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Abstract 
We present the Amsterdam Open MRI Collection (AOMIC): three datasets with multimodal (3T)             
MRI data including structural (T1-weighted), diffusion-weighted, and (resting-state and         
task-based) functional BOLD MRI data, as well as detailed demographics and psychometric            
variables from a large set of healthy participants (N = 928, N = 226, and N = 216). Notably,                   
task-based fMRI was collected during various robust paradigms (targeting naturalistic vision,           
emotion perception, working memory, face perception, cognitive conflict and control, and           
response inhibition) for which extensively annotated event-files are available. For each dataset            
and data modality, we provide the data in both raw and preprocessed form (both compliant with                
the Brain Imaging Data Structure), which were subjected to extensive (automated and manual)             
quality control. All data is publicly available from the Openneuro data sharing platform. 

Background & Summary 
It is becoming increasingly clear that robust effects in neuroimaging studies require very large              
sample sizes1,2, especially when investigating between-subject effects3. With this in mind, we            
have run several large-scale “population imaging” MRI projects over the past decade at the              
University of Amsterdam, with the aim to reliably estimate the (absence) of structural and              
functional correlates of human behavior and mental processes. After publishing several articles            
using these datasets4-7, we believe that making the data from these projects publicly available              
will benefit the neuroimaging community most. To this end, we present the Amsterdam Open              
MRI Collection (AOMIC) — three large-scale datasets with high-quality, multimodal 3T MRI data             

1 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155317doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155317
http://creativecommons.org/licenses/by/4.0/


 
 

and detailed demographic and psychometric data, which are publicly available from the            
Openneuro data sharing platform. 

We believe that AOMIC represents a useful contribution to the growing collection of publicly              
available population imaging MRI datasets8-11. AOMIC contains a large representative dataset of            
the general population, “ID1000” (N = 928), and two large datasets with data from university               
students, “PIOP1” (N = 216) and “PIOP2” (N = 226; Population Imaging of Psychology). AOMIC               
contains MRI data from multiple modalities (structural, diffusion, and both task-based and            
resting-state functional MRI), concurrently measured physiological (respiratory and cardiac)         
data, and a variety of well-annotated demographics (age, sex, handedness, educational level,            
etc.), psychometric measures (intelligence, personality), and behavioral information related to          
the task-based fMRI runs (see Figure 1 and Table 1 for an overview). Furthermore, AOMIC               
offers, in addition to the raw data, also preprocessed data from well-established preprocessing             
and quality control pipelines, all consistently formatted according to the Brain Imaging Data             
Structure 12. As such, researchers can quickly and easily prototype and implement novel            
secondary analyses without having to worry about quality control and preprocessing           
themselves. 

 

Figure 1 . General overview of AOMIC’s contents. Each dataset (ID1000, PIOP1, PIOP2) contains             
multimodal MRI data, physiology (concurrent with fMRI acquisition), demographic and psychometric data,            
as well as a large set of “derivatives”, i.e., data derived from the original “raw” data through                 
state-of-the-art preprocessing pipelines.  

2 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155317doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155317
http://creativecommons.org/licenses/by/4.0/


 
 

Due to the size and variety of the data in AOMIC, there are many ways in which it can be used                     
for secondary analysis. One promising direction is to use the data for the development of               
generative and discriminative machine learning-based algorithms, which often need large          
datasets to train models on. Another, but related, use of AOMIC’s data is to use it as a                  
validation dataset (rather than train-set) for already developed (machine learning) algorithms to            
assess the algorithm’s ability to generalize to different acquisition sites or protocols. Lastly, due              
to the rich set of confound variables shipped with each dataset (including physiology-derived             
noise regressors), AOMIC can be used to develop, test, or validate (novel) denoising methods. 

Table 1 . Overview of the number of subjects per dataset and tasks. Mov: movie watching, RS:                
resting-state, Emo: emotion matching, G-str: gender-stroop, FP: face perception, WM: working memory,            
Antic: anticipation, Stop: stop-signal. 

 ID1000  PIOP1   PIOP2 

N subj. 928  216   226 

T1w 928  216   226 

DWI 925  211   226 

Fieldmap n/a  n/a   226 

 Mov  RS Emo G-str FP WM Antic  RS Emo WM Stop 

fMRI 881  210 208 208 203 207 203  214 222 224 226 

Physiology 790  198 194 194 189 194 188  216 216 211 217 

 

Methods 
In this section, we describe the details of the data acquisition for each dataset in AOMIC. We                 
start with a common description of the MRI scanner used to collect the data. The next two                 
sections describe the participant characteristics, data collection protocols, and experimental          
paradigms (for functional MRI) separately for the ID1000 study and the PIOP studies. Then, two               
sections describe the recorded subject-specific variables (such as educational level,          
background socio-economic status, age, etc.) and psychometric measures from questionnaires          
and tasks (such as intelligence and personality). Finally, we describe how we standardized and              
preprocessed the data, yielding an extensive set of “derivatives” (i.e., data derived from the              
original raw data). 

Scanner details and general scanning protocol (all datasets) 
Data from all three datasets were scanned on the same Philips 3T scanner (Philips, Best, the                
Netherlands), but underwent several upgrades in between the three studies. The ID1000            
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dataset was scanned on the “Intera” version, after which the scanner was upgraded to the               
“Achieva” version (converting a part of the signal acquisition pathway from analog to digital) on               
which the PIOP1 dataset was scanned. After finishing the PIOP1 study, the scanner was              
upgraded to the “Achieva dStream'' version (with even earlier digitalization of the MR signal              
resulting in less noise interference), on which the PIOP2 study was scanned. All studies were               
scanned with a 32-channel head coil (though the head coil was upgraded at the same time as                 
the dStream upgrade).  

At the start of each scan session, a low resolution survey scan was made, which was used to                  
determine the location of the field-of-view. For all structural (T1-weighted), fieldmap           
(phase-difference based B0 map), and diffusion (DWI) scans, the slice stack was not angulated.              
This was also the case for the functional MRI scans of ID1000 and PIOP1, but for PIOP2 the                  
slice stack for functional MRI scans was angulated such that the eyes were excluded as much                
as possible in order to reduce signal dropout in orbitofrontal cortex. While the set of scans                
acquired for each study is relatively consistent (i.e., at least one T1-weighted anatomical scan,              
at least one diffusion-weighted scan, and at least one functional BOLD MRI scan), the              
parameters for a given scan vary slightly between the three studies. In Table 2, the parameters                
for the different types of scans across all three studies are listed. 

During functional MRI scans, additional physiological data was recorded. Respiratory traces           
were recorded using a respiratory belt (air filled cushion) bound on top of the subject’s               
diaphragm using a velcro band. Cardiac traces were recorded using a plethysmograph attached             
to the subject’s left ring finger. Data was transferred to the scanner PC as plain-text files (Philips                 
“SCANPHYSLOG” files) using a wireless recorder with a sampling frequency of 496 Hz. 

Experimental paradigms for the functional MRI runs were shown on a 61 x 36 cm screen using                 
a DLP projector with a 60 Hz refresh rate (ID1000 and PIOP1) or on a Cambridge Electronics                 
BOLDscreen 32 IPS LCD screen with a 120 Hz refresh rate (PIOP2), both placed at 113 cm                 
distance from the mirror mounted on top of the head coil. Sound was presented via a MRConfon                 
sound system. Experimental tasks were programmed using Neurobs Presentation         
(Neurobehavioral Systems Inc, Berkeley, U.S.A.) and run on a Windows computer with a             
dedicated graphics card. To allow subject responses in experimental tasks (PIOP1 and PIOP2             
only), participants used MRI-compatible fibre optic response pads with four buttons for each             
hand (Cambridge Research Systems, Rochester, United Kingdom). 

Table 2 . Acquisition parameters for the different scans acquired across all three datasets. MPRAGE:              
Magnetization Prepared Rapid Gradient Echo, FOV: field-of-view, RL: right-left, AP: anterior-posterior,           
FH: feet-head, GE-EPI: gradient echo-echo-planar imaging, TR: time to repetition, TE: time to echo. 

 ID1000 PIOP1 PIOP2 

T1-weighted images    

Number of scans 3 1 1 
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Scan technique 3D MPRAGE 3D MPRAGE 3D MPRAGE 

Number of signals (repetitions) 1 2 2 

FOV (RL / AP / FH; mm.) 160×256×256 188×240×220 188×240×220 

Voxel size (mm.) 1×1×1 1×1×1 1×1×1 

TR / TE (millisec.) 8.1 / 3.7 8.5 / 3.9 8.5 / 3.9 

Water-fat shift (pix.) 2.268 2.268 2.268 

Bandwidth (Hz./pix.) 191.5 191.5 191.5 

Flip angle (deg.) 8 8 8 

Phase accell. factor (SENSE) 1.5 (RL) 2.5 (RL) / 2 (FH) 2.5 (RL) / 2 (FH) 

Acquisition direction Sagittal Axial Axial 

Duration 5 min 58 sec 6 min 3 sec 6 min 3 

Functional (BOLD) MRI  MB scans Seq. scans  

Number of scans 1 2 3 4 

Scan technique GE-EPI GE-EPI GE-EPI GE-EPI 

FOV  (RL / AP / FH) 138×192×192 240×240×118 240x240x122 240x240x122 

Voxel size (mm.) 3×3×3 3×3×3 3×3×3 3×3×3 

Matrix size 64x64 80x80 80x80 80x80 

Nr. of slices 40 36 37 37 

Slice gap (mm.) 0.3 0.3 0.3 0.3 

TR / TE (ms.) 2200 / 28 750 / 28 2000 28 

Water-fat shift (pix.) 12.481 11.001 11.502 11.502 

Bandwidth (Hz/Pix) 34.6 39.5 37.8 37.8 

Flip angle (deg.) 90 60 76.1 76.1 

Phase accell. factor (SENSE) 0 2 (AP) 2 (AP) 2 (AP) 

