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Abstract10

Neuronal activity in sensory cortex fluctuates over time and across repetitions of the same11

input. This variability is often considered detrimental to neural coding. The theory of neural12

sampling proposes instead that variability encodes the uncertainty of perceptual inferences.13

In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors14

supports this view. However, it is unknown whether V1 variability reflects the statistical15

structure of visual inputs, as would be required for inferences correctly tuned to the statistics16

of the natural environment. Here we combine analysis of image statistics and recordings in17

macaque V1 to show that probabilistic inference tuned to natural image statistics explains the18

widely observed dependence between spike-count variance and mean, and the modulation of19

V1 activity and variability by spatial context in images. Our results show that the properties of20

a basic aspect of cortical responses — their variability — can be explained by a probabilistic21

representation tuned to naturalistic inputs.22

1 Introduction23

In sensory cortex, neuronal activity is typically variable, both in the absence of sensory input24

and for repeated presentations of a stimulus (Tolhurst, Movshon, et al. 1983; Tomko and25

Crapper 1974). This variability is modulated by several sensory (M. Chen, Yan, et al. 2014;26

Churchland, Yu, et al. 2010; Coen-Cagli and Solomon 2019; Goris, Movshon, et al. 2014; Kohn27

and Smith 2005; Orbán, Berkes, et al. 2016; Ponce-Alvarez, Thiele, et al. 2013; Rabinowitz,28

Goris, et al. 2015; Solomon, S. C. Chen, et al. 2014; Verhoef and Maunsell 2017) and non-29

sensory (Cohen andMaunsell 2009; Dadarlat and Stryker 2017; Mitchell, Sundberg, et al. 2009;30
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White, Abbott, et al. 2012) factors, suggesting it may play a functional role rather than simply31

reflecting noise. Understanding the functional role of variability is at the core of the inquiry32

of neural coding (Beck, Ma, et al. 2012; Dinstein, Heeger, et al. 2015; Fiser, Berkes, et al. 2010;33

Pouget, Dayan, et al. 2003; Shadlen and Newsome 1998; Sompolinsky, Yoon, et al. 2001).34

Parametric descriptivemodels can capturehowstimulimodulateneuronal variability (Charles,35

Park, et al. 2018; Coen-Cagli and Solomon 2019; Goris, Movshon, et al. 2014; Stevenson 2016),36

but they do not address why modulation of variability occurs and what functional role it37

might play. Here we develop and test a normative model, based on efficient coding (Bell and38

Sejnowski 1997; Karklin and Lewicki 2009; Olshausen and Field 1996; Schwartz and Simoncelli39

2001) and probabilistic inference (Berkes, Orbán, et al. 2011; Coen-Cagli, Kohn, et al. 2015;40

Lochmann, Ernst, et al. 2012; Ma, Beck, et al. 2006; Orbán, Berkes, et al. 2016), to explain the41

properties of response variability in sensory cortex. In this approach, we hypothesize about42

functional and computational principles of cortical processing, to generate predictions about43

cortical activity. Specifically, we propose that probabilistic inference tuned to the statistics of44

natural images can explain the properties of response variability in visual cortex.45

Although normativemodels have typically been used to explain trial-averaged responses, they46

can also be used to explain response variability (Boerlin, Machens, et al. 2013; Fiser, Berkes,47

et al. 2010; Hoyer and Hyvärinen 2003; Hunsberger, Scott, et al. 2014). In particular, some48

aspects of variability in primary visual cortex (V1) can be explained by the theory of neural49

sampling. This theory builds on the broader idea that the brain approximates operations of50

probabilistic inference (Knill and Pouget 2004; Pouget, Beck, et al. 2013), and hypothesizes51

that instantaneous neuronal activity represents samples from a probability distribution (Fiser,52

Berkes, et al. 2010; Haefner, Berkes, et al. 2016; Hoyer and Hyvärinen 2003). According to this53

view, variability of neuronal activity reflects uncertainty about the visual input (i.e. the width54

of the inferred probability distribution). As a result, variability is reduced by stimulus onset55

(Churchland, Yu, et al. 2010) and stimulus contrast (Finn, Priebe, et al. 2007; Kohn and Smith56

2005), because of a reduction in uncertainty (Orbán, Berkes, et al. 2016).57

Here we hypothesize that modulation of uncertainty by visual input should reflect inferences79

tuned to the statistics of natural images, and thus that the properties of response variability80

should reflect the statistical structure of images. To test this prediction, we consider a suc-81

cessful modeling framework, the Gaussian Scale Mixture (GSM; Theis, Hosseini, et al. 2012;82

Wainwright, Simoncelli, et al. 2000). This model assumes that images are composed by local83

features (e.g. oriented edges; Fig. 1A) and global features (e.g. image contrast), and that V184

neurons aim to represent the local features while discarding the global features (Coen-Cagli,85

Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009; Coen-Cagli, Kohn, et al. 2015; Orbán, Berkes,86

et al. 2016; Schwartz and Simoncelli 2001). GSMs can explain the modulation of trial-averaged87

V1 responses by stimuli in the surround of the receptive field (RF; Angelucci, Levitt, et al.88

2002; Cavanaugh, Bair, et al. 2002b; Sceniak, Ringach, et al. 1999; Sillito and Jones 1996;89

Walker, Ohzawa, et al. 1999). However, it is unclear whether this framework can also explain90

the surroundmodulation of variability (Haider, Krause, et al. 2010; Snyder, Morais, et al. 2014)91
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Figure 1: Sampling-based inference in the GSM model explains the dependence between spike-
count variance andmean. A. Representation of the generative process of the Gaussian scale mixture
(GSM) model, (Methods Eq. 1). The image (left) is described as the combination of local oriented
features weighted by Gaussian coefficients, further multiplied by a global modulator and corrupted by
additive, Gaussian noise. B. Encoding of sensory information according to the sampling hypothesis:
the goal of a neuron is to represent the posterior distribution (orange, middle) of the feature it encodes.
The activity of the neuron corresponds to samples from that distribution, therefore the histogram of
spike counts over time or repetitions (green, right) reflects the distribution. C. Tuning of mean and
variance in a 1-dimensional version of the GSM with no noise. For fixed input 𝑥, the visual feature
𝑔 and the modulator 𝜈 are bound to lie on the hyperbole 𝜈 = 𝑥/𝑔 (black line). Therefore, a larger
estimate of 𝜈 implies reduced mean and variance of 𝑔 (blue versus brown curves). D. Mean versus
variance of a GSMmodel neuron in response to 1,000 patches of natural images. Patches were selected
randomly, with the requirement of sufficient signal strength inside the RF, i.e. above the median of
the full distribution of (𝑥2

1+ + 𝑥2
1−) on natural scenes, where 𝑥1+ and 𝑥1− are the odd and even phases

of the center vertical filter (see Methods). E. The Fano factor (FF; ratio between mean and variance) as
a function of the mean for the same GSM simulation reported in D. Red dashed line represents the
best linear fit. Pearson corr. 0.214, 𝑝 < 10−4.
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and whether this modulation reflects the statistical properties of natural inputs.92

