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1 Abstract 

The identification of pleiotropic loci and the interpretation of the 

associations at these loci are essential to understand the shared etiology of 

related traits. A common approach to map pleiotropic loci is to use an 

existing meta-analysis method to combine summary statistics of multiple 

traits. This strategy does not take into account the complex genetic 

architectures of traits such as genetic correlations and heritabilities. 

Furthermore, the interpretation is challenging because phenotypes often have 

different characteristics and units. We propose PLEIO, a summary-statistic-

based framework to map and interpret pleiotropic loci in a joint analysis of 

multiple traits. Our method maximizes power by systematically accounting for 

the genetic correlations and heritabilities of the traits in the association 

test. Any set of related phenotypes, binary or quantitative traits with 

differing units, can be combined seamlessly. In addition, our framework 

offers interpretation and visualization tools to help downstream analyses. 

Using our method, we combined 18 traits related to cardiovascular disease and 

identified 20 novel pleiotropic loci, which showed five different patterns of 

associations. Our method is available at https://github.com/hanlab-SNU/PLEIO.  

2 Introduction 

Recent genome-wide association studies (GWAS) have shown that some genetic 

variants are associated with multiple traits, a phenomenon called 

pleiotropy1,2. The identification of pleiotropic loci is important to 

understand the shared etiology of the related traits and to find common drug 

targets. To identify pleiotropic loci, several studies proposed multi-trait 

analyses that combine summary statistics of multiple traits into one3-5. Due to 
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the similarity of this task with meta-analysis, studies have employed meta-

analysis methods6-9. Another category of multi-trait analyses is to maximize 

power for a single trait by incorporating other traits as prior information10-

13. In this study, we focused on the former, the joint analysis of multiple 

traits. 

Applying an existing meta-analysis method to multi-trait analyses is not 

optimal for several reasons. First, the meta-analysis methods completely 

ignore the genetic architectures of the traits. The magnitude and direction 

of the genetic correlations suggest the expected pattern of the genetic 

effects for multiple traits. The heritabilities suggest the expected 

strengths of the genetic effects for multiple traits. Therefore, a lot of 

information resides in the genetic architecture, which can help map 

pleiotropic loci. Second, the meta-analysis methods depend on the scales and 

units of the phenotypes. The units often differ among quantitative traits, 

and the effect size definitions differ between binary and continuous traits. 

Most meta-analysis methods directly use the raw numbers of effect sizes as 

input, so they are not optimal for analyzing heterogeneous traits. For the 

same reason, interpretation tools such as the forest plot14 or m-value15 are 

less useful. Third, environmental correlations exist among traits collected 

from the same individuals. Without systematically correcting for 

environmental correlations, a naïve application of meta-analysis methods can 

inflate false positives.  

Here, we propose an optimized multi-trait method to map and interpret 

pleiotropic loci called PLEIO (Pleiotropic Locus Exploration and 

Interpretation using Optimal test). As with meta-analysis methods, our method 

uses only summary statistics. Our method starts by estimating the genetic 

correlations, environmental correlations, and heritabilities from the whole-
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genome summary statistics. We then standardize the effect sizes of 

heterogeneous traits, converting the effect sizes of binary traits to effect 

sizes for liabilities. An advantage of the standardization is that the 

analysis and interpretation become independent of the phenotypic units. 

Another advantage is that heritabilities can suggest the expected strengths 

of the effect sizes of a pleiotropic locus under the standardized scale. We 

have developed an optimized association test that takes into account both the 

genetic correlations and heritabilities to maximize power. Our test is a 

variance component test to check non-zero variance of the random genetic 

effect, where we model the genetic effect to follow the genetic covariance. 

Our test correctly controls the false positive rate by accounting for the 

environmental correlations. To increase efficiency in finding the maximum 

likelihood estimate, we developed an optimization technique using the 

spectral decomposition of the variance. Even with this technique, obtaining 

the p-value is computationally challenging because the small number of traits 

induce small sample problem. We overcome this challenge by implementing an 

importance sampling method that shortens the computation time for combining 

100 traits to 1 day.  

Real data analyses and simulations show that PLEIO is powerful for 

identifying pleiotropic loci. Unlike other methods that performed well under 

specific situations, PLEIO was consistently powerful in all scenarios because 

it learned the genetic architecture from data and optimized itself to that 

situation. In addition to the powerful association test, PLEIO offers tools 

for the interpretation and visualization of the pleiotropic loci. We used 

PLEIO to combine 18 traits related to cardiovascular disease and identified 

20 novel pleiotropic loci. These loci were categorized into five groups based 

on their association patterns, which may represent distinct pathways. PLEIO 

is freely available at https://github.com/hanlab-SNU/PLEIO.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.155879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155879


 

3 Results 

3.1 Overview of Method 

PLEIO is a multi-trait framework to map and interpret pleiotropic loci 

(Figure 1). Assume a toy example that combines three traits (A, B, and C) 

(Supplementary Figure 1). At SNP �1, we observed the effect sizes (betas) of 

(2.2, 2.8, -1.2), and at another SNP �2, we observed the effect sizes of (-1.5, 

0.4, -2.7). We assume that the variances of all estimates were identical. 