Phase encoding direction P >> A P >> A P >> A P >> A 

Slice encoding direction L >> R F >> H F >> H F >> H 

Nr. of dummy scans 2 2 2 2 
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Dynamic stabilization none enhanced enhanced enhanced 

Duration 10 min 38 sec variable variable variable 

Diffusion-weighted images     

Number of scans 3 1 1 

Scan technique SE-DWI SE-DWI SE-DWI 

Nr. of b0 images 1 1 1 

Nr. of diffusion-weighted dirs. 32 32 32 

Sampling scheme Half sphere Half sphere Half sphere 

DWI b-value 1000 s/mm2 1000 s/mm2 1000 s/mm2 

Voxel size (mm.) 2×2×2 2×2×2 2×2×2 

FOV (RL / AP / FH) 224×224×120 224×224×120 224×224×120 

Matrix size 112×112 112×112 112×112 

Nr. of slices 60 60 60 

Slice gap (mm.) 0 0 0 

TR / TE 6370 / 75 7456 / 86 7456 / 86 

Water-fat shift (pix.) 12.861 18.926 18.926 

Bandwidth (Hz/pix.) 33.8 22.9 22.9 

Flip angle (deg.) 90 90 90 

Phase accell. (SENSE) 3 (AP) 2 (AP) 2 (AP) 

Phase encoding dir. P >> A P >> A P >> A 

Slice encoding direction F >> H F >> H F >> H 

Duration 4 min 49 sec 5 min 27 sec 5 min 27 sec 

 
ID1000 specifics 

In this section, we describe the subject recruitment, subject characteristics, data collection            
protocol, and functional MRI paradigm of the ID1000 study. 
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Subjects 

The data from the ID1000 sample was collected between 2010 and 2012. The faculty’s ethical               
committee approved this study before data collection started (EC number: 2010-BC-1345). Prior            
to the experiment, subjects were informed about the goal and scope of the research, the MRI                
procedure, safety measures, general experimental procedures, privacy and data sharing          
concerns, and voluntary nature of the project (i.e., subjects were told that they could stop with                
the experiment at any time, without giving a reason for it). 

Before the start of the experiment, subjects signed an informed consent form and were              
screened for MRI safety. We recorded data from 992 subjects of which 928 are included in the                 
dataset (see Technical validation for details on the exclusion procedure). Subjects were            
recruited through a recruitment agency (Motivaction International B.V.) in an effort to get a              
sample that was representative of the general Dutch population in terms of educational level (as               
defined by the Dutch government13), but drawn from only a limited age range (19 to 26; see                 
Table 4 for details). We chose this limited age range to minimize the effect of aging on any                  
brain-related covariates. A more detailed description of educational level and other demographic            
variables can be found in the section “Subject variables”. 

Data collection protocol 

Before coming to the scan center, subjects completed a questionnaire on background            
information (to determine educational level, which was used to draw a representative sample).             
When invited to participate, subjects completed, at the scan center, an extensive set of              
questionnaires and tests, including a general demographics questionnaire, the Intelligence          
Structure Test14, the “trait” part of the State-Trait Anxiety Inventory (STAI)15, a behavioral             
avoidance/inhibition questionnaire (BIS/BAS)16, multiple personality questionnaires — amongst        
them the MPQ17 and the NEO-FFI18,19 and several behavioral tasks. The psychometric variables             
of the tests included in the current dataset are described in the section “Psychometric              
variables”. 

Testing took place from 9 AM until 4 PM and on each day two subjects were tested. One subject                   
began with the IST intelligence test, while the other subject started with the imaging part of the                 
experiment. For the MRI part, we recorded three T1-weighted scans, three diffusion-weighted            
scans, and one functional (BOLD) MRI scan (in that order). Afterwards, the subjects switched              
and completed the other part. After these initial tasks, the subjects participated in additional              
experimental tasks, some of which have been reported in other publications20,21 and are not              
included in this dataset.  

Functional MRI paradigm 

During functional MRI acquisition, subjects viewed a movie clip consisting of a (continuous)             
compilation of 22 natural scenes taken from the movie Koyaanisqatsi 22 with music composed by              
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Philip Glass. The scenes varied in length from approximately 5 to 40 seconds with “cross               
dissolve” transitions between scenes. The movie clip extended 16 degrees visual angle            
(resolution 720x576, movie frame rate of 25 Hz). The scenes were selected because they              
sample a set of visual parameters (textures and objects with different sizes and different rates of                
movements) broadly. The onset of the movie clip was triggered by the first volume of the fMRI                 
acquisition and had a duration of 11 minutes (which is slightly longer than the fMRI scan, i.e., 10                  
minutes and 38 seconds). The movie clip is available in the “stimuli ” subdirectory of the ID1000                
dataset (with the filename task-moviewatching_desc-koyaanisqatsi_movie.mp4). 

PIOP1 and PIOP2 specifics 
In this section, we describe the subject recruitment, subject characteristics, data collection            
protocol, and functional MRI paradigm of the PIOP1 and PIOP2 studies. These two studies are               
described in a common section because their data collection protocols were very similar. 

Subjects 

Data from the PIOP1 dataset were collected between May 2015 and April 2016 and data from                
the PIOP2 dataset between March 2017 and July 2017. The faculty’s ethical committee             
approved these studies before data collection started (PIOP1 EC number: 2015-EXT-4366,           
PIOP2 EC number: 2017-EXT-7568). Data was recorded from 248 subjects (PIOP1) and 242             
subjects (PIOP2), of which 216 (PIOP1) and 226 (PIOP2) are included in AOMIC (see Technical               
validation for details on the exclusion procedure). Subjects were all university students (from the              
Amsterdam University of Applied Sciences or the University of Amsterdam) recruited through            
the University websites, posters placed around the university grounds, and Facebook. A            
description of demographic and other subject-specific variables can be found in the section             
subject variables. 

Data collection protocol 

Prior to the research, subjects were informed about the goal of the study, the MRI procedure                
and safety, general experimental procedure, privacy and data sharing issues, and the voluntary             
nature of participation through an information letter. Each testing day (which took place from              
8.30 AM until 1 PM), four subjects were tested. First, all subjects filled in an informed consent                 
form and completed an MRI screening checklist. Then, two subjects started with the MRI part of                
the experiment, while the other two completed the demographic and psychometric           
questionnaires (described below) as well as several tasks that are not included in AOMIC. 

The MRI session included a survey scan, followed by a T1-weighted anatomical scan. Then,              
several functional MRI runs (described below) and a single diffusion-weighted scan were            
recorded. Details about the scan parameters can be found in Table 2. 
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Functional MRI paradigms 

In this section, we will describe the experimental paradigms used during fMRI acquisition. See 
Figure 2 for a visual representation of each paradigm. 
 
Emotion matching (PIOP1+2) . The goal of the “emotion matching” task is to measure             
processes related to (facial) emotion processing. The paradigm we used was based on a study               
by Hariri and colleagues (2000)23. In each trial, subjects were presented with either color images               
of an emotional target face (top) and two emotional probe faces (bottom left and bottom right;                
“emotion” condition) or a target oval (top) and two probe ovals (bottom left and bottom right;                
“control” condition) on top of a gray background (RGB: 248, 248, 248) and were instructed to                
either match the emotional expression of the target face (“emotion” condition) or the orientation              
or the target oval (“control” condition) as quickly as possible by pushing a button with the index                 
finger of their left or right hand. The target and probes disappeared when the subject responded                
(or after 4.8 seconds). A new trial always appeared 5 seconds after the onset of each trial. In                  
between the subject’s response and the new trial, a blank screen was shown. Trials were               
presented in alternating “control” and “emotion” blocks consisting of six stimuli of 5 seconds              
each (four blocks each, i.e., 48 stimuli in total). Stimuli always belonged to the same block, but                 
the order of stimuli within blocks was randomized across participants.  

The faces always displayed either stereotypical anger or fear. Within trials, always exactly two              
faces portrayed the same expression. Both male and female faces and white, black, and Asian               
faces were used, but within a single trial, faces were always of the same sex and ethnicity                 
category (white or Asian/black). Face pictures were derived from the NimStim Face Stimulus             
set24. The oval stimuli were created by pixelating the face stimuli and were approximately the               
same area as the face stimuli (making them color and size matched to the face stimuli) and                 
were either presented horizontally (i.e., the long side was horizontally aligned) or vertically (i.e.,              
the long side was vertically aligned). Within trials, always exactly two ovals were aligned in the                
same way. 

The fMRI “event files” (with the identifier _events) associated with this task contain information              
of the trial onset (the moment the faces/ovals appeared on screen, in seconds), duration (how               
long the faces/ovals were presented, in seconds), trial type (either “control” or “emotion”),             
response time (how long it took the subject to respond, logged “n/a” in case of no response),                 
response hand (either “left”, “right”, or “n/a” in case of no response), response accuracy (either               
“correct”, “incorrect”, or “miss”), orientation to match (either “horizontal”, “vertical”, or “n/a” in             
case of emotion trials), emotion match (either “fear”, “anger”, or “n/a” in case of control trials),                
gender of the faces (either “male”, “female”, of “n/a” in case of control trials), and ethnicity of the                  
target and probe faces (either “caucasian”, “asian”, “black”, or “n/a” in case of control trials). 

