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Abstract 

Antibiotic resistance is a growing global health concern prompting researchers to 

seek alternatives to conventional antibiotics. Antimicrobial peptides (AMPs) are 

emerging therapeutic agents with promising utility in this domain and using in 

silico methods to discover novel AMPs is a strategy that is gaining interest. Such 

methods can filter through large volumes of candidate sequences and reduce lab 

screening costs. Here we introduce AMPlify, an attentive deep learning model for 

AMP prediction, and demonstrate its utility in prioritizing peptide sequences 

derived from the Rana [Lithobates] catesbeiana (bullfrog) genome. We tested the 

bioactivity of our predicted peptides against a panel of bacterial species, including 

representatives from the World Health Organization’s “priority pathogens” list. 

Four of our novel AMPs were active against multiple species of bacteria, including 

a multi-drug resistant isolate of carbapenemase-producing Escherichia coli, 

demonstrating the utility of tools like AMPlify in our fight against antibiotic 

resistance.�

 

Introduction 

As reported by the World Health Organization (WHO), the decreasing effectiveness of 

antibiotics and other antimicrobial agents indicates the world is at a risk of entering a 

“post-antibiotic” era1. To counter this threat, new drugs or effective substitutes for 

conventional antibiotics are urgently needed. Antimicrobial peptides (AMPs) are one 

such alternative. AMPs are host defense molecules produced by all forms of life, 

including multicellular organisms as part of their innate immunity against microbes. 

Within their respective hosts, AMPs have co-evolved with microorganisms to serve as 
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a defense against bacterial2, fungal3 and even viral infections4. Unlike most 

conventional antibiotics, which have specific functional or structural targets, AMPs act 

directly on the biological membranes of microorganisms or modulate the host immunity 

to enhance defense against microorganisms5. Also, they act faster than conventional 

antibiotics, have a narrower active concentration window for killing, and do not 

typically damage the DNA of their targets6. As a result, they do not induce resistance 

to the extent that is observed with conventional antibiotics7. Nevertheless, if bacteria 

are exposed to AMPs for extended periods of time, they can and do develop resistance 

even to AMP-based drugs including the last resort and life-saving drug, Colistin6. 

Hence, fast and accurate methods would be valuable tools to discover and design 

effective AMPs to enhance our repertoire of alternative therapeutics. 

Direct, large scale discovery of novel AMPs through wet lab screening is time-

consuming, labor-intensive and costly8. For these reasons, various computational 

models have been developed over the last few years8 to streamline in silico AMP 

prediction. Despite the rapid progress in the field, currently available models still have 

substantial room for improvement. 

The AMP prediction module in the Collection of Antimicrobial Peptides (CAMP) 

database9 includes four different models: random forest, support vector machine, 

discriminant analysis, and a single-hidden-layer feed-forward neural network with 64 

designed features10. The iAMP-2L online server adopts fuzzy K-nearest neighbor 

algorithm, taking pseudo amino acid compositions (PseAAC) with five 

physicochemical properties as input features to predict AMPs as well as their potential 

microorganism targets11. The iAMPpred online server for AMP prediction and 

classification is based on support vector machine that uses PseAAC with compositional, 

physicochemical, and structural features12. All three of these models employ 
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conventional machine learning methods and rely on pre-designed features, requiring 

prior expertise in AMP structure and mechanism for effective engineering. 

Alternatively, deep learning methods can automatically learn high-level features 

and usually outperform conventional methods in many bioinformatics tasks13. For AMP 

prediction, Veltri and co-workers introduced a deep neural network classifier with 

embedding, convolutional, max pooling, and recurrent layers which is available as an 

online server, AMP Scanner Vr.2, as its user interface14. While AMP Scanner Vr.2 

outperforms the conventional machine learning methods cited above, we note that the 

chosen neural network architecture faces limitations in extracting long-range 

information. Common deep learning methods for sequence classification include 

recurrent neural networks (RNNs) and convolutional neural networks (CNNs), as 

employed in combination by AMP Scanner Vr.2. RNNs are able to learn remote 

dependencies inside a sequence, but suffer from gradient vanishing problems15. 

Similarly, while CNNs can extract local information well, long-range dependencies are 

ignored16. 

Recently, deep neural networks with attention mechanisms have gained momentum, 

notably for natural language processing17–19 and computer vision20 applications. 

Attention mechanisms, as the name suggests, are inspired by our brains’ ability to 

prioritize segments of information when processing textual or visual input. In sequence 

analysis, attention mechanisms are modeled by weights assigned to different positions 

in a sequence. These weights amplify or attenuate information from a given position to 

help encode the global information of the sequence. 

Here, we introduce AMPlify, an attentive deep learning model that improves in 

silico AMP prediction by applying two types of attention mechanisms on top of a 

bidirectional long short-term memory21–23 (Bi-LSTM) layer (Fig. 1). The Bi-LSTM 
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layer in the model, as a variant of RNN, encodes positional information from the input 

sequence in a recurrent manner. Subsequently, the multi-head scaled dot-product 

attention18 (MHSDPA) layer computes a refined representation of the sequence using 

multiple weight vectors. The last hidden layer of context attention19 (CA) generates a 

single summary vector using weighted average, learning contextual information gained 

from the previous layer. The AMPlify model is trained on a set of known AMPs and a 

select list of non-AMP sequences, and adopts ensemble learning to further improve its 

performance. To the best of our knowledge, AMPlify is the first machine learning 

application that applies attention mechanisms for in silico AMP prediction.  

To illustrate the utility of our model, a discovery pipeline based on AMPlify was 

used to mine the AMP-rich North American bullfrog (Rana [Lithobates] catesbeiana) 

genome for novel AMPs. In our tests, AMPlify outperformed state-of-the-art methods, 

and successfully identified novel AMPs with biological activity in vitro. The WHO has 

a published list of “priority pathogens” for which new antibiotics are urgently needed24. 