Here we combine modeling and electrophysiology in macaques to test our hypothesis that V193

variability is tuned to natural image statistics. First, we show analytically that the dependence94

between spike-count variance and mean observed empirically (Goris, Movshon, et al. 2014;95

Shadlen and Newsome 1998; Tolhurst, Movshon, et al. 1983) emerges in the GSM from the96

multiplicative interactions between local and global image features. Second, we show that97

stimuli in the RF surround modulate these interactions, and thus also response variability.98

Finally, we test predictions about surround modulation of firing rate and variability with99

recordings in V1 of awake and anesthetized macaques viewing natural images and gratings.100

Our results show that visual context modulates neuronal response strength and variability101

independently, suggesting these modulations reflect probabilistic inference about local visual102

features. Our work thus provides evidence that the tuning of cortical variability can be103

explained assuming the brain performs operations of probabilistic inference of natural image104

statistics.105
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2 Results106

2.1 The dependence between spike-count variance andmean reflects107

multiplicative interactions between latent variables108

To study the relation betweennatural image statistics andV1 cortical variability, we considered109

the GSM because it captures the most prominent aspects of low-level image statistics, namely110

the sparseness of V1-like, oriented visual features and their nonlinear statistical dependence111

(Schwartz and Simoncelli 2001; Wainwright, Simoncelli, et al. 2000). We assumed that the112

instantaneous firing of V1 neurons (Methods Eq. 4) represents samples from the inferred113

probability distribution (termed posterior distribution; Berkes, Orbán, et al. 2011; Orbán,114

Berkes, et al. 2016) of oriented visual features encoded by the neurons. The inference of the115

posterior distribution requires inverting the so-called generative model of stimuli: that is,116

how features — small patches with different orientations and positions — are combined to117

produce images (Fig. 1A). Given an input image, model neurons then encode the inferred118

probability distribution of the coefficients of those features in the image. This is illustrated119

schematically for a vertical feature in Fig. 1B-top. The posterior distribution (middle column)120

in this case was broad with a large mean, indicating that the vertical feature was strongly121

present in the input image, though its precise coefficient was uncertain. Conversely, the image122

in Fig. 1B-bottom contains little evidence for the vertical feature, leading to a narrow posterior123

centered on zero. In the sampling framework, neuronal responses represent samples from124

this posterior distribution (Fig. 1B, right column). Thus, the variance of the spike count125

distribution (i.e. the neuronal variability) reflects the variance or width of the posterior,126

corresponding to the uncertainty about the coefficient of the encoded feature.127

We studied whether, in the GSM, response variance depends on response mean, as observed128

in V1 (Goris, Movshon, et al. 2014; Shadlen and Newsome 1998; Tolhurst, Movshon, et al.129

1983). The GSM assumes x = 𝜈 g where the sensory input x is the result of local features130

g (the variables encoded by the neurons) multiplied by a global modulator 𝜈 (e.g. image131

contrast). To gain intuition about the mean–variance relationship of the model, we first132

considered the simplest formulation of a GSM, where x and g are 1-dimensional. Although133

the expression relating these quantities — 𝑥 = 𝜈 𝑔 — is deterministic, knowledge of 𝑥 is134

insufficient to determine 𝑔, due to the unknown 𝜈. Computing the probability distribution of 𝑔135

by accounting for the possible values of 𝜈 is a fundamental operation of probabilistic inference,136

calledmarginalization (Beck, Latham, et al. 2011; Pouget, Beck, et al. 2013). Crucially, because137

of the multiplication, both the inferred value of 𝑔 and its uncertainty (i.e. the mean and138

standard deviation of the posterior over 𝑔) are divisively related to 𝜈. For instance, assume we139

observed 𝑥 = 10 and we inferred that 𝜈 is likely to be between 1 and 2 (Fig. 1C, dark blue), then140

by marginalization we would infer that 𝑔 is with high probability between 5 and 10 (Fig. 1C,141

light blue). If instead 𝜈 was inferred to be in the interval 4–5 (Fig. 1C, dark brown), then 𝑔142

could only take values between 2 and 2.5, thus shrinking both in mean and variance (Fig. 1C,143
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light brown). This example illustrates why a neuron whose responses reflect samples from144

the inferred distribution of 𝑔 should display a dependence between mean and variance in its145

response statistics. Note that this dependency is not linear, nor do mean and variance strictly146

follow each other as they would in a Poisson process. In general, the relative scaling depends147

on model choices, such as the uncertainty on the priors and, for high dimensional inputs, the148

stimulus structure (as explained in the next section). Notice too that if the mixer term were149

additive instead of multiplicative, then changes in its inferred value would only change the150

inferred mean of g , not its variance, leading to different predictions (Supplementary Fig. S1).151

To validate this intuition more rigorously, we considered GSM inference on real images. As168

in past normative models (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009;169

Coen-Cagli, Kohn, et al. 2015; Schwartz and Simoncelli 2001), we implemented a GSM with170

oriented filters (Simoncelli and Freeman 1995) spatially arranged to define both the RF of171

the model neuron and its surround (Fig. 2A; details in Methods). The model was trained on a172

large ensemble (N=10,000) of natural image patches extracted from the BSDS500 database173

(Arbelaez, Maire, et al. 2011, https://github.com/BIDS/BSDS500).174

Given an input image, the visual inputs x (a vector) were determined by the activations of175

those filters applied to the image. We denoted by g the corresponding local visual features.176

First, we verified that the multiplicative effect of the modulator allows the GSM to capture177

the statistics of natural images (Wainwright, Simoncelli, et al. 2000) better than an additive178

modulator (Supplementary Fig. S1). We found through analytical derivations and simulations179

that the variance of the inferred g grows with the mean, and both are divisively scaled by the180

estimate of the global modulator 𝜈, leading to a general reduction of uncertainty when the181

estimate of 𝜈 increases (Methods Eq. 2, 3; see Supplementary Text for derivation). We then182

simulated model responses to a wide range of natural images (Fig. 1D), and characterized the183

mean–variance relation. The response variance of the model neuron scaled proportionally184

with its mean. Furthermore the ratio of variance to mean, termed Fano factor (FF), increased185

on average for stimuli that elicited strongermean responses (Fig. 1E), in qualitative agreement186

with the statistics of V1 neurons (Goris, Movshon, et al. 2014). Importantly, training a GSM on187

different image sets, such as white noise, led to different parameter values but qualitatively188

similar predictions for neural responses (Supplementary Fig. S2), indicating that the mean-189

variance dependence arises frommatching the generativemodel’s structure to image statistics190

(i.e. multiplicative latent interactions) rather than fine-tuning its parameters.191

These analyses confirm the intuition that the dependence between posterior variance and192

mean observed in the GSM emerges from the multiplicative interactions between the global193

modulator and the local variables. Because this partition between local and global variables194

in the GSM is known to capture well the statistics of natural images (Schwartz and Simoncelli195