Working memory task (PIOP1+2). The goal of the working memory task was to measure              
processes related to visual working memory. The paradigm we used was based on Pessoa and               
colleagues (2002)25. Trials belong to one of three conditions: “active (change)”, “active (no             
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change)”, or “passive”. Each trial consists of six phases: an alert phase (1 second), an encoding                
phase (1 second), a retention phase (2 seconds), a test phase (1 second), a response phase (1                 
second), and an inter-stimulus interval (0-4 seconds). Subjects were instructed to keep focusing             
on the fixation sign, which was shown throughout the entire trial, and completed a set of practice                 
trials before the start of the actual task. 

In all trial types, trials started with an alert phase: a change of color of the fixation sign (a white                    
plus sign changing to green, RGB [0, 255, 0]), lasting for 1 second. In the encoding phase, for                  
“active” trials, an array of six white bars with a size of 2 degrees visual angle with a random                   
orientation (either 0, 45, 90, or 135 degrees) arranged in a circle was presented for 1 second.                 
This phase of the trial coincided with a change in background luminance from black (RGB: [0, 0,                 
0]) to gray (RGB: [120, 120, 120]). For “passive” trials, only the background luminance changed               
(but no bars appeared) in the encoding phase. In the subsequent retention phase, for all trial                
types, a fixation cross was shown and the background changed back to black, lasting 2               
seconds. In the test phase, one single randomly chosen bar appeared (at one of the six                
locations from the encoding phase) which either matched the original orientation (for “active (no              
change)” trials) or did not match the original orientation (for “active (change)” trials), lasting for 1                
second on a gray background. For “passive” trials, the background luminance changed and,             
instead of a bar, the cue “respond left” or “respond right” was shown in the test phase. In the                   
response phase, lasting 1 second, the background changed back to black and, for “active” trials,               
subjects had to respond whether the array changed (button press with right index finger) or did                
not change (button press with left index finger). For “passive” trials, subjects had to respond with                
the hand that was cued in the test phase. In the inter-stimulus interval (which varied from 0 to 4                   
seconds), only a black background with a fixation sign was shown.  

In total, there were 8 “passive” trials, 16 “active (change)” and “active (no change)” trials, in                
addition to 20 “null” trials of 6 seconds (which are equivalent to an additional inter-stimulus               
interval of 6 seconds). The sequence trials was, in terms of conditions (active, passive, null)               
exactly the same for all participations in both PIOP1 and PIOP2 and was optimized for               
BOLD-response shape estimation efficiency, but which bar or cue was shown in the test phase               
was chosen randomly. 

The fMRI event files associated with this task contain information of the trial onset (the moment                
when the alert phase started, in seconds), duration (from the alert phase up to and including the                 
response phase, i.e., always 6 seconds), trial type (either “active (change)”, “active (no             
change)”, or “passive”; “null” trials were not logged), response time (how long it took the subject                
to respond, “n/a” in case of no response), response hand (either “left”, “right”, or “n/a” in case of                  
no response), and response accuracy (either “correct”, “incorrect”, or “miss”). Note that, in order              
to model the response to one or more phases of the trial, the onsets and durations should be                  
adjusted accordingly (e.g., to model the response to the retention phase, add 2 seconds to all                
onsets and change the duration to 2 seconds). 

Resting state (PIOP1+2). During the resting state scans, participants were instructed to keep             
their gaze fixated on a fixation cross in the middle of the screen with a gray background (RGB:                  

10 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155317doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155317
http://creativecommons.org/licenses/by/4.0/


 
 

[150, 150, 150]) and to let their thoughts run freely. Eyetracking data was recorded during this                
scan but is not included in this dataset. The resting state scans lasted 6 minutes (PIOP1) and 8                  
minutes (PIOP2). 

Face perception (PIOP1). The face perception task was included to measure processes related             
to (emotional) facial expression perception. In each trial, subjects passively viewed dynamic            
facial expressions (i.e., short video clips) taken from the Amsterdam Facial Expression Set             
(ADFES)26, which displayed either anger, contempt, joy, or pride, or no expression (“neutral”).             
Each clip depicted a facial movement from rest to a full expression corresponding to one of the                 
four emotions, except for “neutral” faces, which depicted no facial movement. All clips lasted 2               
seconds and contained either North-European or Mediterranean models, all of whom were            
female. After each video, a fixed inter-stimulus interval of 5 seconds followed. Each emotional              
facial expression (including “neutral”) was shown 6 times (with different people showing the             
expression each time), except for one, which was shown 9 times. Which emotional expression              
(or “neutral”) was shown an extra three times was determined randomly for each subject.              
Importantly, the three extra presentations always contained the same actor and were always             
presented as the first three trials. This was done in order to make it possible to evaluate the                  
possible effects of stimulus repetition. 

The fMRI event files associated with this task contain information of the trial onset (the moment                
when the clip appeared on screen, in seconds), duration (of the clip, i.e., always 2 seconds),                
trial type (either “anger”, “joy”, “contempt”, “pride”, or “neutral”), sex of the model (all “female”),               
ethnicity of the model (either “North-European” or “Mediterranean”), and the ADFES ID of the              
model. 

Gender-stroop task (PIOP1 only). The goal of the gender-stroop task was to measure             
processes related to cognitive conflict and control 27 (see also ref28 for an investigation of these               
processes using the PIOP1 gender-stroop data). We used the face-gender variant of the Stroop              
task (which was adapted from ref29), often referred to as the “gender-stroop” task. In this task,                
pictures of twelve different male and twelve different female faces are paired with the              
corresponding (i.e., congruent) or opposite (i.e., incongruent) label. For the labels, we used the              
Dutch words for “man”, “sir”, “woman”, and “lady” using either lower or upper case letters. The                
labels were located just above the head of the face.  

On each trial, subjects were shown a face-label composite on top of a gray background (RGB:                
[105, 105, 105]) for 0.5 seconds, which was either “congruent” (same face and label gender) or                
“incongruent” (different face and label gender). Stimulus presentation was followed by an            
inter-stimulus interval ranging between 4 and 6 seconds (in steps of 0.5 seconds). Subjects              
were always instructed to respond to the gender of the pictured face, ignoring the distractor               
word, as fast as possible using their left index finger (for male faces) or right index finger (for                  
female faces). There were 48 stimuli for each condition (“congruent” and “incongruent”). 

The fMRI event files associated with this task contain information of the trial onset (the moment                
when the face-label composite appeared on screen, in seconds), duration (of the face-label             

11 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155317doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155317
http://creativecommons.org/licenses/by/4.0/


 
 

composite, i.e., always 0.5 seconds), trial type (either “incongruent” or “congruent”), gender of             
the face (either “male or “female”), gender of the word (either “male” or “female”), response time                
(in seconds), response hand (either “left”, “right”, or “n/a” in case of no response), response               
accuracy (either “correct”, “incorrect”, or “miss”). 

We note that, due to an absence of any “baseline” (or “null”) trials, the condition-regressors               
(related to congruent and incongruent trials) are strongly negatively correlated (between -0.8            
and -0.95), which lead to inefficient first-level GLM estimation and consequently underpowered            
(i.e., high-variance) parameter estimates. Other factors, such as response accuracy, however,           
are much less correlated and are efficiently estimated (see, e.g., Figure 6 for the result of a                 
group-level whole-brain analysis of the “incorrect > correct” contrast). 

Emotion anticipation task (PIOP1 only). We included the emotion anticipation task to            
measure processes related to (emotional) anticipation and curiosity. The paradigm was based            
on paradigms previously used to investigate (morbid) curiosity30,31. In this task, subjects viewed             
a series of trials containing a cue and an image. The cue could either signal an 80% chance of                   
being followed by a negatively valenced image (and a 20% chance of a neutral image) or an                 
80% chance of being followed by a neutral image (and a 20% change of a negatively valenced                 
image). The cue was shown on top of a black background for 2 seconds, followed by a fixed                  
interval of 3 seconds. After this interval, either a negative or neutral image was shown for 3                 
seconds, with a frequency that corresponds to the previously shown cue. In other words, for all                
trials with, for example, a cue signalling an 80% chance of being followed by a neutral image, it                  
was in fact followed by a neutral image in 80% of the times. After the image, a fixed                  
inter-stimulus interval of five seconds followed. In total, 15 unique negative images and 15              
unique neutral images were shown, of which 80% (i.e., 12 trials) was preceded by a “valid” cue.                 
Which stimuli were paired with valid or invalid cues was determined randomly for each subject.               
The order of the trials, given the four possible combinations (valid cue + negative image, invalid                
cue + negative image, valid cue + neutral image, invalid cue + neutral image), was drawn                
randomly from one of four possible sequences, which were generated using OptSeq            
(https://surfer.nmr.mgh.harvard.edu/optseq/) to optimize the chance of finding a significant         
interaction between cue type and image valence. 

The cue was implemented as a pie chart with the probability of a neutral image in blue and the                   
probability of the negative image in red with the corresponding labels and probabilities (e.g.,              
“negative 20%”) superimposed for clarity. The images were selected from the IAPS database 32             
and contained images of mutilation, violence, and death (negative condition) and of people in              
neutral situations (neutral condition).  

The fMRI event files associated with this task contain information on the trial onset (the moment                
when either the cue or image appeared on the screen, in seconds), duration (of either the cue or                  
image), and trial type. Trial type was logged separately for the cues (“negative”, indicating 80%               
probability of a negative image, and “neutral”, indicating 80% probability of a neutral image) and               
images (“negative” or “neutral”). 

