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1 Abstract 

The identification of pleiotropic loci and the interpretation of the associations at these loci are 

essential to understand the shared etiology of related traits. A common approach to map pleiotropic loci is 

to use an existing meta-analysis method to combine summary statistics of multiple traits. This strategy 

does not take into account the complex genetic architectures of traits such as genetic correlations and 

heritabilities. Furthermore, the interpretation is challenging because phenotypes often have different 

characteristics and units. We propose PLEIO, a summary-statistic-based framework to map and interpret 

pleiotropic loci in a joint analysis of multiple traits. Our method maximizes power by systematically 

accounting for the genetic correlations and heritabilities of the traits in the association test. Any set of 

related phenotypes, binary or quantitative traits with differing units, can be combined seamlessly. In 

addition, our framework offers interpretation and visualization tools to help downstream analyses. Using 

our method, we combined 18 traits related to cardiovascular disease and identified 20 novel pleiotropic loci, 

which showed five different patterns of associations. Our method is available at https://github.com/hanlab-

SNU/PLEIO.  

2 Introduction 

Recent genome-wide association studies (GWAS) have shown that some genetic variants are associated 

with multiple traits, a phenomenon called pleiotropy1,2. The identification of pleiotropic loci is important to 

understand the shared etiology of the related traits and to find common drug targets. To identify pleiotropic 

loci, several studies proposed multi-trait analyses that combine summary statistics of multiple traits into 

one3-5. Due to the similarity of this task with meta-analysis, studies have employed meta-analysis methods6-
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9. Another category of multi-trait analyses is to maximize power for a single trait by incorporating other 

traits as prior information10-13. In this study, we focused on the former, the joint analysis of multiple traits. 

Applying an existing meta-analysis method to multi-trait analyses is not optimal for several reasons. First, 

the meta-analysis methods completely ignore the genetic architectures of the traits. The magnitude and 

direction of the genetic correlations suggest the expected pattern of the genetic effects for multiple traits. 

The heritabilities suggest the expected strengths of the genetic effects for multiple traits. Therefore, a lot 

of information resides in the genetic architecture, which can help map pleiotropic loci. Second, the meta-

analysis methods depend on the scales and units of the phenotypes. The units often differ among 

quantitative traits, and the effect size definitions differ between binary and continuous traits. Most meta-

analysis methods directly use the raw numbers of effect sizes as input, so they are not optimal for analyzing 

heterogeneous traits. For the same reason, interpretation tools such as the forest plot14 or m-value15 are less 

useful. Third, environmental correlations exist among traits collected from the same individuals. Without 

systematically correcting for environmental correlations, a naïve application of meta-analysis methods can 

inflate false positives.  

Here, we propose an optimized multi-trait method to map and interpret pleiotropic loci called PLEIO 

(Pleiotropic Locus Exploration and Interpretation using Optimal test). As with meta-analysis methods, our 

method uses only summary statistics. Our method starts by estimating the genetic correlations, 

environmental correlations, and heritabilities from the whole-genome summary statistics. We then 

standardize the effect sizes of heterogeneous traits, converting the effect sizes of binary traits to effect sizes 

for liabilities. An advantage of the standardization is that the analysis and interpretation become 

independent of the phenotypic units. Another advantage is that heritabilities can suggest the expected 

strengths of the effect sizes of a pleiotropic locus under the standardized scale. We have developed an 
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optimized association test that takes into account both the genetic correlations and heritabilities to 

maximize power. Our test is a variance component test to check non-zero variance of the random genetic 

effect, where we model the genetic effect to follow the genetic covariance. Our test correctly controls the 

false positive rate by accounting for the environmental correlations. To increase efficiency in finding the 

maximum likelihood estimate, we developed an optimization technique using the spectral decomposition of 

the variance. Even with this technique, obtaining the p-value is computationally challenging because the 

small number of traits induce small sample problem. We overcome this challenge by implementing an 

importance sampling method that shortens the computation time for combining 100 traits to 1 day.  

Real data analyses and simulations show that PLEIO is powerful for identifying pleiotropic loci. Unlike 

other methods that performed well under specific situations, PLEIO was consistently powerful in all 

scenarios because it learned the genetic architecture from data and optimized itself to that situation. In 

addition to the powerful association test, PLEIO offers tools for the interpretation and visualization of the 

pleiotropic loci. We used PLEIO to combine 18 traits related to cardiovascular disease and identified 20 

novel pleiotropic loci. These loci were categorized into five groups based on their association patterns, which 

may represent distinct pathways. PLEIO is freely available at https://github.com/hanlab-SNU/PLEIO.  

 

3 Results 

3.1 Overview of Method 

PLEIO is a multi-trait framework to map and interpret pleiotropic loci (Figure 1). Assume a toy example 

that combines three traits (A, B, and C) (Supplementary Figure 1). At SNP 𝑋1, we observed the effect 
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sizes (betas) of (2.2, 2.8, -1.2), and at another SNP 𝑋2, we observed the effect sizes of (-1.5, 0.4, -2.7). We 

assume that the variances of all estimates were identical. Then, if we apply the fixed effects meta-analysis 

(inverse-variance method), we get the same p-value for both SNPs (P=0.03) because the average beta is 

the same. However, suppose we know that traits A and B have a positive genetic correlation, and trait C 

has a negative genetic correlation with the rest. Then, SNP 𝑋1 is more likely to be a true signal than SNP 

𝑋2 because the effect directions conform to the genetic correlations. Moreover, suppose we know that trait 

B has the greatest heritability and trait C has the smallest heritability. Then, the association at SNP 𝑋1 

is even more likely because the relative strengths of the effect size conform to the heritabilities. Our method 

accounts for both the genetic correlations and heritabilities and gives a more significant p-value at SNP 𝑋1 

(P= 0.0006) than SNP 𝑋2 (P=0.1).  

PLEIO consists of five steps. First, we apply the linkage disequilibrium (LD) score regression to the genome-

wide summary data of traits to obtain the genetic correlations 𝐂𝐠 and the heritabilities 𝐡𝟐. We summarize 

𝐂𝐠 and 𝐡𝟐 into the genetic covariance 𝛀. It is not obvious how to estimate the environmental correlation 

𝐂𝐞, so we propose a strategy for that. Second, we transform the effect sizes 𝜷 ̂ into the standardized effect 

sizes �̂�, converting the effect sizes of binary traits to the effect sizes for liabilities. Third, we apply our 

variance component test to map pleiotropic loci. We assume �̂� = 𝐠 + 𝐞 where 𝐠 is the genetic effect and 𝐞 

is the error. Our main assumption is that the genetic effects follow the genetic covariance, Var(𝐠) = 𝜏2𝛀. 