2001;Wainwright, Simoncelli, et al. 2000), our result establishes a precise link between image196

statistics and cortical variability.197
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Figure 2: Surround stimulation reduces GSM uncertainty and V1 variability for natural images.
A. In the GSM, the inputs to the model neuron are provided by the activity of quadrature pairs of
oriented filters, corresponding to the spatial RF (green) and its surround (magenta). B. Noise-free
GSMmodel applied to an image without (blue) and with (brown) surround. The surround stimulus
does not change the constraint between 𝑔𝑐 (the local feature associated with the RF center) and 𝜈, but
it influences the estimate of the modulator and therefore also the estimate of 𝑔𝑐. C. FF averaged across
small (1 deg) and large (3.1 or 6.7 deg) natural image patches. Black and gray circles: average FF across
images for each V1 neuron; black denotes a significant difference (𝑝 < 0.05) across the two conditions.
Orange circle: average FF of the GSM response for the same set of images. For the conversion to spike
counts (see Methods, Eq. 4) we used the scaling factor 𝑐 = 2. D-F. Tuning of the mean spike count
(green) and FF (blue), for natural image patches of varying size. D. GSMmodel, scaling factor 𝑐 = 15.
This constant was different than in C, because the experiments of C used images with a broader range
of orientation and frequency content than D. E,F. Data from one awake fixating macaque V1, for two
example neurons E and the population average F. Error bars represent the 68% c.i.
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2.2 Surround stimulation reduces uncertainty and V1 variability198

The previous analysis shows that variability in the GSM is influenced by the inferred values199

of the global modulator. Therefore, the framework predicts that variability is sensitive to200

stimulusmanipulations that affect the inferred globalmodulator. Specifically, stimuli that lead201

to a higher estimate of the modulator present less uncertainty over the hidden feature, and202

thus should reduce response variability. To test this prediction, we considered themodulation203

of V1 activity induced by spatial context — by stimuli in the surround of a neuron’s RF —204

because spatial context can reduce stimulus uncertainty without modifying the stimulus205

drive inside the RF (Albright and Stoner 2002).206

First, we verified for the GSM that surround stimuli (i.e. image regions that activate the207

surround filters) reduce uncertainty. The activity of the model neuron is associated with208

the oriented feature in the center. However, the surround input contributes to the estimate209

of the global modulator, and therefore influences the neuronal response. Specifically, our210

analytical results show that, for a fixedRF input, surround stimulation increased the estimated211

modulator and therefore had a suppressive influence both on the mean and variance of the212

neuronal response (Fig. 2B; Methods), validating our intuition that surround stimuli reduce213

uncertainty by resulting in a higher estimate of the global modulator.214

Next, we testedwhether surround stimulation reducesV1 variability, relative to RF stimulation215

alone, by analyzing previously published data on V1 surround modulation in anesthetized216

macaques (Coen-Cagli, Kohn, et al. 2015). In these experiments, natural image patches217

were presented at two different sizes, either masked to fit within the average RF (1 degree),218

or extending well beyond into the surround (3.1-6.7 degrees). Among the neurons with a219

significant change in FF across conditions (127/261 neurons, 𝑝 < 0.05), the vast majority220

(91.3%) had a lower FF for large images than small ones, consistent with model predictions.221

The average FF, across all neurons, was also lower for large images than small ones (1.15222

versus 1.22, 𝑝 < 10−6, 𝑁 = 261 neurons). We verified with a mean-matching analysis that this223

difference in FF could not be explained by differences in spike-count mean (Supplementary224

Fig. S3). This result agrees qualitatively with the model (Fig. 2C, orange symbol), although225

surround suppression of FFwas stronger in themodel, possibly because surroundmodulation226

in the GSM is recruited by all images, whereas in V1 it is weak or absent for many images227

(Coen-Cagli, Kohn, et al. 2015). Consistent with this possibility, the strength of surround228

suppression of responsivity and of FF were positively correlated (Supplementary Fig. S4).229

2.3 Distinct effects of RF and surround stimulation on variability suppression230

Suppression of response variability by large stimuli might not be due solely to surround231

stimulation. Visual stimuli reduce the variability seen in spontaneous activity (Churchland,232

Yu, et al. 2010). Therefore large images might reduce variability by providing stronger drive233
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to the RF, in those cases where small images did not completely cover the RF. To test whether234

stimuli larger than the RF induced further reduction of the FF, beyond the reduction caused235

by the stronger RF drive, we considered responses to circular patches of natural images, with236

sizes ranging frommuch smaller to much larger than the typical RF.237

We first studied the effects of stimulus size in the GSM. We found that the mean response238

peaked for images matched in size to the RF and decreased for larger stimuli, consistent with239

pastwork (Coen-Cagli, Dayan, et al. 2012). The FF, on the other hand, decreasedmonotonically240

with stimulus size, well after the stimulus filled the RF (Fig. 2D), because large stimuli lead to241

a larger estimate of the global modulator (Supplementary Fig. S5A). The difference between242

the behavior of the FF and the mean indicates that it should be possible to dissociate the243

effects of variability reduction from the modulation of spike-count mean: stimuli smaller244

than the RF and larger than the RF can elicit similar average responses but with different245

variability.246

We tested these predictions in V1 responses to natural images of different sizes in one awake247

fixatingmacaque. For the two example neurons of Fig. 2E, themean spike count displayed the248

typical non–monotonic size dependence (green), whereas the FF decreased monotonically249

(blue). Similar effects were evident across all recorded neurons for stimuli ranging from250

approximately half the RF size up to several times larger (𝑁 = 86; Fig. 2F). The FF decreased251

by 18.7% as stimuli increased from approximately 1/2 RF size to RF size, and an additional252

5.7% as stimuli increased from RF size to approximately twice that size (Table 1, left), which is253

the average extent of the suppressive surround inV1 (Angelucci, Levitt, et al. 2002; Cavanaugh,254

Bair, et al. 2002a; Sceniak, Ringach, et al. 1999). Furthermore, the FF decreased for stimuli255

larger than the RF compared to stimuli smaller than the RF, even when both stimuli evoked256

approximately the same number of spikes (Table 1, right). To be sure that our results were257

not affected by inaccurate estimates of RF size, due to variations in local contrast across258

natural images, we measured responses to static gratings in the same animal, and obtained259

similar results (Table 1, experiment 2; Supplementary Fig. S6A). New analyses of previously260

published data from anesthetized animals (Coen-Cagli, Kohn, et al. 2015) also confirmed261

these results (Table 1, experiment 3; Supplementary Fig. S6), ruling out the possibility that262

microsaccades in the awake animals might have introduced biases.263

Note that the FF was lower on average for stimuli smaller than 1/2 RF size (Fig. 2F, leftmost264

point). This was true for the subset of neurons with large RF (𝑁 = 65/86), whereas the265

