the FSL-MRS fit. In 

Figure 3 the total NAA concentrations are overlaid on a T1w image centred around the calcarine 

sulcus. 
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Fitting results may be exported in NIfTI or comma separated value (CSV) format or carried forward in 

python for further analysis. 

 

Figure 3 – MRSI in FSLeyes. The results of processing and fitting of MRSI data are 

stored in 4D NIFTI f iles and can be viewed in a suitable viewer such as FSLeyes. Here a 

map of total NAA (NAA+NAAG) as measured using CONCEPT (Dataset 3) is overlaid on 

a T1 weighted image. In the right-hand side panel the real part of the time series data 

for the selected voxel is seen on the bottom, and on the top the real part of the 

spectral data is overlaid with the FSL-MRS fit and baseline estimate.    

Validation 
Simulation 
Figure 4 summarises the results of the validation on simulated data for all metabolites in all 

simulated datasets. 

For all metabolites across all 21 datasets the Newton algorithm achieved a mean (median) absolute 

concentration difference of 0.60 (0.41) mM and a mean (median) absolute percentage difference of 

30.6 (14.9) %. And for the MCMC algorithm 0.60 (0.37) mM and 35.2 (11.9) %. For the five most 

prominent signals (NAA+NAAG, Cr+PCr, Glu+Gln, Ins+Gly, GPC+PCho) the MCMC algorithm had a 

mean difference of 0.48 mM or 5.4%. The mean (±SD) number of standard deviations from the true 

value (Equation 3) was 0.57±0.43. 98.9% of true metabolite concentration values were between the 

5
th

 and 95
th

 percentiles of the MCMC estimated posterior distributions. Uncombined choline (GPC & 
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PCh) and creatine (PCr&Cr) peaks were excluded from the calculation as described in the original 

fitting challenge results. 

 

Figure 4 – Simulation val idation. a Comparison of FSL-MRS measured concentrations 

for each MRS fitting chal lenge dataset for seven metabolites. b Percentage difference 

from true values for all metabolites for al l datasets. The metabolites are sorted by 

mean difference. Both fitting algorithms (Newton [top] & Metropolis Hastings 

[bottom]) are shown. 

Phantom 
Figure 5 summarises the results of the absolute concentration validation in phantom. The mean 

absolute percentage difference from the true concentration across all metabolites was 3.39% (range 

-7.1% [Lac] to 1.1% [Glu]).  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.06.16.155291doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155291
http://creativecommons.org/licenses/by-nc/4.0/


Submitted to Magnetic Resonance in Medicine 

 

Figure 5 – Phantom val idation. A) Absolute concentration of fitted metabolite 

compared to known concentrations. CRLB are indicated by vertical bars. B) Percentage 

difference from true value. C) Data overlaid with FSL-MRS fit, each metabolite fit is 

shown in a different colour. The doublet at 1.4 ppm is f itted as ‘Ala’ and included with 

lactate.  

In vivo 
Table 3 summarises the in vivo fitting validation correlations and Bland-Altman metrics for each 

dataset. 

Mean correlations between FSL-MRS and LCModel in all data sets achieved a correlation over 0.5, 

and correlations were similar for both water-scaled concentrations and metabolite ratios. 

Correlations for the combined metabolite group were higher than the uncombined ‘all’ group, as the 

high SNR combined metabolites (Cr+PCr, PCh+GPC, Glu+Gln, NAA+NAAG, Ins) achieved correlations 

in the range 0.81 – 0.98 for all datasets. Figure 6 shows scatter plots for a sample of metabolites for 

each dataset. Concentrations and ratios were normalised to the maximum value fitted by either 

LCModel or FSL-MRS to facilitate plotting on the same axes. The scatter plots for all metabolites for 

each dataset are included as supplementary information (Supporting Figures S1-3). 

Bland-Altman metrics showed a consistent bias for higher metabolite concentrations (mean of 14% 

to 37%) and metabolite ratios (11% to 24%) in FSL-MRS compared to LCModel. Bias was higher for 

water-scaled concentrations compared to metabolite ratios and lower for the combined 

metabolites. 
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Dataset Scaling Correlation  

all 

Correlation 

combined 

% Bias  

all 

% Bias  

combined 

% LoA  

all 

% LoA  

combined 

1) 7T 

STEAM 

Water 0.69±0.18 0.74±0.19 22±21 14±12 120±71 93±64 

tCr 0.71±0.17 0.75±0.18 20±21 11±11 108±63 84±64 

2) 3T 

SPECIAL 

Water 0.68±0.13 0.75±0.12 44±25 45±27 414±329 369±345 

tCr 0.77±0.18 0.81±0.14 34±34 28±33 277±337 259±408 

3) 3T 

CONCEPT 

Water 0.53±0.16 0.56±0.14 37±22 37±20 216±109 193±92 

tCr 0.54±0.15 0.58±0.13 27±22 24±23 162±90 138±96 

Table 3. Summary of in vivo val idation – correlation and Bland-Altman statistics. All = 

all metabolites (excluding combined), combined = after combination (excludes those 

combined), LoA = limits of agreement (width of 95% CI)  

 

 

Figure 6 – Summary of in vivo validation. Correlation plots of a selected group of 

metabolites for each validation dataset. Ratios to unsuppressed water and total 

creatine (Cr+PCr) are normalised to the maximum value fitted by either FSL-MRS or 

LCModel are shown on the same axes. Correlation plots for all metabolites are shown 

in the supporting documents.  