12 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155317doi: bioRxiv preprint 

https://surfer.nmr.mgh.harvard.edu/optseq/
https://doi.org/10.1101/2020.06.16.155317
http://creativecommons.org/licenses/by/4.0/


 
 

Stop-signal task (PIOP2 only). The stop-signal task was included to measure processes            
related to response inhibition. This specific implementation of the stop-signal paradigm was            
based on Jahfari et al. (2015)33. Subjects were presented with trials (N = 100) in which an image                  
of either a female or male face (chosen from 9 exemplars) was shown for 500 ms on a black                   
background. Subjects had to respond whether the face was female (right index finger) or male               
(left index finger) as quickly and accurately as possible, except when an auditory stop signal (a                
tone at 450 Hz for 0.5 seconds) was presented (on average 33% of the trials). The delay in                  
presentation of the stop signal (i.e., the “stop signal delay”) was at start of the experiment 250                 
milliseconds, but was shortened with 50 ms if stop performance, up to that point, was better                
than 50% accuracy and shortened with 50 ms if it was worse. Each trial had a duration of 4000                   
ms and was preceded by a jitter interval (0, 500, 1000 or 1500 ms). If subjects responded too                  
slow, or failed to respond an additional feedback trial of 2000 ms was presented. Note that due                 
to this additional feedback trial and the fact that subjects differed in how many feedback trials                
they received, the fMRI runs associated with this task differ in length across subjects (i.e., the                
scan was manually stopped after 100 trials). Additionally 10% (on average) null trials with a               
duration of 4000 ms were presented randomly.  

The fMRI event files associated with this task contain information on the trial onset (the moment                
when a face was presented, in seconds), duration (always 0.5083 seconds), trial type (go,              
succesful_stop, unsuccesful_stop), if and when a stop signal was given (in seconds after             
stimulus onset), if and when a response time was given (in seconds after stimulus onset),               
response of the subject (left, right), and the sex of the image (male, female). 
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Figure 2 . A visual representation of all experimental paradigms during task-based fMRI. ISI:             
inter-stimulus interval.  

Subject variables (all datasets) 
In AOMIC, several demographic and other subject-specific variables are included per dataset.            
Below, we describe all variables in turn (note that some variables are not included in all                
datasets, see Table 5). 
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Age 

We asked subjects for their date of birth at the time they participated. From this, we computed                 
their age rounded to the nearest quartile (for privacy reasons). See Table 3 for descriptive               
statistics of this variable. See Table 3 for descriptive statistics of this variable. 

Biological sex and gender identity 

In all three studies, we asked subjects for their biological sex (of which the options were either                 
male or female). For the ID1000 dataset, after the first 400 subjects, we additionally asked to                
what degree subjects felt male and to what degree they felt female (i.e., gender identity;               
separate questions, 7 point likert scale, 1 = not at all, 7 = strong). The exact question in Dutch                   
was: ‘ik voel mij een man’, ‘ik voel mij een vrouw’. This resulted in 0.3% of subjects scoring                  
opposite on gender identity compared to their biological sex and 92% of females and 90% of                
males scoring conformable with their sex.  

Table 3 . Descriptive statistics for biological sex, age, and education level for all three datasets. 

 % by biological sex Mean age (sd) % per education level / category 

ID1000 M: 47%, F: 52%  22.86 (1.70) Low: 10%, Medium: 43%, High: 43% 

PIOP1 M: 41.2%, F: 55.6% 22.20 (1.80) Applied: 56.5%, Academic: 43.5% 

PIOP2 M: 42.5%, F: 57.0% 21.96 (1.79) Applied: 53%, Academic: 46% 

Sexual orientation 

For the ID1000 dataset, after the first 400 subjects, we additionally asked to what degree               
subjects were attracted to men and women (both on a 7 point likert scale, 1 = not at all, 7 =                     
strong). The exact question in Dutch was: ‘ik val op mannen’ and ‘ik val op vrouwen’. 

Of the 278 subjects with a male sex 7,6% indicated to be attracted to men (score of 4 or higher),                    
of the 276 subjects with a female sex 7,2% indicated to be attracted to women (score of 4 or                   
higher). Of the 554 subjects who completed these questions 0.4% (n=2) indicated not be              
attracted to either men or women and 0.9% indicated to be strongly attracted to both men and                 
women.  

BMI 

Subjects were asked for (PIOP1 and PIOP2) or we measured (ID1000) subjects’ height and              
weight on the day of testing, from which we calculated their body-mass-index (BMI), which we               
rounded to the nearest integer. Note that height and weight are not included in AOMIC (for                
privacy reasons), but BMI is.  
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Handedness 

Subjects were asked for their dominant hand (options were “left”, “right”). For PIOP1 and PIOP2               
we also included the option “both”. 

Educational level / category 

Information about subjects’ educational background is recorded differently for ID1000 and the            
PIOP datasets, so they are discussed separately. Importantly, while we included data on             
educational level for the ID1000 dataset, we only include data on educational category for the               
PIOP datasets because they contain little variance in terms of educational level. 

Educational level (ID1000). As mentioned, for the ID1000 dataset we selected subjects based             
on their educational level in order to achieve a representative sample of the Dutch population               
(on that variable). We did this by asking for their highest completed educational level. In AOMIC,                
however, we report the educational level (three point scale: low, medium, high) on the basis of                
the completed or current level of education (which included the scenario in which the subject               
was still a student), which we believe reflects educational level for our relatively young (19-26               
year old) better. Note that this difference in criterion causes a substantial skew towards a higher                
educational level in our sample relative to the distribution of educational level in the Dutch               
population (see Table 4). 

Educational category (PIOP) . Relative to ID1000, there is much less variance in educational             
level within the PIOP datasets as these datasets only contain data from university students. As               
such, we only report whether subjects were, at the time of testing, studying at the Amsterdam                
University of Applied Sciences (category: “applied”) or at the University of Amsterdam (category:             
“academic”). 

Table 4 . Distribution of educational level in the Dutch population (in 2010) and in our ID1000 sample. The                  
data from the education level of subjects’ parents was used to compute background socio-economic              
status. 

 Educational level Population Subjects Father Mother 

 Low 35% 10% 36% 32% 

 Medium 39% 43% 27% 24% 

 High 26% 47% 37% 44% 

 

Background socio-economic status (SES). In addition to reporting their own educational           
level, subjects also reported the educational level (see Table 4) of their parents and the family                
income in their primary household. Based on this information, we determined subjects’            
background social economical status (SES) by adding the household income — defined on a              
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three point scale (below modal income, 25%: 1, between modal and 2 × modal income, 57%: 2,                 
above 2 × modal income, 18%: 3) — with the average educational level of the parents —                 
defined on a three point scale (low: 1, medium: 2, high: 3). This revealed that, while the                 
educational level of the subjects is somewhat skewed towards “high”, SES is well distributed              
across the entire spectrum (see Table 5). 

Table 5 . Distribution of background SES. 

Background SES % of subjects 

2-3 16% 

3-4 26% 

4-5 28% 

5-6 19% 

>6 11% 

 

Religion (PIOP1 and ID1000 only) 

For both the PIOP1 and ID1000 datasets, we asked subjects whether they considered             
themselves religious, which we include as a variable for these datasets (recoded into the levels               
“yes” and “no”). Of the subjects that participated in the PIOP1 study 18.0% indicated to be                
religious, for the subjects in the ID1000 projects this was 21.2%. For the ID1000 dataset we also                 
asked subjects if they were raised religiously (N = 928, 34.1%) and to what degree religion                
played a daily role in their lives (in Dutch, “Ik ben dagelijks met mijn geloof bezig”, 5 point likert                   
scale, 1 = not at all applicable, 5 = very applicable). 

Psychometric variables (all datasets) 
BIS/BAS (ID1000 only). The BIS/BAS scales are based on the idea that there are two general                
motivational systems underlying behavior and affect: a behavioral activation system (BAS) and            
a behavioral inhibition system (BIS). The scales of the BIS/BAS attempt to measure these              
systems34. The BAS is believed to measure a system that generates positive feedback while the               
BIS is activated by conditioned stimuli associated with punishment.  

The BIS/BAS questionnaire consists of 20 items (4 point scale). The BIS scale consists of 7                
items. The BAS scale consists of 13 items and contains three subscales, related to impulsivity               
(BAS-Fun, 4 items), reward responsiveness (BAS-Reward, 5 items) and the pursuit of rewarding             
goals (BAS-Drive, 4 items).  
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STAI-T (ID1000). We used the STAI35,36 to measure trait anxiety (STAI-T). The questionnaire             
consists of two scales (20 questions each) that aim to measure the degree to which anxiety and                 
fear are a trait and part of the current state of the subject; subjects only completed the trait part                   
of the questionnaire, which we include in the ID1000 dataset. 

NEO-FFI (all datasets). The NEO-FFI18,37 is a Big 5 personality questionnaire that consists of 60               
items (12 per scale). It measures neuroticism (“NEO-N”), extraversion (“NEO-E”), openness to            
experience (“NEO-O”), agreeableness (“NEO-A”), and conscientiousness (“NEO-C”).       
Neuroticism is the opposite of emotional stability, central to this construct is nervousness and              
negative emotionality. Extraversion is the opposite of introversion, central to this construct is             
sociability — the enjoyment of others' company. Openness to experience is defined by having              
original, broad interests, and being open to ideas and values. Agreeableness is the opposite of               
antagonism. Central to this construct are trust, cooperation and dominance. Conscientiousness           
is the opposite of un-directedness. Adjectives associated with this construct are thorough,            
hard-working and energetic.  

IST (ID1000 only). The Intelligence Structure Test (IST)14 is an intelligence test measuring             
crystallized intelligence, fluid intelligence, and memory, through tests using verbal, numerical,           
and figural information. The test consists of 590 items. The three measures (crystallized             
intelligence, fluid intelligence, and memory) are strongly positively correlated (between r = .58             
and r = .68, see Table 9) and the sum score of these values form the variable “total intelligence”. 