Then, if we apply the fixed effects meta-analysis (inverse-variance method), 

we get the same p-value for both SNPs (P=0.03) because the average beta is 

the same. However, suppose we know that traits A and B have a positive 

genetic correlation, and trait C has a negative genetic correlation with the 

rest. Then, SNP �1 is more likely to be a true signal than SNP �2 because the 

effect directions conform to the genetic correlations. Moreover, suppose we 

know that trait B has the greatest heritability and trait C has the smallest 

heritability. Then, the association at SNP �1 is even more likely because the 

relative strengths of the effect size conform to the heritabilities. Our 

method accounts for both the genetic correlations and heritabilities and 

gives a more significant p-value at SNP �1 (P= 0.0006) than SNP �2 (P=0.1).  

PLEIO consists of five steps. First, we apply the linkage disequilibrium (LD) 

score regression to the genome-wide summary data of traits to obtain the 

genetic correlations �� and the heritabilities ��. We summarize �� and �� into 

the genetic covariance �. It is not obvious how to estimate the environmental 
correlation �� , so we propose a strategy for that. Second, we transform the 
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effect sizes ��  into the standardized effect sizes �� , converting the effect 
sizes of binary traits to the effect sizes for liabilities. Third, we apply 

our variance component test to map pleiotropic loci. We assume �� 	 
 � � where 
 
is the genetic effect and  �  is the error. Our main assumption is that the 
genetic effects follow the genetic covariance, Var�
� 	 �2�. We then test the 

hypothesis �2 � 0 versus �2 	 0. To find the maximum likelihood estimate (MLE) of 
�2  efficiently, we utilize an optimization technique using spectral 

decomposition of the variance. Fourth, we apply an importance sampling method 

to assess the p-value. Fifth, we report and visualize the results to help 

interpretation.   

 

3.2 Evaluation of False positive rates 

We evaluated the false positive rate (FPR) of PLEIO using simulations. We 

assumed the null hypothesis of no genetic effect at a SNP for � traits. There 
can be different situations under the null hypothesis. For example, the � 
statistics can be independent or correlated due to environmental correlations 

( �� ), which reflect sample overlap, or the input parameter information for 

PLEIO, namely the heritability and genetic correlation estimates, can differ. 

Overall, we varied four factors: (1) the number of traits ( � ), (2) the 

environmental correlation matrix ( �� ), (3) the heritability parameter for 

PLEIO (��), and (4) the genetic correlation parameter for PLEIO (��).  

Specifically, we adopted three different numbers of traits (T= 5, 10, and 20). 

We assumed that the sample overlap may or may not exist and set the non-

diagonals of ��  to 0.5 in the former and 0 in the latter. We assumed two 

different patterns for the input parameter ��. In the “equal ��” situation, we 
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assumed the same heritability input ( h2 	 0.5 ) for all traits. In the 

“different ��” situation, we assumed a linearly increasing heritabilities from 

h2 	 0.1 to 0.5. We assumed two different patterns for the input parameter ��. In 

the “uniform ��” situation, the non-diagonals of �� were all set to 0.3. In the 
“partitioned ��” situation, we assumed two subgroups and set non-diagonals to 

0.3  within a group and 0 between groups. Thus, we tested 24 different 

situations ( 3 � 2 � 2 � 2 ). We generated one million null datasets per each 

situation and calculated FPR at α 	 0.05. Supplementary Table 1 shows that FPR 
of PLEIO is well calibrated in all situations.  

Next, we examined FPR at a lower threshold. We increased the number of null 

datasets to a billion to measure FPR at the conventional GWAS threshold 

(5 � 10�8). We tested three numbers of traits (� 	  5, 10, and 20) while assuming the 
equal ��, partitioned ��, and no sample overlap. Supplementary Table 2 shows 

that PLEIO’s FPR is well calibrated for α down to 5 � 10�8. See Supplementary Note 

for a detailed explanation for the observed effect size generation.  

 

3.3 Power simulations 

We compared the power of PLEIO against three meta-analysis approaches: the 

Lin-Sullivan method (LS)16, RE2C6, and ASSET9. LS is a generalization of the 

fixed effects model, and RE2C is a generalization of the Han-Eskin random 

effects model15. ASSET is a subset-based method assuming that the true effects 

could only exist in a subset of the studies. All these methods can take into 

account the environmental correlations due to sample overlap. We confirmed 

that FPRs were well calibrated with each method (Supplementary Table 3).  
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We assessed the power of the methods in various simulation settings. Each 

setting defined a specific genetic correlation structure ��, heritabilities ��, 

phenotypic units ( % ), and the types of traits (quantitative (Q) or binary 

(B)). In each setting, we assumed � 	 7 traits and repeated simulations 10,000 
times. See Supplementary Note for a detailed explanation for the observed 

effect size generation. 

First, we assumed a fixed heritability and very high correlations ( '2 	 0.99) 
among the 7 traits. This represents the situation in which the same traits 

were collected in multiple studies. In this situation, all methods performed 

similarly well except ASSET (Figure 2A). With a sample size of ) 	 50,000, the 
powers of PLEIO, LS, and RE2C were 64.9%, 64.8%, and 63.9%. It was natural 

that LS performed well because LS is optimized for the fixed-effect situation. 

PLEIO also performed similarly, because PLEIO learns the high genetic 

correlations from data and adjusts itself to the situation.  