We then test the hypothesis 𝜏2 > 0 versus 𝜏2 = 0. To find the maximum likelihood estimate (MLE) of 𝜏2 

efficiently, we utilize an optimization technique using spectral decomposition of the variance. Fourth, we 

apply an importance sampling method to assess the p-value. Fifth, we report and visualize the results to 

help interpretation.   
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3.2 Evaluation of False positive rates 

We evaluated the false positive rate (FPR) of PLEIO using simulations. We assumed the null hypothesis 

of no genetic effect at a SNP for 𝑇  traits. There can be different situations under the null hypothesis. For 

example, the 𝑇  statistics can be independent or correlated due to environmental correlations (𝐂𝐞), which 

reflect sample overlap, or the input parameter information for PLEIO, namely the heritability and genetic 

correlation estimates, can differ. Overall, we varied four factors: (1) the number of traits (𝑇 ), (2) the 

environmental correlation matrix (𝐂𝐞), (3) the heritability parameter for PLEIO (𝐡𝟐), and (4) the genetic 

correlation parameter for PLEIO (𝐂𝐠).  

Specifically, we adopted three different numbers of traits (T= 5, 10, and 20). We assumed that the sample 

overlap may or may not exist and set the non-diagonals of 𝐂𝐞 to 0.5 in the former and 0 in the latter. We 

assumed two different patterns for the input parameter 𝐡𝟐. In the “equal 𝐡𝟐” situation, we assumed the 

same heritability input (h2 = 0.5) for all traits. In the “different 𝐡𝟐” situation, we assumed a linearly 

increasing heritabilities from h2 = 0.1 to 0.5. We assumed two different patterns for the input parameter 

𝐂𝐠. In the “uniform 𝐂𝐠” situation, the non-diagonals of 𝐂𝐠 were all set to 0.3. In the “partitioned 𝐂𝐠” 

situation, we assumed two subgroups and set non-diagonals to 0.3 within a group and 0 between groups. 

Thus, we tested 24 different situations (3 × 2 × 2 × 2). We generated one million null datasets per each 

situation and calculated FPR at α = 0.05. Supplementary Table 1 shows that FPR of PLEIO is well 

calibrated in all situations.  

Next, we examined FPR at a lower threshold. We increased the number of null datasets to a billion to 

measure FPR at the conventional GWAS threshold (5 × 10−8). We tested three numbers of traits (𝑇 =

 5, 10, and 20) while assuming the equal 𝐡𝟐, partitioned 𝐂𝐠, and no sample overlap. Supplementary 
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Table 2 shows that PLEIO’s FPR is well calibrated for α down to 5 × 10−8. See Supplementary Note 

for a detailed explanation for the observed effect size generation.  

 

3.3 Power simulations 

We compared the power of PLEIO against three meta-analysis approaches: the Lin-Sullivan method (LS)16, 

RE2C6, and ASSET9. LS is a generalization of the fixed effects model, and RE2C is a generalization of the 

Han-Eskin random effects model15. ASSET is a subset-based method assuming that the true effects could 

only exist in a subset of the studies. All these methods can take into account the environmental correlations 

due to sample overlap. We confirmed that FPRs were well calibrated with each method (Supplementary 

Table 3).  

We assessed the power of the methods in various simulation settings. Each setting defined a specific genetic 

correlation structure 𝐂𝐠, heritabilities 𝐡𝟐, phenotypic units (𝐔), and the types of traits (quantitative (Q) 

or binary (B)). In each setting, we assumed 𝑇 = 7 traits and repeated simulations 10,000 times. See 

Supplementary Note for a detailed explanation for the observed effect size generation. 

First, we assumed a fixed heritability and very high correlations (𝑟2 = 0.99) among the 7 traits. This 

represents the situation in which the same traits were collected in multiple studies. In this situation, all 

methods performed similarly well except ASSET (Figure 2A). With a sample size of 𝑁 = 50,000, the 

powers of PLEIO, LS, and RE2C were 64.9%, 64.8%, and 63.9%. It was natural that LS performed well 

because LS is optimized for the fixed-effect situation. PLEIO also performed similarly, because PLEIO 

learns the high genetic correlations from data and adjusts itself to the situation.  
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Second, we assumed different heritabilities for 7 traits, varying from 0.001 to 0.7. We assumed a uniform 

genetic correlation 𝑟 = 0.5 between all trait pairs. In this situation, PLEIO outperformed the others 

(Figure 2B). With a sample size of 𝑁 = 50,000, PLEIO achieved a power of 84.9%, while the second best 

method (RE2C) achieved 80.6% and the third best method (LS) achieved 49.4%. PLEIO achieved high 

power because PLEIO can take into account different heritabilities of the traits.   

Third, we assumed a block structured correlation pattern. We divided 7 traits into two groups (3 traits and 

4 traits). We set the correlations in the first group to 0.95 and the correlations in the second group to 0.9. 

We set the correlations between the groups to a negative value of -0.9. We assumed a uniform heritability 

of 0.26 for all traits. PLEIO showed the highest power among all methods (Figure 2C). With a sample 

size of 𝑁 = 50,000, PLEIO achieved a power of 76.3%, while the second best method (RE2C) achieved 

72.7% and the third best method (LS) achieved 48.3%. PLEIO achieved high power because PLEIO can 

take into account the genetic correlation structure of the traits.   

Fourth, we assumed a mixture of quantitative and qualitative traits. We assumed 4 quantitative traits and 

3 binary traits. For quantitative traits, we assumed different phenotypic units ranging from 0.1U to 10U. 

We assumed a fixed heritability and a uniform genetic correlation for all traits. Again, PLEIO achieved the 

highest power. With a sample size of 𝑁 = 50,000, PLEIO achieved a power of 89.6%, while the second best 

method (RE2C) achieved 80.2% and the third best method (ASSET) achieved 46.5%. PLEIO achieved high 

power because PLEIO can systematically combine heterogeneous traits by standardizing the effect sizes.  

So far, we varied only one factor in each simulation: different heritabilities, a complex pattern of genetic 

correlations, and different phenotypic units. In reality, all three can occur together. We simulated such a 

combined situation and found that the power gain was the greatest. PLEIO achieved a power of 71.0%, 
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while the power of the second best method (RE2C) was only 56.6% (Supplementary Figure 2). The 

power increased by a quarter, which can be interpreted to mean that in this specific situation 50 instead of 

40 loci can be found with our method. 

 

3.4 Joint analysis of multiple traits related to Cardiovascular disease 

We applied PLEIO to identify pleiotropic loci associated with traits related to cardiovascular disease (CVD). 