This list includes bacterial species that are increasingly resistant to multiple antibiotics. 

In the current study, we tested the efficacy of our discovered, putative AMPs against 

selected WHO-prioritized pathogens, including: (1) Pseudomonas aeruginosa and 

Escherichia coli strains, including a multi-drug resistant (MDR) carbapenemase-

producing (CPO) strain of E. coli reflective of WHO’s “Priority 1” pathogens; and (2) 

a Staphylococcus aureus strain reflective of WHO’s “Priority 2” methicillin-resistant 

(MRSA) and vancomycin-resistant (VRSA) strains. A Streptococcus pyogenes strain 

was included as an additional Gram-positive bacterial species that causes human 

disease and has demonstrated antibiotic resistance25. Four of the 16 novel AMPs 

discovered show considerable antimicrobial potency against one or more of the 

organisms examined, including the clinical MDR isolate of CPO E. coli. These results 
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highlight the potential of AMPlify to accelerate AMP discovery, the first step towards 

facilitating peptide-based therapeutics. 

 

Results 

Evaluation of model architecture 

To demonstrate the effectiveness of each component within our model, we evaluated 

the model architecture starting from a single Bi-LSTM layer and then gradually adding 

attention layers over it. Supplementary Table 1 compares different model architectures 

using stratified 5-fold cross-validation on the training set with regard to five different 

measures of accuracy, sensitivity, specificity, F1 score and area under the receiver 

operating characteristic curve (AUROC). The first section of the table compares the 

performance of the complete architecture of AMPlify, with and without ensemble 

learning, with simpler variations which include fewer hidden layers. The architecture 

of the only deep learning based comparator, AMP Scanner Vr.2, was cross-validated on 

our training set for comparison using two different stopping settings: the optimal fixed 

number of epochs as stated in their manuscript14 and early stopping as described in this 

paper (Supplementary Table 1, second section). Although overall performance is not 

strongly influenced by early stopping, it does lead to smaller performance variability as 

measured by standard deviation values in tests, indicating that the model trained using 

early stopping is more robust than using a default of 10 epochs. 

By adding a single CA layer atop the Bi-LSTM layer, the model performs similarly 

to AMP Scanner Vr.2 based on cross-validation results, with differences smaller than 

1% in all metrics except specificity (<1.4%). After inserting an MHSDPA layer in the 

middle, the cross-validation results reach 91.70% in accuracy, 91.40% in sensitivity, 
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92.00% in specificity, 91.68% in F1 score, and 96.92% in AUROC – an overall 

improvement compared with the architecture without this layer. This indicates that the 

attention layer learns discriminating features of sequences processed by the Bi-LSTM 

layer. We note that the final AMPlify architecture already outperforms the AMP 

Scanner Vr.2 architecture in all metrics in our cross-validation tests. After applying 

ensemble learning to the proposed architecture, the cross-validation performance is 

further improved to 92.79% for accuracy, 92.12% for sensitivity, 93.47% for specificity, 

92.74% for F1 score and 97.44% for AUROC.  

Paired student t-tests based on our cross-validation results indicate statistically 

significant increase in performance by AMPlify over AMP Scanner Vr.2 (early stopped) 

with regard to all five metrics (p<0.05) except specificity (p=0.068). Similarly, the 

better performance of AMPlify without ensemble learning (i.e. Bi-

LSTM+MHSDPA+CA) over the simple Bi-LSTM model is statistically significant in 

all metrics (p<0.05), suggesting that the attention layers play important roles in the 

model’s improvement. 

The superior performance of AMPlify when cross-validated on the dataset 

provided by AMP Scanner Vr.2 further suggests that the deep neural network 

architecture chosen in AMPlify is better for the task of AMP prediction than the 

architecture of AMP Scanner Vr.2 (Supplementary Note 1, Supplementary Table 2). 

 

Comparison with state-of-the-art methods 

With the set of hyperparameters tuned through stratified 5-fold cross-validation, the 

final model of AMPlify was trained using the entire training set, with each of the five 

sub-models trained on five different subsets. AMPlify, along with its sub-models, were 

compared on our test set with three other state-of-the-art tools: iAMP-2L11, iAMPpred12 
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and AMP Scanner Vr.214 (Table 1). All the tools were evaluated with their original 

trained models reported. AMP Scanner Vr.2 could be trained using third party datasets 

through a utility provided by the authors (personal communication with Daniel Veltri), 

and was re-trained on our training set with two different stopping conditions, as 

previously stated. 

Among the original models of the three comparators, AMP Scanner Vr.2 performs 

the best on our data in general, except that its specificity is 1.31% lower than iAMP-

2L. The accuracy, specificity, F1 score, and AUROC of AMP Scanner Vr.2 were all 

improved after re-training, with only small changes in sensitivity (<0.5%). However, 

results show that AMPlify outperforms all the competing models, including the two 

“re-trained” versions of AMP Scanner Vr.2. AMPlify achieves the highest accuracy 

(93.71%), F1 score (93.66%) and AUROC (98.37%), which beats those “re-trained” 

versions of AMP Scanner Vr.2 by 2.51%, 2.53% and 0.97% respectively. AMPlify also 

shows the highest sensitivity (92.93%) and specificity (94.49%), suggesting that the 

model can concurrently reduce false negative and false positive predictions. 

Further, all five sub-models of AMPlify yield favourable performance in accuracy 

(91.98%–92.57%), specificity (92.34%–93.89%) and F1 score (91.90%–92.57%), 

despite each sub-model being trained on 80% of the entire training set (see Methods). 

The sensitivity values of the five sub-models range from 90.90% to 92.69%, with two 

of them being better than the performance of all comparators, while the remaining three 

being slightly lower than the performance of the “re-trained, 10 epochs” model of AMP 

Scanner Vr.2 (<0.25%). Still, the lower standard deviation values from cross-validation 

analysis indicate that those single sub-models of AMPlify are more robust compared 

with the “re-trained, 10 epochs” model of AMP Scanner Vr.2 (Supplementary Table 1). 

