
 1

Representation Learning of Resting State fMRI 1 

with Variational Autoencoder 2 

Jung-Hoon Kim1,3, Yizhen Zhang2, Kuan Han2, Minkyu Choi2, Zhongming Liu1,2,3,4* 3 

 4 

1Department of Biomedical Engineering, University of Michigan  5 

2Department of Electrical Engineering and Computer Science, University of Michigan 6 

3Weldon School of Biomedical Engineering, Purdue University 7 

4School of Electrical and Computer Engineering, Purdue University 8 

 9 

 10 

*Correspondence 11 

Zhongming Liu, PhD 12 

Associate Professor  13 

Department of Biomedical Engineering 14 

Department of Electrical Engineering and Computer Science 15 

University of Michigan, Ann Arbor 16 

Email: zmliu@umich.edu 17 

 18 

19 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155937
http://creativecommons.org/licenses/by-nc/4.0/


 2

Abstract 20 

Resting state functional magnetic resonance imaging (rs-fMRI) data exhibits complex 21 

but structured patterns. However, the underlying origins are unclear and entangled in rs-22 

fMRI data. Here we establish a variational auto-encoder, as a generative model 23 

trainable with unsupervised learning, to disentangle the unknown sources of rs-fMRI 24 

activity. After being trained with large data from the Human Connectome Project, the 25 

model has learned to represent and generate patterns of cortical activity and 26 

connectivity using latent variables. Of the latent representation, its distribution reveals 27 

overlapping functional networks, and its geometry is unique to each individual. Our 28 

results support the functional opposition between the default mode network and the 29 

task-positive network, while such opposition is asymmetric and non-stationary. 30 

Correlations between latent variables, rather than cortical connectivity, can be used as a 31 

more reliable feature to accurately identify subjects from a large group, even if only a 32 

short period of data is available per subject.  33 

  34 
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INTRODUCTION 35 

The brain is active even at rest, showing complex activity patterns measurable 36 

with resting state fMRI (rs-fMRI)1. It is widely recognized that rs-fMRI activity is shaped 37 

by how the brain is wired, or the brain connectome2. Inter-regional correlations of rs-38 

fMRI activity are often used to report functional connectivity3 and map brain networks for 39 

individuals4 or populations in various behavioral5 or disease states6. However, it remains 40 

largely unclear where rs-fMRI activity comes from7, 8, whereas understanding the 41 

underlying origins is critical to interpretation of any rs-fMRI pattern or dynamics9.  42 

Prior findings suggest a multitude of sources (or causes) for rs-fMRI activity10, 43 

including but not limited to fluctuations in neurophysiology11, arousal12, unconstrained 44 

cognition13, non-neuronal physiology14, head motion15 etc. These sources only partially 45 

account for rs-fMRI activity and may be entangled not only among themselves but also 46 

with other sources that are left out simply because they are hard to specify or probe in 47 

the task-free resting state7. An inclusive study would benefit from using a data-driven 48 

approach to uncover and disentangle all plausible but hidden sources from rs-fMRI data 49 

itself, without having to presume the sources to whatever are accessible for empirical 50 

observations. To be effective, such an approach should be able to infer sources from rs-51 

fMRI data and generate new rs-fMRI data from sources, while being able to account for 52 

complex and nonlinear relationships between the sources and the data.   53 

These requirements lead us to deep learning, or representation learning with 54 

deep neural networks16. In addition to its success in artificial intelligence, deep learning 55 

has also been increasingly applied to brain research17. Despite its great potential18-20, 56 

deep learning applied to resting state fMRI analysis has arguably limited progress 57 
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relative to what is attainable with conventional and simpler methods21. A challenge is 58 

inherent to the absence of any task in the resting state as well as the lack of sufficient 59 

knowledge usable for training deep neural networks with supervised learning.  60 

To mitigate this challenge, we chose to use Variational Auto-Encoder (VAE)22, 23, 61 

a type of deep learning model, for unsupervised learning of the ever-increasing “big 62 

data” in rs-fMRI. Briefly, we designed and trained a VAE model to represent rs-fMRI 63 

data in terms of its hidden (or latent) sources and tested its ability to explain and 64 

