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ABSTRACT 

Molecular dynamics (MD) simulation is widely used to complement ensemble-averaged 

experiments of intrinsically disordered proteins (IDPs). However, MD often suffers from 

limitations of inaccuracy in the force fields and inadequate sampling. Here, we show that 

enhancing the sampling using Hamiltonian replica-exchange MD led to unbiased ensembles of 

unprecedented accuracy, reproducing small-angle scattering and NMR chemical shift 

experiments, for three IDPs of variable sequence properties using two recently optimized force 

fields. Surprisingly, we reveal that despite differences in their sequence, the inter-chain statistics 

of all three IDPs are similar for short contour lengths (< 10 residues).   

 
This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US DOE. 

The US government retains and the publisher, by accepting the article for publication, acknowledges that the US 

government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 

form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to 

these results of federally sponsored research in accordance with the DOE Public Access Plan 

(https://www.energy.gov/downloads/doe-publicaccess-plan). 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.155374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

INTRODUCTION 

Intrinsically disordered proteins (IDPs) exhibit biological function without folding spontaneously 

into a unique three-dimensional (3D) structure.1 IDPs are abundantly present in all proteomes  

and play major roles in signaling, transcriptional regulation and regulation of phase transitions in 

the cell via processes that may involve high-specificity or low-affinity interactions and 

recognition of partners by folding upon binding.1-5 About 50 to 70% of the proteins in the human 

genome associated with cancers, diabetes, cardiovascular, and neurodegenerative diseases have a 

minimum of 30 residues that are intrinsically disordered, making IDPs possible drug targets.1 

Additionally, IDPs are an essential part of plant immune signaling components and also mediate 

plant-microbe interactions.6 

Understanding the function of a protein requires a determination of its 3D structure.7 

IDPs adopt highly dynamic structural ensembles, which are commonly characterized by nuclear 

magnetic resonance (NMR)8, small-angle X-ray/neutron scattering (SAXS/SANS),9,10 single-

molecule Förster resonance energy transfer (smFRET),11 hydrogen-exchange mass 

spectrometry12 and circular dichroism (CD).13,14 However, the information content of the applied 

experimental techniques is insufficient to obtain the ensemble of 3D conformations an IDP 

adopts.15 The experimental observables often represent averages over the ensemble and the data 

are typically sparse, providing too little information to unambiguously determine the 3D 

ensemble. 

 Molecular dynamics (MD) simulation can in principle provide the missing information 

and furnish a complete atomic resolution description of IDP structure and dynamics.2 Recent 

optimizations of the protein and water potential energy functions2,16-27 have led to accurate 

simulation of short disordered peptides and model systems.17,18,28-31 However, the simulations are 
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not always consistent with experiment either because of inadequate sampling or shortcomings of 

the force fields.2,18,21,23,29,32,33 

  A common and successful approach to determine an IDP configurational ensemble is to 

force the MD results to match existing experiments, either by biasing the MD potential,34,35 or by 

a posteriori reweighting the ensemble of the MD population.36,37 One challenge for these 

methods is degeneracy, i.e. distinct 3D conformations may yield the same observable, which 

may lead to over-fitting. Bayesian maximum entropy optimization approaches, which aim to 

perturb the MD ensemble as little as possible, have been employed to avoid over fitting.34,37,38 

However, these approaches always require a prior experimental measurement and do not afford a 

predictive understanding of IDPs. 

 Recently, by enhancing the configurational sampling of MD simulations using 

Hamiltonian replica-exchange MD (HREMD) the configurational ensemble of an IDP was 

generated that is in quantitative agreement to SAXS, SANS and NMR measurements without 

biasing or reweighting the simulations.39,40 HREMD improves sampling by scaling the intra-

protein and protein-water potentials16,19 of higher-order replicas, while keeping the potential of 

the lowest rank replica unscaled41-44 so as to represent the physically-meaningful interactions of 

the system. However, two IDPs39,40 were studied and the general applicability of this approach 

has not been established. 