To this end, we collected summary statistics of 18 traits from multiple consortia (Supplementary Table 

4). We selected 12 binary traits from the Neale lab’s UK Biobank GWAS results 

(http://www.nealelab.is/uk-biobank, Supplementary Table 5) by searching with the terms: heart, 

hypertension, obesity, lipoproteins, cholesterol, and diabetes. We collected 4 lipid traits from the Global 

Lipid consortium17, 1 binary trait (coronary artery disease) from the CARDIoGRAM+C4D consortium18, 

and 1 trait (fasting glucose) from the MAGIC (Meta-Analysis of Glucose and Insulin-related traits 

Consortium)19. In total, we collected 13 binary and 5 quantitative traits. See Online Methods for details 

of the trait selection. Quantitative traits had differing units. Lipid traits had the unit of mg/dl, whereas the 

fasting glucose had the unit of mmol/l17,19. We used 1,777,412 imputed SNPs overlapping among all datasets. 

These traits showed differing heritabilities and non-zero genetic and environmental correlations 

(Supplementary Figure 3).  

PLEIO identified 618 GWAS top hits (Figure 3 and Supplementary Table 6). Among those, we found 

20 independent novel variants. These had no known associations to CVD traits and were not significant in 

each single study (Supplementary Table 7). The local Manhattan plots of these loci are shown in 

Supplementary Figure 4. We used the Variant Effect Predictor (VEP v.97.2) in ENSEMBL GRCh37 
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and obtained the annotations of these variants. The 20 variants included 10 intronic variants, 4 intergenic 

variants, 2 downstream gene variants, 1 upstream gene variant, 1 5-prime UTR variant, 1 missense variant, 

and 1 non-coding transcript exonal variant. The 618 top hits included 368 intronic variants, 113 intergenic 

variants, 37 upstream gene variants, 27 downstream variants, 23 3-prime UTR variants, 21 missense 

variants, 12 non-coding transcript exon variants, 11 synonymous variants, and 6 5-prime UTR variants. 

The detailed annotations are in Supplementary tables 8 and 9. Figure 3A shows a circular plot whose 

radial position indicates the genomic position, and the heights of the points are the statistical significances 

of the variants. Using the 618 top hits, we performed an additional analysis with DAVID v.6.8. Given the 

list of genes obtained by VEP, we used DAVID to search for the presence of known trait-gene associations 

based on the Genetic Association Database (GAD, Supplementary table 10). We curated the reported 

trait-gene associations into 8 categories: Coronary artery disease, Fasting glucose, Hypertension, Diabetes, 

High density lipoprotein, Low density lipoprotein, Total Cholesterol, and Total glycerides. That is, we 

categorized the variants into 8 groups based on the trait category of the known association. We visualized 

the results in the inner circle of Figure 3A, where each ribbon indicates a pair of genes in the same 

phenotypic category. Figure 3B shows the Manhattan plot of the PLEIO association results. We also 

compared the results of PLEIO to the original summary statistics using a mirrored Manhattan plot 

(Supplementary Figure 5). For a detailed description of this analysis, see Online Methods. 

 

3.5 Interpretation of the PLEIO analysis results 

We visualized the multi-trait associations of each locus using a circular plot, which we call pleiotropy plot. 

The pleiotropy plot includes the local Manhattan plot and the bar plot of the standardized effect sizes. The 
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inner ribbons show the genetic correlations as colors and the explained heritabilities by the locus as widths. 

We drew pleiotropy plots of the 20 novel variants we identified (Figure 4 and Supplementary Figure 

6). Based on the patterns observed in these plots, we categorized the 20 variants into five groups, which 

may imply distinct underlying pathways (Figure 5).  

The first group had associations driven by seven binary traits: 6 traits from the UK Biobank (acute 

myocardial infarction, myocardial infarction, heart attack, major coronary heart disease, coronary 

atherosclerosis, and ischemic heart disease) and one trait (coronary artery disease) from 

CARDIoGRAM+C4D. These seven traits showed high genetic correlations (Figure 5). The variants 

showing this pattern were rs12073392 in the FAM1777B gene (1q41), rs3772800 near the AC022336.2 gene 

(3q21.2), rs13134800 near the LINC02502 gene (4q27), rs1467311 near the AL162389.1 gene (9q31.2), 

rs8014986 in the HHIPL1 gene (14q32.2), and rs2070783 near the PECAM1 gene (17q23.3).  

The second group had associations driven by lipid phenotypes (triglycerides, low density lipoprotein; LDL, 

high density lipoprotein; HDL, and total cholesterol). The variants showing this pattern were rs6456349 in 

the E2F3 gene (6p22.3), rs2936507 in the AGPAT5 gene (8p23.1), rs636049 in the MRPL21 gene (11q13.3), 

rs1688030 in the HPN gene (19q13.11), and rs4823054 in the ASCC2 gene (22q12.2). These variants showed 

differing associations to the lipid phenotypes. rs6456349 showed the strongest associations to the total 

cholesterol and HDL. rs636049 showed the strongest associations to HDL and triglycerides. rs1688030 

showed the strongest associations to the triglycerides and the total cholesterol. rs4823054 showed the 

strongest association to LDL and total cholesterol. rs2936507 showed similar strengths of associations to 

the triglycerides, LDL, HDL, and total cholesterols.  
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The third group had associations driven by both the coronary artery disease and the lipid phenotypes. The 

variants showing this pattern were rs10026790 in the TRMT10A gene (4q23), rs4074793 in the ITGA1 gene 

(5q11.2), rs2237659 in the COG5 gene (7q22.3), and rs4393438 in the RASA3 gene (13q34). All four SNPs 

showed an association (𝑃 < 0.0001) to LDL.  

The fourth group had associations with lipid phenotypes and a moderate association with myocardial 

infraction. The variants showing this pattern were rs10733608 in the AKNA gene (9q32) and rs12787728 in 

the TNKS1BP1 gene (11q12.1). Both variants showed associations with HDL and total cholesterol (𝑃 <

0.0001) but not with LDL and triglycerides.  

The fifth group was the variants that were not categorized to the four aforementioned groups. The variants 

in this group were rs876320 near the FGFBP1 gene (4p15.32), rs2891902 near the RPL35AP19 gene 

(8q24.12), and rs1039119 in the AC106729.1 gene (16q23.1). rs2891902 showed the strongest association to 

the obesity (𝑃 < 0.001) and weak associations to the type 2 diabetes and hypertensions. rs1039119 and 

rs876320 were interesting because their associations to all traits were weak (𝑃 > 0.01). The strongest 

associations of rs1039119 were to coronary atherosclerosis (𝑃 = 0.02) and triglycerides (𝑃 = 0.08) . 