generate rs-fMRI data. We also explored the functional organization of rs-fMRI data in 65 

the latent space to reveal network interactions in the brain. Lastly, we tested the utility of 66 

this model for identifying individuals from their rs-fMRI data4, as a starting example of its 67 

applications.  68 

  69 

Results 70 

VAE compressed rs-fMRI maps 71 

Inspired by its success in artificial intelligence22, 23, we designed a VAE model in 72 

order to disentangle the generative factors underlying rs-fMRI activity. The model used a 73 

pair of convolutional and deconvolutional neural networks in an encoder-decoder 74 

architecture (Figure 1.b). The encoder transformed any rs-fMRI pattern, formatted as an 75 

image on a regular 2D grid (Figure 1.a), to the probability distributions of 256 76 

independent latent variables. The decoder used samples of the latent variables to 77 

reconstruct or generate an fMRI map. Using data from HCP (WU-Minn HCP Quarter 78 

2)24, we first trained the model with rs-fMRI maps from 100 subjects and then tested it 79 

with rs-fMRI data from 500 other subjects.  80 
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After being trained, the model could compress any fMRI map to a low-81 

dimensional latent space and restore the map from the latent representation separately 82 

for every time point (Figure 1.c). Such compression resulted in spatial blurring 83 

comparable to the effect of spatial smoothing with 4mm full width at half maximum or 84 

the effect of linear dimension reduction with principal component analysis 85 

(Supplementary Figure 1). As such, the latent representation obtained with VAE 86 

preserved the spatiotemporal characteristics of rs-fMRI, despite modest but acceptable 87 

loss in spatial resolution and specificity. 88 

 89 

VAE synthesized correlated fMRI activity 90 

We asked whether the decoder in the VAE, as a generative model, could have 91 

learned the putative mechanisms by which rs-fMRI activity patterns arise presumably 92 

from brain networks. To address this question, we randomly sampled every latent 93 

variable from a standard normal distribution and used the decoder to synthesize 12,000 94 

rs-fMRI maps. We calculated the seed-based correlations3 by using the VAE-95 

synthesized data and compared the results with those obtained with length-matched rs-96 

fMRI data concatenated across 10 subjects. Figure 2 shows three examples with the 97 

seed region in the primary visual cortex (V1), intraparietal sulcus (IPS), or posterior 98 

cingulate cortex (PCC). Both the synthesized and measured data gave rise to similar 99 

network patterns (mean±std of z-transformed spatial correlation z = 0.81±0.08, 100 

0.97±0.07, or 0.88±0.05), consistent with early visual network, dorsal attention network, 101 

and default mode network reported in prior studies (e.g. by Yeo et al.25). Thus, the VAE 102 

provided a computational account for the generative process of resting state activity and 103 
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could synthesize realistic rs-fMRI activity patterns and preserve inter-regional 104 

correlations as are observable in experiments.  105 

 106 

Clusters in latent space 107 

We further explored the utility of VAE for data-driven discovery of brain networks. 108 

We used the VAE to encode the rs-fMRI pattern observed at every time point from 500 109 

subjects, clustered the time points by applying k-means clustering (k=21) to the low-110 

dimensional latent representations, and decoded the cluster centroids to corresponding 111 

cortical maps. Each of the resulting maps represented a characteristic pattern of 112 

network interaction (see all 21 maps in Supplementary Figure 2).  113 

Among the 21 clusters, 5 clusters (Cluster 5, 6, 8, 16, 19) showed activity 114 

increase (positive) at one or multiple regions in the default mode network26-28, alongside 115 

activity decrease (negative) at other regions (Figure 3.a). Both the positive and negative 116 

regions showed a varying degree of overlapping across the 5 clusters. The overlapping 117 

positivity highlighted the default mode network and revealed sub-divisions of its 118 

constituent regions29. The overlapping negativity showed the networks presumably 119 

involved in attention30, cognitive or executive control31-33. Similarly, we found 5 clusters 120 

with activity increase in the so-called frontoparietal control network31 (Cluster 10), 121 

cingulo-opercular network33 (Cluster 4 and 14), cognitive control network32 (Cluster 17), 122 

and dorsal attention networks34 (Cluster 1) – collectively referred to as “the task positive 123 