 Here, we report that HREMD produces configurational ensembles consistent with SAXS, 

SANS and NMR experiments for three IDPs with markedly different sequence characteristics: 

Histatin 5 (24 residues)  and Sic 1 (92 residues), both of which have an abundance of positively 

charged residues, and the N-terminal SH4UD (95 residues) of c-Src kinase, which contains 

positively and negatively charged residues mixed over the sequence. The HREMD results are in 
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agreement with experimental data on both local and global properties when employing either of 

two force fields (Amber ff03ws19 with TIP4P/2005s19 and Amber ff99SB-disp16 with modified 

TIP4P-D,16 hereafter termed as a03ws and a99SB-disp respectively). In contrast, standard MD 

simulations of equivalent computational cost as HREMD generate ensembles consistent only 

with NMR, but not with SAXS. Further, the HREMD ensembles of IDPs are found to be 

described by a theoretical semiflexible polymer chain model quantifying the stiffness and 

strength of interaction with solvent. We suggest “best practices” in achieving accurate and 

efficient IDP sampling using HREMD and discuss differences in the size between Sic 1 and 

SH4UD. The results demonstrate quite clearly that the recently optimized force fields are reliable 

and that the current major impediment to accurate simulation of IDPs using is sampling. 

HREMD is therefore the present tool of choice for obtaining atomic-detailed IDP ensembles. 

 

RESULTS 

HREMD ensembles in agreement with SAXS, SANS and NMR. 

We conducted HREMD simulations of three IDPs with varying amino acid composition (Fig. 

S1), employing two force fields: a03ws19 and a99SB-disp16. For comparison, we also conducted 

standard MD, i.e. without enhancing the sampling, of the same cumulative length as the HREMD 

(Tables S1-S4). The histograms of a radius of gyration (Rg) show the IDPs adopt a continuum of 

collapsed to extended structures (Fig. 1a-c). 

 The global, ensemble-averaged properties of IDPs such as Rg, shape, and chain statistics 

can be derived using small-angle scattering. We calculated the ensemble-averaged theoretical 

SAXS and SANS curves from the simulation trajectories, by taking into account explicitly the 

protein hydration shell and without reweighting, and compared them directly to the experiments. 
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We found an excellent agreement of the HREMD-generated ensembles with SAXS and SANS 

measurements for both force fields (SAXS in Fig. 1d-f and SANS in Fig. S2), whereas the 

standard MD simulations were found to deviate from the experiments, except for Sic 1 with 

a03ws. The agreement between simulation and experiment was quantified with the c2 value as 

defined in Eq. (5) and listed in Table S5. The histograms of Rg show that standard MD 

simulations sample more compact structures than does HREMD with the same force fields. 

Therefore, for the IDPs studied here, poor agreement with experiment arises primarily from 

insufficient sampling rather than from shortcomings of the force fields.   

 

Fig. 1. (a-c) The histograms of Rg of (a) Histatin 5, (b) Sic 1 and (c) SH4UD obtained from MD simulations. The 

inverted triangles indicate the average Rg of each simulation. (d-f) The SAXS profiles calculated from simulations 

(using SWAXS45) are compared to experiments for  (d) Histatin 5,30 (e) Sic 1,46 and (f) SH4UD.40 Insets: SAXS data 

are zoomed at low-q values to show the differences in intensity for different force fields and sampling methods. In 

all cases the color code indicates the force fields, a03ws19 or a99SB-disp,16 and sampling methods, standard MD or 

HREMD (Tables S1 and S2).  HREMD results are from the lowest rank replica of the simulations shown by bold-

italics font in Table S2. SANS data of SH4UD are shown in Fig. S2. 
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 NMR chemical shifts provide information on the local chemical environment of protein 

atoms and reflect structural factors such as backbone and side-chain conformations. To further 

validate the simulations, we calculated the ensemble-averaged backbone chemical shifts (Ca, Cb 

and NH for Sic 1 and SH4UD, and HN and Ha for Histatin 5) and compared to previously reported 

experiments (Figs. 2, S3-S6). The agreement between theoretical and experimental NMR 

chemical shifts was quantified by calculating the mean normalized deviation as defined by Eq. 

(6). For Sic 1 and SH4UD, we found an excellent agreement with the experiments for all force 

fields and sampling methods, whereas the agreement is not quite as good for Histatin 5 (Figs. 2 

and S3-S6).  

