






Figure 3. The summary of the real data-analysis. (a) The circular plot shows the locations and the 

statistical significances of the 20 novel variants (outer edge) and the 618 GWAS top SNPs (inner edge). 

The inner ribbons connect the variants in the same functional category found by the DAVID analysis. (b) 

The Manhattan plot of the PLEIO association results. Red triangles indicate the 20 novel loci. 
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Figure 4. Pleiotropy plot of rs1688030, an intronic variant of the HPN gene. The outer edge is 

the local Manhattan plots for each trait within 1 Mb window. The horizontal bar plot shows the direction 

and size of the standardized effect size (𝜂) with 95% confidence interval for each trait. The inner ribbons 

show the genetic correlations (as the color: positive 𝑟𝑔 as red and negative 𝑟𝑔 as blue) and the explained 

heritability by the locus (as the width of the ribbon end).  
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Figure 5. Distinct association patterns of 20 novel variants identified by PLEIO. Each box 

represents the association of a variant with a trait, where the size of the box indicates the magnitude of the 

standardized effect size (𝜂) and the color of the box indicates the statistical significance. The right-side 

heatmap shows the genetic correlations. We divided the variants into five groups based on their association 

patterns. 
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7 Data availability 

The summary statistics data used for the multi-trait association analysis are available from UK biobank 
GWAS results (http://www.nealelab.is/uk-biobank), Global Lipids Genetics consortium 
(http://lipidgenetics.org), CARDIo+C4D consortium (http://www.cardiogramplusc4d.org), and MAGIC 
consortium (https://www.magicinvestigators.org/downloads/). The multi-trait association results are 
available upon request.  
 

8 Code availability 
PLEIO is freely available at https://github.com/hanlab-SNU/PLEIO.  
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