network”35 hereafter (Figure 3.b). These 5 clusters were partially overlapping with 124 

respect to their positive regions but varied from one another with respect to their 125 

negative regions, while some of them showed either no or little activity decrease. The 126 
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overlapping positivity and negativity showed strong co-activation of the task positive 127 

network alongside weak deactivation of the default mode network. These results 128 

indicate patterns of opposition between the default mode network and the task positive 129 

network, conceptually similar to the notion of “anti-correlation”35. Interestingly, the 130 

opposition was asymmetric, being more pronounced when activity increases in the 131 

default mode network, but much weakened when activity increases in the task positive 132 

network.  133 

In addition, the other clusters were also informative (Supplementary Figure 2). To 134 

name a few examples, Cluster 21 showed activity decrease in the whole brain, thereby 135 

a signature of global signal fluctuation. Cluster 13 and 15 showed widespread 136 

synchrony across sensory systems. Cluster 7 and 9 showed the networks for 137 

sensorimotor control of the limbs and of the mouth, pharynx, and visceral organs, 138 

respectively. Whereas most clusters were bilaterally symmetric, Cluster 2 and 20 were 139 

unilateral to the right and left prefrontal cortex, respectively. Common to many clusters 140 

was the fact that a cluster could highlight the positive interactions among a set of well-141 

defined cortical regions alongside their negative interactions with a different set of 142 

regions. These results demonstrate that VAE enables data-driven discovery of 143 

overlapping and interacting networks for functional integration, as opposed to networks 144 

that limit themselves to anatomical and functional segregation. 145 

 146 

Individual identification 147 

We further asked whether functional connectivity (FC) in the latent space could 148 

be used as a feature or “fingerprint” for identifying individuals in a population4, 36. We 149 
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calculated the correlation between every pair of latent variables, assembled the pair-150 

wise FC into a FC profile, and evaluated its similarity between two separate sessions 151 

within or between subjects. For comparison, we performed similar analyses by 152 

evaluating FC between 360 cortical areas in an existing atlas37. As shown in Figure 4.a, 153 

FC between any pair of cortical areas was mostly positive (mean ± std of z-transformed 154 

correlation: z=0.26±0.3) and highly reproducible not only within the same subject 155 

(r=0.66) but also between different subjects (r=0.45). On the other hand, FC between 156 

latent variables had both positive and negative values (z=0.00±0.14) and its 157 

reproducibility was high only within the same subject (r=0.32) but not between different 158 

subjects (r=0.08). Although less reproducible, the FC profile was more distinctive across 159 

subjects when it was evaluated between latent variables rather than cortical areas 160 

(Figure 4.b). In the latent space, the FC profile was significantly more consistent within a 161 

subject than between subjects (two-sample t-test, t(249,998)=235.81, two-sided 162 

p<0.001). The distribution of within-subject correlations was in nearly complete 163 

separation from that of between-subject correlations (Figure 4.b, bottom). 164 

Then we compared the performance of individual identification on the basis of the 165 

FC profile in the latent vs. cortical space. To identify 1 out of 500 subjects, we compared 166 

a target subject’s FC profile in the 1st session with every subject’s FC profile in the 2nd 167 

session and chose the best match in terms of Pearson correlation coefficient. As such, 168 

the choice was correct if the correlation with the target subject was higher than the 169 

largest correlation with any non-target subject. We found that the FC profile in the 170 

cortical space could support 69.3% top-1 accuracy while identification was often done 171 

with marginal confidence relative to the decision boundary (Figure 4.c). Using the FC in 172 
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the latent space allowed us to reach 97.5% top-1 accuracy. The evidence for correct 173 

identification was apparent with a large margin from the decision boundary (Figure 4.d). 174 

