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Abstract

Neuronal activity in sensory cortex fluctuates over time and across repetitions of the same
input. This variability is often considered detrimental to neural coding. The theory of neural
sampling proposes instead that variability encodes the uncertainty of perceptual inferences.
In primary visual cortex (V1), modulation of variability by sensory and non-sensory factors
supports this view. However, it is unknown whether V1 variability reflects the statistical
structure of visual inputs, as would be required for inferences correctly tuned to the statistics
of the natural environment. Here we combine analysis of image statistics and recordings in
macaque V1 to show that probabilistic inference tuned to natural image statistics explains the
widely observed dependence between spike-count variance and mean, and the modulation of
V1 activity and variability by spatial context in images. Our results show that the properties of
a basic aspect of cortical responses — their variability — can be explained by a probabilistic
representation tuned to naturalistic inputs.

1 Introduction

In sensory cortex, neuronal activity is typically variable, both in the absence of sensory input
and for repeated presentations of a stimulus (Tolhurst, Movshon, et al. 1983; Tomko and
Crapper 1974). This variability is modulated by several sensory (M. Chen, Yan, et al. 2014;
Churchland, Yu, et al. 2010; Coen-Cagli and Solomon 2019; Goris, Movshon, et al. 2014; Kohn
and Smith 2005; Orban, Berkes, et al. 2016; Ponce-Alvarez, Thiele, et al. 2013; Rabinowitz,
Goris, et al. 2015; Solomon, S. C. Chen, et al. 2014; Verhoef and Maunsell 2017) and non-
sensory (Cohen and Maunsell 2009; Dadarlat and Stryker 2017; Mitchell, Sundberg, et al. 2009;



White, Abbott, et al. 2012) factors, suggesting it may play a functional role rather than simply
reflecting noise. Understanding the functional role of variability is at the core of the inquiry
of neural coding (Beck, Ma, et al. 2012; Dinstein, Heeger, et al. 2015; Fiser, Berkes, et al. 2010;
Pouget, Dayan, et al. 2003; Shadlen and Newsome 1998; Sompolinsky, Yoon, et al. 2001).

Parametric descriptive models can capture how stimuli modulate neuronal variability (Charles,
Park, et al. 2018; Coen-Cagli and Solomon 2019; Goris, Movshon, et al. 2014; Stevenson 2016),
but they do not address why modulation of variability occurs and what functional role it
might play. Here we develop and test a normative model, based on efficient coding (Bell and
Sejnowski 1997; Karklin and Lewicki 2009; Olshausen and Field 1996; Schwartz and Simoncelli
2001) and probabilistic inference (Berkes, Orban, et al. 2011; Coen-Cagli, Kohn, et al. 2015;
Lochmann, Ernst, et al. 2012; Ma, Beck, et al. 2006; Orban, Berkes, et al. 2016), to explain the
properties of response variability in sensory cortex. In this approach, we hypothesize about
functional and computational principles of cortical processing, to generate predictions about
cortical activity. Specifically, we propose that probabilistic inference tuned to the statistics of
natural images can explain the properties of response variability in visual cortex.

Although normative models have typically been used to explain trial-averaged responses, they
can also be used to explain response variability (Boerlin, Machens, et al. 2013; Fiser, Berkes,
et al. 2010; Hoyer and Hyvarinen 2003; Hunsberger, Scott, et al. 2014). In particular, some
aspects of variability in primary visual cortex (V1) can be explained by the theory of neural
sampling. This theory builds on the broader idea that the brain approximates operations of
probabilistic inference (Knill and Pouget 2004; Pouget, Beck, et al. 2013), and hypothesizes
that instantaneous neuronal activity represents samples from a probability distribution (Fiser,
Berkes, et al. 2010; Haefner, Berkes, et al. 2016; Hoyer and Hyvarinen 2003). According to this
view, variability of neuronal activity reflects uncertainty about the visual input (i.e. the width
of the inferred probability distribution). As a result, variability is reduced by stimulus onset
(Churchland, Yu, et al. 2010) and stimulus contrast (Finn, Priebe, et al. 2007; Kohn and Smith
2005), because of a reduction in uncertainty (Orban, Berkes, et al. 2016).

Here we hypothesize that modulation of uncertainty by visual input should reflect inferences
tuned to the statistics of natural images, and thus that the properties of response variability
should reflect the statistical structure of images. To test this prediction, we consider a suc-
cessful modeling framework, the Gaussian Scale Mixture (GSM; Theis, Hosseini, et al. 2012;
Wainwright, Simoncelli, et al. 2000). This model assumes that images are composed by local
features (e.g. oriented edges; Fig. 1A) and global features (e.g. image contrast), and that V1
neurons aim to represent the local features while discarding the global features (Coen-Cagli,
Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009; Coen-Cagli, Kohn, et al. 2015; Orbéan, Berkes,
et al. 2016; Schwartz and Simoncelli 2001). GSMs can explain the modulation of trial-averaged
V1 responses by stimuli in the surround of the receptive field (RF; Angelucci, Levitt, et al.
2002; Cavanaugh, Bair, et al. 2002b; Sceniak, Ringach, et al. 1999; Sillito and Jones 1996;
Walker, Ohzawa, et al. 1999). However, it is unclear whether this framework can also explain
the surround modulation of variability (Haider, Krause, et al. 2010; Snyder, Morais, et al. 2014)



= \8c" + s ° + &s; - +...} - v+ noise
B posterior distribution neuronal
P(g|stim.) ‘ response
Il“ “h.._
Probabilistic Neural
inference representation:
sampling
§ §
[ | -
| S S — | B S B —
-2 0 2 4 0 10 20
feature coefficient (a.u.) spike count
C - 15 D - E 10
P(&g, v|stim) 3
B ~ ]
10 = S s
S © s
L= g 5
3 2 e
© —
e 2 5 13
. 2 £
H o
- - $ ]
: P(v|stim.) = .
§ 5 r T T T T rrrrm 1 0.2 - T T T T T T T T 1
H ) 2 4 ]
i P(g|stim.) 5 10 100 0 0 60 80
) e spike-count mean (a.u.) spike-count mean (a.u.)
0 5 10 15
58 image feature,
69 Figure 1: See next page for caption.