Second, we assumed different heritabilities for 7 traits, varying from 0.001 

to 0.7. We assumed a uniform genetic correlation ' 	 0.5 between all trait pairs. 
In this situation, PLEIO outperformed the others (Figure 2B). With a sample 

size of ) 	 50,000 , PLEIO achieved a power of 84.9%, while the second best 
method (RE2C) achieved 80.6% and the third best method (LS) achieved 49.4%. 

PLEIO achieved high power because PLEIO can take into account different 

heritabilities of the traits.   

Third, we assumed a block structured correlation pattern. We divided 7 traits 

into two groups (3 traits and 4 traits). We set the correlations in the first 

group to 0.95 and the correlations in the second group to 0.9. We set the 

correlations between the groups to a negative value of -0.9. We assumed a 

uniform heritability of 0.26 for all traits. PLEIO showed the highest power 
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among all methods (Figure 2C). With a sample size of ) 	 50,000, PLEIO achieved 
a power of 76.3%, while the second best method (RE2C) achieved 72.7% and the 

third best method (LS) achieved 48.3%. PLEIO achieved high power because 

PLEIO can take into account the genetic correlation structure of the traits.   

Fourth, we assumed a mixture of quantitative and qualitative traits. We 

assumed 4 quantitative traits and 3 binary traits. For quantitative traits, 

we assumed different phenotypic units ranging from 0.1U to 10U. We assumed a 

fixed heritability and a uniform genetic correlation for all traits. Again, 

PLEIO achieved the highest power. With a sample size of ) 	 50,000 , PLEIO 

achieved a power of 89.6%, while the second best method (RE2C) achieved 80.2% 

and the third best method (ASSET) achieved 46.5%. PLEIO achieved high power 

because PLEIO can systematically combine heterogeneous traits by 

standardizing the effect sizes.  

So far, we varied only one factor in each simulation: different 

heritabilities, a complex pattern of genetic correlations, and different 

phenotypic units. In reality, all three can occur together. We simulated such 

a combined situation and found that the power gain was the greatest. PLEIO 

achieved a power of 71.0%, while the power of the second best method (RE2C) 

was only 56.6% (Supplementary Figure 2). The power increased by a quarter, 

which can be interpreted to mean that in this specific situation 50 instead 

of 40 loci can be found with our method. 
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3.4 Joint analysis of multiple traits related to Cardiovascular 

disease 

We applied PLEIO to identify pleiotropic loci associated with traits related 

to cardiovascular disease (CVD). To this end, we collected summary statistics 

of 18 traits from multiple consortia (Supplementary Table 4). We selected 12 

binary traits from the Neale lab’s UK Biobank GWAS results 

(http://www.nealelab.is/uk-biobank, Supplementary Table 5) by searching 

with the terms: heart, hypertension, obesity, lipoproteins, cholesterol, and 

diabetes. We collected 4 lipid traits from the Global Lipid consortium17, 1 

binary trait (coronary artery disease) from the CARDIoGRAM+C4D consortium18, 

and 1 trait (fasting glucose) from the MAGIC (Meta-Analysis of Glucose and 

Insulin-related traits Consortium)19. In total, we collected 13 binary and 5 

quantitative traits. See Online Methods for details of the trait selection. 

Quantitative traits had differing units. Lipid traits had the unit of mg/dl, 

whereas the fasting glucose had the unit of mmol/l17,19. We used 1,777,412 

imputed SNPs overlapping among all datasets. These traits showed differing 

heritabilities and non-zero genetic and environmental correlations 

(Supplementary Figure 3).  

PLEIO identified 618 GWAS top hits (Figure 3 and Supplementary Table 6). 

Among those, we found 20 independent novel variants. These had no known 

associations to CVD traits and were not significant in each single study 

(Supplementary Table 7). The local Manhattan plots of these loci are shown in 

Supplementary Figure 4. We used the Variant Effect Predictor (VEP v.97.2) in 

ENSEMBL GRCh37 and obtained the annotations of these variants. The 20 

variants included 10 intronic variants, 4 intergenic variants, 2 downstream 

gene variants, 1 upstream gene variant, 1 5-prime UTR variant, 1 missense 

variant, and 1 non-coding transcript exonal variant. The 618 top hits 
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included 368 intronic variants, 113 intergenic variants, 37 upstream gene 

variants, 27 downstream variants, 23 3-prime UTR variants, 21 missense 

variants, 12 non-coding transcript exon variants, 11 synonymous variants, and 

6 5-prime UTR variants. The detailed annotations are in Supplementary tables 

8 and 9. Figure 3A shows a circular plot whose radial position indicates the 

genomic position, and the heights of the points are the statistical 

significances of the variants. Using the 618 top hits, we performed an 

additional analysis with DAVID v.6.8. Given the list of genes obtained by VEP, 

we used DAVID to search for the presence of known trait-gene associations 

based on the Genetic Association Database (GAD, Supplementary table 10). We 

curated the reported trait-gene associations into 8 categories: Coronary 

artery disease, Fasting glucose, Hypertension, Diabetes, High density 

lipoprotein, Low density lipoprotein, Total Cholesterol, and Total glycerides. 

That is, we categorized the variants into 8 groups based on the trait 

category of the known association. We visualized the results in the inner 

circle of Figure 3A, where each ribbon indicates a pair of genes in the same 

phenotypic category. Figure 3B shows the Manhattan plot of the PLEIO 

association results. We also compared the results of PLEIO to the original 

summary statistics using a mirrored Manhattan plot (Supplementary Figure 5). 