Moreover, the use of FC in the latent space supported reliable and robust performance 175 

in top-1 identification given an increasingly larger population (Figure 4.e) or when the 176 

data were limited to a short duration (Figure 4.f), being notably superior to the use of FC 177 

in the cortical space. 178 

 179 

Discussion 180 

Here, we present a method for unsupervised representation learning of cortical 181 

rs-fMRI activity. Our results suggest that this method is able to disentangle generative 182 

factors underlying spontaneous brain activity, discover overlapping brain networks with 183 

opposing or associated functions, and capture individual characteristics or variation. We 184 

expect this method to be a valuable addition to the existing tools for investigating the 185 

origins of resting state activity, mapping functional brain networks, and potentially 186 

supporting individualized prediction of disease phenotypes and progression. Next, we 187 

discuss our findings from the joint perspective of methodology, neuroscience, and 188 

applications.  189 

VAE is trainable with unsupervised learning22, 23 (without any label), which is 190 

appealing for learning representations of rs-fMRI data. Since rs-fMRI measures 191 

spontaneous brain activity unconstrained by any task, labels as required for supervised 192 

learning are either unavailable or far fewer than the data itself. Unsupervised learning 193 

with VAE can leverage the ever-increasing amount of rs-fMRI data24. The latent 194 

representations extracted from VAE can serve as the input to other algorithms to further 195 
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support more specific goals such as classification of brain disorders and prediction of 196 

their phenotypes38, 39.  197 

The method herein can be extended in multiple ways. Although it is trained with 198 

rs-fMRI data, we hypothesize that the VAE model can encode and decode both rs-fMRI 199 

and task-fMRI data but with different latent distributions. If this is true, one may use this 200 

model to classify different perceptual, behavioral, or cognitive states and to reveal the 201 

distinctive network interactions underlying various states40. The fact that the VAE can 202 

synthesize new data (Figure 2) is also appealing. It can be used as a post-processing 203 

strategy for data augmentation and interpolation, when data is short or corrupted, of 204 

interest for evaluation of dynamic functional connectivity41, 42 and correction of head 205 

motion15. It also supports the notion that the learned latent space captures the origins of 206 

rs-fMRI and the VAE decoder captures the computational account for how rs-fMRI 207 

arises from its origins.  208 

It is worth mentioning two limitations of the VAE model in its current form. First, 209 

the model focuses on cortical patterns but excludes sub-cortical and white-matter voxels. 210 

This design is not only for the ease of model implementation but also for the 211 

predominant role of the neocortex in brain functions43. However, this precludes the 212 

model from accounting for subcortical networks or their interactions with the cortex. 213 

Addressing this limitation awaits future studies to redesign the model as a 3-D neural 214 

network that takes volumetric fMRI data as the input. Second, the VAE model only 215 

represents spatial patterns but ignores temporal dynamics inherent to rs-fMRI data. 216 

Modeling the temporal dynamics is desirable but non-trivial, since it is highly irregular, 217 

complex and variable. To fill this gap, we direct future studies to designing a recurrent 218 
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neural network19, 44, as an add-on to VAE, for sequence learning based on spatial 219 

representations extracted from individual time points. 220 

VAE provides a new tool for mapping overlapping functional networks in the brain. 221 

A brain region may be involved in multiple networks each supporting a distinctive 222 

function45, 46. However, existing network analyses still tend to group brain regions into 223 

non-overlapping networks25. VAE allows us to discover overlapping networks as clusters 224 

in the latent space spanned by independent latent variables. As such, VAE is 225 

conceptually similar to temporal ICA45 but allows for nonlinear relationships between 226 

latent variables and the input data they represent47. Arguably, finding clusters in the low-227 

dimensional latent space is more desirable than doing so in the higher-dimensional 228 

voxel space48. Not only is it more computationally efficient, but data representations are 229 

also more disentangled in the latent space than in the voxel space to readily reveal the 230 

underlying organization, as discussed later. 231 

Clusters in the latent space do not manifest themselves as resting state 232 

networks25  per se but highlight interactions among those networks. Many of the clusters 233 

cover more regions and/or reveal finer divisions within regions than are commonly 234 

observed in resting state networks (Figure 3). In each cluster, the interactions among its 235 

constituent regions should not be interpreted pairwise (e.g. correlation) but as two 236 

multivariate modes: co-activation and co-deactivation, which we interpret as the 237 

signatures of functional association and opposition, respectively. 238 

Our results suggest the functional opposition between regions in the default 239 

mode network and those in cognitive control networks. This finding agrees with the prior 240 