Discussion 
FSL-MRS is an end-to-end spectroscopy analysis package. It is designed to be used flexibly: either 

implementing all stages of the MRS analysis pipeline or being used as a modular part of another 

pipeline. The package is scriptable on the command line requiring no interaction – suitable for 

analysis of large datasets and for deployment with high performance computing, or it can be used 

interactively – for pipeline prototyping and novel analyses. 

It achieves modularity by operating on data stored in a standard file type, NIfTI, which is already in 

use throughout neuroimaging. Existing packages for handling NIfTI data exist in many programming 

languages (e.g. NiBabel in Python and the “image processing toolbox” in Matlab) enabling FSL-MRS 
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to be integrated with other MRS analysis programs. Results generated in NIfTI format allows 

straightforward integration of MRS data into multi-contrast analysis in existing neuroimaging 

toolboxes (e.g. FSL). Both FSL-MRS and Python are open source and free for academic and non-

commercial use. 

The package includes visualisation modules for generating interactive HTML reports viewable in a 

wide range of internet browsers. Visualisation of data and fitting results can also be accomplished in 

NIfTI format viewers due to the use of standard data types. Visualisation of data remains important 

whilst fully automatic quality control of MRS data remains not widespread (20).  

Validation of the FSL-MRS fitting module was carried out on simulation, phantom and in vivo data. 

Validation on the simulated data showed low absolute concentration errors except in those datasets 

with low spectral SNRs (20 & 30) and in peaks with low SNR and high correlation with neighbours 

(e.g. GABA). Phantom validation indicated that the package correctly implements calculation of 

absolute concentrations using scaling to unsuppressed water in the case of pure water.  

In in vivo data the validation was against LCModel, an established and widely used fitting program. 

Bias towards higher metabolite ratios in FSL-MRS was observed for water-scaled concentrations and, 

to a lesser extent, for relative metabolite ratios. The latter might arise from FSL-MRS not 

implementing priors between relative metabolite concentrations, a default setting in LCModel which 

was enabled in this analysis. Soft constraints in LCModel restrict certain metabolite concentration 

ratios (ratios of low SNR metabolites to a weighted average of NAA, total creatine and total choline) 

to be within a certain normally distributed range. The larger differences in water-scaled metabolite 

concentrations is likely due to the different implementations of flexible baselines in the two 

packages. Across all voxels in the MRSI dataset a high correlation was observed between absolute 

concentrations and the 0
th

 order polynomial baseline parameter. A baseline below zero will increase 

the reference peak’s absolute integral and result in a large ratio when compared with the integral of 

unsuppressed water. The effect of the precise implementation of flexible baselines on metabolite 

concentrations in fitting packages is complex (45,46) with dependence on acquisition, description of 

macromolecules in basis spectra and optimisation algorithm. FSL-MRS’s implementation of a 

complex polynomial baseline does not offer a solution to this complexity, but the implementation is 

simple to understand and parametrised by 2n nuisance parameters for an order-n baseline. If 

enabled, the MCMC algorithm enables the user to calculate the covariance of the baseline 

parameters with the metabolite concentrations. 

Fitting using the MCMC algorithm allows the user to generate the full posterior distribution for each 

fitted parameter, including metabolite concentrations. This information is essential to understanding 
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the uncertainties inherent in the estimation of the parameters. It also offers the opportunity to carry 

forward this information into subsequent study analysis, reducing the need for arbitrary quality cut-

offs to be used. However, fitting using the MCMC algorithm is inherently slower than methods that 

only provide point estimates, taking 10s of seconds rather than seconds to compute the results for 

each voxel. It may be possible to achieve the estimation of the posterior distributions in the time 

frame of a few seconds using a variational inference optimiser, which is under development (47). 

Operation of the package still requires the user to provide expert knowledge in two places: data 

conversion and generation of basis spectra. At the data conversion stage, the user must either use a 

file format understood by spec2nii and must interpret the structure of the data within that format, 

or provide a full conversion, including orientation information, for their own data format. Generating 

correct basis spectra requires the user to provide an accurate description of the RF pulses, timings 

and gradients in the localisation module of their sequence. Documentation for the package has been 

created to mitigate difficulties in these stages. fsl_mrs (SVS fitting) can interpret a select few other 

formats (LCModel “.RAW” & jMRUI “.txt”). 

The FSL-MRS MCMC fitting module accepts an arbitrary forward model. In future work we intend to 

use this framework to investigate the advantages of fitting multiple spectra simultaneously with a 

specialist model (e.g. for diffusion-weighted, edited or functional MRS). 

Conclusion 
We have presented a new end-to-end spectroscopy processing package incorporating Bayesian 

fitting of spectra. The package is open-source, modular and freely available. In this work validation 

of the package by simulation, in phantom and in three in vivo datasets has been provided. The 

complete package is available for download at git.fmrib.ox.ac.uk/fsl/fsl_mrs, through the open 

source package management system Conda (Continuum Analytics, Inc), and will be available as part 

of FSL (fsl.fmrib.ox.ac.uk).  
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