For a detailed description of this analysis, see Online Methods. 

 

3.5 Interpretation of the PLEIO analysis results 

We visualized the multi-trait associations of each locus using a circular 

plot, which we call pleiotropy plot. The pleiotropy plot includes the local 

Manhattan plot and the bar plot of the standardized effect sizes. The inner 

ribbons show the genetic correlations as colors and the explained 

heritabilities by the locus as widths. We drew pleiotropy plots of the 20 
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novel variants we identified (Figure 4 and Supplementary Figure 6). Based on 

the patterns observed in these plots, we categorized the 20 variants into 

five groups, which may imply distinct underlying pathways (Figure 5).  

The first group had associations driven by seven binary traits: 6 traits from 

the UK Biobank (acute myocardial infarction, myocardial infarction, heart 

attack, major coronary heart disease, coronary atherosclerosis, and ischemic 

heart disease) and one trait (coronary artery disease) from CARDIoGRAM+C4D. 

These seven traits showed high genetic correlations (Figure 5). The variants 

showing this pattern were rs12073392 in the FAM1777B gene (1q41), rs3772800 

near the AC022336.2 gene (3q21.2), rs13134800 near the LINC02502 gene (4q27), 

rs1467311 near the AL162389.1 gene (9q31.2), rs8014986 in the HHIPL1 gene 

(14q32.2), and rs2070783 near the PECAM1 gene (17q23.3).  

The second group had associations driven by lipid phenotypes (triglycerides, 

low density lipoprotein; LDL, high density lipoprotein; HDL, and total 

cholesterol). The variants showing this pattern were rs6456349 in the E2F3 

gene (6p22.3), rs2936507 in the AGPAT5 gene (8p23.1), rs636049 in the MRPL21 

gene (11q13.3), rs1688030 in the HPN gene (19q13.11), and rs4823054 in the 

ASCC2 gene (22q12.2). These variants showed differing associations to the 

lipid phenotypes. rs6456349 showed the strongest associations to the total 

cholesterol and HDL. rs636049 showed the strongest associations to HDL and 

triglycerides. rs1688030 showed the strongest associations to the 

triglycerides and the total cholesterol. rs4823054 showed the strongest 

association to LDL and total cholesterol. rs2936507 showed similar strengths 

of associations to the triglycerides, LDL, HDL, and total cholesterols.  

The third group had associations driven by both the coronary artery disease 

and the lipid phenotypes. The variants showing this pattern were rs10026790 

in the TRMT10A gene (4q23), rs4074793 in the ITGA1 gene (5q11.2), rs2237659 
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in the COG5 gene (7q22.3), and rs4393438 in the RASA3 gene (13q34). All four 

SNPs showed an association �* + 0.0001� to LDL.  
The fourth group had associations with lipid phenotypes and a moderate 

association with myocardial infraction. The variants showing this pattern 

were rs10733608 in the AKNA gene (9q32) and rs12787728 in the TNKS1BP1 gene 

(11q12.1). Both variants showed associations with HDL and total cholesterol 

�* + 0.0001� but not with LDL and triglycerides.  
The fifth group was the variants that were not categorized to the four 

aforementioned groups. The variants in this group were rs876320 near the 

FGFBP1 gene (4p15.32), rs2891902 near the RPL35AP19 gene (8q24.12), and 

rs1039119 in the AC106729.1 gene (16q23.1). rs2891902 showed the strongest 

association to the obesity �* + 0.001�  and weak associations to the type 2 

diabetes and hypertensions. rs1039119 and rs876320 were interesting because 

their associations to all traits were weak �* � 0.01� . The strongest 

associations of rs1039119 were to coronary atherosclerosis �* 	 0.02� and 

triglycerides �* 	 0.08� . However, this SNP’s effect size directions to the 

seven binary traits in the first group were all concordant to the genetic 

correlations of these traits. The strongest associations of rs876320 were to 

acute myocardial infarction �* 	 0.01� , myocardial infarction �* 	 0.04� , and 

heart attack �* 	 0.04�. This SNP’s effect size directions to these three traits 
were all concordant to the genetic correlations. Thus, PLEIO seems to have 

captured the aggregate information in multiple weak associations by 

considering the fact that the effect size directions were concordant to the 

genetic correlations.  
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4 Discussion 

We proposed PLEIO, a framework to identify and interpret pleiotropic loci 

using summary statistics of multiple traits. PLEIO increased the statistical 

power using two strategies. First, we modeled the genetic correlations and 

heritabilities in our variance component test. Second, we took into account 

the differences in effect size scales and units among traits. Our method 

offers interpretation and visualization tools to help understand shared 

association patterns of pleiotropic loci.   

To increase the efficiency, we applied two techniques: the maximum likelihood 

estimation using the spectral decomposition of the variance, and the 

importance sampling method. Using these approaches, PLEIO can combine 100 

traits with a million SNPs in one day using a single CPU. Thus, any 

researchers with minimal computing power could utilize our method with ease.  