finding that attention demanding tasks tend to increase activity in cognitive control 241 
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networks (also referred to as the task positive network35) and decrease activity in the 242 

default mode network26. It may sound a reminiscence of the anti-correlation between the 243 

task positive network and the default mode network35. However, the anti-correlation is 244 

controversial and confounded by global signal regression49 – a questionable 245 

preprocessing step that causes spuriously negative correlations50. Note that global 246 

signal regression was not used and thereby not of concern in this study. Our finding 247 

provided complementary evidence, supporting a similar but revised view as anti-248 

correlation35. We conclude that the functional opposition between the default mode 249 

network and the task positive network is indeed real but non-stationary41, 46. It occurs at 250 

some but not all times. It is also asymmetric in that activity increase in the default mode 251 

network tends to co-occur with activity decrease in the task positive network, whereas 252 

activity increase in the task positive network unnecessarily or less frequently co-occurs 253 

with activity decrease in the default mode network. Interestingly, the global signal 254 

fluctuation is also non-stationary and identifiable as a different cluster in the latent space. 255 

Together, the functional opposition and the global signal are separable in time; therefore, 256 

the latter does not necessarily invalidate or confound the former. 257 

Central to this study is the efficacy of using VAE to disentangle what causes 258 

resting state activity. In the VAE model, the sources are the latent variables; the decoder 259 

describes how the sources generate the observed activity; the encoder models the 260 

inverse inference of the sources from the activity. Since the latent variables are data-261 

driven, it is currently unclear how to interpret them as specific physiological processes, 262 

many of which are not observable. Nevertheless, we expect the latent variables 263 

extracted by VAE to provide the computational basis for further understanding the 264 
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origins of resting state activity. We hypothesize that the truly disentangled physiological 265 

origins, whether observable or not, are individually describable as the latent variables 266 

up to linear and sparse projection. This hypothesis awaits confirmation by future studies.  267 

In the latent space, functional connectivity describes the correlations among the 268 

disentangled sources of resting state activity. This is a new perspective different from 269 

the functional connectivity among observable voxels, regions or networks3, 25. If the VAE 270 

model has fully disentangled the sources in a population level, functional connectivity 271 

should be near zero between different latent variables. In other words, the model sets a 272 

nearly null baseline such that the latent-space functional connectivity primarily reflects 273 

features unique to individuals. Supporting this notion, our results suggest the use of 274 

functional connectivity in the latent space leads to a significantly improved accuracy, 275 

robustness, and efficiency in individual identification, compared to the use of functional 276 

connectivity among cortical parcels4, 36. Note that our main purpose is not to push for a 277 

higher identification accuracy but to understand the distribution and geometry of data 278 

representations in the feature space. Therefore, we opt for minimal preprocessing and 279 

the simplest strategy for individual identification. There is room for methodological 280 

development to further improve the identification accuracy or to extend it for many other 281 

tasks, including classification of the gender or disease states, prediction of behavioral 282 

and cognitive performances, to name a few examples. We expect that such applications 283 

would be fruitful and potentially impactful to cognitive sciences and clinical applications. 284 

 285 

Methods 286 

Data 287 
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We used rs-fMRI data from 602 healthy subjects randomly chosen from the Q2 288 

release by HCP24. For each subject, we used two sessions of rs-fMRI data acquired 289 

from different days with either right-to-left or left-to-right phase encoding. Each session 290 

included 1,200 time points separated by 0.72s. Following minimal preprocessing51, we 291 

applied voxel-wise detrending (regressing out a 3rd-order polynomial function), 292 

bandpass filtering (from 0.01 to 0.1 Hz), and normalization (to zero mean and unitary 293 

variance). We further separated the data into three sets, including 100, 2, or 500 294 

subjects for training, validating, or testing the VAE model, respectively.  295 

 296 

Geometric reformatting 297 

We converted the rs-fMRI data from 3-D cortical surfaces to 2-D grids in order to 298 

structure the rs-fMRI pattern as an image to ease the application of convolutional neural 299 

networks. As illustrated in Figure 1.a, we inflated each hemisphere to a sphere by using 300 

FreeSurfer52. For each location on the spherical surface, we used cart2sph.m in 301 