Figure 1: Sampling-based inference in the GSM model explains the dependence between spike-
count variance and mean. A. Representation of the generative process of the Gaussian scale mixture
(GSM) model, (Methods Eq. 1). The image (left) is described as the combination of local oriented
features weighted by Gaussian coefficients, further multiplied by a global modulator and corrupted by
additive, Gaussian noise. B. Encoding of sensory information according to the sampling hypothesis:
the goal of a neuron is to represent the posterior distribution (orange, middle) of the feature it encodes.
The activity of the neuron corresponds to samples from that distribution, therefore the histogram of
spike counts over time or repetitions (green, right) reflects the distribution. C. Tuning of mean and
variance in a 1-dimensional version of the GSM with no noise. For fixed input z, the visual feature
g and the modulator v are bound to lie on the hyperbole v = z/g (black line). Therefore, a larger
estimate of v implies reduced mean and variance of g (blue versus brown curves). D. Mean versus
variance of a GSM model neuron in response to 1,000 patches of natural images. Patches were selected
randomly, with the requirement of sufficient signal strength inside the RF, i.e. above the median of
the full distribution of (2%, + z?_) on natural scenes, where =, and z,_ are the odd and even phases
of the center vertical filter (see Methods). E. The Fano factor (FF; ratio between mean and variance) as
a function of the mean for the same GSM simulation reported in D. Red dashed line represents the
best linear fit. Pearson corr. 0.214, p < 1074,

and whether this modulation reflects the statistical properties of natural inputs.

Here we combine modeling and electrophysiology in macaques to test our hypothesis that V1
variability is tuned to natural image statistics. First, we show analytically that the dependence
between spike-count variance and mean observed empirically (Goris, Movshon, et al. 2014;
Shadlen and Newsome 1998; Tolhurst, Movshon, et al. 1983) emerges in the GSM from the
multiplicative interactions between local and global image features. Second, we show that
stimuli in the RF surround modulate these interactions, and thus also response variability.
Finally, we test predictions about surround modulation of firing rate and variability with
recordings in V1 of awake and anesthetized macaques viewing natural images and gratings.

Our results show that visual context modulates neuronal response strength and variability
independently, suggesting these modulations reflect probabilistic inference about local visual
features. Our work thus provides evidence that the tuning of cortical variability can be
explained assuming the brain performs operations of probabilistic inference of natural image
statistics.



2 Results

2.1 The dependence between spike-count variance and mean reflects
multiplicative interactions between latent variables

To study the relation between natural image statistics and V1 cortical variability, we considered
the GSM because it captures the most prominent aspects of low-level image statistics, namely
the sparseness of V1-like, oriented visual features and their nonlinear statistical dependence
(Schwartz and Simoncelli 2001; Wainwright, Simoncelli, et al. 2000). We assumed that the
instantaneous firing of V1 neurons (Methods Eq. 4) represents samples from the inferred
probability distribution (termed posterior distribution; Berkes, Orbdn, et al. 2011; Orban,
Berkes, et al. 2016) of oriented visual features encoded by the neurons. The inference of the
posterior distribution requires inverting the so-called generative model of stimuli: that is,
how features — small patches with different orientations and positions — are combined to
produce images (Fig. 1A). Given an input image, model neurons then encode the inferred
probability distribution of the coefficients of those features in the image. This is illustrated
schematically for a vertical feature in Fig. 1B-top. The posterior distribution (middle column)
in this case was broad with a large mean, indicating that the vertical feature was strongly
present in the input image, though its precise coefficient was uncertain. Conversely, the image
in Fig. 1B-bottom contains little evidence for the vertical feature, leading to a narrow posterior
centered on zero. In the sampling framework, neuronal responses represent samples from
this posterior distribution (Fig. 1B, right column). Thus, the variance of the spike count
distribution (i.e. the neuronal variability) reflects the variance or width of the posterior,
corresponding to the uncertainty about the coefficient of the encoded feature.

We studied whether, in the GSM, response variance depends on response mean, as observed
in V1 (Goris, Movshon, et al. 2014; Shadlen and Newsome 1998; Tolhurst, Movshon, et al.
1983). The GSM assumes x = v g where the sensory input x is the result of local features
g (the variables encoded by the neurons) multiplied by a global modulator v (e.g. image
contrast). To gain intuition about the mean-variance relationship of the model, we first
considered the simplest formulation of a GSM, where x and g are 1-dimensional. Although
the expression relating these quantities — 2 = v g — is deterministic, knowledge of z is
insufficient to determine g, due to the unknown v. Computing the probability distribution of ¢
by accounting for the possible values of v is a fundamental operation of probabilistic inference,
called marginalization (Beck, Latham, et al. 2011; Pouget, Beck, et al. 2013). Crucially, because
of the multiplication, both the inferred value of g and its uncertainty (i.e. the mean and
standard deviation of the posterior over g) are divisively related to v. For instance, assume we
observed x = 10 and we inferred that v is likely to be between 1 and 2 (Fig. 1C, dark blue), then
by marginalization we would infer that ¢ is with high probability between 5 and 10 (Fig. 1C,
light blue). If instead v was inferred to be in the interval 4-5 (Fig. 1C, dark brown), then ¢
could only take values between 2 and 2.5, thus shrinking both in mean and variance (Fig. 1C,



light brown). This example illustrates why a neuron whose responses reflect samples from
the inferred distribution of g should display a dependence between mean and variance in its
response statistics. Note that this dependency is not linear, nor do mean and variance strictly
follow each other as they would in a Poisson process. In general, the relative scaling depends
on model choices, such as the uncertainty on the priors and, for high dimensional inputs, the
stimulus structure (as explained in the next section). Notice too that if the mixer term were
additive instead of multiplicative, then changes in its inferred value would only change the
inferred mean of g, not its variance, leading to different predictions (Supplementary Fig. S1).