However, this SNP’s effect size directions to the seven binary traits in the first group were all concordant 

to the genetic correlations of these traits. The strongest associations of rs876320 were to acute myocardial 

infarction (𝑃 = 0.01), myocardial infarction (𝑃 = 0.04), and heart attack (𝑃 = 0.04). This SNP’s effect 

size directions to these three traits were all concordant to the genetic correlations. Thus, PLEIO seems to 

have captured the aggregate information in multiple weak associations by considering the fact that the 

effect size directions were concordant to the genetic correlations.  
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4 Discussion 

We proposed PLEIO, a framework to identify and interpret pleiotropic loci using summary statistics of 

multiple traits. PLEIO increased the statistical power using two strategies. First, we modeled the genetic 

correlations and heritabilities in our variance component test. Second, we took into account the differences 

in effect size scales and units among traits. Our method offers interpretation and visualization tools to help 

understand shared association patterns of pleiotropic loci.   

To increase the efficiency, we applied two techniques: the maximum likelihood estimation using the spectral 

decomposition of the variance, and the importance sampling method. Using these approaches, PLEIO can 

combine 100 traits with a million SNPs in one day using a single CPU. Thus, any researchers with minimal 

computing power could utilize our method with ease.  

Our method is general and includes other previous meta-analysis methods as special cases. If we set the 

genetic covariance matrix to a matrix of ones and the environmental correlations to zero, the test is 

approximately equivalent to the fixed effects meta-analysis method. If we assume environmental correlations, 

the test is approximately equivalent to the Lin-Sullivan method16. If we set the genetic covariance matrix 

to an identity matrix and the environmental correlations to zero, the resulting test is similar to the 

heterogeneity test in the Han-Eskin random effects model15. If we set the genetic covariance matrix to an 

identity matrix and assume environmental correlations, the resulting test is similar to the heterogeneity 

test in the RE2C framework6. A difference of PLEIO is that, unlike other methods optimized for specific 

situations, it learns the genetic covariance and the environmental correlations from data and adjusts itself 

to that situation. For example, if we have a collection of the studies for the same trait, PLEIO will learn 

this information and act as if it were a fixed effects meta-analysis method.  
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There can be various sources for the genetic correlations. When we combine the same traits, the genetic 

correlations will be nearly perfect. When we combine different traits, we will observe imperfect genetic 

correlations or even negative genetic correlations. Another situation is that we combine the same traits from 

multiple ethnicities. In this situation, the genetic correlation is usually imperfect and positive (0 < 𝑟𝑔 < 1). 

Recent methods can estimate genetic correlations across different populations by accounting for the ethnic 

differences of LD20,21. We can use these methods to estimate 𝑟𝑔 for the PLEIO analysis, if the traits come 

from multiple populations. 

In a multi-trait analysis, we must decide which traits should be included. Selection of traits can be done 

based on the literature describing comorbidity, shared candidate genes, or observed genetic correlations. If 

we include a trait with no pleiotropy to other traits, the power will decrease. We recommend removing 

traits without a sufficient 𝑟𝑔 to other traits. In our real data analysis, all traits had ∣𝑟𝑔∣ > 0.15 to at least 

one other trait.  

There exist two types of multi-trait analyses. The first is a joint analysis, in which the statistics of several 

traits are combined into one. The goal of this type of analysis is to find pleiotropic loci that are associated 

to multiple traits. These analyses have the same strengths and weaknesses as typical meta-analysis. 

Aggregating more traits can provide additional power, but modeling heterogeneity between traits and 

interpreting results can often be challenging. The second type is an augmentation analysis, in which related 

traits help the association test of a single trait10-13. The goal of this type of analysis is to maximize power 

for a single trait. In this study, we focused on the former type. Since our framework provides tools to 

facilitate interpretations, our method can minimize the weaknesses of the joint analysis. 
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In summary, we proposed a general and flexible framework for the identification and interpretation of 

pleiotropic loci. We expect that our framework can help discover core genes that contribute to multiple 

phenotypes, which can lead us to a better understanding of the common etiology of traits and the 

development of shared drug targets.     

 

 

5 Online Methods 

5.1 PLEIO 

Here we describe our framework, PLEIO (Pleiotropic Locus Exploration and Interpretation using Optimal 

test). PLEIO aggregates summary statistics of multiple traits to identify pleiotropic loci. Suppose we have 

𝑄 traits that we expect to share genetic components. We can collect 𝑇  sets of genome-wide summary 

statistics for these traits. 𝑇  can be greater than 𝑄 because more than one study can be included per trait. 

These traits can be a mixture of qualitative and quantitative traits, whereby the quantitative traits can 

have differing phenotypic units. Suppose we have M SNPs that are shared by all studies we collected. Let 

𝛽�̂�𝑡 denote the effect size estimate of the 𝑖th SNP for the 𝑡th study, SE[𝛽�̂�𝑡] denote the standard error 

estimate, and 𝑁𝑡 denote the number of samples in the 𝑡th study. Given this input, PLEIO performs a 

multi-trait joint analysis in the following five steps. 
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5.1.1 Decomposition of correlation 

In the input data, the effect sizes between studies can be correlated. We decompose this correlation into 

genetic correlation 𝐂𝐠 and environmental correlation 𝐂𝐞 by applying LD score regression (LDSC) to each 

pair of studies. 𝐂𝐞 reflects the correlated errors of the effect size estimates driven by sample overlap. It is 

straightforward to obtain 𝐂𝐠 and the heritabilities 𝐡𝟐 using LDSC. We can combine 𝐂𝐠 and 𝐡𝟐 to the 

genetic covariance matrix 𝛀.  

It is not straightforward to obtain 𝐂𝐞 using LDSC, which we describe below. We start by correcting for 

the study-specific confounding factor by dividing the z-scores by the square-root of the LDSC intercept. Let 

𝑧𝑖𝑗 and 𝑧𝑖𝑘 denote the z-score of SNP 𝑖 for trait 𝑗 or 𝑘 after this correction. We use the weighted sum of 

z-scores meta-analysis method to combine the two z-scores: 

𝑧𝑖
𝑠𝑢𝑚 =

(√𝑁𝑗𝑧𝑖𝑗 + √𝑁𝑘𝑧𝑖𝑘)
√𝑁𝑗 + 𝑁𝑘

 

Since this approach ignores the environmental correlations, the variance of 𝑧𝑖
𝑠𝑢𝑚 is not 1. We can show 

that the variance increases by 2√𝑁𝑗𝑁𝑘
𝑁𝑗+𝑁𝑘

𝜌𝑒, where 𝜌𝑒is the environmental correlation. We then use 𝑧𝑖
𝑠𝑢𝑚  of 

all SNPs as input to LDSC. We can assume that the inflation of LDSC intercept reflects this variance 

increase, because the study-specific confounding was already corrected. Let 𝛼𝑠𝑢𝑚 be the intercept. We can 

estimate the environmental correlation as  

𝜌𝑒 ≈ 𝑁𝑗+𝑁𝑘
2√𝑁𝑗𝑁𝑘

(𝛼𝑠𝑢𝑚 − 1). 