Our method is general and includes other previous meta-analysis methods as 

special cases. If we set the genetic covariance matrix to a matrix of ones 

and the environmental correlations to zero, the test is approximately 

equivalent to the fixed effects meta-analysis method. If we assume 

environmental correlations, the test is approximately equivalent to the Lin-

Sullivan method16. If we set the genetic covariance matrix to an identity 

matrix and the environmental correlations to zero, the resulting test is 

similar to the heterogeneity test in the Han-Eskin random effects model15. If 

we set the genetic covariance matrix to an identity matrix and assume 

environmental correlations, the resulting test is similar to the 

heterogeneity test in the RE2C framework6. A difference of PLEIO is that, 

unlike other methods optimized for specific situations, it learns the genetic 

covariance and the environmental correlations from data and adjusts itself to 
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that situation. For example, if we have a collection of the studies for the 

same trait, PLEIO will learn this information and act as if it were a fixed 

effects meta-analysis method.  

There can be various sources for the genetic correlations. When we combine 

the same traits, the genetic correlations will be nearly perfect. When we 

combine different traits, we will observe imperfect genetic correlations or 

even negative genetic correlations. Another situation is that we combine the 

same traits from multiple ethnicities. In this situation, the genetic 

correlation is usually imperfect and positive (0 + '� + 1). Recent methods can 
estimate genetic correlations across different populations by accounting for 

the ethnic differences of LD20,21. We can use these methods to estimate '� for 

the PLEIO analysis, if the traits come from multiple populations. 

In a multi-trait analysis, we must decide which traits should be included. 

Selection of traits can be done based on the literature describing 

comorbidity, shared candidate genes, or observed genetic correlations. If we 

include a trait with no pleiotropy to other traits, the power will decrease. 

We recommend removing traits without a sufficient '� to other traits. In our 

real data analysis, all traits had .'�. � 0.15 to at least one other trait.  
There exist two types of multi-trait analyses. The first is a joint analysis, 

in which the statistics of several traits are combined into one. The goal of 

this type of analysis is to find pleiotropic loci that are associated to 

multiple traits. These analyses have the same strengths and weaknesses as 

typical meta-analysis. Aggregating more traits can provide additional power, 

but modeling heterogeneity between traits and interpreting results can often 

be challenging. The second type is an augmentation analysis, in which related 

traits help the association test of a single trait10-13. The goal of this type 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2020. ; https://doi.org/10.1101/2020.06.16.155879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155879


of analysis is to maximize power for a single trait. In this study, we 

focused on the former type. Since our framework provides tools to facilitate 

interpretations, our method can minimize the weaknesses of the joint 

analysis. 

In summary, we proposed a general and flexible framework for the 

identification and interpretation of pleiotropic loci. We expect that our 

framework can help discover core genes that contribute to multiple phenotypes, 

which can lead us to a better understanding of the common etiology of traits 

and the development of shared drug targets.     

 

 

5 Online Methods 

5.1 PLEIO 

Here we describe our framework, PLEIO (Pleiotropic Locus Exploration and 

Interpretation using Optimal test). PLEIO aggregates summary statistics of 

multiple traits to identify pleiotropic loci. Suppose we have / traits that we 
expect to share genetic components. We can collect �  sets of genome-wide 

summary statistics for these traits. � can be greater than / because more than 
one study can be included per trait. These traits can be a mixture of 

qualitative and quantitative traits, whereby the quantitative traits can have 

differing phenotypic units. Suppose we have M SNPs that are shared by all 

studies we collected. Let 0�	
 denote the effect size estimate of the 1th SNP for 
the 2 th study, SE50�	
6  denote the standard error estimate, and )
  denote the 
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number of samples in the 2th study. Given this input, PLEIO performs a multi-
trait joint analysis in the following five steps. 

 

5.1.1 Decomposition of correlation 

In the input data, the effect sizes between studies can be correlated. We 

decompose this correlation into genetic correlation ��  and environmental 

correlation �� by applying LD score regression (LDSC) to each pair of studies. 

��  reflects the correlated errors of the effect size estimates driven by 

sample overlap. It is straightforward to obtain ��  and the heritabilities �� 

using LDSC. We can combine �� and �� to the genetic covariance matrix �.  
It is not straightforward to obtain �� using LDSC, which we describe below. We 

start by correcting for the study-specific confounding factor by dividing the 

z-scores by the square-root of the LDSC intercept. Let 7	� and 7	� denote the z-

score of SNP 1 for trait 8 or 9 after this correction. We use the weighted sum 
of z-scores meta-analysis method to combine the two z-scores: 

7	
�� 	 :;)�7	� � ;)�7	�<
;)� � )�

 

Since this approach ignores the environmental correlations, the variance of 

7	
�� is not 1. We can show that the variance increases by 2�����

�����
=�, where =�is 

the environmental correlation. We then use 7	
��  of all SNPs as input to LDSC. 

We can assume that the inflation of LDSC intercept reflects this variance 

increase, because the study-specific confounding was already corrected. Let 

>
�� be the intercept. We can estimate the environmental correlation as  
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=� ? �����

2�����
�>
�� @ 1�. 

For details of the derivation, see Supplementary Note.  

 

5.1.2 Standardization of effect sizes 

In the input data, the scales of effect sizes can be heterogeneous between 

the studies. We calculate the standardized effect sizes of SNP i for the 

trait t as  

AB	
 	 ����
��������

� 1
���

� C
, and DEFAB	
G 	 1
���

� C
.      (1) 

C
  is a scaling factor that is 1 for quantitative trait and H��
2�1����2

���1���� I 1
�� �1�1����!