To validate this intuition more rigorously, we considered GSM inference on real images. As
in past normative models (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009;
Coen-Cagli, Kohn, et al. 2015; Schwartz and Simoncelli 2001), we implemented a GSM with
oriented filters (Simoncelli and Freeman 1995) spatially arranged to define both the RF of
the model neuron and its surround (Fig. 2A; details in Methods). The model was trained on a
large ensemble (N=10,000) of natural image patches extracted from the BSDS500 database
(Arbelaez, Maire, et al. 2011, https://github.com/BIDS/BSDS500).

Given an input image, the visual inputs x (a vector) were determined by the activations of
those filters applied to the image. We denoted by g the corresponding local visual features.
First, we verified that the multiplicative effect of the modulator allows the GSM to capture
the statistics of natural images (Wainwright, Simoncelli, et al. 2000) better than an additive
modulator (Supplementary Fig. S1). We found through analytical derivations and simulations
that the variance of the inferred g grows with the mean, and both are divisively scaled by the
estimate of the global modulator v, leading to a general reduction of uncertainty when the
estimate of v increases (Methods Eq. 2, 3; see Supplementary Text for derivation). We then
simulated model responses to a wide range of natural images (Fig. 1D), and characterized the
mean-variance relation. The response variance of the model neuron scaled proportionally
with its mean. Furthermore the ratio of variance to mean, termed Fano factor (FF), increased
on average for stimuli that elicited stronger mean responses (Fig. 1E), in qualitative agreement
with the statistics of V1 neurons (Goris, Movshon, et al. 2014). Importantly, training a GSM on
different image sets, such as white noise, led to different parameter values but qualitatively
similar predictions for neural responses (Supplementary Fig. S2), indicating that the mean-
variance dependence arises from matching the generative model’s structure to image statistics
(i.e. multiplicative latent interactions) rather than fine-tuning its parameters.

These analyses confirm the intuition that the dependence between posterior variance and
mean observed in the GSM emerges from the multiplicative interactions between the global
modulator and the local variables. Because this partition between local and global variables
in the GSM is known to capture well the statistics of natural images (Schwartz and Simoncelli
2001; Wainwright, Simoncelli, et al. 2000), our result establishes a precise link between image
statistics and cortical variability.
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Figure 2: Surround stimulation reduces GSM uncertainty and V1 variability for natural images.
A. In the GSM, the inputs to the model neuron are provided by the activity of quadrature pairs of
oriented filters, corresponding to the spatial RF (green) and its surround (magenta). B. Noise-free
GSM model applied to an image without (blue) and with (brown) surround. The surround stimulus
does not change the constraint between g, (the local feature associated with the RF center) and v, but
it influences the estimate of the modulator and therefore also the estimate of g.. C. FF averaged across
small (1 deg) and large (3.1 or 6.7 deg) natural image patches. Black and gray circles: average FF across
images for each V1 neuron; black denotes a significant difference (p < 0.05) across the two conditions.
Orange circle: average FF of the GSM response for the same set of images. For the conversion to spike
counts (see Methods, Eq. 4) we used the scaling factor ¢ = 2. D-F. Tuning of the mean spike count
(green) and FF (blue), for natural image patches of varying size. D. GSM model, scaling factor ¢ = 15.
This constant was different than in C, because the experiments of C used images with a broader range
of orientation and frequency content than D. E,F. Data from one awake fixating macaque V1, for two
example neurons E and the population average F. Error bars represent the 68% c.i.
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2.2 Surround stimulation reduces uncertainty and V1 variability

The previous analysis shows that variability in the GSM is influenced by the inferred values
of the global modulator. Therefore, the framework predicts that variability is sensitive to
stimulus manipulations that affect the inferred global modulator. Specifically, stimuli thatlead
to a higher estimate of the modulator present less uncertainty over the hidden feature, and
thus should reduce response variability. To test this prediction, we considered the modulation
of V1 activity induced by spatial context — by stimuli in the surround of a neuron’s RF —
because spatial context can reduce stimulus uncertainty without modifying the stimulus
drive inside the RF (Albright and Stoner 2002).

First, we verified for the GSM that surround stimuli (i.e. image regions that activate the
surround filters) reduce uncertainty. The activity of the model neuron is associated with
the oriented feature in the center. However, the surround input contributes to the estimate
of the global modulator, and therefore influences the neuronal response. Specifically, our
analytical results show that, for a fixed RF input, surround stimulation increased the estimated
modulator and therefore had a suppressive influence both on the mean and variance of the
neuronal response (Fig. 2B; Methods), validating our intuition that surround stimuli reduce
uncertainty by resulting in a higher estimate of the global modulator.

Next, we tested whether surround stimulation reduces V1 variability, relative to RF stimulation
alone, by analyzing previously published data on V1 surround modulation in anesthetized
macaques (Coen-Cagli, Kohn, et al. 2015). In these experiments, natural image patches
were presented at two different sizes, either masked to fit within the average RF (1 degree),
or extending well beyond into the surround (3.1-6.7 degrees). Among the neurons with a
significant change in FF across conditions (127/261 neurons, p < 0.05), the vast majority
(91.3%) had a lower FF for large images than small ones, consistent with model predictions.
The average FF, across all neurons, was also lower for large images than small ones (1.15
versus 1.22, p < 107%, N = 261 neurons). We verified with a mean-matching analysis that this
difference in FF could not be explained by differences in spike-count mean (Supplementary
Fig. S3). This result agrees qualitatively with the model (Fig. 2C, orange symbol), although
surround suppression of FF was stronger in the model, possibly because surround modulation
in the GSM is recruited by all images, whereas in V1 it is weak or absent for many images
(Coen-Cagli, Kohn, et al. 2015). Consistent with this possibility, the strength of surround
suppression of responsivity and of FF were positively correlated (Supplementary Fig. S4).