Fig. 2. Comparison between the ensemble-averaged experimental and calculated NMR chemical shifts of backbone 

atoms (a) NH, (b) Ca and (c) Cb, for Sic 1. The mean normalized deviation of MD-derived NMR chemical shifts of 

backbone atoms with respect to experimental values, as defined in Eq. (6), for (d) Histatin 5,47 (e) Sic 1,46 and (f) 

SH4UD.48 The color code indicates the force field and sampling method used. The theoretical NMR chemical shifts 

are calculated using SHIFTX2,49 which has relatively high values of root mean square errors of 0.1711 ppm and 

0.1231 ppm for HN and Hα respectively compared to NH, Ca and Cb. 
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Both force fields and sampling methods predict nearly the same transient secondary 

structure elements. Transient helices, which are considered to be biologically relevant,50-52 were 

found proximal to known phosphorylation residues of Sic 146 and to known lipid-binding or 

phosphorylation residues in SH4UD.48,53 In contrast, the propensity of each secondary structure 

element is found to depend on both the force fields and sampling methods (Figs. S7 and S8). 

The IDPs we studied mostly showed a high propensity for coils that lack secondary structure, 

consistent with the lack of long-range contacts found in the simulations (Fig. S9). 

 

Polymer properties. 

We estimated the stiffness of the protein backbones by calculating the orientational correlation 

function 

𝐶(𝑠) =	< 𝑛! . 𝑛!"# >..…………..….…..…….… (1) 

where s=|i-j| is the pairwise residue separation (sometimes called contour length), and 𝑛! is the 

unit vector connecting the backbone atoms N and C of residue i. The steeper the decay of C(s), 

the lower the stiffness of the chain. C(s) is similar for the three IDPs for s£10, exhibiting an 

exponential decay  𝐶(𝑠) = 𝑒
$#

%!& , where lp is the persistence length. lp provides the maximum 

size of a protein segment over which the structural fluctuations are correlated. In other words, it 

is the measure of stiffness of a polypeptide chain. We found lp ~ 1 nm for all IDPs, in good 

agreement to the values for intrinsically disordered proteins.54,55 A power law decay (~s-3/2) is 

found for Sic 1 at 10<s£26, whereas correlations decay more rapidly and vanish for s>10 for 

Histatin 5 and SH4UD. Therefore, Sic 1 is the stiffest. 
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Fig. 3. Chain statistics of IDPs. (a) The orientational correlation function as a function of the pairwise residue 

sequence separation, s. For 𝑠 ≤10, 𝐶(𝑠) is fitted by 𝐶(𝑠) = 𝑒
"#

$!%  for each IDP, which estimates the persistence 

length (lp). For s>10 the power law 𝐶(𝑠)~𝑠"&/( applies only for Sic 1, whereas for Histatin 5 and SH4UD the 

correlation vanishes. (b-d) The average pairwise geometric distance (Rs) between C-alpha atoms of two residues at 

separation s for (b) Histatin 5, (c) Sic 1 and (d) SH4UD. The data are fitted by Eq. (2) in two regimes, s£10 (blue) 

and s>10 (red). The error bars are smaller than the symbol size. 

 The statistics of internal distances (“scaling properties”) of polymers in dilute solution 

can be characterized using the Flory scaling law given by Eq. (2): 

𝑅# =	𝑅'	𝑠(.….…...…………..………...…(2) 

where 𝑅# is the average intraprotein pairwise distance between the Ca atoms of residues i and j at 

pairwise separation s=|i-j|, the prefactor 𝑅' is a constant and n is the Flory exponent. Balanced 
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polymer-solvent and intrapolymer interactions give rise to Gaussian coil and n=0.5, while a self-

avoiding random walk (SARW) with n=0.588 is predicted when the polymer-water interactions 

are favored. Interestingly, we found two different power law regimes are needed to fit the 

data56,57 (Fig. 3b-d). At short contour lengths (s£10), Rs is similar for all three IDPs, with 𝜈 

» 0.70, which indicates chain configurations stiffer than a SARW, and with a prefactor of R0 

~0.4 nm (R0 is the average distance between two consecutive C-alpha atoms). On the other hand, 

at longer residue separations (s>10) the Rs of the three IDPs deviate. Histatin 5 and SH4UD with 

𝜈 » 0.43 and 0.40, respectively, adopt more collapsed global conformations than SARW. In 

contrast, Sic 1 (𝜈 » 0.60) remains stiff even at longer residue separations. 