FF decreased strictly monotonically for neurons with smaller RFs (Supplementary Fig. S7).266

Both the large apparent RF size and the non-monotonicity of the FF would be expected if267

stimuli were not perfectly centered on the RF (Supplementary Fig. S8). Furthermore, the FF268

decreased monotonically with stimulus size in the anesthetized dataset, for which stimulus269

centering could be controlled more tightly (Supplementary Fig S7).270

These analyses show that stimulation of the RF surround reduces response variability, beyond271

the known reduction from spontaneous to stimulus-driven activity (Churchland, Yu, et al.272

9



Experiment FF decrease
(1/2 RF) − (RF)

FF decrease
(RF) − (2 × RF) 𝑝-value

Mean-matched FF
decrease (size >
RF) − (size < RF)

𝑝-value

1. Natural, awake
(𝑁 = 86; Fig. 2F) 18.7% 5.7% 0.082 25.7% < 10−5

2. Gratings, awake
(𝑁 = 19;
Supp. Fig. S6)

31.7% 9.0% 0.05 47.7% < 10−3

3. Gratings,
anesthetized
(𝑁 = 229;
Supp. Fig S6)

14.2% 7.05% < 10−3 22.6% < 10−5

Table 1: Rows. Separate experiments, with number of neurons selected in each experiment (selection
criteria in Methods). Columns. Columns 1-3, changes in FF with stimulus size; columns 4 and 5,
mean-matched (see Methods) change in FF with stimulus size. In all cases, a positive change denotes
a reduction in FF for larger stimuli. First column: change in FF (Methods, Eq. 5) from the stimulus
closest to 1/2 of the RF size (out of all tested sizes) to the RF-sized stimulus. Second column: change in
FF from the RF-sized stimulus to the large stimulus (closest to 2 RF size). Third column: the 𝑝-value
for the second column. Fourth column: FF change from stimuli smaller to larger than RF size. Sizes
are selected to match the mean spike count across neurons (spike count change < 3%, 𝑝 > 0.05, for all
experiments). Fifth column: 𝑝-value for the fourth column.

2010).273

2.4 Surround suppression of variability is orientation selective282

Surround suppression of mean firing rate is known to be stronger for image patches with283

matched orientation inside and outside the RF, and weaker when the surround orientation is284

orthogonal to the center (Angelucci, Bijanzadeh, et al. 2017; Cavanaugh, Bair, et al. 2002b;285

Gardner, Anzai, et al. 1999; Sillito and Jones 1996;Walker, Ohzawa, et al. 1999;Webb, Dhruv,286

et al. 2005). It is not knownwhether variability is similarly tuned. In our GSMmodel, surround287

tuning of mean responses (Fig. 3A, green) was obtained by using surround filters with the288

same orientation as the feature of interest inside the RF (details in Methods), as in past289

implementations (Coen-cagli, Dayan, et al. 2009; Schwartz and Simoncelli 2001).290

Because the GSM predicts that surround suppression of both mean spike-counts and vari-291

ability is controlled by the inferred strength of the global modulator, we found that surround292

suppression of model response variability and of mean spike-counts were similarly tuned293

(Fig. 3A). We verified that this corresponded to a smaller estimate of the global modulator294

for orthogonal surround stimuli (Supplementary Fig. S5B), which in turn resulted in weaker295

surround suppression of variability.296

To test these model predictions, we measured V1 responses to compound static gratings297
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The difference is considered significant when the 68% c.i.’s of the two conditions do not overlap.
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in two awake, fixating macaques (𝑁 = 71 neurons). Consistent with past literature, the298

mean response was suppressed (relative to no surround) more when the surround and center299

orientations were matched (Fig. 3B; average suppression matched 0.844, orthogonal 0.885;300

average reduction 6.28%, 𝑝 = 0.0043). In agreement with model predictions, the FF was301

smaller for thematched surround (Fig. 3C; average FFmatched 0.973, orthogonal 1.02; average302

reduction 4.73%, 𝑝 = 0.032), and this was true in the majority (𝑁 = 9/14) of neurons with303

a significant change (𝑝 < 0.05). However, although consistent with the GSM prediction,304

the magnitude of the effect was small (see also Discussion). One reason might be that, in305

our data, 26/71 neurons responded more strongly to parallel than orthogonal surrounds306

(i.e. opposite to the surround tuning of our GSM implementation), which may be due both307

to imperfect stimulus centering and to the known heterogeneity in the orientation tuning308

of surround suppression of firing rate (Cavanaugh, Bair, et al. 2002b). Consistent with this309

explanation, we verified that if we restricted our analysis to neurons that responded more310

weakly to parallel than orthogonal surround (𝑁 = 45/71; average reduction 17.3%, 𝑝 < 10−5),311

the surround tuning of FF was also stronger (average reduction 7.37%, 𝑝 = 0.013) than for312

the entire population (Supplementary Fig. S9).313

Our analysis shows that surround suppression of variability in V1 is tuned to the orientation314

of surround stimuli, in a manner similar to the tuning of firing rate suppression, suggesting315

partly shared mechanisms. In the GSM framework, this tuning arises because only matched316

surround stimuli provide information about the globalmodulator and thus reduce uncertainty.317
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3 Discussion318

We have presented a theoretical framework that explains V1 variability and its modulation by319

spatial context in natural images, as reflecting probabilistic inference about local features in320

visual inputs. Our work builds on the theory of neural sampling (Fiser, Berkes, et al. 2010;321

Haefner, Berkes, et al. 2016; Hoyer and Hyvärinen 2003; Orbán, Berkes, et al. 2016), in which322

neuronal variability encodes uncertainty of the inferences, and offers twomain contributions.323

First, we established a precise link between V1 response variability and the statistics of324

natural images. We showed that the dependence between spike-count variance and mean,325

and the modulation of variability by spatial context are general consequences of probabilistic326

inference when there are multiplicative interactions between latent variables, which is a327

widely-adopted description of natural image statistics (Coen-Cagli, Dayan, et al. 2012; Dayan328

and Abbott 2005; Gao and Vasconcelos 2007; Geisler 2008; Schwartz and Simoncelli 2001;329

Wainwright, Simoncelli, et al. 2000). Second, we validated our model with measurements330

of V1 activity. Consistent with model predictions, spatial context in images modulated V1331

variability beyond the known reduction of variability from spontaneous to stimulus-driven332

activity (Churchland, Yu, et al. 2010). Furthermore, the tuning of contextual modulation of333

variability was similar to (although weaker than) that of mean spike counts, suggesting shared334

mechanisms.335

3.1 Natural image statistics and contextual modulation of response variability336

Normative models of visual processing have explained properties of V1 representations from337

optimization and efficiency principles related to the statistics of the natural environment338

(Bell and Sejnowski 1997; Hyvärinen and Hoyer 2000; Karklin and Lewicki 2009; Olshausen339

and Field 1996; Rao and Ballard 1999; Schwartz and Simoncelli 2001). This work has typically340

addressed only the trial-averaged spike counts. However, across-trial variability is substantial341

in cortex and can strongly influence perception (Kohn, Coen-Cagli, et al. 2016; Moreno-Bote,342