2.3 Distinct effects of RF and surround stimulation on variability suppression

Suppression of response variability by large stimuli might not be due solely to surround
stimulation. Visual stimuli reduce the variability seen in spontaneous activity (Churchland,
Yu, et al. 2010). Therefore large images might reduce variability by providing stronger drive



to the RF, in those cases where small images did not completely cover the RF. To test whether
stimuli larger than the RF induced further reduction of the FF, beyond the reduction caused
by the stronger RF drive, we considered responses to circular patches of natural images, with
sizes ranging from much smaller to much larger than the typical RF.

We first studied the effects of stimulus size in the GSM. We found that the mean response
peaked for images matched in size to the RF and decreased for larger stimuli, consistent with
pastwork (Coen-Cagli, Dayan, etal. 2012). The FF, on the other hand, decreased monotonically
with stimulus size, well after the stimulus filled the RF (Fig. 2D), because large stimuli lead to
a larger estimate of the global modulator (Supplementary Fig. S5A). The difference between
the behavior of the FF and the mean indicates that it should be possible to dissociate the
effects of variability reduction from the modulation of spike-count mean: stimuli smaller
than the RF and larger than the RF can elicit similar average responses but with different
variability.

We tested these predictions in V1 responses to natural images of different sizes in one awake
fixating macaque. For the two example neurons of Fig. 2E, the mean spike count displayed the
typical non-monotonic size dependence (green), whereas the FF decreased monotonically
(blue). Similar effects were evident across all recorded neurons for stimuli ranging from
approximately half the RF size up to several times larger (N = 86; Fig. 2F). The FF decreased
by 18.7% as stimuli increased from approximately !/2 RF size to RF size, and an additional
5.7% as stimuli increased from RF size to approximately twice that size (Table 1, left), which is
the average extent of the suppressive surround in V1 (Angelucci, Levitt, et al. 2002; Cavanaugh,
Bair, et al. 2002a; Sceniak, Ringach, et al. 1999). Furthermore, the FF decreased for stimuli
larger than the RF compared to stimuli smaller than the RF, even when both stimuli evoked
approximately the same number of spikes (Table 1, right). To be sure that our results were
not affected by inaccurate estimates of RF size, due to variations in local contrast across
natural images, we measured responses to static gratings in the same animal, and obtained
similar results (Table 1, experiment 2; Supplementary Fig. S6A). New analyses of previously
published data from anesthetized animals (Coen-Cagli, Kohn, et al. 2015) also confirmed
these results (Table 1, experiment 3; Supplementary Fig. S6), ruling out the possibility that
microsaccades in the awake animals might have introduced biases.

Note that the FF was lower on average for stimuli smaller than !/2 RF size (Fig. 2F, leftmost
point). This was true for the subset of neurons with large RF (N = 65/86), whereas the
FF decreased strictly monotonically for neurons with smaller RFs (Supplementary Fig. S7).
Both the large apparent RF size and the non-monotonicity of the FF would be expected if
stimuli were not perfectly centered on the RF (Supplementary Fig. S8). Furthermore, the FF
decreased monotonically with stimulus size in the anesthetized dataset, for which stimulus
centering could be controlled more tightly (Supplementary Fig S7).

These analyses show that stimulation of the RF surround reduces response variability, beyond
the known reduction from spontaneous to stimulus-driven activity (Churchland, Yu, et al.



Mean-matched FF

Experiment FF decrease FF decrease p-value decrease (size > p-value
1 — —
(1/2 RF) — (RF) (RF) — (2 x RF) RF) _ (size < RF)

o ML L 18.7% 5.7% 0.082 25.7% <10°°

(N = 86; Fig. 2F)

2. Gratings, awake

(N =19; 31.7% 9.0% 0.05 47.7% <1073
Supp. Fig. S6)
3. Gratings,
anesthetized
(N = 229;
Supp. Fig S6)

14.2% 7.05% <1073 22.6% <10°°

Table 1: Rows. Separate experiments, with number of neurons selected in each experiment (selection
criteria in Methods). Columns. Columns 1-3, changes in FF with stimulus size; columns 4 and 5,
mean-matched (see Methods) change in FF with stimulus size. In all cases, a positive change denotes
areduction in FF for larger stimuli. First column: change in FF (Methods, Eq. 5) from the stimulus
closest to /2 of the RF size (out of all tested sizes) to the RF-sized stimulus. Second column: change in
FF from the RF-sized stimulus to the large stimulus (closest to 2 RF size). Third column: the p-value
for the second column. Fourth column: FF change from stimuli smaller to larger than RF size. Sizes
are selected to match the mean spike count across neurons (spike count change < 3%, p > 0.05, for all
experiments). Fifth column: p-value for the fourth column.

2010).

2.4 Surround suppression of variability is orientation selective

Surround suppression of mean firing rate is known to be stronger for image patches with
matched orientation inside and outside the RF, and weaker when the surround orientation is
orthogonal to the center (Angelucci, Bijanzadeh, et al. 2017; Cavanaugh, Bair, et al. 2002b;
Gardner, Anzai, et al. 1999; Sillito and Jones 1996; Walker, Ohzawa, et al. 1999; Webb, Dhruv,
etal. 2005). Itis not known whether variability is similarly tuned. In our GSM model, surround
tuning of mean responses (Fig. 3A, green) was obtained by using surround filters with the
same orientation as the feature of interest inside the RF (details in Methods), as in past
implementations (Coen-cagli, Dayan, et al. 2009; Schwartz and Simoncelli 2001).

Because the GSM predicts that surround suppression of both mean spike-counts and vari-
ability is controlled by the inferred strength of the global modulator, we found that surround
suppression of model response variability and of mean spike-counts were similarly tuned
(Fig. 3A). We verified that this corresponded to a smaller estimate of the global modulator
for orthogonal surround stimuli (Supplementary Fig. S5B), which in turn resulted in weaker
surround suppression of variability.