For details of the derivation, see Supplementary Note.  
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5.1.2 Standardization of effect sizes 

In the input data, the scales of effect sizes can be heterogeneous between the studies. We calculate the 

standardized effect sizes of SNP i for the trait t as  

𝜂�̂�𝑡 = 𝛽�̂�𝑡
𝑆𝐸[𝛽�̂�𝑡]

× 1
√𝑁𝑡

× 𝛿𝑡, and 𝑆𝐸[𝜂�̂�𝑡] = 1
√𝑁𝑡

× 𝛿𝑡.      (1) 

𝛿𝑡 is a scaling factor that is 1 for quantitative trait and √𝐾𝑡
2(1−𝐾𝑡)2

𝑃𝑡(1−𝑃𝑡)
⋅ 1

𝜓(𝜙−1(1−𝐾𝑡)) for qualitative trait, where 

𝐾𝑡 refers to the disease prevalence, 𝑃𝑡 = (𝑁𝑡|𝑦 = 1)/𝑁𝑡 refers to the sample prevalence, 𝜓 refers to the 

probability density function of the standard normal distribution, and 𝜙−1 refers to the inverse of the 

cumulative density function of the standard normal distribution. For quantitative traits, 𝜂�̂�𝑡 corresponds 

to the effect size based on the standardized phenotypes and the standardized genotypes. For qualitative 

traits, 𝜂�̂�𝑡 is the effect size for the liability, assuming that the z-score ( 𝛽�̂�𝑡
𝑆𝐸[𝛽�̂�𝑡]

) was obtained from a linear 

model with an observed scale (by setting the phenotypes 0 and 1). Typically, the z-scores come from the 

logistic regression model rather than the observed scale linear model. However, it is a common practice to 

use these z-scores as if they came from the linear model22. 𝜂�̂�𝑡 can be used conveniently to interpret the 

pleiotropic effects of a variant, because in contrast to the original effect size 𝛽�̂�𝑡, it is independent of the 

units of phenotypes.   

 

5.1.3 Mapping pleiotropic loci using variance component test 

We build a statistical model optimized for the identification of pleiotropic loci. We assume that an individual 

phenotype is influenced by K causal SNPs, whose individual contribution is very small. For simplicity, we 

assume that K causal SNPs are shared by T traits. Let 𝜼𝑖 denote a 𝑇 × 1 vector of the true effect sizes of 
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the causal SNP 𝑖 under the standardized scale. A common model is to assume that K SNPs have equal 

contributions. Then, 𝜼𝑖 ~ MVN(𝟎, 𝛀
𝐾), where 𝛀 denotes the genetic covariance matrix, of which diagonal 

elements are the narrow sense heritabilities. We assume 𝜼𝑖 = 𝟎 for non-casual SNPs.  

Let �̂�𝑖 denote the observed effect size and 𝑆𝐸(�̂�𝑖) denote the standard error. We can model �̂�𝒊 as the 

sum of the true genetic effect and the error:  

�̂�𝒊 = 𝜼𝑖 + 𝝐𝒊 

𝝐𝒊 is a random variable denoting the error, which follows 𝝐𝒊 ~ MVN(0, 𝚺) where 𝚺 = 𝑑𝑖𝑎𝑔(𝑆𝐸[�̂�𝒊]) ∙ 𝐂𝒆 ∙

𝑑𝑖𝑎𝑔(𝑆𝐸[�̂�𝒊]). Note that 𝚺 is independent of SNP 𝑖, because 𝑆𝐸[�̂�𝒊] is independent of 𝑖 as shown in 

equation (1). Thus, Var(�̂�𝒊) = 𝛀
𝑲 + 𝚺 for causal SNPs and Var(�̂�𝒊) = 𝚺 for non-causal SNPs. As described 

earlier, applying LDSC to �̂�𝑖 and 𝑆𝐸(�̂�𝑖) of all M SNPs can produce an estimate of the genetic covariance 

matrix (�̂�) as well as the error correlation (𝐂�̂�).  

We then relax the assumption that K SNPs have equal contributions. Then, the true effect 𝜼𝑖 needs not 

have the fixed variance 𝛀
𝐾. We now model �̂�𝒊 as 

�̂�𝒊 = 𝜸𝒊 + 𝝐𝒊 

where 𝜸𝒊 is a new random variable denoting the genetic effect that follows 𝜸𝒊 ~ MVN(𝟎, 𝜏𝑖
2𝛀), where 𝜏𝑖

2 >

0 for causal SNPs and 𝜏𝑖
2 = 0 for non-causal SNPs. That is, the scaling factor 𝜏𝑖

2 of the variance can model 

SNP-by-SNP differences in genetic contributions. As a special case, if we set 𝜏𝑖
2 = 1

𝐾 for K causal SNPs and 

𝜏𝑖
2 = 0 for non-casual SNPs, this model is reduced to the previous model assuming equal contributions of 

causal SNPs. Note that although we relaxed the assumption of the equal contribution, the variance of 𝜸𝒊 

is still proportional to 𝛀, which models the relative heritability differences of the traits and the genetic 
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correlations among the traits. Under this model, testing whether a SNP is causal or not corresponds to 

testing the null hypothesis 𝜏𝑖
2 = 0  versus the alternative hypothesis 𝜏𝑖

2 > 0.  