Raven’s matrices (PIOP only). As a proxy for intelligence, subjects performed the 36 item              
version (set II) of the Raven’s Advanced Progressive Matrices Test38,39. We included the             
sum-score (with a maximum score of 36) in the PIOP datasets. 

Importantly, all subject variables and psychometric variables are stored in the participants.tsv            
file in each study’s data repository. In Table 6, all variables and associated descriptions are               
listed for convenience. 

Table 6. Description of the subject variables and psychometric variables contained in AOMIC. The              
“variable name” coincides with the column name for that variable in the participants.tsv file. Note that                
missing values in this file are coded with “n/a”. A.U.: arbitrary units. 

Variable name Description Levels / range Units Included 
in 

age Subject age at day of 
measurement 

- Quantiles All 

sex (Biological) sex male, female - All 

gender_identity_F To what degree the 
subject felt female 

1-7 A.U. ID1000 

gender_identity_M To what degree the 1-7 A.U. ID1000 
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subject felt male 

sexual_attraction_M To what degree the 
subject was attracted 
to males 

1-7 A.U. ID1000 

sexual_attraction_F To what degree the 
subject was attracted 
to females 

1-7 A.U. ID1000 

BMI Body-mass-index - kg/m2 All 

handedness Dominant hand left, right  ID1000 

handedness Dominant hand left, right, 
ambidextrous 

- PIOP1&2 

background_SES Social economical 
status of family in 
which the subject was 
raised. 

2-6 A.U. ID1000 

educational_level Highest achieved (or 
current) educational 
level 

low, medium, 
high 

- ID1000 

educational_category Highest achieved (or 
current) education type 

applied, 
academic 

- PIOP1&2 

religious Whether the subject is 
religious or not 

no, yes - PIOP1 

religious_upbringing Whether the subject 
was raised religiously 
or not 

no, yes - ID1000 

religious_now Whether the subject is 
religious now 

no, yes - ID1000 

religious_importance To what degree 
religion plays a role in 
the subject’s daily life 

1-5 A.U. ID1000 

IST_fluid IST fluid intelligence 
subscale 

- A.U. ID1000 

IST_memory IST memory subscale - A.U. ID1000 

IST_crystallised IST crystallised - A.U. ID1000 
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intelligence subscale 

IST_total_intelligence IST total intelligence 
scale 

- A.U. ID1000 

BAS_drive BAS drive scale - A.U. ID1000 

BAS_fun BAS fun scale - A.U. ID1000 

BAS_reward BAS reward scale - A.U. ID1000 

BIS BIS scale - A.U. ID1000 

NEO_N Neuroticism scale 
(sum score) 

- A.U. All 

NEO_E Extraversion scale 
(sum score) 

- A.U. All 

NEO_O Openness scale (sum 
score) 

- A.U. All 

NEO_A Agreeableness scale 
(sum score) 

- A.U. All 

NEO_C Conscientiousness 
scale (sum score) 

- A.U. All 

STAI_T Trait anxiety (from the 
STAI) (sum score) 

- A.U. ID1000 

 
Data standardization, preprocessing, and derivatives 

In this section, we describe the data curation and standardization process as well as the               
preprocessing applied to the standardized data and the resulting “derivatives” (see Figure 3 for              
a schematic overview). This section does not describe this process separately for each dataset,              
because they are largely identically standardized and (pre)processed. Exceptions to this will be             
explicitly mentioned. In this standardization process, we adhered to the guidelines outlined in             
the Brain Imaging Data Structure (BIDS, v1.2.2)12, both for the “raw” data as well as the                
derivatives (whenever BIDS guidelines exist for that data or derivative modality). 
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Figure 3 . Overview of the types of data and “derivatives” included in AOMIC and the software packages                 
used to preprocess and analyze them. 

Raw data standardization 

Before subjecting the data to any preprocessing pipeline, we converted the data to BIDS using               
the in-house developed package bidsify (see Code availability section for more details about the              
software used in the standardization process). The “BIDSification” process includes renaming of            
files according to BIDS convention, conversion from Philips PAR/REC format to compressed            
nifti, removal of facial characteristics from anatomical scans (“defacing”), and extraction of            
relevant metadata into JSON files. 

Anatomical and functional MRI preprocessing 

Results included in this manuscript come from preprocessing performed using Fmriprep version            
1.4.1 (RRID:SCR_016216)40,41, a Nipype based tool (RRID:SCR_002502)42,43. Each T1w         
(T1-weighted) volume was corrected for INU (intensity non-uniformity) using         
N4BiasFieldCorrection v2.1.0 44 and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the         
OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1           
(RRID:SCR_001847)45, and the brain mask estimated previously was refined with a custom            
variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the            
cortical gray-matter of Mindboggle (RRID:SCR_002438)46. Spatial normalization to the ICBM          
152 Nonlinear Asymmetrical template version 2009c (RRID:SCR_008796)47 was performed         
through nonlinear registration with the antsRegistration tool of ANTs v2.1.0          
(RRID:SCR_004757)48, using brain-extracted versions of both T1w volume and template. Brain           
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tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was            
performed on the brain-extracted T1w using fast (FSL v5.0.9, RRID:SCR_002823)49. 

Functional data was motion corrected using mcflirt (FSL v5.0.9)50. "Fieldmap-less" distortion           
correction was performed by co-registering the functional image to the same-subject T1w image             
with intensity inverted 51,52 constrained with an average fieldmap template 53, implemented with           
antsRegistration (ANTs). Note that this fieldmap-less method was used even for PIOP2, which             
contained a phase-difference (B0) fieldmap, because we observed that Fmriprep’s          
fieldmap-based method led to notably less accurate unwarping than its fieldmap-less method. 

Distortion-correction was followed by co-registration to the corresponding T1w using          
boundary-based registration 54 with 6 degrees of freedom, using bbregister (FreeSurfer v6.0.1).           
Motion correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation         
and T1w-to-template (MNI) warp were concatenated and applied in a single step using             
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted by applying CompCor55. Principal components          
were estimated for the two CompCor variants: temporal (tCompCor) and anatomical           
(aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain               
mask, ensuring it only contained subcortical structures. Six tCompCor components were then            
calculated including only the top 5% variable voxels within that subcortical mask. For             
aCompCor, six components were calculated within the intersection of the subcortical mask and             
the union of CSF and WM masks calculated in T1w space, after their projection to the native                 
space of each functional run. Framewise displacement56 was calculated for each functional run             
using the implementation of Nipype. 

Many internal operations of Fmriprep use Nilearn (RRID:SCR_001362)57, principally within the           
BOLD-processing workflow. For more details of the pipeline see 
 https://fmriprep.readthedocs.io/en/latest/workflows.html. 

Diffusion MRI (pre)processing 

DWI scans were preprocessed using a custom pipeline combining tools from MRtrix3 and FSL.              
Because we acquired multiple DWI scans per participant in the ID1000 study (but not in PIOP1                
and PIOP2), we concatenated these files as well as the diffusion gradient table (bvecs) and               
b-value information (bvals) prior to preprocessing. Using MRtrix3, we denoised the           
diffusion-weighted data using dwidenoise58,59, removed Gibbs ringing artifacts using         
mrdegibbs60, and performed eddy current and motion correction using dwipreproc. Notably,           
dwipreproc is a wrapper around the GPU-accelerated (CUDA v9.1) FSL tool eddy61. Within             
eddy, we used a quadratic first-level (--flm=quadratic) and linear second-level model           
(--slm=linear) and outlier replacement62 with default parameters (--repol). Then, we performed           
bias correction using dwibiascorrect (which is based on ANTs; v2.3.1)44, extracted a brain mask              
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using dwi2mask63, and corrected possible issues with the diffusion gradient table using            
dwigradcheck64. 

After preprocessing, using MRtrix3 tools, we fit a diffusion tensor model on the preprocessed              
diffusion-weighted data using weighted linear least squares (with 2 iterations) as implemented in             
dwi2tensor65. From the estimated tensor image, a fractional anisotropy (FA) image was            
computed and a map with the first eigenvectors was extracted using tensor2metric. Finally, a              
population FA template was computed using population_template (using an affine and an            
additional non-linear registration).  

The following files are included in the DWI derivatives: a binary brain mask, the preprocessed               
DWI data as well as preprocessed gradient table (bvec) and b-value (bval) files, outputs from               
the eddy correction procedure (for quality control purposes, see Technical validation section),            
the estimated parameters from the diffusion tensor model, the eigenvectors from the diffusion             
tensor model, and a fractional anisotropy scalar map computed from the eigenvectors. All files              
are named according to BIDS Extension Proposal 16 (BEP016: diffusion weighted imaging            
derivatives). 

Freesurfer morphological statistics 

In addition to the complete Freesurfer directories containing the full surface reconstruction per             
participant, we provide a set of tab-separated values (TSV) files per participant with several              
morphological statistics per brain region for four different anatomical         
parcellations/segmentations. For cortical brain regions, we used two atlases shipped with           
Freesurfer: the Desikan-Killiany (aparc in Freesurfer terms)66 and Destrieux (aparc.a2009 in           
Freesurfer terms)67 atlases. For these parcellations, the included morphological statistics are           
volume in mm3, area in mm2, thickness in mm, and integrated rectified mean curvature in mm-1.                
For subcortical and white matter brain regions, we used the results from the subcortical              
segmentation (aseg in Freesurfer terms) and white matter segmentation (wmparc in Freesurfer            
terms) done by Freesurfer. For these parcellations, the included morphological statistics are            
volume in mm3 and average signal intensity (arbitrary units). The statistics were extracted from              
the Freesurfer output directories using the Freesufer functions asegstats2table and          
aparcstats2table and further formatted using custom Python code. The TSV files (and            
accompanying JSON metadata files) are formatted according to BIDS Extension Proposal 11            
(BEP011: structural preprocessing derivatives). 