MATLAB to convert its cartesian coordinates (�, �, �) to spherical coordinates (�, �) 302 

reporting the azimuth and elevation angles in a range from �� to � and from � � 2⁄  to 303 

� 2⁄ , respectively. We defined a 192×192 grid to resample the spherical surface with 304 

respect to azimuth and sin(elevation) such that the sampled locations were uniformly 305 

distributed at approximation (Supplementary Figure 3). We used the nearest-neighbor 306 

interpolation to convert data from the 3-D surface to the 2-D grid, and vice versa. 307 

 308 

Variational autoencoder 309 

We designed a �-VAE model23, a variation of VAE22, to learn representations of 310 
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rs-fMRI spatial patterns. This model included an encoder and a decoder (Figure 1.b). 311 

The encoder converted an fMRI map to a probabilistic distribution of 256 latent variables. 312 

The decoder sampled the latent distribution to reconstruct the input fMRI map or 313 

generate a new map. The encoder stacked five convolutional layers and one fully 314 

connected layer. Every convolutional layer applied linear convolution and rectified its 315 

output53. The 1st layer applied 8×8 convolution separately to the input from each 316 

hemisphere and concatenated its output. The 2nd through 5th layers applied 4×4 317 

convolution. The fully connected layer applied linear weighting and yielded the mean 318 

and standard deviation that described the normal distribution of each latent variable. 319 

The decoder used nearly the same architecture as the encoder but connected the 320 

layers in the reverse order for transformation from the latent space to the input space. 321 

See Figure 1.b for more details about the architecture.  322 

We trained the VAE model to reconstruct input while constraining the distribution 323 

of every latent variable to be close to an independent and standard normal distribution. 324 

Specifically, using the training data, we optimized the encoding parameters, �, and the 325 

decoding parameters, 
, to minimize the loss function as below.  326 

���, 
|�� � �� � ���
�

� � � · ���
�����, ��

� � ���, ��   (1) 327 

where � is the input data combined across the left and right hemispheres, ��  is the 328 

corresponding output from the model, ����, ��
� is the posterior normal distribution of 329 

the latent variables, !, with their mean and standard deviation denoted as �� and ��, 330 

���, �� is an independent and standard normal distribution as the prior distribution of 331 

the latent variables, ���  measures the Kullback-Leibler divergence between the 332 

posterior and prior distributions, and � is the hyperparameter balancing the two terms in 333 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.16.155937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.155937
http://creativecommons.org/licenses/by-nc/4.0/


 16

the loss function. We optimized the model by using stochastic gradient descent (batch 334 

size=128, learning rate=10-5, and 500 epochs) and Adam optimizer54 implemented in 335 

PyTorch (v1.2.0). We explored four values (1, 2, 5, 10) for �  and chose � � 5  to 336 

disentangle the latent variables while minimizing the loss function in training and 337 

validation (Supplementary Figure 4).  338 

 339 

Synthesizing rs-fMRI functional connectivity 340 

We used the trained VAE to synthesize rs-fMRI data from random samples of 341 

latent variables. To synthesize a vector in the latent space, we drew a random sample of 342 

every latent variable independently from a standard normal distribution. The 343 

synthesized vector passed through the decoder in VAE, generating a cortical pattern. 344 

Repeating this process, we synthesized 12,000 cortical patterns as data used for seed-345 

based correlation analysis. As examples, we explored three seed locations within V1, 346 

IPS, and PCC and calculated the functional connectivity to each seed based on the 347 

Pearson correlation coefficient. The MNI coordinates of the seed in V1, IPS, and PCC 348 

were (7, -83, 2), (26, -66, 48), and (0, 57, 27), respectively55. For comparison, we 349 

evaluated seed-based correlations with length-matched experimental rs-fMRI data 350 

concatenated across 10 subjects in HCP. We evaluated the reproducibility of the results 351 

by repeating the above analysis 20 times with different synthesized data and the 352 

experimental data from different subsets of subjects. 353 

 354 

Clustering in the latent space 355 

We encoded the rs-fMRI spatial pattern at every time point for 500 testing 356 
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subjects, yielding 600,000 vectors in the latent space. We used k-means clustering (with 357 