To this end, we can fit a variance component model to get the maximum likelihood estimate (MLE) 𝜏�̂�
2  

that maximizes ℒ(𝜏𝑖
2∣𝜂�̂�; �̂�, �̂�). A numerical optimization algorithm such as the pseudo Newton-Raphson 

method can be used to find 𝜏�̂�
2. However, updating the value of the likelihood function at each iteration 

requires a matrix inversion. With a large T, this can significantly increase the overall analysis time. To 

solve this challenge, we developed a novel optimization technique that considerably reduces the 

computational burden for finding MLE (See Supplementary Note). The proposed optimization method 

carries out a linear transformation on 𝜂�̂� using �̂�−1
2. The transformed observed effect sizes follow  

�̂�−1
2�̂�𝒊 ~ 𝐌𝐕𝐍 (𝟎, 𝜏𝑖

2𝑰 + �̂�−1
2�̂��̂�−1

2) 

where the corresponding 𝜏�̂�
2 maximizes ℒ(𝜏𝑖

2∣�̂�−1
2�̂�𝒊; �̂�−1

2�̂��̂�−1
2) under the constraint of 𝜏𝑖

2 > 0. We apply 

a spectral decomposition �̂�−1
2�̂��̂�−1

2 = 𝑷𝑫(𝚲𝑫)𝑷𝑫
𝑻 , where 𝚲𝑫 is a diagonal matrix of the eigenvalues, the 

diagonal elements of which are arranged in ascending order, and 𝑷𝑫 is an eigenvector matrix, the 𝑖th 

column of which corresponds to the 𝑖th eigenvalue. Then, we only need to calculate 𝑷𝑫(𝚲𝑫 + 𝜏𝑖
2𝑰)−𝟏𝑷𝑫

𝑻  

per each iteration, which is much easier to calculate than (𝜏𝑖
2�̂� + �̂�)−1. Note that the values of the matrices 

𝑷𝑫 and 𝚲𝑫 remain unchanged with iterations. As a result, we get the log-likelihood ratio test (LRT) 

statistic  

𝑆𝑃𝐿𝐸𝐼𝑂 = [∑ ln ( 𝜉𝑡
𝜉𝑡 + 𝜏�̂�

2)
𝑝

𝑡=1
] + [∑

𝛿𝑡
2

𝜉𝑡

𝑝

𝑡=1
− ∑

𝛿𝑡
2

𝜉𝑡 + 𝜏�̂�
2

𝑝

𝑡=1
] 

where 𝑝 is the number of non-zero eigenvalues, 𝜉𝑡  is the 𝑡th diagonal element of 𝚲𝑫 , 𝛿𝑡
2  is the 𝑡th 

element of the vector 𝑷𝑫𝑬�̂�−1
2�̂�𝒊, and 𝑬 is a diagonal matrix of which the first p elements are 1 and the 
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rest are 0. This technique can substantially shorten the time to complete our test, of which the time 

reduction increases with increasing number of traits (Supplementary Figure 7 and 8).   

The underlying intuitions of our model are as follows. Our key assumption is that the genetic component 

𝜸𝒊 in the effect size is a random variable whose variance is proportional to the genetic covariance matrix 

𝛀. This implies the following two; First, phenotypes with larger heritability show larger genetic effects. 

Second, phenotypes show genetic effects concordant to their genetic correlations. Because �̂� and �̂� are 

summarized information from the whole genome, this approach can maximize the overall power. In that 

sense, our model resembles empirical Bayes approaches12.   

 

5.1.4 Assessing statistical significance via importance sampling  

Here we describe how to assess an accurate p-value of our LRT statistic, 𝑆𝑃𝐿𝐸𝐼𝑂. 𝑆𝑃𝐿𝐸𝐼𝑂 asymptotically 

follows a 50:50 mixture of χ0
2 and χ1

223. However, the asymptotic approximation is only accurate if the 

sample size is large. Unfortunately, the sample size of our statistic is T, the number of combined studies, 

and not the total number of individuals that were used to generate T statistics. Since T is typically small 

(< 100), the asymptotic distribution does not approximate the null distribution well. Moreover, when T is 

small, it turns out that the null distribution depends on the genetic covariance matrix and error correlation 

matrix (�̂� and �̂�). Thus, an alternative approach would be simulating null distributions based on the 

study-specific factors (�̂� and �̂�). But the standard sampling is overly inefficient for assessing very small p-

values (e.g. 5 × 10−8).  

Instead, we use a novel importance sampling approach to assess the p-value of 𝑆𝑃𝐿𝐸𝐼𝑂. Let 𝒙 be a random 

variable denoting the standardized effect sizes. Let 𝑞(𝒙) denote the probability density function (PDF) of 
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𝒙 under the null. One advantage of using the standardized scale is that the error variance �̂� is independent 

of SNP i. Thus, 𝑞(𝒙) ~ MVN(0, �̂�) regardless of SNPs. By definition, ∫ 𝑞(𝒙) 
𝐷

𝑑𝒙 = 1 where 𝐷 = ℝ𝑇 . We 

can consider 𝑆𝑃𝐿𝐸𝐼𝑂 as a function of 𝒙 given �̂� and �̂�. Given an observed 𝑆𝑃𝐿𝐸𝐼𝑂 statistic from data, 

which we call 𝜃, we want to calculate the p-value of it. To this end, let 𝑓(𝒙, 𝜃) denote an indicator function 

as follows:  

𝑓(𝒙, 𝜃|�̂�, �̂�) = {
1 𝑖𝑓 𝑆𝑃𝐿𝐸𝐼𝑂(𝒙|�̂�, �̂�) ≥ 𝜃
0 𝑖𝑓 𝑆𝑃𝐿𝐸𝐼𝑂(𝒙∣�̂�, �̂�) < 𝜃

. 

For simplicity, we replace 𝑓(𝒙, 𝜃|�̂�, �̂�) with a simpler expression, 𝑓(𝒙). The p-value of 𝜃 can be expressed 

as: 

𝐼 = ∫ 𝑚(𝒙)𝑑𝒙
 

𝐷
 

where 𝑚(𝒙) = 𝑓(𝒙)𝑞(𝒙). To estimate 𝐼, we can exploit importance sampling algorithm. In importance 

sampling, we use a sampling distribution 𝑝(𝒙) that differs from 𝑞(𝒙). Let 𝑿𝒑 ~ 𝑝(𝒙) denote a 𝑀 × 𝑇  

matrix of the sampled effect sizes generated from 𝑝(𝒙), where 𝑀 is the number of sampling. Then, we can 

estimate 𝐼 using 𝑿𝒑 as follows: 

𝐼 ̂ = E𝑝 [
𝑓(𝒙)𝑞(𝒙)

𝑝(𝒙) ] = 1
𝑀 [∑

𝑓(𝑿𝒊
𝒑)𝑞(𝑿𝒊

𝒑)
𝑝(𝑿𝒊

𝒑)

𝑀

𝑖=1
] 

where E𝑝[⋅] denotes the expectation over 𝑿𝒑, and 𝑿𝒊
𝒑 is the 𝑖th row vector of 𝑿𝒑.  