 

DISCUSSION 

IDPs present a new paradigm for understanding flexibility-function relationships in biology.1,58-60 

Currently, it is not possible to determine the ensemble of the 3D structures that an IDP adopts 

from either experiment or simulation alone. The number of experimental observables is 

considerably smaller than the number of the IDP’s configurational degrees of freedom, making 

model reconstruction from experimental data a highly underdetermined problem. For MD 

simulations, although improved molecular mechanics methods perform well for small model 

disordered peptides2,18,28,30,31, it has often been necessary to bias or reweight the MD results to 

achieve consistency with experiments.34,35,37,38,61-63 The reason MD has not always been accurate 

is unclear: it could be deficiencies in the force fields, insufficient sampling, or both. 

Here, we demonstrated that HREMD reproduces key experimental observables (SAXS, 

SANS and NMR) using two different force fields for three different IDPs. In contrast, the 

ensemble generated by standard MD of equivalent length failed to match SAXS data (Fig. 1). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.155374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

The comparison of standard MD and HREMD using the same force field suggests the a03ws and 

a99SB-disp force fields are of adequate accuracy and that enhanced sampling techniques are 

necessary to reproduce experimental data.  

 We found that the calculated NMR chemical shifts and the loci of secondary structure 

elements are the easiest to converge as they are consistent between all the simulations, 

independent of force field and sampling method. In contrast, HREMD is required for SAXS 

observables to converge to the experimental values. The most difficult quantities to converge are 

the secondary structure propensities, which were found here to depend on both the force field 

and the sampling method, perhaps more on the former than the latter (Fig. S7 and S8), with 

a03ws and a99SB-disp having  biases towards helices and b-sheets, respectively. 

The data show that MD simulations can be in apparent agreement with NMR chemical 

shifts, which measure local structural information,64 while failing to reproduce SAXS/SANS 

intensities, which determine with high precision more global structural properties (here 

distributions of distances between pairs of nuclei that are more than ~1 nm apart61,65) (Figs. 1, 2 

and S10).40 Thus, agreement with NMR alone is not always a definitive test of the accuracy of 

MD simulations of IDPs. It is critical to analyze and compare both local and global properties16,66 

of IDPs to ensure the simulations have indeed generated accurate ensembles. 

Simple theories established for semiflexible homopolymers and heteropolymers have 

been shown to provide a qualitative description of  IDP structural properties such as stiffness67-69 

and solvent quality.11,13,70-72 The high fidelity HREMD trajectories reveal that, despite having 

markedly different sequences, the IDPs studied here have a common hierarchical chain 

architecture. For short contour lengths (up to ~10 residues) the chain statistics of all three IDPS 

are similar, as evidenced by Rs and C(s). These short segments are relatively stiff with a Flory 
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exponent of ν~0.7. Beyond this critical contour length, the IDPs differentiate. SH4UD and 

Histatin 5 become flexible, while Sic 1 remains relatively stiff with power-law decay in C(s) that 

implies long-range spatial correlations.68 This is consistent with Sic 1 being more extended than 

SH4UD. 

 The origin of the stiffness of Sic 1 relative to SH4UD can be understood by examining 

their primary sequences (Fig. S1). All the charged residues of Sic 1 are positive, leading to 

electrostatic repulsion between them. Further, Sic 1 contains 15 proline and 5 glycine residues. 

Proline is stiff due to its cyclic sidechain, whereas the absence of a sidechain for glycine 

increases backbone flexibility, which is known to be disorder-promoting.55,73 In comparison, 

SH4UD has both positively and negatively charged residues, 11 prolines and 12 glycines.  

 We now discuss the HREMD method41,42,44 and make recommendations for its optimal 

use in IDPs. HREMD enhances sampling by changing the quality of water as a good solvent for 

an IDP. This is achieved by effectively heating up only the solute by scaling the intraprotein and 

protein-solvent potential energy functions. An exchange of coordinates is allowed between 

neighboring replicas if the Monte Carlo metropolis criterion is satisfied.41,42 The HREMD 

method was chosen because it does not necessitate a predefined reaction coordinate. The 

advantage of HREMD over temperature replica exchange MD is that HREMD crosses entropic 

barriers74 more efficiently and a smaller number of replicas is sufficient, i.e. is computationally 

more efficient. 