Similarly, our sub-models score higher than the comparators in AUROC, except one of 
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them being on par with the “re-trained, 10 epochs” version of AMP Scanner Vr.2 and 

another scoring lower by 0.13%. The specificity values of the original models of the 

three comparators are relatively low (<70%), likely due to their less stringent selection 

criteria when building their non-AMP sets. The specificity values of AMP Scanner Vr.2 

improved substantially after being re-trained on our strictly selected training set (90.18% 

and 91.98% depending on the number of epochs trained, Table 1), although they are 

still lower than those of all the sub-models and the final ensemble model of AMPlify. 

We have also conducted a cross-comparison of AMPlify with AMP Scanner Vr.2, re-

training and testing our tool on the dataset provided by the AMP Scanner Vr.2 

publication14, which illustrated the improved learning capability of our chosen 

architecture for the task of AMP prediction (Supplementary Note 1, Supplementary 

Table 3, Supplementary Fig. 1). 

In order to compare the classification performance of each tool with regard to 

different classification thresholds, Fig. 2a presents a series of receiver operating 

characteristic (ROC) curves for the models compared. The AUROC results shown in 

Table 1 correspond to these ROC curves. Note that the iAMP-2L online server does not 

allow for parameterization, hence the tool is represented by a single data point. The 

ROC curves indicate that AMPlify is Pareto-optimal in our tests for any classification 

threshold. 

 

AMP discovery 

Previous studies have shown that the skin secretions of amphibians are rich in AMPs, 

which help prevent infection by harmful microorganisms26. For this reason, mining the 

genomes of various frog species for novel AMPs is an attractive proposition. To 

demonstrate AMPlify’s practical application, it was embedded into a bioinformatics 
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AMP discovery pipeline to find novel AMPs from the North American bullfrog (Rana 

[Lithobates] catesbeiana) genome27,28. For antimicrobial susceptibility testing (AST), 

we focus on cationic AMPs acting directly on biological membranes, the activities of 

which can be directly observed in vitro. Most amphibian AMP precursors possess 

highly conserved N-terminal prepro regions and hypervariable C-terminal 

antimicrobial domains26. Based on this, we identified candidate precursors from the 

bullfrog genome using homology search and genome annotation tools. We then derived 

candidate mature sequences from those precursors to use as input for AMPlify. Please 

refer to the Methods section for pipeline details. This resulted in 101 candidate mature 

sequences, which we fed into AMPlify, predicting 75 of them to be putative AMPs. We 

selected peptides between five to 35 amino acids in length with a positive charge for 

further analysis, yielding a final list of 16 peptides (Table 2), five of which were 

previously reported sequences from literature or AMP databases28–30. The remaining 11 

peptides were synthesized and evaluated in vitro. Fig. 2b shows a visualization of 

AMPlify prediction results for the 101 candidate mature sequences. 

 

Antimicrobial susceptibility testing (AST) 

A panel comprised of six bacteria was selected to test candidate AMP sequences 

identified using AMPlify: Staphylococcus aureus ATCC 6538P, Streptococcus 

pyogenes (unknown strain; hospital isolate), Pseudomonas aeruginosa ATCC 10148, 

Escherichia coli ATCC 9723H and ATCC 29522, and a multi-drug resistant (MDR) 

carbapenemase-producing New-Delhi metallobetalactamase (CPO-NDM) Escherichia 

coli clinical isolate. E. coli ATCC 29522 was used as a “wild-type” drug susceptible 

control strain. Results from AST are presented in Table 3. 

The 11 putative AMP sequences were selected for in vitro AST experiments, and 
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four of them had antimicrobial activity against the targets tested: RaCa-1, RaCa-2, 

RaCa-3, and RaCa-7. RaCa-1 was antibacterial against all E. coli strains tested (MIC = 

10–39 µM, MBC = 10–79 µM). RaCa-1 also showed minimal antimicrobial activity 

against S. pyogenes (MIC/MBC ≥ 79 µM) with no observed inhibition against the S. 

aureus and P. aeruginosa isolates. RaCa-2 and RaCa-3 inhibited all bacterial strains 

tested. RaCa-2 possessed the strongest antibacterial activity against S. aureus and E. 

coli isolates, preventing growth of both species of bacteria at concentrations of 1–3 µM 

and 2–6 µM, respectively.  Specifically, this peptide was bactericidal against E. coli 

ATCC 9723H (MIC/MBC = 3–6 µM), with similar activity observed against E. coli 

ATCC 25922 and the MDR E. coli CPO-NDM isolates (MIC/MBC = 2–6 µM). RaCa-

2 was also the only AMP tested to have robust bactericidal action against both of the 

tested Gram-positive bacteria, S. aureus (MIC/MBC = 1–3 µM) and S. pyogenes 

(MIC/MBC = 25–49 µM). Comparably, RaCa-3 was considerably potent in vitro 

against S. pyogenes (MIC = 39 µM, MBC = 39–≥78 µM), P. aeruginosa (MIC = 20–

≥78 µM, MBC = 39–≥78 µM), E. coli (MIC = 2–10 µM, MBC = 2–20 µM), and to a 

lesser extent S. aureus (MIC ≥ 78 µM, MBC = NI). RaCa-7 was active against all strains 

of E. coli (MIC = 6–22 µM, MBC = 6–88 µM), with minimal inhibition of S. aureus 

(MIC ≥ 88 µM, MBC = NI), and no activity against the other two species. Overall, the 

four novel AMP sequences displayed the strongest activity against the tested E. coli 

strains. RaCa-2, RaCa-3, and RaCa-7 all had significant antibacterial action against the 

MDR E. coli (CPO-NDM), each inhibiting bacterial growth at ≤ 10 µM. Of particular 

note, there was little or no observed shift in MIC and MBC values when comparing the 

CPO-NDM E. coli isolate to the ATCC 25922 “wild-type” control strain. 