Beck, et al. 2014; Pouget, Beck, et al. 2013; Shadlen and Newsome 1998). Understanding343

cortical processing requires addressing this variability, which we have done via the neural344

sampling theory.345

The hypothesis that neuronal variability reflects sampling from a distribution (Hoyer and346

Hyvärinen 2003) is rooted in machine learning research focused on efficient inference347

schemes (Bishop 2006). Past work in neural network modeling has shown how samples348

might be generated dynamically, and in a manner that is fast enough for accurate inference349

within short, biologically relevant timescales (Echeveste, L. Aitchison, et al. 2020; Hennequin,350

Laurence Aitchison, et al. 2014; Legenstein and Maass 2014; Savin and Denève 2014).351

While past work has addressed the plausibility of neural sampling, we have focused instead on352

contextual effects, for two important reasons. First, contextual effects disambiguate between353
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two key aspects of neural coding: the strength of the stimulus feature represented by the354

neuron, and the uncertainty about that feature. This is because stimuli in the RF surround do355

not directly affect the inputs to the RF, but they can modulate uncertainty. This is different356

from contrast modulation (Orbán, Berkes, et al. 2016) and other common experimental357

manipulations (e.g. adding stimulus noise; Britten, Shadlen, et al. 1992; Nienborg and358

Cumming 2014), thatmodulate both the strengthof a visual feature and its uncertainty. Second,359

natural visual inputs have rich statistical structure that extends across the visual field. There360

is abundant evidence suggesting a relation between spatial structure in images and spatial361

contextual effects in cortex (Coen-Cagli, Kohn, et al. 2015; Rao and Ballard 1999; Schwartz362

and Simoncelli 2001; Spratling 2010; Zhu and Rozell 2013). Contextual modulation of V1363

trial-averaged responses has been characterized extensively with artificial stimuli (Angelucci,364

Levitt, et al. 2002; Cavanaugh, Bair, et al. 2002a,b; Sceniak, Ringach, et al. 1999; Sillito and365

Jones 1996; Walker, Ohzawa, et al. 1999), and is also prominent for natural inputs (Haider,366

Krause, et al. 2010; Vinje and Gallant 2000). Past work using the GSM and its extensions has367

explained a wide range of those phenomena, as reflecting a computation optimized to the368

statistics of natural images (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009;369

Schwartz and Simoncelli 2001). The modeling and experimental results presented here are370

consistent with this prior work, as we report strong and tuned surround suppression of mean371

spike-counts (Fig. 2D-F, Fig. 3). But our findings go beyond this previous work, by establishing372

a general relation between response variability and natural image statistics (Fig. 1C) and373

relating surround influences on mean spike counts and on variability (Fig. 2D-F, Fig. 3).374

Ourmodel could be further extended to account for the fact that contextualmodulation isweak375

or absent for some stimuli, such as when contextual inputs are not informative (Coen-Cagli,376

Kohn, et al. 2015). Variability reduction by stimulus context should be weaker or absent for377

such uninformative contextual stimuli, which would be consistent with our observations that,378

when we used natural images, the level of surround suppression of FF varied substantially379

across images (Fig. 2C and Supplementary Fig. S4), and that suppression was also weaker380

for orthogonal grating surrounds (Fig. 3C). Although V1 responses agreed well with model381

predictions, we observed a quantitative discrepancy between the two: contextual modulation382

of FF and its tuningweremuch stronger in themodel. This could reflect that, in themodel, the383

main source of uncertainty (particularly for the high-contrast stimuli we used), and therefore384

variability, is the unknown value of the global modulator. Model response variability is385

therefore extremely sensitive to contextual stimuli. In V1, there are likely multiple latent386

sources of uncertainty that could partly mask the effects of our experimental manipulation of387

spatial context. Addressing this discrepancymay require considering non-sensory contextual388

factors such as attention and behavioral state (Haefner, Berkes, et al. 2016; Rabinowitz, Goris,389

et al. 2015).390
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3.2 Influences of divisive normalization on variability and other response391

statistics392

Our mathematical analysis of the GSM inference shows that, in the model, response strength393

and variability are jointly modulated by divisive normalization (Carandini and Heeger 2012;394

Heeger 1992). This is because the mean and variance of the inferred distribution of the395

local features depend divisively on the inferred value of the global modulator (Methods,396

Eq. 3), which in turn is obtained by combining the inputs corresponding to all features397

(Methods Eq. 2; Coen-Cagli, Dayan, et al. 2012). Therefore, our model points to divisive398

normalization as the key operation for surround modulation of rate and variability. There is399

abundant indirect evidence that normalization modulates responses beyond firing rate. For400

instance, stimulus manipulations that engage normalization, such as varying contrast and401

size (Cavanaugh, Bair, et al. 2002b; Heeger 1992), also modulate variability (Haider, Krause,402

et al. 2010; Kohn and Smith 2005; Snyder, Morais, et al. 2014). In addition, although the403

mechanisms of normalization are debated, network models based on inhibitory stabilization404

(Y. Ahmadian, D. B. Rubin, et al. 2013) reproduce many of those stimulus-induced effects,405

indicating a common mechanism that could control both firing rate (Hennequin, Yashar406

Ahmadian, et al. 2018; Daniel B. Rubin, Hooser, et al. 2015) and variability (Hennequin, Yashar407

Ahmadian, et al. 2018) consistently with normalization.408

Other work has established the connection between normalization and variability more409

directly. A descriptive model of stochastic normalization has been shown to fit changes410

in variability with stimulus contrast (Coen-Cagli and Solomon 2019) and orientation noise411

(Henaff, Boundy-Singer, et al. 2020), and revealed that, even for fixed stimuli, variability is412

reduced during epochs of strong normalization (Coen-Cagli and Solomon 2019). Our analytical413

results on normalization and variability bridge the gap between this literature and a theory414

of the computational role of variability.415

3.3 Relation to other descriptive models and functional explanations of416

cortical variability417

Previous work used a GSM to demonstrate stimulus dependent changes in response statistics418

(Orbán, Berkes, et al. 2016). In particular, Orbán, Berkes, et al. (2016) suggested that a GSM419

could unify effects of response mean and variability. Our work extends this study in two im-420

portant aspects. First, Orbán and colleagues used approximate inference in their GSM, based421

on a maximum a posteriori estimate for the global scaling variable. Consequently, posterior422

variance was exclusively due to observation noise, while variance resulting from uncertainty423

in the global scaling variable was ignored. This required tuning a nonlinear conversion from424

membrane potential to spike counts to account for realistic response variability (Carandini425