The total number of replicas (n) used, the scaling factor (li) or the effective temperature 

(Ti) of a replica and the average exchange probability (pex) of the lowest rank replica are listed in 

Tables S2-S4. A Tmax of 400-450 K (lower limit) being needed, similar to Tmax = 400 K used in 

previous studies,39,75,76 and pex ranging from 0.3 to 0.5. Moreover, to estimate the upper limit of 
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effective temperature, we performed HREMD of Histatin 5 using a99SB-disp, Tmax = 800 K and 

24 replicas (Table S3). This simulation generated the ensemble in the lowest rank replica similar 

to that of HREMD with Tmax = 450 K (Fig. S11a). However, we noted that replica from Ti = 522 

K and above sampled collapsed structures when compared to the ensemble of the lowest rank 

replica. Therefore, we suggest 450 K<Tmax<500 K is an appropriate choice for the upper limit of 

maximum effective temperature (Fig. S11a). However, choosing the higher value of Tmax would 

increase the number of replicas and thus computational cost. 

In summary, we demonstrate HREMD simulations as an effective method to generate 

accurate structural ensembles of three IDPs with varying amino acid composition (Histatin 5, Sic 

1 and SH4UD). The unbiased HREMD trajectories, calculated without using any experimental 

input or predefined reaction coordinate, are in excellent agreement with SAXS, SANS and NMR 

observables. Nonetheless, comparison to experimental data was imperative to confirm the 

accuracy of MD results. Moreover, HREMD simulations performed using two recent molecular 

mechanics force fields (a03ws and a99SB-disp) converge to the same distribution of Rg. In 

contrast, neither of the force fields could reproduce SAXS experiments with standard MD of the 

same cumulative length as HREMD. The results suggest adequately sampled simulations using 

recent IDP specific force fields can reliably generate the 3D ensembles of IDPs (Fig. S12), 

which is a prerequisite to an understanding of the biological function of IDPs. We also report 

that despite differences in their sequence, all three IDPs have similar local chain statistics for 

short lengths (less than ~ 10 residues). More studies are required to establish whether this is a 

universal IDP behavior.  
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MATERIALS AND METHODS 

Experimental SAXS and NMR data. 

The experimental SAXS data of Histatin 5, Sic 1 and SH4UD were taken from Henriques et. al. 

(2015),30 Protein Ensemble Database (http://pedb.vib.be)46 and our previous work40 respectively. 

Similarly, NMR chemical shifts of backbone atoms, (Ca, Cb, NH, Ha, HN) of Histatin 5, Sic 1 and 

SH4UD were acquired from the literature,47 Protein Ensemble Database46 and Biological 

Magnetic Resonance Data Bank (BMRB) database entry 1556348 respectively. 

 

MD simulations. 

The initial 3D structures of IDPs were obtained from I-TASSER.77 An MD-equilibrated starting 

structure with Rg value close to experimental SAXS was chosen for the production simulation of 

each IDP. The same starting structure of IDP was utilized for each force field and sampling 

method. 

 We performed standard molecular dynamics simulations with two recently optimized 

force fields, Amber ff03ws19,78,79 with TIP4P/2005s19 (a03ws) and Amber ff99SB-disp16,80 with 

the modified TIP4P-D16,21 water model (a99SB-disp) using GROMACS.81-86 All bonds involving 

hydrogen atoms were constrained using LINCS algorithm.87 The Verlet leapfrog algorithm was 

used to numerically integrate the equation of motions with a time step of 2 fs. A cutoff of 1.2 nm 

was used for short-range electrostatic and Lennard-Jones interactions. Long-range electrostatic 

interactions were calculated by particle-mesh Ewald88 summation with a fourth order 

interpolation and a grid spacing of 0.16 nm. The solute and solvent were coupled separately to a 

temperature bath of 300 K, 293 K and 300 K for Histatin 5, Sic 1 and SH4UD respectively to 

match the temperatures measured at the experiments using modified Berendsen thermostat with a 
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relaxation time of 0.1 ps. The pressure coupling was fixed at 1 bar using Parrinello-Rahman 

algorithm89 with a relaxation time of 2 ps and isothermal compressibility of 4.5*10-5 bar-1. The 

energy of each system was minimized using 1000 steepest decent steps followed by 1 ns 

equilibration at NVT and NPT ensembles. The production runs were carried out in the NPT 

ensemble. 