The challenge in importance sampling is to choose an appropriate 𝑝(𝒙). It is particularly challenging in 

GWAS because the range of p-values is very wide, from 1.0 to 5 × 10−8. Thus, it is difficult to select a 

single distribution that can minimize variance for all range of p-values. To solve this challenge, we generate 

samples from a mixture distribution. Let 𝑝𝑗(𝒙)  denote the 𝑗 th sampling distribution where 𝑗 =
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{1,2,… , 𝐾}. We let 𝑝𝛼(𝒙) denote the mixture distribution of K sampling distributions. We assume that 

each sampling distribution has the equal chance to generate a sample such that 𝑝𝛼(𝒙) = 1
𝐾 ∑ 𝑝𝑗(𝒙)𝐾

𝑗=1 . 

Detailed information on the selection of 𝑝𝑗(𝒙) can be found in Supplementary Note. In our method, we 

use 𝑝𝑗(𝒙) as a control variate of 𝑚(𝒙) = 𝑓(𝒙)𝑞(𝒙), which let us define:  

𝑚∗(𝒙, 𝜷) = 𝑚(𝒙) − ∑ 𝛽𝑗 (𝑝𝑗(𝒙) − ∫ 𝑝𝑗(𝒙)
 

𝐷
𝑑𝒙)

𝐾

𝑗=1
 

where E[𝑚∗] = E[𝑚] = 𝐼 , and ∫ 𝑝𝑗(𝒙) 
𝐷

𝑑𝒙 = 1 . The control variate method maximizes the variance 

reduction of Var(𝑚∗) using the optimal control variate coefficient (𝜷∗). Then, the variance Var(𝑚∗) 

becomes equal to or smaller than Var(𝑚). In PLEIO, we use the following control variate approach 

suggested by Owen and Zhou24: 

𝐼 ̂ = E𝑝𝛼 [𝑚∗] = 1
𝑀 ⎝

⎜⎛∑
𝑓(𝑿𝒊

𝒑)𝑞(𝑿𝒊
𝒑) − ∑ 𝛽𝑗𝑝𝑗(𝑿𝒊

𝒑)𝐾
𝑗=1

𝑝𝛼(𝑿𝒊
𝒑)

𝑀 

𝑖=1 ⎠
⎟⎞ + ∑ 𝛽𝑘

𝐾

𝑘=1
 

Given 𝑿𝒑 from 𝑝𝛼(𝒙), we calculate p-values of equally spaced 50 different 𝜃 that are in the range (0,40), 

which roughly correspond to p-values from 1.0 to 3 × 10−11. For each 𝜃, we calculate the optimal 𝜷 for the 

control variate method to maximize the variance reduction of the p-value estimate. See Supplementary 

Note for how we obtained the optimal control variate coefficients (𝜷 
∗) . Using these 50 points, we 

interpolate p-values for 𝜃 < 40 using B-spline fit and extrapolate p-values for 𝜃 > 40 using the linear fit 

on the logarithmic p-value scale.  
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5.1.5 Pleiotropy plot 

PLEIO offers a tool to visualize the pleiotropic effects of a SNP, which we named pleiotropy plot (Figure 

4). This circular plot provides information about the standardized effect sizes, the local heritabilities, and 

the local Manhattan plots of a SNP. The outer part is partitioned by the traits, each of which contains (1) 

the effect size of each trait on the original scale as text and on the standardized scale as a horizontal bar, 

and (2) the local Manhattan plot within a 1 Mb window. The inner part is a ribbon plot linking multiple 

traits. The ribbon color indicates genetic correlations, and the width at the end indicates the locus 

heritability (squared standardized effect size). 

 

5.2 Data analysis 

5.2.1 Collection of GWAS summary statistics  

We collected public GWAS summary statistics of 18 traits related to cardiovascular disease from large-scale 

genetic consortia, as described in Supplementary table 3. When a consortium database contained more 

than one GWAS for the same phenotype, we selected the latest study. We obtained the summary statistics 

of four quantitative traits from Global Lipids Genetics consortium17. The data consisted of the results of 

GWASs from 94,595 individuals from 23 studies genotyped with GWAS arrays and 93,982 individuals from 

37 studies genotyped with the Metabochip array. We obtained the summary statistics of the twelve binary 

traits in the UK biobank data from the Neale lab website (http://www.nealelab.is/uk-biobank). The 

data consisted of the results of GWASs from 361,193 individuals in the UK biobank cohort.  We obtained 

the summary data on coronary artery disease (CAD) from CARDIo+C4D consortium16. The data consisted 
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of the results of GWAS meta-analysis from 60,801 CAD cases and 123,504 controls from 48 studies. We 

obtained the summary data on fasting glucose (FG) from MAGIC consortium19. The data consisted of the 

analysis results from 46,186 non-diabetic patients from 21 GWA studies. All samples were Caucasians with 

European descent. The genotypes of all summary statistics were coordinated to GRCh37 (Hg19).  

 

5.2.2 Summary statistics data QC 

For each summary statistics dataset, we removed SNPs that were not included in 1000 Genomes25. We 

checked the consistency of allele pair of each SNP with the corresponding allele pair of the SNP in 1000 

Genomes. To eliminate potential strand mismatches, we pruned SNPs with the allele pair GC and AT. The 

genetic covariance and error correlation were estimated from summary statistics of the remaining SNPs. A 

total of 1,799,044 SNPs was included in the joint analysis of 18 traits. 

  

5.2.3 Identification of novel pleiotropic loci 

In the joint analysis of 18 traits, we identified 10,041 SNPs that were genome-wide significant 

(𝑃𝑃𝐿𝐸𝐼𝑂 < 5 × 10−8). We clumped these SNPs with threshold (𝑟2 < 0.1) and found 618 approximately 

independent hits. To estimate LD between SNPs, we used the European samples in the 1000 Genomes data. 

To determine whether the remaining variants were novel loci, we excluded variants that met any of the 

following two conditions: (1) The variant had a moderate LD (𝑟2 > 0.1) with a variant that is listed in 

GWAS catalog as associated with the CVD-related traits, or (2) The variant already reached the genome-
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wide significance threshold of 5 × 10−8 in the original summary statistics of a single trait. As a result, we 

identified 20 novel pleiotropic variants.  
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6 Figures 

Figure 1. Overview of the PLEIO framework. 
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Figure 2. The results of the power test. Line plots show the power of PLEIO (red), RE2C (green), 

ASSET (yellow), and LS (blue), with the simulation settings shown at the bottom. The letters Q and B 

indicate the type of a phenotype ([Q]uantitative or [B]inary). ‘ℎ2’ denotes the heritabilities of the traits; 

‘Units’ denotes the phenotypic units, and the matrix shows the genetic correlation structure among traits. 