The positive control peptide LL3728 displayed potent antimicrobial activity 

against all strains of E. coli (MIC = 2–6 µM, MBC = 2–12 µM) and P. aeruginosa (MIC 
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= 4–14 µM, MBC = 7–57 µM). However, this peptide had minimal activity against the 

tested strains of S. aureus and S. pyogenes. The negative control peptide, Tp0751, a 

non-functional truncated section of a Treponema pallidum protein with similar 

characteristics to AMPs31, was inactive against all organisms. 

 

Discussion 

Here we present AMPlify, a robust attentive deep learning model for AMP prediction, 

and demonstrate its utility in identifying novel AMPs with broad antimicrobial 

activities. To the best of our knowledge, AMPlify is the first method to apply attention 

mechanisms inside a deep neural network for this task. It implements ensemble learning 

by partitioning its training set – a novel approach – and outperforms existing machine 

learning methods, including a leading deep learning-based model. The two attention 

mechanisms are inspired by how humans perceive natural language, paying closer 

attention to regions or words of interest in a sentence. We have observed that sub-

models of AMPlify were able to outperform the state-of-the-art methods without 

ensemble learning, and trace the source of this favourable performance to the inclusion 

of attention layers. 

Although machine learning methods in general, and AMPlify in particular, perform 

well in predicting AMPs, their performance can be limited by a paucity of detailed 

AMP sequence data available for training. First, the models do not usually consider the 

potential target microorganisms for the predicted AMPs. Although some methods 

report success at that level of granularity using public data11,12, incomplete and incorrect 

annotations in AMP databases are confounding. Second, the models cannot distinguish 

whether an AMP acts directly on biological membranes and/or by modulating the host 

immunity, since there is no consistently available data on these features. AMPs acting 
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only in the latter mode require separate assays and might differ in activity within 

different species. Third, the size of the training data is still small relative to the data 

typically employed in most deep learning applications. We expect this limitation to be 

gradually alleviated as more AMPs are discovered. Although the size of the training 

data is unlikely to match what is available in natural language processing, image 

classification, and social network analysis domains, to name a few, AMP prediction 

tools can still find practical applications as demonstrated here. 

Using AMPlify, four novel AMPs were identified with proven activity against a 

variety of bacterial isolates. Promisingly, three of the four presented AMPs demonstrate 

antibacterial activity against the MDR E. coli tested, and there was little or no observed 

shift in MIC when comparing the MDR and drug-susceptible strains. This suggests that 

the mechanism-of-action of these AMPs is unlike those used by conventional 

antibiotics. Thus, the AMPs presented in the current study have the potential to be used 

in future drug and clinical development studies as peptide-based substitutes to classical 

antibiotics. Although several candidates identified using this pipeline did not show any 

in vitro activity against the bacteria tested, they still may possess activity against other 

bacterial species or other microorganisms (e.g. fungi, virus), or may demonstrate 

activity in vivo via host immune response modulation. 

Of course, the utility of AMPlify is not limited to discovering AMPs from the 

bullfrog genome, and may also be used to interrogate additional genomes. AMPlify can 

be generically applied to any input sequence. As such, it has the potential to play a role 

in de novo AMP design or enhancement. In conclusion, with their various use cases, we 

foresee tools like AMPlify as being instrumental in expanding the current arsenal of 

antimicrobial agents effective against WHO “priority pathogens”. 
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Methods 

Generation of the datasets 

We used publicly available AMP sequences to train and test AMP predictors. In order 

to build a non-redundant AMP dataset, we first downloaded all available sequences 

from two manually curated databases: Antimicrobial Peptide Database32 (APD3, 

http://aps.unmc.edu/AP) and Database of Anuran Defense Peptides30 (DADP, 

http://split4.pmfst.hr/dadp). Since APD3 is being frequently updated, we used a static 

version that was scraped from the website on March 20, 2019 comprising 3,061 

sequences. Version 1.6 of DADP contains 1,923 distinct mature AMPs. We 

concatenated these two sets and removed duplicate sequences, producing a non-

redundant (positive) set of 4,173 distinct, mature AMP sequences, all 200 amino acid 

residues in length or shorter. 

 Training and testing binary classification models require a negative set, a collection 

of peptides known not to have any antimicrobial activity. Since there are no sequence 

catalogs for peptides devoid of antimicrobial activity, studies in the field typically select 

their non-AMP sequences from UniProt33 (https://www.uniprot.org). This may involve 

excluding several simple keywords (e.g. antimicrobial, antibiotic) to filter out potential 

AMPs10,11, or additionally removing all secretory proteins14 as AMPs are 

characteristically secreted peptides34. The former proposition is not sufficiently 

rigorous, because AMP annotation is not consistent and varies between sources. While 

the former approach may leave in the set some differently annotated AMPs, the latter 

creates a learning gap for the model regarding secretory proteins without antimicrobial 

activities. Thus, it is important to balance these two strategies when selecting non-AMP 

sequences. 
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We designed a rigorous selection strategy for our non-AMP sequences 

(Supplementary Fig. 2), using sequences from the UniProtKB/Swiss-Prot database33 

(2019_02 release), which only contains manually annotated and reviewed records from 

the UniProt database. First, we downloaded sequences that are 200 amino acid residues 

or shorter in length, excluding those with annotations containing any of the 16 

following keywords related to antimicrobial activities: {antimicrobial, antibiotic, 

antibacterial, antiviral, antifungal, antimalarial, antiparasitic, anti-protist, anticancer, 

defense, defensin, cathelicidin, histatin, bacteriocin, microbicidal, fungicide}. Second, 

duplicates and sequences with residues other than the 20 standard amino acids were 

removed. Third, a set of “potential AMP sequences” annotated with any of the 16 

selected keywords were downloaded and compared with our candidate negative set. We 

noted instances where a sequence with multiple functions was annotated separately in 

multiple records within the database, and removed sequences in common between 

candidate non-AMPs and potential AMPs. The candidate non-AMP sequences were 

also checked against the positive set to remove AMP sequences that lack the annotation 

in UniProtKB/Swiss-Prot. Finally, 4,173 sequences were sampled from the remaining 

non-AMP set, matching the number and length distribution of sequences in the positive 

set. An exception to the length distribution matching occurred when the length of a 

particular AMP sequence did not have a perfect match in the set of 128,445 non-AMP 

sequences. In these instances, we chose the non-AMP sequence with the closest length. 