 

Enhanced sampling MD simulations. 

We employed replica-exchange with solute tempering 2 (REST2),41,42 a Hamiltonian Replica-

Exchange MD (HREMD) simulation method to enhance the conformational sampling. REST2 is 

implemented in GROMACS81-86 patched with PLUMED.90 The interaction potentials of 

intraprotein and protein-solvent were scaled by a factor l and Öl respectively, while water-water 

interactions were unaltered.41,42,76,91 The scaling factor li, and corresponding effective 

temperatures Ti of the ith replica are given by, 

𝜆! =	
))
)*
	= exp 2− !

(+$,)
ln	 6)+,-

))
78………………………………..(3) 

where T0 and Tmax are the effective temperatures of lowest rank (unscaled) and the highest rank 

replicas respectively, and n is the total number of replicas used. For analysis we use only the 

trajectory of the unscaled for lowest rank replica (l0=1 or T0). Exchange of coordinate between 

neighboring replicas was attempted every 400 MD steps. The details of HREMD and standard 

MD simulations are shown in Tables S1-S4. The secondary structure prediction was calculated 

with DSSP.92 
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Error analysis. 

To estimate the error from HREMD trajectory, we divided the trajectory into five equal blocks 

each containing 10,000 frames (0-100, 100-200, 200-300, 300-400 and 400-500 ns). The mean 

value for each block, mi (i=1 to 5), was first calculated. The reported error bars are the standard 

error of the mean of the (m1, m2, m3, m4, m5) distribution. 

i.e., Error bar  =9 ,
+(+$,)

∑ (𝑚! −𝑚).+/0
!   ……………………………..(4) 

where 𝑚 is the mean value and n=5 is the number of blocks used. 

 

Theoretical SAXS profiles. 

The theoretical SAXS and SANS intensities were calculated with SWAXS45,93 and SASSENA,94 

respectively, by taking into account of explicit hydration water, which contributes to the signal.45 

The agreement between experiment and simulation was determined by a c2 value: 

𝜒. =	 ,
1$,

	∑ =[34.-!/
(5*)6$(7	340*+(5*)6"9:;)]

=.-!/(5*)
>
.

1
!/, ×××××××××××××××××××××××××××××××××××× (5) 

where <Iexpt(q)> and <Isim(q)> are the ensemble averaged experimental and theoretical SAXS 

data, respectively, k is the number of experimental q points, c is a scaling factor, bgd is a 

constant background and sexpt is the experimental error. In Eq. (4), c is a factor to scale 

calculated values to the experiment because the experimental values are often expressed in 

arbitrary units. It does not change the shape of the SAXS curve. Similarly, bgd is used to 

incorporate the uncertainty due to mismatch in buffer subtraction at higher q-values13 in the 

experiment. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.155374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

Theoretical NMR chemical shifts. 

Theoretical NMR chemical shifts were calculated with SHIFTX249 by taking the average over all 

frames from the MD trajectory. The discrepancy between calculated and experimental values are 

measured by Mean Normalized Deviation is defined as, 

𝑀𝑒𝑎𝑛	𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ,
+
∑ |?@*

.-!/$(?@*
1,21$ABB#CD)|

?@*
.-!/

+
!/, ×××××××××××××××××××××××××××××××××××× (6) 

where  𝐶𝑆!7E%7 and 𝐶𝑆!
CFGD are the theoretical and experimental NMR chemical shift values 

respectively of residue index i of a protein with n number of residues, offset obtained from linear 

regression analysis are used for each backbone atom (NH, Ca, Cb) and IDP (Histatin 5, Sic 1, 

SH4UD) as shown in Figs. S3-S5 and |…| is the modulus of the value enclosed. 
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