To test these model predictions, we measured V1 responses to compound static gratings
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Figure 3: Surround reduction of variability is orientation tuned. A. Surround orientation tuning of
the mean spike count (green line) and FF (blue line), relative to the center stimulus alone (dashed
lines) in the GSM model. Error bars: 68% c.i. scaling factor (Methods Eq. 5). B,C. Percent change in
the mean spike count B and Fano factor C from orthogonal to matched surround orientation, in V1 of
two awake fixating macaques. Yellow bars denote neurons with a significant change across conditions.
The difference is considered significant when the 68% c.i.’s of the two conditions do not overlap.

7%

in two awake, fixating macaques (N = 71 neurons). Consistent with past literature, the
mean response was suppressed (relative to no surround) more when the surround and center
orientations were matched (Fig. 3B; average suppression matched 0.844, orthogonal 0.885;
average reduction 6.28%, p = 0.0043). In agreement with model predictions, the FF was
smaller for the matched surround (Fig. 3C; average FF matched 0.973, orthogonal 1.02; average
reduction 4.73%, p = 0.032), and this was true in the majority (N = 9/14) of neurons with
a significant change (p < 0.05). However, although consistent with the GSM prediction,
the magnitude of the effect was small (see also Discussion). One reason might be that, in
our data, 26/71 neurons responded more strongly to parallel than orthogonal surrounds
(i.e. opposite to the surround tuning of our GSM implementation), which may be due both
to imperfect stimulus centering and to the known heterogeneity in the orientation tuning
of surround suppression of firing rate (Cavanaugh, Bair, et al. 2002b). Consistent with this
explanation, we verified that if we restricted our analysis to neurons that responded more
weakly to parallel than orthogonal surround (N = 45/71; average reduction 17.3%, p < 1079),
the surround tuning of FF was also stronger (average reduction 7.37%, p = 0.013) than for
the entire population (Supplementary Fig. S9).

Our analysis shows that surround suppression of variability in V1 is tuned to the orientation
of surround stimuli, in a manner similar to the tuning of firing rate suppression, suggesting
partly shared mechanisms. In the GSM framework, this tuning arises because only matched
surround stimuli provide information about the global modulator and thus reduce uncertainty.
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3 Discussion

We have presented a theoretical framework that explains V1 variability and its modulation by
spatial context in natural images, as reflecting probabilistic inference about local features in
visual inputs. Our work builds on the theory of neural sampling (Fiser, Berkes, et al. 2010;
Haefner, Berkes, et al. 2016; Hoyer and Hyvarinen 2003; Orban, Berkes, et al. 2016), in which
neuronal variability encodes uncertainty of the inferences, and offers two main contributions.
First, we established a precise link between V1 response variability and the statistics of
natural images. We showed that the dependence between spike-count variance and mean,
and the modulation of variability by spatial context are general consequences of probabilistic
inference when there are multiplicative interactions between latent variables, which is a
widely-adopted description of natural image statistics (Coen-Cagli, Dayan, et al. 2012; Dayan
and Abbott 2005; Gao and Vasconcelos 2007; Geisler 2008; Schwartz and Simoncelli 2001;
Wainwright, Simoncelli, et al. 2000). Second, we validated our model with measurements
of V1 activity. Consistent with model predictions, spatial context in images modulated V1
variability beyond the known reduction of variability from spontaneous to stimulus-driven
activity (Churchland, Yu, et al. 2010). Furthermore, the tuning of contextual modulation of
variability was similar to (although weaker than) that of mean spike counts, suggesting shared
mechanisms.

3.1 Natural image statistics and contextual modulation of response variability

Normative models of visual processing have explained properties of V1 representations from
optimization and efficiency principles related to the statistics of the natural environment
(Bell and Sejnowski 1997; Hyvarinen and Hoyer 2000; Karklin and Lewicki 2009; Olshausen
and Field 1996; Rao and Ballard 1999; Schwartz and Simoncelli 2001). This work has typically
addressed only the trial-averaged spike counts. However, across-trial variability is substantial
in cortex and can strongly influence perception (Kohn, Coen-Cagli, et al. 2016; Moreno-Bote,
Beck, et al. 2014; Pouget, Beck, et al. 2013; Shadlen and Newsome 1998). Understanding
cortical processing requires addressing this variability, which we have done via the neural
sampling theory.

The hypothesis that neuronal variability reflects sampling from a distribution (Hoyer and
Hyvarinen 2003) is rooted in machine learning research focused on efficient inference
schemes (Bishop 2006). Past work in neural network modeling has shown how samples
might be generated dynamically, and in a manner that is fast enough for accurate inference
within short, biologically relevant timescales (Echeveste, L. Aitchison, et al. 2020; Hennequin,
Laurence Aitchison, et al. 2014; Legenstein and Maass 2014; Savin and Deneve 2014).

While past work has addressed the plausibility of neural sampling, we have focused instead on
contextual effects, for two important reasons. First, contextual effects disambiguate between
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two key aspects of neural coding: the strength of the stimulus feature represented by the
neuron, and the uncertainty about that feature. This is because stimuli in the RF surround do
not directly affect the inputs to the RF, but they can modulate uncertainty. This is different
from contrast modulation (Orbdn, Berkes, et al. 2016) and other common experimental
manipulations (e.g. adding stimulus noise; Britten, Shadlen, et al. 1992; Nienborg and
Cumming 2014), that modulate both the strength of a visual feature and its uncertainty. Second,
natural visual inputs have rich statistical structure that extends across the visual field. There
is abundant evidence suggesting a relation between spatial structure in images and spatial
contextual effects in cortex (Coen-Cagli, Kohn, et al. 2015; Rao and Ballard 1999; Schwartz
and Simoncelli 2001; Spratling 2010; Zhu and Rozell 2013). Contextual modulation of V1
trial-averaged responses has been characterized extensively with artificial stimuli (Angelucci,
Levitt, et al. 2002; Cavanaugh, Bair, et al. 2002a,b; Sceniak, Ringach, et al. 1999; Sillito and
Jones 1996; Walker, Ohzawa, et al. 1999), and is also prominent for natural inputs (Haider,
Krause, et al. 2010; Vinje and Gallant 2000). Past work using the GSM and its extensions has
explained a wide range of those phenomena, as reflecting a computation optimized to the
statistics of natural images (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan, et al. 2009;
Schwartz and Simoncelli 2001). The modeling and experimental results presented here are
consistent with this prior work, as we report strong and tuned surround suppression of mean
spike-counts (Fig. 2D-F, Fig. 3). But our findings go beyond this previous work, by establishing
a general relation between response variability and natural image statistics (Fig. 1C) and
relating surround influences on mean spike counts and on variability (Fig. 2D-F, Fig. 3).