Voxel-based morphology (VBM) 

In addition to the Fmriprep-preprocessed anatomical T1-weighted scans, we also provide           
voxelwise gray matter volume maps estimated using voxel-based morphometry (VBM). We           
used a modified version of the FSL VBM pipeline (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM)68,          
an optimised VBM protocol 69 carried out with FSL tools70. We skipped the initial brain-extraction              
stage (fslvbm_1_bet) and segmentation stage (first part of fslvbm_3_proc) and instead used the             
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probabilistic gray matter segmentation file (in native space) from Fmriprep (i.e.,           
*label-GM_probseg.nii.gz files) directly. These files were registered to the MNI152 standard           
space using non-linear registration 71. The resulting images were averaged and flipped along the             
x-axis to create a left-right symmetric, study-specific grey matter template. Second, all native             
grey matter images were non-linearly registered to this study-specific template and "modulated"            
to correct for local expansion (or contraction) due to the non-linear component of the spatial               
transformation. 

Physiological noise processing 

Physiology files were converted to BIDS-compatible compressed TSV files using the           
scanphyslog2bids package (see Code availability). Each TSV file contains three columns: the            
first contains the cardiac trace, the second contains the respiratory trace, and the third contains               
the volume onset triggers (binary, where 1 represents a volume onset). Each TSV file is               
accompanied by a JSON metadata file with the same name, which contains information about              
the start time of the physiology recording relative to the onset of the first volume. Because the                 
physiology recording always starts before the fMRI scan starts, the start time is always negative               
(e.g., a start time of -42.01 means that the physiology recording started 42.01 seconds before               
the onset of the first volume). After conversion to BIDS, the estimated volume triggers and               
physiology traces were plotted, visually inspected for quality, and excluded if either of the              
physiology traces had missing data for more than ten seconds or if the volume triggers could not                 
be estimated. 

The physiology data was subsequently used to estimate fMRI-appropriate nuisance regressors           
using the TAPAS PhysIO package (see Code availability)72. Using this package, we specifically             
estimated 18 “RETROICOR” regressors73 based on a Fourier expansion of cardiac (order: 2)             
and respiratory (order: 3) phase and their first-order multiplicative terms (as defined in ref74). In               
addition, we estimated a heart-rate variability (HRV) regressor by convolving the cardiac trace             
with a cardiac response function 75 and a respiratory volume by time (RVT) regressor by              
convolving the respiratory trace with a respiration response function 76. 

Code availability 
All code used for curating, annotating, and (pre)processing AOMIC are version-controlled using            
git and can be found in project-specific Github repositories within the NILAB-UvA Github             
organization: https://github.com/orgs/NILAB-UvA. Many pre and postprocessing steps were        
identical across datasets, so the code for these procedures is stored in a single repository:               
https://github.com/NILAB-UvA/AOMIC-common-scripts. Possible parameters are all hard-coded      
within the scripts, except for a single positional parameter pointing to the directory to be               
processed. All code was developed on a Linux system running Ubuntu 16.04. For custom              
Python-based scripts, we used Python version 3.7. 
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For curation, preprocessing, and analysis of the datasets, we used a combination of existing              
packages and custom scripts (written in Python or bash). To convert the data to the Brain                
Imaging Data Structure (BIDS)12, we used the in-house developed, publicly available software            
package bidsify (v0.3; https://github.com/NILAB-UvA/bidsify), which in turn uses the dcm2niix          
(v1.0.20181125)77 to convert the Philips PAR/REC files to compressed nifti files. In contrast to              
the data from PIOP1 and PIOP2 (which were converted to nifti using dcm2niix), r2aGUI (v2.7.0;               
http://r2agui.sourceforge.net/) was used to convert the data from ID1000. Because r2aGUI does            
not correct the gradient table of DWI scans for slice angulation, we used the              
angulation_correction_Achieva Matlab script (version December 29, 2007) from Jonathan         
Farrell to do so (available for posterity at        
https://github.com/NILAB-UvA/ID1000/blob/master/code/bidsify/DTI_gradient_table_ID1000.m). 
To remove facial characteristics from anatomical scans, we used the pydeface package            
(v.1.1.0)78. Finally, to convert the raw physiology files (i.e., Philips “SCANPHYSLOG” files) to             
BIDS, we used the in-house developed, publicly available Python package scanphyslog2bids           
(v0.1; https://github.com/lukassnoek/scanphyslog2bids). 

Anatomical and functional MRI preprocessing were done using Fmriprep (v1.4.1; see the            
Derivatives section for extensive information about Fmriprep’s preprocessing pipeline)40. For our           
DWI preprocessing pipeline, we used tools from the MRtrix3 package (www.mrtrix.org ;           
v3.0_RC3)79 and FSL (v6.0.1)61,70. For the VBM and dual regression pipelines, we used FSL              
(v6.0.1)80. To create the files with Freesurfer-based metrics across all participants, we used             
Freesurfer version 6.0.0 81. Physiological nuisance regressors (RETROICOR and HRV/RVT         
regressors) were estimated using the TAPAS PhysIO Matlab package (v3.2.0)72. 

First-level functional MRI analyses for technical validation were implemented using the Python            
package nistats (v0.0.1b2)57 and nilearn (v0.6.2)82. For the inter-subject correlation analysis the            
Brain Imaging Analysis Kit was used (BrainIAK, http://brainiak.org , v0.10; RRID:SCR_014824)83.          
Plotting brain images was done using FSLeyes (v0.32)84 and plotting statistical plots was done              
using the Python packages seaborn85 and Matplotlib 86.  

Data Records 

Data formats and types 
In AOMIC, the majority of the data is stored in one of four formats. First, all volumetric (i.e., 3D                   
or 4D) MRI data is stored in compressed “NIfTI” files (NIfTI-1 version; extension: .nii.gz). NIfTI               
files contain both the data and metadata (stored in the header) and can be loaded into all major                  
neuroimaging analysis packages and programming languages (e.g., using the nibabel package #          
for Python, using the oro.nifti package in R# , and natively in Matlab version R2017b and                1 2

higher). Second, surface (i.e., vertex-wise) MRI data is stored in “Gifti” files            

1 https://nipy.org/nibabel/ 
2 https://cran.r-project.org/web/packages/oro.nifti  
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(https://www.nitrc.org/projects/gifti/; extension: .gii). Like NIfTI files, Gifti files contain both data           
and metadata and can be loaded in several major neuroimaging software packages (including             
Freesurfer, FSL, AFNI, SPM, and Brain Voyager) and programming languages (e.g., using the             
nibabel package for Python and the gifti package #  for R).  3

Third, data organized as tables (i.e., observations in rows and properties in columns), such as               
physiological data and task-fMRI event log files, are stored in tab-separated values (TSV) files,              
which contain column names as the first row. TSV files can be opened using spreadsheet               
software (such as Microsoft Excel or Libreoffice Calc) and read using most major programming              
languages. Fourth, (additional) metadata is stored as key-value pairs in plain-text JSON files. A              
small minority of data in AOMIC is stored using different file formats (such as hdf5 for composite                 
transforms of MRI data and some Freesurfer files), but these are unlikely to be relevant for most                 
users. 

Apart from data formats, we can distinguish different data types within AOMIC. Following BIDS              
convention, data types are distinguished based on an “identifier” at the end of the file name                
(before the extension). For example, T1-weighted files (e.g., sub-0001_T1w.nii.gz) are          
distinguished by the _T1w identifier and event log files for task-based functional MRI data (e.g.,               
sub-001_task-workingmemory_acq-seq_events.tsv) are distinguished by the _events identifier.       
All data types and associated identifiers within AOMIC are listed in Table 7. 

Table 7. All data types with associated identifiers, descriptions, and modalities. 

Raw data 

Identifier (ext.) Description Modality 

_T1w (nii.gz) T1-weighted scan Anatomical MRI 

_bold (nii.gz) Functional (BOLD) MRI scan Functional MRI 

_magnitude1 (nii.gz) Average magnitude image (across two echoes) of B0 
fieldmap scan (PIOP2 only) 

Fieldmap 

_phasediff (nii.gz) Difference between two phase images of B0 fieldmap scan Fieldmap 

_dwi (.nii.gz) Diffusion-weighted scan DWI 

_dwi (.bvec) Diffusion gradient table (plain-text file) DWI 

_dwi (.bval) Diffusion b-value sequence (plain-text file) DWI 

_physio (tsv.gz) Physiology (cardiac/respiratory traces + volume onsets) Physiology 

_events (tsv) Onsets, durations, and other relevant properties of events 
during task fMRI 

Behavior 

3 https://cran.r-project.org/web/packages/gifti 
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* (.json) Metadata associated with a specific file, acquisition type, or 
file type 

All modalities 

   

Derivatives 

Fmriprep derivatives 

Identifier (ext.) Description Modality 

_T1w (nii.gz) Preprocessed T1-weighted scan Functional MRI 

_mask (nii.gz) Binary brain mask (0: not brain, 1: brain) Functional/ 
anatomical/ 
diffusion MRI 

_dseg (nii.gz) Discrete segmentation (0: background, 1: gray matter, 2: 
white matter, 3: cerebrospinal fluid) 

Anatomical MRI 

_probseg (nii.gz) Probabilistic segmentation (1 st volume: gray matter, 2 nd 
volume: white matter 

 

.surf (.gii) Reconstructed surfaces (e.g., inflated, midthickness, pial, 
and smoothwm)  

Anatomical MRI 

_xfm (.h5) Linear + non-linear transformation parameters between two 
spaces (orig, T1w, MNI152NLin2009cAsym, and 
fsaverage5) 