The matched length distributions were selected so that the model did not learn to 

distinguish classes based on sequence lengths. 

The positive and negative sets were both split 80%/20% (3,338/835) into training 

and test sets, respectively. We note that AMP sequences in our test partition have no 

overlap with the training sets of iAMPpred and iAMP-2L, but do share 196 sequences 
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with the training set of AMP Scanner Vr.2. 

 

Model implementation 

AMPlify is implemented in Python 3.6.7, using Keras library 2.2.435 with Tensorflow 

1.12.036 as the backend. The raw output of the model can be interpreted as a probability 

score, thus sequences with scores > 0.5 are considered as AMPs and those ≤ 0.5 as non-

AMPs. We used binary cross-entropy as the loss function, and the “Adam”37 algorithm 

for optimizing weights. Dropout technique38 was applied during training to prevent the 

model from over-fitting. The original positive and negative training sets were both split 

into sets of {667, 667, 668, 668, 668} sequences, and five training and validation set 

pairs were constructed by leaving one set out for validation to build five sub-models. 

To optimize computational time and avoid overfitting, we applied early stopping during 

the training of each sub-model. The validation accuracy was monitored at each training 

epoch, and the training process was stopped if there appeared to be no improvement for 

the next 50 epochs. The model weights from the epoch with the best validation accuracy 

were selected as the optimal weights. The output probabilities from the five sub-models 

were averaged to yield an ensemble model. 

 Reflecting the composition of the sequences in the positive and negative sets, 

AMPlify only considers sequence lengths of 200 or shorter containing the 20 standard 

amino acid residues. The source code for AMPlify and the trained models are available 

at https://github.com/bcgsc/AMPlify.  

 

Hyperparameter tuning and model architecture 

In deep neural networks, the optimal hyperparameters, unlike model weights, cannot 

be learned directly from the training process, but they do play an important role in 
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model performance. Thus, various combinations of hyperparameters must be compared 

in order to select the best set. Here we applied stratified 5-fold cross-validation on the 

entire training set to tune the model and find the best set of hyperparameters for the 

model architecture, as well as for training settings, including dropout rates and 

optimizer settings. For a fair comparison, we kept the same splits of sequences within 

cross-validation across all hyperparameter combinations. During hyperparameter 

tuning, we monitored the average performance on the validation partitions of cross-

validation. Note that these validation partitions within cross-validation are different 

from the validation sets for early stopping, while the latter being additionally derived 

from the training partitions during the cross-validation process. The set of 

hyperparameters with the highest average cross-validation accuracy was chosen to train 

the final prediction model. 

 The AMPlify architecture includes three main components: (1) a bidirectional long 

short-term memory (Bi-LSTM) layer, (2) a multi-head scaled dot-product attention 

(MHSDPA) layer, and (3) a context attention (CA) layer (Fig. 1). To convert the original 

peptides into a mathematically processable format, each sequence is represented by a 

series of one-hot encoded vectors over an alphabet of 20 amino acids, yielding 

!", !$,… , !&, where ' is the length of the sequence and each !( is a 20-dimensional 

vector of zeros and ones with ||!(||" = 1 (, = 1,2,… , '). The Bi-LSTM layer takes 

those one-hot encoded vectors as input and encodes positional information for each 

residue from both forward and backward directions, and the output vector for each 

residue is represented as a concatenation of the vectors from both directions. The best 

tuned dimensionality for each direction of Bi-LSTM layer was 512, resulting in the 

entire Bi-LSTM layer to be ./ = 512 × 2 = 1024 dimensional. Outputs from all 

timesteps of the Bi-LSTM layer are returned as the input for the next layer. The best 
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tuned dropout rate of 0.5 was applied to the input of the Bi-LSTM layer. Encoding from 

the Bi-LSTM layer for residues within a given sequence can be represented as a series 

of vectors 4( ∈ ℝ78  (, = 1,2,… , '), and the entire sequence can be represented as a 

matrix with all 4(s packed as 

9 = (4", 4$, … , 4&)< ∈ ℝ=×78 . 

Next, the MHSDPA layer searches for relations between different residues in > 

different representation subspaces18 (i.e. different attention heads) to further encode the 

sequence, where >  is a hyperparameter to be tuned. Each residue first gets an 

intermediate representation within each head by calculating a weighted average over 

transformed vectors of all residues derived from their Bi-LSTM representations. The 

results from each head are then concatenated and mapped back to the original 

dimensionality. We adopted Vaswani and co-workers’ approach18 to calculate the 

attention weights and outputs for the MHSDPA layer. Different from their approach, 

we added ReLU activation functions and bias terms to all linear transformations, which 

yielded better performance in our AMP prediction task. The implementation was 

adapted from the GitHub repository at https://github.com/CyberZHG/keras-multi-head. 