2004). Here, we include both sources of uncertainty — input noise and the unknown global426

latent variable — andwe show that the GSM framework is sufficient to capture the dependence427
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between response mean and variance for a wide range of inputs (Fig. 1C,D), without further428

tuning the conversion frommembrane potential to spikes. Second, the treatment of Orbán429

et al was sufficient for a coarse grained account of contextual effects (such as changes in430

sparseness and reliability), but our analysis unveils a more complex repertoire of contextual431

effects for natural images, leading to detailed predictions that related statistical dependencies432

across visual space to contextual modulation of V1 variability.433

Another recent model (Henaff, Boundy-Singer, et al. 2020) proposes that uncertainty is repre-434

sented in the response variability, and is thus related to sampling and to our work. However,435

they propose that variability is partitioned into two terms, Poisson variability and fluctua-436

tions in response gain (Goris, Movshon, et al. 2014). Uncertainty is encoded specifically by437

the amplitude of the gain fluctuations. Different from our work, the Poisson term in that438

framework does not have a functional role and is left unexplained, and there is no precise439

relation between V1 variability and the statistics of natural images. In addition, whereas440

sampling-based representations can approximate the full posterior distribution, the model of441

Henaff, Boundy-Singer, et al. (2020) focuses only on the mean and variance (uncertainty) of442

the posterior. Therefore, future experimental work could further distinguish between these443

theories by comparing higher-order statistics of V1 responses to the corresponding statistics444

in the visual inputs.445

4 Methods446

4.1 Model of V1 responses447

The Gaussian Scale Mixture (GSM) generative model448

The observable variables are given by the outputs of linear, oriented filters (Simoncelli and449

Freeman 1995) applied to grayscale input images. We assume oriented filters because they450

approximate well those optimized to natural images, and also represent a canonical choice for451

V1 models that used the GSM framework (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan,452

et al. 2009; Coen-Cagli, Kohn, et al. 2015; Echeveste, L. Aitchison, et al. 2020; Orbán, Berkes,453

et al. 2016). One pair of filters (even and odd phase, forming a quadrature pair) represents454

the RF of the model neuron, and another 8 pairs are uniformly distributed on a circle around455

the RF, all with the same orientation (represented in Fig. 2A as vertical). The surround filters456

slightly overlap with the RF filters, to reflect that suppressive surround mechanisms in V1457

partly overlap with the RF (Cavanaugh, Bair, et al. 2002a) (see Fig. 2A). The responses of the458

18 filters form a 18-dimensional input vector, denoted as x.459
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The generative model uses latent variables to capture the statistics of x, as follows:460

x = 𝜈 g+ 𝜼
g ∼ 𝒩 (0, 𝐶𝑔) ; 𝜈 ∼ Rayleigh (1) ; 𝜼 ∼ 𝒩 (0, 𝐶noise)

(1)461

The observable x results from the product of the feature vector g, which has the same dimen-462

sionality of x, and a positive scalar 𝜈, that acts as global modulator. The additive noise 𝜼 plays463

the role of observation noise in the generative model. That is, it accounts for the fact that464

the GSM is not a perfect model of the statistics of the observable x on natural images. As we465

explain below, this additive noise is also helpful to account for realistic response variability466

with weak stimuli (Supplementary Fig. S10). We assume that g and 𝜼 are generated from467

multivariate normal distributions, with mean 0 and covariances 𝐶𝑔 and 𝐶noise, respectively; 𝜈468

follows a Rayleigh distribution with mean 1. Note that changing the Rayleigh parameter is469

equivalent to rescaling 𝐶𝑔.470

Model optimization471

The covariance of the noise term, denoted as 𝐶noise in Eq. 1, is found numerically, by applying472

the filters to 10,000 white-noise patches. We take the empirical covariance of the resulting473

outputs and scale it by a free parameter, set heuristically at 0.1 to ensure a realistic response474

variability for weak inputs (Supplementary Fig. S10). The covariance matrix 𝐶𝑔 is computed475

by moment-matching (Doulgeris and Eltoft 2009), based on the empirical covariance of filter476

outputs over 10,000 natural image patches, scaled by a term that accounts for the mixer. This477

ensures that the model is adapted to natural image statistics, as in previous work (Coen-478

Cagli, Dayan, et al. 2012). The image patches used for training are considered noise-free,479

and the noise level in the trained model is tuned heuristically. This choice was motivated by480

convenience, and by noticing that pixel noise tended to be small, reflecting the digital quality481

of images and not indicative of sensory noise.482

Probabilistic inference and sampling483

Having defined the generative process, we can express the posterior distribution of the484

latent feature of interest, for example the center-vertical feature with odd spatial phase,485

𝑔1+, given the filters response ̃x to a test image. This quantity is denoted 𝑃 (𝑔1+| ̃x), and486

results from an operation of Bayesian inference and marginalization over the other latent487

variables (Supplemental Text, Section 1). In particular, the global modulator plays a key role488

in the inference of 𝑔1+. To gain further insight, we first derived analytical solutions for the489

regime in which input noise is negligible, i.e. 𝜼 = 0. First,can be expressed analytically and490
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approximated (Supplemental Text, Section 4) as:491

E [𝜈| ̃x] =
√

𝜆 (1 + 𝒪 (𝜆−1)) , with 𝜆 = √∑
𝑖,𝑗

(𝐶−1
𝑔 )

𝑖,𝑗
̃𝑥𝑖 ̃𝑥𝑗 (2)492

where 𝒪 (𝜆−1) represents a generic function that drops to zero asymptotically with 𝜆−1. This493

shows that the estimate of the mixer depends on the outputs of all filters. Second, the494

distribution of the feature of interest, 𝑃 (𝑔1+| ̃x), can also be expressed in closed-form in the495

low-noise limit (Supplemental Text, Section 4). Its mean and Fano factor can be approximated496

as:497

E [𝑔1+| ̃x] =
̃𝑥1+√
𝜆

(1 + 𝒪 (𝜆−1)) , and FF [𝑔1+| ̃x] =
̃𝑥1+

4𝜆
√

𝜆
(1 + 𝒪 (𝜆−1)) (3)498

In the approximation above (derived in Supplemental Text, Section 4), the expected value499

of the feature of interest depends linearly on the input inside the RF, ̃𝑥1+. However it is500

scaled by
√

𝜆, a quantity approximately equal to the expected value of the global modulator501

(Eq. 2), which includes the influence of the surround. The variance instead scales divisively502

with the square of 𝜆, which in turn determines the reduction of variability (the FF in Eq. 3)503

by surround stimulation. This analysis thus shows that, in the GSM inference, divisive nor-504

malization influences both the mean and the variance of the posterior distribution, thus505

providing a normative explanation for the dependence between spike-count variance and506

mean observed in sensory neurons. Notice also that the expected value and the FF are not507

always monotonically related, because 𝜆 depends both on inputs inside and outside the RF,508

and appears with different exponents in the FF and expected value. For instance, surround509

stimulation affects only 𝜆 and thus changes the FF and expected value in the same direction,510

whereas changing contrast affects both numerator and denominator resulting in opposite511

scaling of the expected value and FF.512

The analytical results in Eq. 3 refer to the reduced model without additive noise. In this513

formulation, for very small inputs x̃ ≈ 0 the inferred mean and variance converge to zero,514

resulting in model neurons with an unrealistically silent and very stable baseline activity.515