Functional/ 
anatomical MRI 

_xfm (.txt) Linear transformation parameters between two spaces (orig, 
T1w, MNI152NLin2009cAsym, and fsaverage5) 

Functional/ 
anatomical MRI 

_bold (nii.gz) Preprocessed BOLD-MRI scan Functional MRI 

_boldref (nii.gz) Reference volume used for computing transformation 
parameters 

Functional MRI 

_regressors (tsv) Table with confound regressors for BOLD-MRI data Functional MRI 

* (.json) Metadata from file with the same name (excluding 
extension) 

All modalities 

   

DWI derivatives 

_dwi (.nii.gz) Preprocessed diffusion-weighted scan DWI 

_dwi (.bvec) Preprocessed gradient table DWI 

_dwi (.bval) Preprocessed b-value sequence DWI 

_mask (.nii.gz) Binary brain mask (0: not brain, 1: brain) DWI 
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_diffmodel Estimated parameters from the diffusion tensor model DWI 

_EVECS Eigenvectors from the diffusion tensor model DWI 

_FA Fractional anisotropy map DWI 

   

VBM derivatives 

GMvolume Estimated voxelwise gray matter volume map  Anatomical MRI 

   

Freesurfer morphological statistics derivatives 

_stats Morphological statistics per anatomical region from a 
particular atlas 

Anatomical MRI 

   

Physiology derivatives 

_regressors Physiology-derived RETROICOR, HRV, and RVT 
regressors for BOLD-MRI data 

Physiology 

Data repositories used 
Data from AOMIC can be subdivided into two broad categories. The first category encompasses              
all subject-level data, both raw data and derivatives. The second category encompasses            
group-level aggregates of data, such as an average (across subjects) TSNR map or group-level              
task fMRI activation maps. Data from these two categories are stored in separate, dedicated              
repositories: subject-level data is stored on OpenNeuro (https://openneuro.org )87 and the          
subject-aggregated data is stored on Neurovault (https://neurovault.org )88. 

Note that currently only the raw data are available on Openneuro; due to technical difficulties               
related to the size of the derivatives, we have not been able to upload this yet. We are currently                   
in the process of doing so!  

Data from each dataset — PIOP1, PIOP2, and ID1000 — are stored in separate repositories on                
OpenNeuro and Neurovault. URLs to these repositories for all datasets can be found in Table 8.                
Apart from the option to download data using a web browser, we provide several programmatic               
alternatives (see Usage Notes). 

Table 8 . Data repositories for subject data (Openneuro) and group-level data (Neurovault). 

 ID1000 PIOP1 PIOP2 

Openneuro https://openneuro.org/datasets/ https://openneuro.org/datasets/ https://openneuro.org/datasets/
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URL  ds002895 ds002785  ds002790  

Neurovault 
URL 

https://neurovault.org/collection
s/7105/ 

https://neurovault.org/collection
s/7103/ 

https://neurovault.org/collection
s/7104/ 

Data anonymization 
In curating this collection, we took several steps in ensuring the anonymity of participants. All               
measures were discussed with the data protection officer of the University of Amsterdam and              
the data steward of the department of psychology, who deemed the anonymized data to be in                
accordance with the European General Data Protection Regulation (GDPR). 

First, all personally identifiable information (such as subjects’ name, date of birth, and contact              
information) in all datasets were irreversibly destroyed. Second, using the pydeface software            
package, we removed facial characteristics (mouth and nose) from all anatomical scans, i.e., the              
T1-weighted anatomical scans and (in PIOP2) magnitude and phase-difference images from the            
B0 fieldmap. The resulting defaced images were checked visually to confirm that the defacing              
succeeded. Third, the data files were checked for timestamps and removed when present.             
Lastly, we randomized the subject identifiers (sub-xxxx) for all files. In case participants might              
have remembered their subject number, they will not be able to look up their own data within our                  
collection. 

Technical Validation 
In this section, we describe the measures taken for quality control of the data. This is described                 
per data type (e.g., anatomical T1-weighted images, DWI images, physiology, etc.), rather than             
per dataset, as the procedure for quality control per data type was largely identical across the                
datasets. Importantly, we take a conservative approach towards exclusion of data, i.e., we             
generally did not exclude data unless (1) it was corrupted by scanner-related incorrigible             
artifacts, such as reconstruction errors, (2) when preprocessing fails due to insufficient data             
quality (e.g., in case of strong spatial inhomogeneity of structural T1-weighted scans, preventing             
accurate segmentation), (3) an absence of a usable T1-weighted scan (which is necessary for              
most preprocessing pipelines), or (4) incidental findings. This way, the data from AOMIC can              
also be used to evaluate artifact-correction methods and other preprocessing techniques aimed            
to post-hoc improve data quality and, importantly, this places the responsibility for inclusion and              
exclusion of data in the hands of the users of the datasets.  

Researchers not interested in using AOMIC data for artifact-correction or preprocessing           
techniques may still want to exclude data that do not meet their quality standards. As such, we                 
include, for each modality (T1-weighted, BOLD, and DWI) separately, a file with several quality              
control metrics across subjects. The quality control metrics for the T1-weighted and functional             
(BOLD) MRI scans were computed by the Mriqc package and are stored in the group_T1w.tsv               
and group_T1w.tsv files in the mriqc derivative folder. The quality control metrics for the DWI               
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scans were derived from the output of FSL’s eddy algorithm and are stored in the group_dwi.tsv                
file in the dwipreproc derivative folder. Using these precomputed quality control metrics,            
researchers can decide which data to include based on their own quality criteria. 

T1-weighted scans 

All T1-weighted scans were run through the Mriqc pipeline, which outputs several quality control              
metrics as well as a report with visualizations of different aspects of the data. All individual                
subject reports were visually checked for artifacts including reconstruction errors, failure of            
defacing, normalization issues, and segmentation issues (and the corresponding data excluded           
when appropriate). In Figure 4, we visualize several quality control metrics related to the              
T1-weighted scans across all three datasets. In general, data quality appears to increase over              
time (with ID1000 being the oldest dataset, followed by PIOP1 and PIOP2), presumably due to               
improvements in hardware (see Scanner details and general scanning protocol). All quality            
control metrics related to the T1-weighted scans, including those visualized in Figure 4, are              
stored in the group_T1w.tsv file in the mriqc derivatives folder. 

 

Figure 4 . Quality control metrics related to the T1-weighted scans. CNR: contrast-to-noise ratio 89 ; CJV:              
coefficient of joint variation 90 , an index reflecting head motion and spatial inhomogeneity; EFC:             
entropy-focused criterion 91 , an index reflecting head motion and ghosting; INU: intensity non-uniformity,            
an index of spatial inhomogeneity; WM2MAX: ratio of median white-matter intensity to the 95% percentile               
of all signal intensities; low values may lead to problems with tissue segmentation.  

Functional (BOLD) scans 
Like the T1-weighted images, the functional (BOLD) scans were run through the Mriqc pipeline.              
The resulting reports were visually checked for artifacts including reconstruction errors,           
registration issues, and incorrect brain masks.  

In Figure 5, we visualize several quality control metrics related to the functional scans across all                
three datasets. Similar to the T1-weighted quality control metrics, the functional quality control             
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metrics indicate an improvement of quality over time. Also note the clear decrease in temporal               
signal-to-noise ratio (tSNR) for multiband-accelerated scans (consistent with ref92). All quality           
control metrics related to the functional MRI scans, including those visualized in Figure 5, are               
stored in the group_bold.tsv file in the mriqc derivatives folder. 

 

 
Figure 5 . Quality control metrics related to the functional (BOLD) MRI scans. SNR: signal-to-noise ratio,               
an index of signal quality; FD: framewise displacement93 , an index of overall movement; GCOR: global               
correlation 94 , an index of the presence of global signals; GSR: ghost-to-signal ratio, an index of ghosting                
along the phase-encoding axis. 

In addition to global quality control metrics, we also computed whole-brain (voxelwise) temporal             
signal-to-noise ratio (tSNR) maps, computed by dividing the average signal (across time) by the              
standard deviation of the signal (across time) of the motion-corrected and spatially normalized             
data. This is done for each subject and fMRI scan separately, which are subsequently averaged               
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across subjects and scans (but separately for sequential and multiband-accelerated scans in            
PIOP1 to highlight the tSNR cost of multiband-acceleration). 

In Figure 6, we visualize these tSNR maps for each dataset (and separately for the sequential                
and multiband scans of PIOP1). Again, there appears to be an increase in tSNR across time.                
Corresponding whole-brain tSNR maps can be viewed and downloaded from Neurovault (i.e.,            
files with the _tsnr identifier). 

 
Figure 6 . Average (across subjects and runs) temporal signal-to-noise (tSNR) maps of each type of               
functional (BOLD) MRI scan in each dataset. Unthresholded whole-brain tSNR maps are available on              
Neurovault. 

For the fMRI data with an explicit task (i.e., all fMRI data except for the PIOP resting-state fMRI                  
scans and the ID1000 movie watching fMRI scan), we additionally computed group-level            
whole-brain statistics maps. To do so, we ran simple first-level models (including            
task-regressors as well as a discrete cosine basis set functioning as a high-pass filter of 128                
seconds and six motion regressors) and computed first-level contrast maps for each subject             
which were subsequently analyzed in a random effects group-level (intercept) model. In Figure             
7, we show the (uncorrected) whole-brain group-level results for each task. Note that we chose               
these specific contrasts to demonstrate that the tasks elicit to-be expected effects (e.g.,             
amygdala activity in the emotion matching task and cingulate cortex activity in the gender-stroop              
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task). Different, and more sophisticated analyses, including analysis of between-subject factors,           
are possible with this data and the associated event files. 