 

for qualitative trait, where J
  refers to the disease prevalence, *
 	 �)
|L 	
1�/)
  refers to the sample prevalence, N  refers to the probability density 

function of the standard normal distribution, and O�1 refers to the inverse of 

the cumulative density function of the standard normal distribution. For 

quantitative traits, AB	
  corresponds to the effect size based on the 

standardized phenotypes and the standardized genotypes. For qualitative 

traits, AB	
  is the effect size for the liability, assuming that the z-score 

(
����

��������
) was obtained from a linear model with an observed scale (by setting the 

phenotypes 0 and 1). Typically, the z-scores come from the logistic 

regression model rather than the observed scale linear model. However, it is 

a common practice to use these z-scores as if they came from the linear 

model22. AB	
 can be used conveniently to interpret the pleiotropic effects of a 

variant, because in contrast to the original effect size 0�	
, it is independent 

of the units of phenotypes.   
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5.1.3 Mapping pleiotropic loci using variance component test 

We build a statistical model optimized for the identification of pleiotropic 

loci. We assume that an individual phenotype is influenced by K causal SNPs, 

whose individual contribution is very small. For simplicity, we assume that K 

causal SNPs are shared by T traits. Let �	  denote a � � 1 vector of the true 
effect sizes of the causal SNP 1 under the standardized scale. A common model 
is to assume that K SNPs have equal contributions. Then, �	 ~ MVN :S, "

�<, where � 
denotes the genetic covariance matrix, of which diagonal elements are the 

narrow sense heritabilities. We assume �	 	 S for non-casual SNPs.  
Let ��	 denote the observed effect size and DET��	U denote the standard error. We 
can model ��# as the sum of the true genetic effect and the error:  

��# 	 �	 � V# 

V#  is a random variable denoting the error, which follows V# ~ MVN�0, W�  where 
W 	 X1YZ�DEF��#G� · �$ · X1YZ�DEF��#G�. Note that W is independent of SNP 1, because DEF��#G 
is independent of 1  as shown in equation (1). Thus, VarT��#U 	 "

% � W  for causal 
SNPs and VarT��#U 	 W for non-causal SNPs. As described earlier, applying LDSC to 
��	 and DET��	U of all M SNPs can produce an estimate of the genetic covariance 
matrix (��) as well as the error correlation (��\).  

We then relax the assumption that K SNPs have equal contributions. Then, the 

true effect �	 needs not have the fixed variance 
"
�. We now model ��# as 

��# 	 ]# � V# 
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where ]#  is a new random variable denoting the genetic effect that follows 

]# ~ MVNTS, �	2�U, where �	2 � 0 for causal SNPs and �	2 	 0 for non-causal SNPs. That 
is, the scaling factor �	2 of the variance can model SNP-by-SNP differences in 

genetic contributions. As a special case, if we set �	2 	 1
� for K causal SNPs 

and �	2 	 0  for non-casual SNPs, this model is reduced to the previous model 
assuming equal contributions of causal SNPs. Note that although we relaxed 

the assumption of the equal contribution, the variance of ]#  is still 

proportional to �, which models the relative heritability differences of the 

traits and the genetic correlations among the traits. Under this model, 

testing whether a SNP is causal or not corresponds to testing the null 

hypothesis �	2 	 0  versus the alternative hypothesis �	2 � 0.  
To this end, we can fit a variance component model to get the maximum 

likelihood estimate (MLE) �B	2   that maximizes ^T�	2.AB	; ��, W�U . A numerical 

optimization algorithm such as the pseudo Newton-Raphson method can be used 

to find �B	2 . However, updating the value of the likelihood function at each 

iteration requires a matrix inversion. With a large T, this can significantly 

increase the overall analysis time. To solve this challenge, we developed a 

novel optimization technique that considerably reduces the computational 

burden for finding MLE (See Supplementary Note). The proposed optimization 

method carries out a linear transformation on AB	  using ���1

2 . The transformed 

observed effect sizes follow  

���1
2��# ~ `ab cS, �	2d � ���1

2W����1
2e 

where the corresponding �B	2 maximizes ^ f�	2g���1

2��#; ���1

2W����1

2h under the constraint of 
�	2 � 0 . We apply a spectral decomposition ���1

2W����1

2 	 i&�j&�i&' , where j&  is a 
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diagonal matrix of the eigenvalues, the diagonal elements of which are 

arranged in ascending order, and i&  is an eigenvector matrix, the 1th column 
of which corresponds to the 1th eigenvalue. Then, we only need to calculate 
i&Tj& � �	2dU�(i&'  per each iteration, which is much easier to calculate than 

��	2�� � W���1 . Note that the values of the matrices i&  and j&  remain unchanged 

with iterations. As a result, we get the log-likelihood ratio test (LRT) 

statistic  

D�)�*+ 	 kl ln c n
n
 � �B	2
e,


-1
o � kl C
2n


,


-1
@ l C
2n
 � �B	2

,


-1
o 

where p is the number of non-zero eigenvalues, n
 is the 2th diagonal element 
of j&, C
2 is the 2th element of the vector i&q���1

2��#, and q is a diagonal matrix 
of which the first p elements are 1 and the rest are 0. This technique can 

substantially shorten the time to complete our test, of which the time 

reduction increases with increasing number of traits (Supplementary Figure 7 

and 8).   