We therefore extended the generative model to non-zero additive noise, and determined516

the model neuron responses numerically, by Monte Carlo sampling, implemented through517

the Stan programming language (https://mc-stan.org/). When comparing the analytical518

solution for the noiseless model with the simulation results for the full model, we found that,519

as expected, they differ predominantly in the regime of small inputs, where the model with520

noise still preserves a non-zero response and variability (Supplementary Fig. S10).521

Our choice of a fixed Rayleigh prior for the mixer (in line with past work; Coen-Cagli, Dayan,522

et al. 2012; Coen-cagli, Dayan, et al. 2009; Coen-Cagli, Kohn, et al. 2015; Schwartz, Sejnowski,523

et al. 2006) is mainly due to mathematical convenience, as it allows us to obtain analytical524

insights on the scaling of mean and variance with ̃𝑥1+ and 𝜆. Although we focused here525

on qualitative predictions, for quantitative fits of GSM models to neural data one could526

leverage the flexibility afforded by modifying the mixer prior and introducing additional free527

parameters.528
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Conversion to spike counts529

For the purpose of our analysis, in Eq. 3 ̃𝑥1+ is assumed greater than 0 (e.g. a grating stimulus530

in-phase with the filter). To cover the general case, and appropriately express neural response531

and FF in terms of spike counts, we performed the following transformation:532

𝑟 = 𝑐 √𝑔2
1+ + 𝑔2

1− (4)533

where 𝑐 is a fixed parameter set heuristically so that mean responses and FF are in a realistic534

range (values are reported in the figure captions), and the ± represent the two spatial phases535

at the RF position. One strength of this framework (following Orbán, Berkes, et al. 2016)536

is that it is a fully normative model of response variability, and does not need to assume537

additional noise in the spiking process. We can therefore directly consider the instantaneous538

response 𝑟 as a spike count, with a rounding error that is small for sufficiently high 𝑐 . In539

the no-noise approximation, the mean and variance of 𝑟 can be expressed analytically, and540

preserve the behavior of Eq. 3 (see Supplemental Text, Section 5). For the full model, we541

compute a single-trial response 𝑟 for each sample of 𝑔1+, 𝑔1−. The mean, variance and FF of542

the model neuron are then found numerically, using 400 samples.543

The simple form of Eq. 4 allows for analytical results that provide useful intuitions. However,544

when testing theGSMresponse to stimuli of fixed size, we found that an increase in contrast led545

to a decrease in variance, in conflict with V1 data (Supplementary Fig. S11A,B). This behavior546

can be easily corrected (Supplementary Fig. S11E,F) by using a different transformation547

between the latent variable g and the neural response 𝑟, in the form of a rectified expansive548

nonlinearity (Orbán, Berkes, et al. 2016). Note however that the GSM predictions for size549

tuning and surround-orientation tuning stimuli are qualitatively robust to the specific choice550

of transformation (Supplementary Fig. S12).551

4.2 Neurophysiology552

Animal preparation and data collection553

We recorded data from male adult macaque monkeys (Macaca fascicularis), either anes-554

thetized (3 animals) or awake (2 animals). The protocol and general methods employed for555

the anesthetized experiments have been described previously (Smith and Kohn 2008). In556

short, anesthesia was induced with ketamine (10 mg/kg of body weight) and maintained557

during surgery with isoflurane (1.5–2.5% in 95% O2), switching to sufentanil (6–18 𝜇g /kg per558

h, adjusted as needed) during recordings. Eye movements were reduced using vecuronium559

bromide (0.15 mg/kg per h). Temperature was maintained in the 36 –37 C° range, and relevant560

vital signs (EEG, ECG, blood pressure, end-tidal PCO2, temperature, and airway pressure)561
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were monitored continuously to ensure sufficient level of anesthesia and well-being. We562

implanted a 10 × 10 multielectrode array (400 spacing, 1-mm length) in V1.563

For awake experiments the animal was first familiarized with a restraining chair (Crist In-564

struments). Then a titanium headpost was implanted under full isoflurane anesthesia in an565

aseptic environment. Postoperative analgesic (buprenorphine) and antibiotic (enrofloxacin)566

were provided. After a six week recovery period, the animal was trained to fixate in a 1 deg ×567

1 deg window. Eye position was monitored with a high-speed infrared camera (Eyelink, 1000568

Hz). Once sufficient performance was reached, a second surgery was performed in which569

a craniotomy and durotomy were performed over the occipital cortex. A 96-channel and a570

48-channel microelectrode array were implanted in V1 (and a third, 48-channel array in V4,571

not considered here). The dura was sutured over the arrays and covered with a gelatin film572

(Duragen). The craniotomy was covered with titanium mesh, held in place with titanium573

screws. On the first day of recording we mapped the spatial receptive fields of the sampled574

neurons by presenting small patches of drifting full contrast gratings (0.5 deg diameter; 4575

orientations, 1 cycle/deg, 3 Hz drift rate, 250ms presentation) at 25 distinct positions spanning576

a 3 deg × 3 deg region of visual space. Subsequent stimuli were centered in the aggregate RF577

of the recorded units.578

All procedures were approved by the Albert Einstein College of Medicine and followed the579

guidelines in the United States Public Health Service Guide for the Care and Use of Laboratory580

Animals.581

4.2.1 Visual stimuli582

Visual stimuli were generated with custom software (EXPO) and displayed on a cathode ray583

tube monitor (Hewlett Packard p1230; 1024 × 768 pixels, with cd/mean luminance and 100584

Hz frame rate) viewed at a distance of 110 cm (for anesthetized) or 60 cm (for awake). In585

each session, stimuli were randomly interleaved, separated by a uniform gray screen (blank586

stimulus). All grating stimuli were presented at 100% contrast.587

Surround modulation experiments. We measured surround modulation in anesthetized588

animals with grayscale natural images (as described in Coen-Cagli, Kohn, et al. 2015). Briefly,589

we presented 270 images in total, each at two sizes (1 degree and 3.1-6.7 degrees). These590

included 90 distinct images. For images with a dominant orientation, we presented four591

variants rotated in steps of 45 degrees, to increase the probability that each variant would592

drive at least some of the recorded neurons. Images were presented for 200 ms followed by593

100 ms blank screen in pseudo-random order, each repeated 20 times.594

Size tuning experiments. Wemeasured size tuning with grayscale natural images, and both595

static and drifting gratings (Table 1 and Supplement Fig. S6). In each session of the awake596

experiments, we presented 10 natural images (a subset of the 270 described above) masked by597
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a circular window with diameters of 0.34, 0.55, 0.90, 2.4 and 3.8 deg , with stimulus duration598