Euclidean distance) to group those vectors to 21 clusters. The choice of k=21 was made 358 

empirically in part to be consistent to a prior study with a similar motivation45 and in part 359 

to fall within the range of the number of resting state networks reported in literature. For 360 

each of the 21 clusters, the cluster centroid was calculated and converted to a 361 

corresponding cortical pattern by using the VAE’s decoder; the resulting cortical pattern 362 

was scaled such that its maximal absolute value equaled 1.  363 

To evaluate the spatial overlap among clusters, we thresholded the cortical 364 

pattern resulting from each cluster by >0.35 (for positivity) or <-0.35 (for negativity). For 365 

clusters relevant to the default mode network (5, 19, 8, 6, 16) or the task positive 366 

network (17, 1, 14, 4, 10), we calculated the overlapping positivity (or negativity) by 367 

counting the number of times that each cortical location was over (or below) 0.35 (or -368 

0.35) 369 

 370 

Individual identification 371 

In the testing data set, every individual had rs-fMRI data acquired for two 372 

separate sessions. For each session, we encoded the data as (256×1,200) latent 373 

representations, calculated the z-transformed correlation between every pair of latent 374 

variables, and stored the z-values into a vector, referred to as the FC profile in the latent 375 

space.  376 

We tested the utility of this FC profile as the feature for identifying individuals in a 377 

population (n=500). For every subject, we used the FC profile collected in one session 378 

as the subject-identifying key in a database. Given this database, we tested the 379 
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accuracy of retrieving any subject’s identity by using a query based on the subject’s FC 380 

profile in the other session. To retrieve the identity, we compared the query to every key 381 

to find the best match in terms of the highest correlation. We evaluated the identification 382 

accuracy as the percentage by which the correct identity was retrieved. Since we could 383 

use either session 1 or session 2 for the key while using the other for the query, we 384 

tested both cases and averaged the identification accuracy. 385 

For comparison, we also evaluated the functional connectivity between every pair 386 

of 360 cortical parcels defined in an established atlas37. Similarly, we used the FC 387 

profile in the cortical space as the feature for individual identification and compared the 388 

resulting identification accuracy with that based on the FC profile in the latent space. 389 

We repeated this comparative evaluation with a varying population size (from n=5 to 390 

500) or a varying length of data (from 9 to 180 s). We repeated the above analysis 100 391 

times, each time with a different subset of the testing data and averaged the 392 

identification accuracy across the repeated tests. 393 

 394 

 395 

  396 
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Figure 1. Variational Auto-Encoder (VAE). (a) Geometric reformatting. The cortical 571 

distribution of fMRI activity is converted onto a spherical surface and then to an image 572 

by evenly resampling the spherical surface with respect to sin(e) and a, where e and a 573 

are elevation and azimuth, respectively. (b) Encoder-decoder architecture. The 574 

encoder and the decoder each contain 5 convolutional layers connected in series. In the 575 

encoder, each convolutional layer (numbered from 1 to 5) outputs a feature map with 576 

the size of 96x96x64, 48x48x128, 24x24x128, 12x12x256, or 6x6x256, respectively. In 577 

the decoder, each convolutional layer (numbered from 8 to 12) outputs a feature map 578 

with a size of 6x6x256, 12x12x256, 24x24x128, 48x48x128, or 96x96x64, respectively. 579 

The operation at each layer is specified as follows. 1: convolution (kernel size=8, 580 

stride=2, padding=3) and rectified nonlinearity; 2-5: convolution (kernel size=4, stride=2, 581 

padding=1) and rectified nonlinearity; 6: fully-connected layer and re-parameterization; 7: 582 

fully-connected layer and rectified nonlinearity; 8-11: transposed convolution (kernel 583 

size=4, stride=2, padding=1) and rectified nonlinearity; 12: transposed convolution 584 

(kernel size=8, stride=2, padding=3). Blue and red boundaries highlight the input/out 585 

images for the left and right hemispheres, respectively. (c) Reconstruction of rs-fMRI. 586 