The underlying intuitions of our model are as follows. Our key assumption is 

that the genetic component ]#  in the effect size is a random variable whose 

variance is proportional to the genetic covariance matrix �. This implies the 
following two; First, phenotypes with larger heritability show larger genetic 

effects. Second, phenotypes show genetic effects concordant to their genetic 

correlations. Because �� and W� are summarized information from the whole genome, 
this approach can maximize the overall power. In that sense, our model 

resembles empirical Bayes approaches12.   
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5.1.4 Assessing statistical significance via importance sampling  

Here we describe how to assess an accurate p-value of our LRT statistic, 

D�)�*+. D�)�*+ asymptotically follows a 50:50 mixture of χ0
2 and χ1

2 23. However, the 

asymptotic approximation is only accurate if the sample size is large. 

Unfortunately, the sample size of our statistic is T, the number of combined 

studies, and not the total number of individuals that were used to generate T 

statistics. Since T is typically small �+ 100� , the asymptotic distribution 
does not approximate the null distribution well. Moreover, when T is small, 

it turns out that the null distribution depends on the genetic covariance 

matrix and error correlation matrix ��� and W� ). Thus, an alternative approach 
would be simulating null distributions based on the study-specific factors 

(�� and W�). But the standard sampling is overly inefficient for assessing very 
small p-values (e.g. 5 � 10�8).  

Instead, we use a novel importance sampling approach to assess the p-value of 

D�)�*+. Let s be a random variable denoting the standardized effect sizes. Let 
t�s�  denote the probability density function (PDF) of s  under the null. One 
advantage of using the standardized scale is that the error variance W�  is 

independent of SNP i. Thus, t�s� ~ MVNT0, W�U regardless of SNPs. By definition, 
u t�s� 

0 Xs 	 1 where v 	 w1. We can consider D�)�*+ as a function of s given W� and ��. 
Given an observed D�)�*+  statistic from data, which we call x , we want to 

calculate the p-value of it. To this end, let y�s, x�  denote an indicator 

function as follows:  

yTs, x|W�, ��U 	 z1 1y D�)�*+�s|W�, ��� { x0 1y D�)�*+Ts.W�, ��U + x.| 
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For simplicity, we replace yTs, x|W�, ��U  with a simpler expression, y�s� . The p-
value of x can be expressed as: 

} 	 ~ ��s�Xs 

0
 

where ��s� 	 y�s�t�s� . To estimate } , we can exploit importance sampling 

algorithm. In importance sampling, we use a sampling distribution p�s�  that 
differs from t�s�. Let �2 ~ p�s� denote a � � � matrix of the sampled effect sizes 
generated from p�s�, where � is the number of sampling. Then, we can estimate } 
using �2 as follows: 

}� 	 E, �y�s�t�s�p�s� � 	 1� kl yT�#
2UtT�#

2U
pT�#

2U
3

	-1
o 

where E,5I6 denotes the expectation over �2, and �#
2 is the 1th row vector of �2.  

The challenge in importance sampling is to choose an appropriate p�s�. It is 
particularly challenging in GWAS because the range of p-values is very wide, 

from 1.0 to 5 � 10�8 . Thus, it is difficult to select a single distribution 

that can minimize variance for all range of p-values. To solve this challenge, 

we generate samples from a mixture distribution. Let p��s�  denote the 8 th 
sampling distribution where 8 	 �1,2, … , J� . We let p4�s�  denote the mixture 

distribution of K sampling distributions. We assume that each sampling 

distribution has the equal chance to generate a sample such that p4�s� 	
 1� ∑ p��s���-1 . Detailed information on the selection of p��s�  can be found in 

Supplementary Note. In our method, we use p��s� as a control variate of ��s� 	
y�s�t�s�, which let us define:  

�5�s, �� 	 ��s� @ l 0� cp��s� @ ~ p��s� 

0
Xse�

�-1
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where E5�56 	 E5�6 	 }, and u p��s� 
0 Xs 	 1. The control variate method maximizes the 

variance reduction of Var��5�  using the optimal control variate coefficient 

��5� . Then, the variance Var��5�  becomes equal to or smaller than Var���.  In 
PLEIO, we use the following control variate approach suggested by Owen and 

Zhou24: 

}� 	 E,�5�56 	 1� �l yT�#
2UtT�#

2U @ ∑ 0�p�T�#
2U��-1

p4T�#
2U

3 

	-1
� � l 0�

�

�-1
 

Given �2  from p4�s� , we calculate p-values of equally spaced 50 different x 
that are in the range (0,40), which roughly correspond to p-values from 1.0 

to 3 � 10�11 . For each  x , we calculate the optimal � for the control variate 

method to maximize the variance reduction of the p-value estimate. See 

Supplementary Note for how we obtained the optimal control variate 

coefficients T� 
5U . Using these 50 points, we interpolate p-values for x + 40 

using B-spline fit and extrapolate p-values for x � 40 using the linear fit on 
the logarithmic p-value scale.  