200 ms and inter-stimulus interval of 100 ms. Images were presented 60-74 times each. We599

chose images that evoked strong average responses in a majority of the neurons reported600

in Coen-Cagli, Kohn, et al. (2015). In separate sessions, we measured size tuning with static601

circular gratings, with diameters of 0.34, 0.55, 0.90, 2.4 and 3.8 deg; orientations of 0, 45, 90602

and 135 deg; duration of 250 ms, and inter-stimulus duration of 100 ms. We set the spatial603

frequency (1 cycle/deg) to be appropriate for V1 neurons at the recorded eccentricity. Each604

stimulus was repeated 114-124 times. In the anesthetized experiments, we measured size605

tuning with static circular gratings, testing a larger range of conditions (diameters of 0.34,606

0.55, 0.90, 1.5, 2.4, 3.8 and 6.2 deg; orientations of 0,45,90 and 135 deg), and repeated each607

stimulus 20 times.608

Surround orientation tuning experiments. We measured orientation tuning of surround609

modulation in two awake monkeys, using static compound gratings with a spatial frequency610

of 1 cyc/deg presented for 200 ms (100 ms inter-stimulus interval). For monkey M we used611

a central grating of diameter 1 deg, orientations of 0 and 90 deg, and an annular surround612

with inner diameter of 1 deg and outer diameter of 6 deg, with orientation either matched613

or orthogonal to the center. For monkey C, the central grating was 0.5 deg in diameter;614

orientations were 0, 45, 90 and 135 deg; and a surround with inner diameter of 1.5 deg and615

outer diameter of 5 deg, with orientation either matched or orthogonal to the center. We616

introduced this gap between center and surround stimulus, to reduce the extent to which617

the surround stimulus encroached on the neurons’ RFs. The results for both monkeys were618

qualitatively similar. Therefore, we combined them in our analyses.619

4.3 Data Analysis620

For each electrode, we extracted waveform signals (sampled at 30 kHz) whenever the extra-621

cellular voltage exceeded a threshold of 5 times the square root of the mean square signal622

on each channel. We then sorted waveforms manually using the Plexon Offline Sorter, and623

isolated both single and multi-unit clusters, here both referred to as neurons. Data analysis624

was then performed in Julia (https://julialang.org).625

Characterization of neuronal responses and inclusion criteria. We computed spike counts626

in a fixed window with length equal to the stimulus duration, shifted by 50 ms after stimulus627

onset. We also computed baseline activity in the 50 ms window from 20 ms before to 30 ms628

after stimulus onset. We excluded from further analyses all neurons that were not driven629

by any stimulus above baseline + 1 std. We also excluded all natural images and grating630

orientations that, when presented at a size closest to 1 degree (out of those presented), did631

not drive the neurons above the baseline + 1std. Next, we defined the response latency of632

each neuron as the first time at which the peristimulus time histograms (regularized using a633

smoothing cubic spline with parameter 2 ⋅ 10−6) at the preferred stimulus size (for size-tuning634
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experiments) or at the smallest size presented (0.5 or 1 degree, for the other experiments)635

crossed a threshold of baseline + 1 std. All further analyses were performed on spike counts636

in windows shifted by the latency of each individual neuron. In the surround modulation637

experiments on anesthetized monkeys with natural image patches (Fig. 2C) we selected only638

neurons that responded significantly to at least 10 distinct images.639

We computed the mean spike-count by averaging across trials, and characterized variability640

by the Fano factor (FF), the ratio between across-trial variance and mean of the spike count.641

We focused on the FF because, when compared across conditions, it quantifies changes in642

variability beyond the changes in mean activity. We excluded neurons whose average FF643

across all stimulus conditions was larger than 2.644

Because we were interested in surround modulation of variability, we excluded neurons with645

RFs not well centered on the stimuli. In experiments with anesthetized animals, wemeasured646

multi-unit spatial RFs using small circular oriented gratings (size 0.5 deg, 4 orientations, 250647

ms presentation), fitting the spike-counts with a two-dimensional Gaussian. We only kept for648

further analysis those neurons whose RF center was within 0.4 deg of the stimulus center.649

Due to the limited duration of the awake sessions, we could not measure spatial RFs prior to650

each session. We therefore relied only on the responsivity to small stimuli (described above),651

and on the following additional criteria (for size-tuning experiments, Fig. 2F and Table 1), as a652

proxy for appropriate stimulus centering. First, we excluded the neurons that had maximum653

response for very small (0.3 deg) or very large (> 4 deg) stimuli, because this was indicative of654

poor centering. Second, we excluded natural images that elicited weak surround suppression655

of the mean spike count (below 15%). We verified that our results did not change qualitatively656

when we changed this threshold (Supplementary Fig. S9).657

Lastly, we excluded the neurons whose mean spike count was zero for any given stimulus658

size (for size tuning experiments) or surround condition (for surround orientation tuning659

experiments), because the FF is not defined in those cases. For the surround orientation660

tuning experiments (Fig. 3) we analyzed only the preferred orientation out of those presented,661

to ensure responses were robust enough that we could measure surround suppression effects662

reliably.663

Statistical analysis. In the size tuning experiments (Fig. 2E-F and Table 1) we first computed664

mean spike-count and FF for each neuron, each stimulus size and condition (natural image665

identity or grating orientation). We then averaged across conditions, using mean for spike-666

counts and geometric mean for FFs, obtaining an area summation curve for both spike count667

and FF for each neuron (e.g. Fig. 2E). The differences in FF across sizes were measured as:668

%difference in FF = 100 ⋅
(FF𝛼 − FF𝛽)

(FF𝛼 + FF𝛽) /2
(5)669

Where 𝛼 refers to the stimulus size closer to RF and 𝛽 to the stimulus size approximately670
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twice the RF. To visualize population averages in Fig. 2F and Supplementary Fig. S6-S7, we671

expressed stimulus size relative to RF size, and then averaged across neurons for each relative672

size. Note that some of the relative sizes were available only in a subpopulation with a specific673

RF size. In those points, averages refer to the available neurons. Supplementary Fig. S7674

shows instead the groups as separate. For the surround orientation tuning experiments,675

we quantified differences in FF also by Eq. 5, but with 𝛼 representing the stimulus with676

orthogonal surround, and 𝛽 the stimulus with matching surround. Confidence intervals in677

the population plots were estimated by bootstrapping.678

For the mean-matching tests in the area-summation experiment (Table 1 and Supplement,679

Fig. S3, we compared the FF between stimuli that were smaller versus larger than the RF, and680

elicited a similar trial-averaged spike count. Specifically, we pooled the mean spike counts of681

all neurons and stimuli smaller than the RF in one group, and all neurons and stimuli larger682

than the RF in a second group. We then subsampled the same number of cases from each683

group, so as to obtain identical histograms of mean spike counts. Lastly, we compared the FF684

distributions of the two groups. The 𝑝-values in Table 1 were computed using a paired sample685

t-test of the null hypothesis that differences between samples from the two conditions (i.e. RF686

size versus 2×RF size) had mean ≤ 0.687
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