For a typical rs-fMRI dataset, the activity patterns observed are shown in the top and 587 

their reconstructions through VAE are shown in the bottom. The observed and 588 

reconstructed patterns correspond to 5 time points as shown in the voxel time series 589 

from the intra-parietal sulcus. The time series of the observed and reconstructed activity 590 

are shown in black and red, respectively.  591 

 592 
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 594 

 595 

 596 

  597 

598 
Figure 2. Synthesis of correlated rs-fMRI activity. Seed-based correlations based on599 

VAE-synthesized (upper panel) and experimentally measured (lower panel) rs-fMRI data600 

given three seed locations in the primary visual cortex, intra-parietal sulcus and601 

posterior cingulate cortex, as example locations in the visual network, dorsal attention602 

network, and default-mode network, respectively. The color indicates the correlation603 

coefficient.  604 
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 612 

 613 

 614 

615 

Figure 3. Latent-space clusters related to the default-mode network (DMN) and616 

the task positive network (TPN). (a) Five clusters (#5, 19, 8, 6, 16) project onto617 
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cortical patterns with positivity in one or multiple regions of DMN. Each pattern is shown 618 

as a map normalized to [-1, 1] (or divided by the maximum of the absolute voxel value). 619 

The cortical locations with values >0.35 or <-0.35 are labeled as “positive” or “negative”, 620 

respectively. For each location, the number of times it appears “positive” (or “negative”) 621 

is displayed as red to yellow (or blue to green) to show the degree of overlapping 622 

positivity (or negativity) across the five clusters. (b) Similarly, five clusters project onto 623 

positive patterns in TPN, including the cognitive control network (#17), attention network 624 

(#1), cingulo-opercular network (#14, 4), frontoparietal control network (#10). The 625 

degree of overlapping positivity (or negativity) is evaluated and displayed in the same 626 

way as (a). IFJ: inferior frontal junction, SMG: supramarginal gyrus, IFo: inferior frontal 627 

gyrus (pars opercularis), Pcun: precuneus, pSTS:  posterior superior temporal sulcus, 628 

TP: temporal pole, SFG: superior temporal gyrus, FOC: frontal orbital cortex, dmPOS: 629 

dorsomeidal parietooccipital sulcus, IPG: inferior parietal gyrus, MTG: middle temporal 630 

gyrus, MFG: middle frontal gyrus, Ang: Angular gyrus, PrS: precentral sulcus, IPS: 631 

intraparietal sulcus, ITG：  inferior temporal gyrus, IFt: inferior frontal gyrus (pars 632 

triangularis), AIC: anterior insular cortex, IFS: inferior frontal sulcus, PHT: Area PHT, 633 

SPG: superior parietal gyrus, mCS: margin of the cingulate sulcus, FEF: frontal eye field, 634 

PEF: parietal eye field. 635 

 636 

 637 

 638 

 639 
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 647 

Figure 4. Individual identification based on correlations between latent variables648 

or cortical parcels. (a) Density distributions of z-transformed correlations between649 
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every pair of cortical parcels (top) or latent variables (bottom). For each pair, the 650 

correlation in one session is plotted against the corresponding correlation in the other 651 

session for the same subject (within-subject, left) or different subjects (between-subject, 652 

right) given the testing dataset with n=500 subjects. (b) Within-subject (red) and 653 

between-subject (black) correlations in the FC among cortical parcels (top) or latent 654 

variables (bottom) are shown as histograms with the width of each bin at 0.01. (c) In the 655 

scatter plot, each dot indicates one subject, plotting the maximal correlation in the 656 

cortical FC profile between that subject and a different subject against the 657 

corresponding correlation within that subject. The red-dashed line indicates y=x, serving 658 

as a decision boundary, across which identification is correct (x>y) or wrong (y>x). The 659 

histogram shows the distribution of y-x (0.05 bin width) with the decision boundary 660 

corresponding to 0. Similarly, (d) presents the results obtained with latent-space FC in 661 

the same format as (c). (e) Top-1 identification accuracy evaluated with an increasing 662 

number of subjects (n=5 to 500) given the latent-space (red) or cortical-space (black) 663 

FC profile. The solid line and the shade indicate the mean and the standard deviation of 664 

the results with different testing data. (f) Top-1 identification accuracy given rs-fMRI data 665 

of different lengths (from 9s to 180s). The line and the error bar indicate the mean and 666 

the standard deviation with different testing data. 667 

 668 
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