Our model could be further extended to account for the fact that contextual modulation is weak
or absent for some stimuli, such as when contextual inputs are not informative (Coen-Cagli,
Kohn, et al. 2015). Variability reduction by stimulus context should be weaker or absent for
such uninformative contextual stimuli, which would be consistent with our observations that,
when we used natural images, the level of surround suppression of FF varied substantially
across images (Fig. 2C and Supplementary Fig. S4), and that suppression was also weaker
for orthogonal grating surrounds (Fig. 3C). Although V1 responses agreed well with model
predictions, we observed a quantitative discrepancy between the two: contextual modulation
of FF and its tuning were much stronger in the model. This could reflect that, in the model, the
main source of uncertainty (particularly for the high-contrast stimuli we used), and therefore
variability, is the unknown value of the global modulator. Model response variability is
therefore extremely sensitive to contextual stimuli. In V1, there are likely multiple latent
sources of uncertainty that could partly mask the effects of our experimental manipulation of
spatial context. Addressing this discrepancy may require considering non-sensory contextual
factors such as attention and behavioral state (Haefner, Berkes, et al. 2016; Rabinowitz, Goris,
et al. 2015).
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3.2 Influences of divisive normalization on variability and other response
statistics

Our mathematical analysis of the GSM inference shows that, in the model, response strength
and variability are jointly modulated by divisive normalization (Carandini and Heeger 2012;
Heeger 1992). This is because the mean and variance of the inferred distribution of the
local features depend divisively on the inferred value of the global modulator (Methods,
Eq. 3), which in turn is obtained by combining the inputs corresponding to all features
(Methods Eq. 2; Coen-Cagli, Dayan, et al. 2012). Therefore, our model points to divisive
normalization as the key operation for surround modulation of rate and variability. There is
abundant indirect evidence that normalization modulates responses beyond firing rate. For
instance, stimulus manipulations that engage normalization, such as varying contrast and
size (Cavanaugh, Bair, et al. 2002b; Heeger 1992), also modulate variability (Haider, Krause,
et al. 2010; Kohn and Smith 2005; Snyder, Morais, et al. 2014). In addition, although the
mechanisms of normalization are debated, network models based on inhibitory stabilization
(Y. Ahmadian, D. B. Rubin, et al. 2013) reproduce many of those stimulus-induced effects,
indicating a common mechanism that could control both firing rate (Hennequin, Yashar
Ahmadian, et al. 2018; Daniel B. Rubin, Hooser, et al. 2015) and variability (Hennequin, Yashar
Ahmadian, et al. 2018) consistently with normalization.

Other work has established the connection between normalization and variability more
directly. A descriptive model of stochastic normalization has been shown to fit changes
in variability with stimulus contrast (Coen-Cagli and Solomon 2019) and orientation noise
(Henaff, Boundy-Singer, et al. 2020), and revealed that, even for fixed stimuli, variability is
reduced during epochs of strong normalization (Coen-Cagli and Solomon 2019). Our analytical
results on normalization and variability bridge the gap between this literature and a theory
of the computational role of variability.

3.3 Relation to other descriptive models and functional explanations of
cortical variability

Previous work used a GSM to demonstrate stimulus dependent changes in response statistics
(Orban, Berkes, et al. 2016). In particular, Orban, Berkes, et al. (2016) suggested that a GSM
could unify effects of response mean and variability. Our work extends this study in two im-
portant aspects. First, Orban and colleagues used approximate inference in their GSM, based
on a maximum a posteriori estimate for the global scaling variable. Consequently, posterior
variance was exclusively due to observation noise, while variance resulting from uncertainty
in the global scaling variable was ignored. This required tuning a nonlinear conversion from
membrane potential to spike counts to account for realistic response variability (Carandini
2004). Here, we include both sources of uncertainty — input noise and the unknown global
latent variable — and we show that the GSM framework is sufficient to capture the dependence
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between response mean and variance for a wide range of inputs (Fig. 1C,D), without further
tuning the conversion from membrane potential to spikes. Second, the treatment of Orban
et al was sufficient for a coarse grained account of contextual effects (such as changes in
sparseness and reliability), but our analysis unveils a more complex repertoire of contextual
effects for natural images, leading to detailed predictions that related statistical dependencies
across visual space to contextual modulation of V1 variability.

Another recent model (Henaff, Boundy-Singer, et al. 2020) proposes that uncertainty is repre-
sented in the response variability, and is thus related to sampling and to our work. However,
they propose that variability is partitioned into two terms, Poisson variability and fluctua-
tions in response gain (Goris, Movshon, et al. 2014). Uncertainty is encoded specifically by
the amplitude of the gain fluctuations. Different from our work, the Poisson term in that
framework does not have a functional role and is left unexplained, and there is no precise
relation between V1 variability and the statistics of natural images. In addition, whereas
sampling-based representations can approximate the full posterior distribution, the model of
Henaff, Boundy-Singer, et al. (2020) focuses only on the mean and variance (uncertainty) of
the posterior. Therefore, future experimental work could further distinguish between these
theories by comparing higher-order statistics of V1 responses to the corresponding statistics
in the visual inputs.