(a) We assumed a homogeneous situation that the same traits were studied multiple times, which is the 

assumption of the fixed effects meta-analysis. (b) We varied the heritabilities of the traits from 0.001 to 0.7. 

(c) We assumed that there were two subgroups. The correlation within the first group (three traits) was 

set to 0.95, and the correlation within the second group (four traits) was set to 0.9. The correlation between 

the two groups was set to -0.9. (d) We assumed a mixture of binary and quantitative traits and varied the 

phenotypic units among the quantitative traits from 0.1 to 10.   
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Figure 3. The summary of the real data-analysis. (a) The circular plot shows the locations and the 

statistical significances of the 20 novel variants (outer edge) and the 618 GWAS top SNPs (inner edge). 

The inner ribbons connect the variants in the same functional category found by the DAVID analysis. (b) 

The Manhattan plot of the PLEIO association results. Red triangles indicate the 20 novel loci. 
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Figure 4. Pleiotropy plot of rs1688030, an intronic variant of the HPN gene. The outer edge is 

the local Manhattan plots for each trait within 1 Mb window. The horizontal bar plot shows the direction 

and size of the standardized effect size (𝜂) with 95% confidence interval for each trait. The inner ribbons 

show the genetic correlations (as the color: positive 𝑟𝑔 as red and negative 𝑟𝑔 as blue) and the explained 

heritability by the locus (as the width of the ribbon end).  
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Figure 5. Distinct association patterns of 20 novel variants identified by PLEIO. Each box 

represents the association of a variant with a trait, where the size of the box indicates the magnitude of the 

standardized effect size (𝜂) and the color of the box indicates the statistical significance. The right-side 

heatmap shows the genetic correlations. We divided the variants into five groups based on their association 

patterns. 
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7 Data availability 

The summary statistics data used for the multi-trait association analysis are available from UK biobank 
GWAS results (http://www.nealelab.is/uk-biobank), Global Lipids Genetics consortium 
(http://lipidgenetics.org), CARDIo+C4D consortium (http://www.cardiogramplusc4d.org), and MAGIC 
consortium (https://www.magicinvestigators.org/downloads/). The multi-trait association results are 
available upon request.  
 

8 Code availability 
PLEIO is freely available at https://github.com/hanlab-SNU/PLEIO.  
 
 

9 Conflicts of interest 
Buhm Han is the CTO of Genealogy Inc. 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.16.155879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155879


References  

1. Gratten, J. & Visscher, P.M. Genetic pleiotropy in complex traits and diseases: 
implications for genomic medicine. Genome Med 8, 78 (2016). 

2. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex 
traits. Nat Genet 51, 1339-1348 (2019). 

3. Lam, M. et al. Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia 
Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am J 
Hum Genet 105, 334-350 (2019). 

4. Masuda, T. et al. GWAS of five gynecologic diseases and cross-trait analysis in Japanese. 
Eur J Hum Genet 28, 95-107 (2020). 

5. Zhu, Z. et al. A genome-wide cross-trait analysis from UK Biobank highlights the shared 
genetic architecture of asthma and allergic diseases. Nat Genet 50, 857-864 (2018). 

6. Lee, C.H., Eskin, E. & Han, B. Increasing the power of meta-analysis of genome-wide 
association studies to detect heterogeneous effects. Bioinformatics 33, i379-i388 (2017). 

7. DerSimonian, R. & Laird, N. Meta-analysis in clinical trials. Control Clin Trials 7, 177-
88 (1986). 

8. Lin, D.Y. & Sullivan, P.F. Meta-Analysis of Genome-wide Association Studies with 
Overlapping Subjects. American Journal of Human Genetics 85, 862-872 (2009). 

9. Bhattacharjee, S. et al. A subset-based approach improves power and interpretation for 
the combined analysis of genetic association studies of heterogeneous traits. Am J Hum 
Genet 90, 821-35 (2012). 

10. Andreassen, O.A. et al. Improved Detection of Common Variants Associated with 
Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False 
Discovery Rate. Plos Genetics 9(2013). 

11. Chung, D.J., Yang, C., Li, C., Gelernter, J. & Zhao, H.Y. GPA: A Statistical Approach 
to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation. Plos Genetics 
10(2014). 

12. Liley, J. & Wallace, C. A Pleiotropy-Informed Bayesian False Discovery Rate Adapted to 
a Shared Control Design Finds New Disease Associations From GWAS Summary 
Statistics. Plos Genetics 11(2015). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.16.155879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155879


13. Walters, R. et al. MTAG: multi-trait analysis of GWAS implicates novel loci for depressive 
symptoms, neuroticism, and subjective well-being. Behavior Genetics 47, 688-689 (2017). 

14. Kang, E.Y. et al. ForestPMPlot: A Flexible Tool for Visualizing Heterogeneity Between 
Studies in Meta-analysis. G3-Genes Genomes Genetics 6, 1793-1798 (2016). 

15. Han, B. & Eskin, E. Interpreting Meta-Analyses of Genome-Wide Association Studies. 
Plos Genetics 8(2012). 

16. Lin, D.Y. & Sullivan, P.F. Meta-analysis of genome-wide association studies with 
overlapping subjects. Am J Hum Genet 85, 862-72 (2009). 

17. Willer, C.J. et al. Discovery and refinement of loci associated with lipid levels. Nature 
Genetics 45, 1274-+ (2013). 

18. Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-
analysis of coronary artery disease. Nature Genetics 47, 1121-+ (2015). 

19. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their 
impact on type 2 diabetes risk (vol 42, pg 105, 2010). Nature Genetics 42, 464-464 (2010). 

20. Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes, C., Ye, C.J., Price, 
A.L. & Zaitlen, N. Transethnic Genetic-Correlation Estimates from Summary Statistics. 
Am J Hum Genet 99, 76-88 (2016). 

21. Galinsky, K.J. et al. Estimating cross-population genetic correlations of causal effect sizes. 
Genet Epidemiol 43, 180-188 (2019). 

22. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity 
in genome-wide association studies. Nat Genet 47, 291-5 (2015). 

23. Self, S.G. & Liang, K.Y. Asymptotic Properties of Maximum-Likelihood Estimators and 
Likelihood Ratio Tests under Nonstandard Conditions. Journal of the American Statistical 
Association 82, 605-610 (1987). 

24. Owen, A. & Zhou, Y. Safe and effective importance sampling. Journal of the American 
Statistical Association 95, 135-143 (2000). 

25. Sudmant, P.H. et al. An integrated map of structural variation in 2,504 human genomes. 
Nature 526, 75-81 (2015). 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.16.155879doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155879