In further detail, to obtain attention weights for different residues of a sequence 

within a head ?, we calculate a set of queries @A ∈ ℝ=×7B , keys CA ∈ ℝ=×7B	, and 

values EA ∈ ℝ=×7F  by transforming 9 as follows: 

@A = ReLU(9KLM + OL
M
) 

CA = ReLU(9KPM + OP
M
) 

EA = ReLU(9KQM + OQ
M
) 

where KLM,KPM ∈ ℝ78×7B  and KQM ∈ ℝ78×7F  are weight matrices, and OLM =

RST
U
, ST

U
, … , ST

U
V
<
∈ ℝ=×7B , OP

M
= RSW

U
, SW

U
, … , SW

U
V
<
∈ ℝ=×7B  and OQ

M
=
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RSX
U
, SX

U
, … , SX

U
V
<
∈ ℝ=×7F  are bias matrices. We set transformation dimensions as 

.Y = .Z = .//> following what has been previously proposed18. A square matrix 

\A ∈ ℝ=×=, which contains weight vectors to calculate intermediate representations of 

all residues within head ?, is computed as: 

\A = softmax(
@ACA<

d.Y
) 

where dot-product of queries and keys are scaled by a factor e

d7B
, and the softmax 

function is applied to each row of the matrix for normalization. The intermediate 

representation of the sequence within head ? is then computed by: 

fA = (g"
U , g$

U , … , g&
U )< = \AEA ∈ ℝ=×7F  

where each single vector g(U ∈ ℝhF  ( , = 1,2, … , ' ) denotes the intermediate 

representation of each residue of the sequence with dimensionality .Z . The 

concatenated matrix f = Rf=×7F
e , f=×7F

i , … , f=×7F
j V ∈ ℝ=×j7F  is further transformed 

to get the final output of the current layer as follows: 

k = (l",l$,… ,l&)< = ReLU[fKn + On] ∈ ℝ=×78  

where Kn ∈ ℝj7F×78 is a weight matrix and On = (Sp, Sp, … , Sp)< ∈ ℝ=×78  is a 

bias matrix. Each vector l( ∈ ℝh8 (, = 1,2,… , ') denotes the new representation of 

each residue of the sequence with dimensionality ./. The best head number tuned for 

this layer was > = 32, with .Y = .Z = 32 accordingly. 

Finally, the CA layer gathers information from the MHSDPA layer by weighted 

averaging ' encoded vectors into a single summary vector r. We followed Yang and 

co-workers’ approach19, and the implementation was adapted from the GitHub 

repository at https://github.com/lzfelix/keras_attention. The weight vector s ∈ ℝ= 

can be obtained as: 
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s = softmaxR(tanh(kK +O))vV 

where K ∈ ℝ78×78 is a weight matrix, O = (S, S,… , S)< ∈ ℝ=×78  is a bias matrix, 

and v ∈ ℝ78  is a context vector, and the softmax function provides weight 

normalization. The summary vector r ∈ ℝ78  is then computed as: 

r = k<s =wxyl(

=

yze

 

where xy  denotes each component in the weight vector. The summary vector 

summarizes information of the entire sequence into a single vector, and it is passed 

through the output layer with a sigmoid activation function for classification. The best 

tuned dropout rate of 0.2 was applied to the input of the CA layer during training.  

 In addition to the hyperparameters of the model architecture, the hyperparameters 

of the optimizer were optimized through cross-validation. The default setting with a 

learning rate of 0.001 in Keras was found to be the best for the AMP prediction task. 

 

Model evaluation 

The performance of AMPlify was evaluated using five metrics: accuracy, sensitivity, 

specificity, F1 score and area under the receiver operating characteristic curve 

(AUROC). 

The architecture of AMPlify was compared with its simpler variations with fewer 

hidden layers using stratified 5-fold cross-validation on the training set to measure the 

value added by each layer as the architecture grew more complex. The final version of 

AMPlify trained on the entire training set, as well as its five sub-models, were compared 

with three other tools: iAMP-2L11, iAMPpred12 and AMP Scanner Vr.214, on the test 

set we built. All comparators were evaluated with their original models online. 

In addition, as the only comparator with methods for re-training, AMP Scanner 
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Vr.2 was cross-validated and re-trained on our training set for a more fair comparison. 

Since our dataset is slightly different from those used by other methods, the number of 

epochs required to get a deep learning model well trained on different datasets might 

differ. Keeping all other hyperparameters the same as the original model, we cross-

validated and re-trained AMP Scanner Vr.2 with two different stopping settings: using 

the optimal fixed number of epochs as reported14, and using early stopping. 

 

AMP discovery pipeline 

A primarily homology-based approach was used to supply novel candidate AMP 

sequences to AMPlify for further evaluation. The pipeline and its results are 

summarized in Supplementary Fig. 3 and are detailed below. 

Sequences matching the search phrase “((antimicrobial) AND precursor) AND 

amphibian” were downloaded from the NCBI Nucleotide database on January 4th, 2016 

and aligned to the draft bullfrog genome27 (version 3) using GMAP39 (version 

20170424) with the following parameters: -A --max-intronlength-ends=200000 -O -

n20 --nofails. 

To refine the putative AMP loci, the gene prediction pipeline MAKER240 (version 

2.31.8 running under PERL version 5.24.0 with augustus41 version 3.2.1, exonerate42 

version 2.2.0, genemark43 version 2.3c, and snap44 version 2006-07-28) was applied to 

the 231 genomic scaffolds with alignment hits from GMAP using default settings. The 

MAKER2 pipeline can use orthogonal evidence from related protein or transcript 

sequences when available to generate a list of high confidence genes. Protein evidence 

consisted of three sets of sequences: sequences matching the search phrase 

“((antimicrobial) AND precursor) AND amphibian” from the NCBI protein database 

that were downloaded on December 31st, 2015; experimentally validated non-synthetic 
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amphibian antibacterial peptide sequences downloaded from CAMP9 on March 4th, 

2016; and sequences from APD332 downloaded on September 29th, 2017. For transcript 

evidence, the set of cDNA sequences supplied to GMAP above was supplemented with 

selected bullfrog transcript sequences from the Bullfrog Annotation Reference for the 

Transcriptome27 (BART). Blastn45 (version 2.31.1) was used to align the initial cDNA 

sequences from NCBI to BART, and BART sequences with an alignment of greater 

than 90% identity and 100% coverage were selected. A custom repeat element library 

was constructed from predicted repeats previously identified in the bullfrog genome27 

and supplied to MAKER2 for use by RepeatMasker46. The annotation pipeline was run 

with the snap hidden Markov model that produced the version 2 bullfrog gene 

predictions27. 