 

5.1.5 Pleiotropy plot 

PLEIO offers a tool to visualize the pleiotropic effects of a SNP, which we 

named pleiotropy plot (Figure 4). This circular plot provides information 

about the standardized effect sizes, the local heritabilities, and the local 

Manhattan plots of a SNP. The outer part is partitioned by the traits, each 

of which contains (1) the effect size of each trait on the original scale as 

text and on the standardized scale as a horizontal bar, and (2) the local 

Manhattan plot within a 1 Mb window. The inner part is a ribbon plot linking 

multiple traits. The ribbon color indicates genetic correlations, and the 
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width at the end indicates the locus heritability (squared standardized 

effect size). 

 

5.2 Data analysis 

5.2.1 Collection of GWAS summary statistics  

We collected public GWAS summary statistics of 18 traits related to 

cardiovascular disease from large-scale genetic consortia, as described in 

Supplementary table 3. When a consortium database contained more than one 

GWAS for the same phenotype, we selected the latest study. We obtained the 

summary statistics of four quantitative traits from Global Lipids Genetics 

consortium17. The data consisted of the results of GWASs from 94,595 

individuals from 23 studies genotyped with GWAS arrays and 93,982 individuals 

from 37 studies genotyped with the Metabochip array. We obtained the summary 

statistics of the twelve binary traits in the UK biobank data from the Neale 

lab website (http://www.nealelab.is/uk-biobank). The data consisted of the 

results of GWASs from 361,193 individuals in the UK biobank cohort.  We 

obtained the summary data on coronary artery disease (CAD) from CARDIo+C4D 

consortium16. The data consisted of the results of GWAS meta-analysis from 

60,801 CAD cases and 123,504 controls from 48 studies. We obtained the 

summary data on fasting glucose (FG) from MAGIC consortium19. The data 

consisted of the analysis results from 46,186 non-diabetic patients from 21 

GWA studies. All samples were Caucasians with European descent. The genotypes 

of all summary statistics were coordinated to GRCh37 (Hg19).  
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5.2.2 Summary statistics data QC 

For each summary statistics dataset, we removed SNPs that were not included 

in 1000 Genomes25. We checked the consistency of allele pair of each SNP with 

the corresponding allele pair of the SNP in 1000 Genomes. To eliminate 

potential strand mismatches, we pruned SNPs with the allele pair GC and AT. 

The genetic covariance and error correlation were estimated from summary 

statistics of the remaining SNPs. A total of 1,799,044 SNPs was included in 

the joint analysis of 18 traits. 

  

5.2.3 Identification of novel pleiotropic loci 

In the joint analysis of 18 traits, we identified 10,041 SNPs that were 

genome-wide significant T*�)�*+ + 5 � 10�8U. We clumped these SNPs with threshold 
�'2 + 0.1� and found 618 approximately independent hits. To estimate LD between 
SNPs, we used the European samples in the 1000 Genomes data. To determine 

whether the remaining variants were novel loci, we excluded variants that met 

any of the following two conditions: (1) The variant had a moderate LD ('2 �
0.1) with a variant that is listed in GWAS catalog as associated with the CVD-
related traits, or (2) The variant already reached the genome-wide 

significance threshold of 5 � 10�8  in the original summary statistics of a 

single trait. As a result, we identified 20 novel pleiotropic variants.  
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6 Figures 

Figure 1. Overview of the PLEIO framework. 
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Figure 2. The results of the power test. Line plots show the power of PLEIO 

(red), RE2C (green), ASSET (yellow), and LS (blue), with the simulation 

settings shown at the bottom. The letters Q and B indicate the type of a 

phenotype ([Q]uantitative or [B]inary). ‘�2’ denotes the heritabilities of the 

traits; ‘Units’ denotes the phenotypic units, and the matrix shows the 

genetic correlation structure among traits. (a) We assumed a homogeneous 

situation that the same traits were studied multiple times, which is the 

assumption of the fixed effects meta-analysis. (b) We varied the 

heritabilities of the traits from 0.001 to 0.7. (c) We assumed that there 

were two subgroups. The correlation within the first group (three traits) was 

set to 0.95, and the correlation within the second group (four traits) was 

set to 0.9. The correlation between the two groups was set to -0.9. (d) We 

assumed a mixture of binary and quantitative traits and varied the phenotypic 

units among the quantitative traits from 0.1 to 10.   
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Figure 3. The summary of the real data-analysis. (a) The circular plot shows 

the locations and the statistical significances of the 20 novel variants 

(outer edge) and the 618 GWAS top SNPs (inner edge). The inner ribbons 

connect the variants in the same functional category found by the DAVID 

analysis. (b) The Manhattan plot of the PLEIO association results. Red 

triangles indicate the 20 novel loci. 
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Figure 4. Pleiotropy plot of rs1688030, an intronic variant of the HPN gene. 

The outer edge is the local Manhattan plots for each trait within 1 Mb 

window. The horizontal bar plot shows the direction and size of the 

standardized effect size �A� with 95% confidence interval for each trait. The 
inner ribbons show the genetic correlations (as the color: positive '� as red 

and negative '� as blue) and the explained heritability by the locus (as the 

width of the ribbon end).  
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Figure 5. Distinct association patterns of 20 novel variants identified by 

PLEIO. Each box represents the association of a variant with a trait, where 

the size of the box indicates the magnitude of the standardized effect size 

�A�  and the color of the box indicates the statistical significance. The 

right-side heatmap shows the genetic correlations. We divided the variants 

into five groups based on their association patterns. 
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