4 Methods

4.1 Model of V1 responses

The Gaussian Scale Mixture (GSM) generative model

The observable variables are given by the outputs of linear, oriented filters (Simoncelli and
Freeman 1995) applied to grayscale input images. We assume oriented filters because they
approximate well those optimized to natural images, and also represent a canonical choice for
V1 models that used the GSM framework (Coen-Cagli, Dayan, et al. 2012; Coen-cagli, Dayan,
et al. 2009; Coen-Cagli, Kohn, et al. 2015; Echeveste, L. Aitchison, et al. 2020; Orbédn, Berkes,
etal. 2016). One pair of filters (even and odd phase, forming a quadrature pair) represents
the RF of the model neuron, and another 8 pairs are uniformly distributed on a circle around
the RF, all with the same orientation (represented in Fig. 2A as vertical). The surround filters
slightly overlap with the RF filters, to reflect that suppressive surround mechanisms in V1
partly overlap with the RF (Cavanaugh, Bair, et al. 2002a) (see Fig. 2A). The responses of the
18 filters form a 18-dimensional input vector, denoted as x.
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The generative model uses latent variables to capture the statistics of x, as follows:

X=vg+n
g~N(0,C,) ; wv~Rayleigh(l) ; n~N(0,C,

noise )

(1)

The observable x results from the product of the feature vector g, which has the same dimen-
sionality of x, and a positive scalar v, that acts as global modulator. The additive noise n plays
the role of observation noise in the generative model. That is, it accounts for the fact that
the GSM is not a perfect model of the statistics of the observable x on natural images. As we
explain below, this additive noise is also helpful to account for realistic response variability
with weak stimuli (Supplementary Fig. S10). We assume that g and 7 are generated from
multivariate normal distributions, with mean 0 and covariances C, and C,,;., respectively; v
follows a Rayleigh distribution with mean 1. Note that changing the Rayleigh parameter is
equivalent to rescaling C,,.

Model optimization

The covariance of the noise term, denoted as C, ;. in Eq. 1, is found numerically, by applying
the filters to 10,000 white-noise patches. We take the empirical covariance of the resulting
outputs and scale it by a free parameter, set heuristically at 0.1 to ensure a realistic response
variability for weak inputs (Supplementary Fig. S10). The covariance matrix C; is computed
by moment-matching (Doulgeris and Eltoft 2009), based on the empirical covariance of filter
outputs over 10,000 natural image patches, scaled by a term that accounts for the mixer. This
ensures that the model is adapted to natural image statistics, as in previous work (Coen-
Cagli, Dayan, et al. 2012). The image patches used for training are considered noise-free,
and the noise level in the trained model is tuned heuristically. This choice was motivated by
convenience, and by noticing that pixel noise tended to be small, reflecting the digital quality
of images and not indicative of sensory noise.

Probabilistic inference and sampling

Having defined the generative process, we can express the posterior distribution of the
latent feature of interest, for example the center-vertical feature with odd spatial phase,
g1, given the filters response X to a test image. This quantity is denoted P(g,, |X), and
results from an operation of Bayesian inference and marginalization over the other latent
variables (Supplemental Text, Section 1). In particular, the global modulator plays a key role
in the inference of ¢, . To gain further insight, we first derived analytical solutions for the
regime in which input noise is negligible, i.e. n = 0. First,can be expressed analytically and
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approximated (Supplemental Text, Section 4) as:

Ep|% = VA (1+0() , with A=¢Z<0gl>mm @

where O (A1) represents a generic function that drops to zero asymptotically with A~!. This
shows that the estimate of the mixer depends on the outputs of all filters. Second, the
distribution of the feature of interest, P (g, |X), can also be expressed in closed-form in the
low-noise limit (Supplemental Text, Section 4). Its mean and Fano factor can be approximated
as:

~ ~

Blov |8 = T (1+0(xY) . and PRl R = 2= (1+00) @

In the approximation above (derived in Supplemental Text, Section 4), the expected value
of the feature of interest depends linearly on the input inside the RF, 2, . However it is
scaled by v/, a quantity approximately equal to the expected value of the global modulator
(Eq. 2), which includes the influence of the surround. The variance instead scales divisively
with the square of A, which in turn determines the reduction of variability (the FF in Eq. 3)
by surround stimulation. This analysis thus shows that, in the GSM inference, divisive nor-
malization influences both the mean and the variance of the posterior distribution, thus
providing a normative explanation for the dependence between spike-count variance and
mean observed in sensory neurons. Notice also that the expected value and the FF are not
always monotonically related, because \ depends both on inputs inside and outside the RF,
and appears with different exponents in the FF and expected value. For instance, surround
stimulation affects only A and thus changes the FF and expected value in the same direction,
whereas changing contrast affects both numerator and denominator resulting in opposite
scaling of the expected value and FF.

The analytical results in Eq. 3 refer to the reduced model without additive noise. In this
formulation, for very small inputs X ~ 0 the inferred mean and variance converge to zero,
resulting in model neurons with an unrealistically silent and very stable baseline activity.
We therefore extended the generative model to non-zero additive noise, and determined
the model neuron responses numerically, by Monte Carlo sampling, implemented through
the Stan programming language (https://mc-stan.org/). When comparing the analytical
solution for the noiseless model with the simulation results for the full model, we found that,
as expected, they differ predominantly in the regime of small inputs, where the model with
noise still preserves a non-zero response and variability (Supplementary Fig. S10).