The MAKER2 gene predictions were filtered in two stages. First, sequences 

containing the highly conserved lysine-arginine enzymatic cleavage motif were 

selected and the sequence of the putative mature peptide, produced via in silico 

cleavage at the C-terminal side of the cleavage motif, was extracted. Second, only 

putative mature sequences of 200 amino acid residues or less were included. Sequences 

with non-standard amino acid residues were excluded. The resulting peptide sequences 

from these filters were fed into AMPlify for prediction. From the predicted putative 

AMPs, only short cationic sequences with lengths between five and 35 amino acid 

residues were chosen for synthesis and validation in vitro. 

 

Antimicrobial susceptibility testing (AST) 

The 11 novel candidate AMP sequences predicted by AMPlify were selected for 

validation in vitro. Minimum inhibitory concentrations (MIC) and minimum 

bactericidal concentrations (MBC) were obtained using the AST procedures outlined 
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by the Clinical and Laboratory Standards Institute (CLSI)47, with the recommended 

adaptations for testing cationic AMPs described by R.E.W. Hancock48. We prioritized 

short cationic sequences as shorter sequences are more structurally stable in various 

environments (e.g. in vitro and in vivo)49 lending to better therapeutic applicability. 

Bacterial isolates 

A panel of two Gram-positive and four Gram-negative bacterial isolates was 

generated to test predicted AMPs. Staphylococcus aureus ATCC 6538P, Streptococcus 

pyogenes (hospital isolate, unknown strain), Pseudomonas aeruginosa ATCC 10148, 

and Escherichia coli ATCC 9723H were obtained and tested at the University of 

Victoria. Additionally, a multi-drug resistant (MDR), carbapenemase-producing New-

Delhi metallobetalactamase (CPO-NDM) clinical isolate of Escherichia coli was 

obtained from the BC Centre for Disease Control. E. coli ATCC 29522 was purchased 

from Cedarlane Laboratories (Burlington, Ontario, Canada) for comparison of AMP 

activity between a “wild type”, drug-susceptible control and the MDR strain. The latter 

two strains were tested at the BC Centre for Disease Control using identical AST 

procedures. 

Determination of MIC 

Bacteria were streaked onto nonselective nutrient agar from frozen stocks and 

incubated for 18–24 hours at 37oC. To prepare a standardized bacterial inoculum, 

isolated colonies were suspended in Mueller-Hinton Broth (MHB) and adjusted to an 

optical density of 0.08–0.1 at 600 nm, equivalent to a 0.5 McFarland standard and 

representing approximately 1–2 × 108 CFU/mL. The inoculum was diluted 1/250 in 

MHB to the target concentration of (5 ± 3) × 105 CFU/mL. Total viability counts from 

the final inoculum were examined to confirm the target bacterial density was obtained.  

Selected candidate AMPs were purchased from Genscript (Piscataway, NJ), where 
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they were synthesized using the vendor’s Flexpeptide platform. Lyophilized peptides 

were suspended in sterile ultrapure water or filter-sterilized 0.2% acetic acid as 

recommended by solubility testing reports provided with the GenScript synthesis. 

AMPs were diluted from 2560 to 5 µg/mL by a two-fold serial dilution in a 96-well 

polypropylene microtitre plate before 100 µl of the standardized bacterial inoculum of 

(5 ± 3) × 105 CFU/mL was added to each well. This generated a final test range of 256 

to 0.5 µg/mL. MIC values were reported as the peptide concentration that produced no 

visible bacterial growth after a 16–24 hour incubation at 37oC. 

Determination of MBC 

For each AMP dilution series the contents of the MIC well and the two adjacent 

wells containing two- and four-fold MIC were plated onto nonselective nutrient agar 

and incubated for 24 hours at 37oC. The concentration which killed 99.9% of the initial 

inoculum was determined to be the MBC. 
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Figures 

 

 

Figure 1: Model architecture of AMPlify. Residues of a peptide sequence are 

one-hot encoded and passed to three hidden layers in order: the bidirectional long 

short-term memory (Bi-LSTM) layer, the multi-head scaled dot-product attention 

(MHSDPA) layer and the context attention (CA) layer. The output layer generates 

the probability that the input sequence is an AMP. 
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Figure 2: Visualization of AMPlify model performance and the AMP discovery 

pipeline application results. (a) Receiver operating characteristic (ROC) curves of 

AMPlify and competing models are plotted, with round dots marking the 

performance at the threshold of 0.5. The iAMP-2L online server only output labels 

of AMP/non-AMP without the corresponding probabilities, so it appears as a single 

point on the plot. (b) AMPlify prediction scores against peptide lengths of 101 

sequences analyzed by AMPlify. Inset shows amplified view of the upper left region 

of the plot to enhance visualization of the majority of the selected sequences. 
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Tables 

Table 1: Performance comparison among different tools on the test set. Performance of different tools are presented with five metrics in 

percentage: accuracy (acc), sensitivity (sens), specificity (spec), F1 score (F1) and area under the receiver operating characteristic curve (AUROC).  