 

Figure 7 . Results from task-specific group-level analyses. Brain maps show uncorrected effects (p <              
0.00001, two-sided) and were linearly interpolated for visualization in FSLeyes. Unthresholded           
whole-brain z-value maps are available on Neurovault. Unthresholded whole-brain z-value maps are            
available on Neurovault. 

To validate the quality of the resting-state functional MRI scans in PIOP1 and PIOP2, we ran                
dual regression analyses95 using the spatial ICA maps from Smith and colleagues            
(10-component version)96. Figure 8 shows the group-level dual regression results from both            
PIOP1 and PIOP2 for the first four components next to the original ICA map from Smith and                 
colleagues96.  
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Figure 8 . Group-level dual regression results for the first four components of Smith and colleagues96 .               
Unthresholded z-value maps are available on Neurovault. Unthresholded whole-brain z-value maps are            
available on Neurovault. 

Finally, to assess the quality of the ID1000 functional MRI data, we performed a voxelwise               
whole-brain “inter-subject correlation” (ISC) analysis, using the BrainIAK software package 83,97          
on data from a subset of 100 participants (randomly drawn from the ID1000 dataset). Before               
computing the inter-subject correlations, the data were masked by an intersected functional            
brain mask and grey matter mask (probability > 0.1). Low-frequency drift (with a cutoff of 128                
seconds), the mean signal within the cerebrospinal fluid, global (whole-brain average) signal,            
and six motion parameters were regressed out before computing the ISCs. The average (across              
subjects) voxelwise ISCs are visualized in Figure 9, which shows the expected inter-subject             
synchrony in the ventral and dorsal visual stream while watching the video. 
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Figure 9. Results from the voxelwise ISC analysis, arbitrarily thresholded at 0.1. An unthresholded              
whole-brain ISC map is available on Neurovault (https://neurovault.org/images/377226/). 

Diffusion-weighted scans 
Before preprocessing, the b=0 volume from each DWI scan was extracted and visually checked              
for severe artifacts and reconstruction errors (in which case the data was excluded). After              
preprocessing and DTI model fitting, we furthermore visualized each estimated fractional           
anisotropy (FA) map and the color-coded FA-modulated (absolute) eigenvectors for issues with            
the gradient directions. 

Furthermore, we extracted quality control metrics based on outputs from the eddy            
correction/motion correction procedure in the DWI preprocessing pipeline as implemented in           
FSL’s eddy algorithm (based on the procedure outlined in ref98). Specifically, we computed the              
mean framewise displacement across volumes based on the realignment parameters from           
motion correction, the percentage of “outlier slices” (as determined by FSL eddy) in total and per                
volume, and the standard deviation of the estimated linear eddy current distortions across             
volumes. These metrics are visualized in Figure 10. Note that the y-axis for the standard               
deviation of the eddy currents for ID1000 has a larger range than for PIOP1 and PIOP2 to show                  
the scans with particularly strong eddy current fluctuations. 
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Figure 10 . Quality control metrics related to the diffusion-weighted scans. FD: framewise displacement,             
Std EC: standard deviation of the linear terms of the eddy current distortions in Hz/mm. 

Finally, for each dataset, we transformed all preprocessed DTI eigenvectors to a population             
template estimated on all FA images and computed the voxelwise median across subjects. The              
median eigenvector images are visualized in Figure 11 as “diffusion-encoded color” (DEC)            
images, in which values are modulated by the associated FA values. 
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Figure 11. Diffusion-encoded color images of the FA-modulated median DTI eigenvectors across            
subjects. Red colors denote preferential diffusion along the sagittal axis (left-right), green colors denote              
preferential diffusion along the coronal axis (anterior-posterior), and blue colors denote preferential            
diffusion along the axial axis (inferior-superior). Brighter colors denote stronger preferential diffusion. 

Physiological data 
After conversion to BIDS, physiological data was visually checked for quality by plotting the              
scanner triggers (i.e., volume onsets) and the cardiac and respiratory traces. Files missing a              
substantial window of data (>10 seconds) were excluded as well as files for which the scanner                
triggers could not be estimated reliably. Figures of the physiology traces and scanner triggers              
for each file are included in the physiology derivatives. Additionally, we fit first-level             
(subject-specific) and subsequently group-level (subject-average) models using the physiology         
regressors for each dataset. In Figure 12, we visualize the effects of the different RETROICOR               
components (respiratory, cardiac, and interaction regressors; an F-test) and the HRV and RVT             
regressors (a t-test). Unthresholded whole-brain maps are available from Neurovault. 
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Figure 12 . Results from group-level physiology analyses. Brain maps show uncorrected effects            
(thresholded arbitrarily at z > 8) and were linearly interpolated for visualization in FSLeyes. Unthresholded               
whole-brain z-value maps are available on Neurovault. 

Psychometric data 
The patterns of correlations within the scales of the questionnaires are consistent with those              
reported in literature, indicating that this data is overall reliable. The pattern of correlations              
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between scales of different questionnaires and external variables is also consistent with those             
reported in literature and what would be expected on theoretical grounds. 

Intelligence Structure Test (IST) 

The subscales of the IST (fluid and crystallized intelligence and memory) are strongly correlated              
with each other. The validity of the measure data is supported by the correlation with relevant                
external variables like educational level, r(926) = 0.46) and background SES, r(926) = 0.35 (see               
Table 9). 

Table 9 . Correlations between total score, and subscales of the IST and relevant external variables               
(background SES and educational level). IST: Intelligence Structure Test, Int: Total Intelligence, SES:             
background social-economic status. ** indicates p < 0.01.  

 
IST ( N = 926) IST Int IST Crystal IST Memory IST Fluid Background SES Education 

IST Int 1 0.82** 0.79** 0.96** 0.35** 0.46** 

IST Crystallized   1 0.58** 0.68** 0.37** 0.44** 

IST Memory     1 0.65** 0.25** 0.39** 

IST Fluid       1 0.31** 0.41** 

Background SES         1 0.38** 

Education           1 

 
Personality: NEO-FFI 

The cross-correlation patterns of the 5 NEO-FFI scales are depicted in table 10. Significant              
correlations exist between the scales, and the correlation pattern is overall consistent with the              
reported norm data for this test18. The correlation between cross-correlation patterns of the three              
datasets is very consistent (r = 0.88 between PIOP1 and PIOP2, and on average r = 0.74                 
between ID1000 and PIOP), with as a notable outlier a negative correlation, r(928) = -0.13, p <                 
0.001, between extraversion and agreeableness in the ID1000 dataset and a positive correlation             
for these scales in the PIOP1, r(216) = 0.20, p < 0.005, and PIOP2, r(226) = 0.26, p < 0.001. A                     
source for this discrepancy could be the difference in population sample between the PIOP1              
and PIOP2 studies and the ID1000 study. 

Table 10. Cross-correlations for the subscales of the NEO-FFI for the ID1000, PIOP1 and PIOP2               
samples. With the exception of the correlation between agreeableness and extraversion the            
cross-correlation patterns are very similar across samples. * indicates p<0.05. ** indicates p<0.01.  

ID1000 (n=927) Neuroticism Extraversion Openness  Agreeableness Conscientiousness 

Neuroticism 1 -0.30** 0.15** -0.08* -0.43** 

Extraversion   1 0.20** -0.13** 0.12** 
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Openness     1 -0.06 -0.19** 

Agreeableness       1 0.16** 

Conscientiousness         1 

 
          

PIOP1 ( N = 216)  Neuroticism  Extraversion 
 

Openness  Agreeableness  Conscientiousness 

Neuroticism 1 -0.29** 0.18** 0.00 -0.25** 

Extraversion   1 -0.05 0.20** 0.14* 

Openness     1 0.08 -0.18** 

Agreeableness       1 0.20** 

Conscientiousness         1 

       

PIOP2 ( N = 226)  Neuroticism  Extraversion Openness Agreeableness Conscientiousness 

Neuroticism 1 -0.38** 0.12 -0.07 -0.24** 

Extraversion   1 0.11 0.26** 0.25** 

Openness     1 0.02 -0.04 

Agreeableness       1 0.15* 

Conscientiousness         1 

 
In terms of external validity we note that openness to experience has a positive correlation with                
intelligence in all three samples (ID1000: r(925) = 0.22, p = 1.4557E-11, PIOP1: r(216) = 0.25, p                 
= 0.000196), PIOP2: r (225) = 0.24, p = 0.000276). 

BIS/BAS 

The cross-correlation patterns of the BIS/BAS scales are depicted in table 11. The             
cross-correlation between the scales are similar to the one reported by Franken and             
colleagues16 and contrary to what Carver & White 34 predicted, with a positive correlation             
between the three different BAS-scales, but also between BIS and BAS-Reward, r(927) = 0.194.  

Table 11. Cross-correlations for the subscales of the BISBAS for the ID1000 sample. The pattern of                
correlations is consistent with that reported in literature. 

BIS/BAS (N = 928) BAS drive BAS fun BAS reward BIS 

BAS drive 1 0.45** 0.34** -0.19** 
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BAS fun   1 0.39** -0.13** 

BAS reward     1 0.19** 

BIS       1 

 

STAI-T 

The STAI-T scale measures trait anxiety. Because this instrument only consists of one scale we               
evaluate its reliability on the degree in which it shows correlations with other questionnaire              
scales that also have a pretension of measuring negative emotionality. Because we observe             
positive correlations with both Neuroticisms, r(927) = 0.77, p = 1E-183) and BIS, r(927) = 0.514,                
p = 1E-63) we conclude that the reported scales are reliable and consistent.  
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