Tool Model Acc Sens Spec F1 AUROC 
iAMPpred originala 74.01 87.90 60.12 77.18 80.70 
iAMP-2L originala 77.96 88.26 67.66 80.02   - 
AMP 
Scanner 
Vr.2 

originala 78.50 90.66 66.35 80.83 88.33 
re-trained, 10 epochsb 90.66 91.14 90.18 90.70 97.40 
re-trained, early stoppedc 91.20 90.42 91.98 91.13 97.03 

AMPlify 

sub-model 1 92.40 90.90 93.89 92.28 97.54 
sub-model 2 91.98 91.02 92.93 91.90 97.40 
sub-model 3 92.51 92.69 92.34 92.53 97.82 
sub-model 4 92.10 90.90 93.29 92.00 97.27 
sub-model 5 92.57 92.57 92.57 92.57 97.98 
ensemble 93.71 92.93 94.49 93.66 98.37 

aOriginal models refer to the models presented in the original referenced papers and are available through online servers. 
bThe best hyperparameter as stated in the paper. 
cThe optimal number of training epochs determined by early stopping is 16. 
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Table 2: Putative and reported AMP sequences discovered from Rana [Lithobates] catesbeiana. Genomic and transcriptomic resources from 

Rana [Lithobates] catesbeiana27 were mined using the AMP discovery pipeline based on AMPlify. Top-scoring peptide sequences were selected 

for synthesis and validation in vitro. 

Peptide Name Sequence # aa Net chargea MW (Da) AMPlify Score 
RaCa-1 GLLDIIKTTGKDFAVKILDNLKCKLAGGCPP 31 2 2906.52 1.0000 
RaCa-2 FFPIIARLAAKVIPSLVCAVTKKC 24 4 3395.02 1.0000 
Ranatuerin-2PRc* AFLSTVKNTLTNVAGTMIDTFKCKITGVC 29 2 3242.93 1.0000 
Temporin-1Cb*+ FLFPLITSFLSKFLGK 16 2 2589.28 1.0000 
Palustrin-Ca* GFLDIIKDTGKEFAVKILNNLKCKLAGGCPP 31 2 3269.95 1.0000 
Ranatuerin-2RC* GLFLDTLKGAAKDVAGKLLEGLKCKITGCKP 31 3 2872.59 1.0000 
RaCa-3 GLWETIKTTGKSIALNLLDKIKCKIAGGCPP 31 3 2463.11 1.0000 
Ranatuerin-2C* GVFLDTLKGLAGKMLESLKCKIAGCKP 27 3 2653.33 0.9999 
RaCa-4 FLTFPGMTFGKLLGK 15 2 4493.32 0.9997 
RaCa-5 GLLDIIKDTGKTTGILMDTLKCQMTGRCPPSS 32 1 2906.52 0.9996 
RaCa-6 ATAWRIPPPGMQPIIPIRIRPLCGKQ 26 4 3395.02 0.9994 
RaCa-7 FFPRVLPLANKFLPTIYCALPKSVGN 26 3 3242.93 0.9985 
RaCa-8 FPAIICKVSKNC 12 2 2589.28 0.9961 
RaCa-9 FYFPVSRKFGGK 12 3 3269.95 0.9412 
RaCa-10 ALVAKIQKFPVFNTLKLCKLELEII 25 2 2872.59 0.6063 
RaCa-11 SNRDFFKVNIFRLCG 15 2 2463.11 0.6058 

*Previously reported amphibian peptide sequences28–30. 
+Previously reported as a full-length AMP precursor sequence. Uniprot ID: C5IB07. 
aNet charge at pH = 7. 
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Table 3: Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of selected AMP candidates 

following antimicrobial susceptibility testing (AST) in vitro. Candidate antimicrobial peptides were synthesized and purchased from Genscript. 

AST, and MIC/MBC determination was performed as outlined by the Clinical and Laboratory Standards Institute (CLSI)47, with modification as 

recommended by R.E.W. Hancock48. Data is presented as the lowest effective peptide concentration range (µM) observed in three independent 

experiments. LL37, human cathelicidin and a peptide from Tp0751 from T. pallidum were used as the positive and negative control peptides28, 

respectively. 

 S. aureusa
 

ATCC 6538P 
S. pyogenesb P. aeruginosaa 

ATCC 10148 
E. colia 
ATCC 9723H 

E. colic  
ATCC 25922 

MDR E. colid 
(CPO-NDM) 

 Gram-positive Gram-positive Gram-negative Gram-negative Gram-negative Gram-negative 

(µM) MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC 
RaCa-1 NI NI 79 ≥ 79 NI NI 20 – 39 39 – 79 10 – 20 10 – 39 19 – 39 19 – 39 

RaCa-2 1 – 3 1 – 3 25 – 49 25 – 49 25 – 49 49 – ≥ 99 3 – 6 3 – 6 2 – 6  2 – 6 2 – 6 2 – 6 

RaCa-3 ≥ 78 NI 39 39 – ≥ 78 20 – ≥ 78 39 – ≥ 78 5 – 10 5 – 10 2 – 5  2 – 5 5 – 10 5 – 20 

RaCa-4 NI NI NI NI NI NI NI NI — — — — 
RaCa-5 NI NI NI NI NI NI NI NI NI NI NI NI 

RaCa-6 NI NI NI NI NI NI NI NI NI NI NI NI 

RaCa-7 ≥ 88 NI NI NI NI NI 11 – 22 11 – 88 6 6 6 6 

RaCa-8 NI NI NI NI NI NI NI NI NI NI NI NI 

RaCa-9 NI NI NI NI NI NI NI NI — — — — 
RaCa-10 NI NI NI NI NI NI NI NI NI NI NI NI 

RaCa-11 NI NI NI NI NI NI NI NI — — — — 
LL37 ≥ 78 NI NI NI 4 – 14 7 – 57 3 – 6 6 – 12 2 – 4 2 – 4 2 – 4 2 – 4 

Tp0751 NI NI NI NI NI NI NI NI NI NI NI NI 
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aBacteria obtained and tested at the University of Victoria. 
bUnknown strain; hospital isolate. 
cATCC quality control strain #25922 purchased from Cedarlane Laboratories (Burlington, Ontario, Canada). 
dClinical isolate obtained and tested at the British Columbia Centre for Disease Control. 
NI, no inhibition observed in vitro.  
‘—’ = not tested.  
Abbreviations: Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli; ATCC, American Type Culture 
Collection; CPO, carbapenemase-producing organism; MDR, multi-drug resistant; NDM, New-Delhi Metallo-beta-lactamase. 