Our choice of a fixed Rayleigh prior for the mixer (in line with past work; Coen-Cagli, Dayan,
et al. 2012; Coen-cagli, Dayan, et al. 2009; Coen-Cagli, Kohn, et al. 2015; Schwartz, Sejnowski,
et al. 2006) is mainly due to mathematical convenience, as it allows us to obtain analytical
insights on the scaling of mean and variance with Z,, and A. Although we focused here
on qualitative predictions, for quantitative fits of GSM models to neural data one could
leverage the flexibility afforded by modifying the mixer prior and introducing additional free
parameters.
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Conversion to spike counts

For the purpose of our analysis, in Eq. 3 7, is assumed greater than 0 (e.g. a grating stimulus
in-phase with the filter). To cover the general case, and appropriately express neural response
and FF in terms of spike counts, we performed the following transformation:

r=cy\/91, +9i_ (4)

where c is a fixed parameter set heuristically so that mean responses and FF are in a realistic
range (values are reported in the figure captions), and the + represent the two spatial phases
at the RF position. One strength of this framework (following Orbdn, Berkes, et al. 2016)
is that it is a fully normative model of response variability, and does not need to assume
additional noise in the spiking process. We can therefore directly consider the instantaneous
response r as a spike count, with a rounding error that is small for sufficiently high ¢. In
the no-noise approximation, the mean and variance of  can be expressed analytically, and
preserve the behavior of Eq. 3 (see Supplemental Text, Section 5). For the full model, we
compute a single-trial response r for each sample of g, , g;_. The mean, variance and FF of
the model neuron are then found numerically, using 400 samples.

The simple form of Eq. 4 allows for analytical results that provide useful intuitions. However,
when testing the GSM response to stimuli of fixed size, we found that an increase in contrast led
to a decrease in variance, in conflict with V1 data (Supplementary Fig. S11A,B). This behavior
can be easily corrected (Supplementary Fig. S11E F) by using a different transformation
between the latent variable g and the neural response r, in the form of a rectified expansive
nonlinearity (Orban, Berkes, et al. 2016). Note however that the GSM predictions for size
tuning and surround-orientation tuning stimuli are qualitatively robust to the specific choice
of transformation (Supplementary Fig. S12).

4.2 Neurophysiology
Animal preparation and data collection

We recorded data from male adult macaque monkeys (Macaca fascicularis), either anes-
thetized (3 animals) or awake (2 animals). The protocol and general methods employed for
the anesthetized experiments have been described previously (Smith and Kohn 2008). In
short, anesthesia was induced with ketamine (10 mg/kg of body weight) and maintained
during surgery with isoflurane (1.5-2.5% in 95% O,), switching to sufentanil (6-18 ug /kg per
h, adjusted as needed) during recordings. Eye movements were reduced using vecuronium
bromide (0.15 mg/kg per h). Temperature was maintained in the 36 -37 C° range, and relevant
vital signs (EEG, ECG, blood pressure, end-tidal PCO,, temperature, and airway pressure)
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were monitored continuously to ensure sufficient level of anesthesia and well-being. We
implanted a 10 x 10 multielectrode array (400 spacing, 1-mm length) in V1.

For awake experiments the animal was first familiarized with a restraining chair (Crist In-
struments). Then a titanium headpost was implanted under full isoflurane anesthesia in an
aseptic environment. Postoperative analgesic (buprenorphine) and antibiotic (enrofloxacin)
were provided. After a six week recovery period, the animal was trained to fixate in a 1 deg x
1 deg window. Eye position was monitored with a high-speed infrared camera (Eyelink, 1000
Hz). Once sufficient performance was reached, a second surgery was performed in which
a craniotomy and durotomy were performed over the occipital cortex. A 96-channel and a
48-channel microelectrode array were implanted in V1 (and a third, 48-channel array in V4,
not considered here). The dura was sutured over the arrays and covered with a gelatin film
(Duragen). The craniotomy was covered with titanium mesh, held in place with titanium
screws. On the first day of recording we mapped the spatial receptive fields of the sampled
neurons by presenting small patches of drifting full contrast gratings (0.5 deg diameter; 4
orientations, 1 cycle/deg, 3 Hz drift rate, 250 ms presentation) at 25 distinct positions spanning
a 3 deg x 3 deg region of visual space. Subsequent stimuli were centered in the aggregate RF
of the recorded units.

All procedures were approved by the Albert Einstein College of Medicine and followed the
guidelines in the United States Public Health Service Guide for the Care and Use of Laboratory
Animals.

4.2.1 Visual stimuli

Visual stimuli were generated with custom software (EXPO) and displayed on a cathode ray
tube monitor (Hewlett Packard p1230; 1024 x 768 pixels, with cd/mean luminance and 100
Hz frame rate) viewed at a distance of 110 cm (for anesthetized) or 60 cm (for awake). In
each session, stimuli were randomly interleaved, separated by a uniform gray screen (blank
stimulus). All grating stimuli were presented at 100% contrast.

Surround modulation experiments. We measured surround modulation in anesthetized
animals with grayscale natural images (as described in Coen-Cagli, Kohn, et al. 2015). Briefly,
we presented 270 images in total, each at two sizes (1 degree and 3.1-6.7 degrees). These
included 90 distinct images. For images with a dominant orientation, we presented four
variants rotated in steps of 45 degrees, to increase the probability that each variant would
drive at least some of the recorded neurons. Images were presented for 200 ms followed by
100 ms blank screen in pseudo-random order, each repeated 20 times.

Size tuning experiments. We measured size tuning with grayscale natural images, and both
static and drifting gratings (Table 1 and Supplement Fig. S6). In each session of the awake
experiments, we presented 10 natural images (a subset of the 270 described above) masked by
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a circular window with diameters of 0.34, 0.55, 0.90, 2.4 and 3.8 deg , with stimulus duration
200 ms and inter-stimulus interval of 100 ms. Images were presented 60-74 times each. We
chose images that evoked strong average responses in a majority of the neurons reported
in Coen-Cagli, Kohn, et al. (2015). In separate sessions, we measured size tuning with static
circular gratings, with diameters of 0.34, 0.55, 0.90, 2.4 and 3.8 deg; orientations of 0, 45, 90
and 135 deg; duration of 250 ms, and inter-stimulus duration of 100 ms. We set the spatial
frequency (1 cycle/deg) to be appropriate for V1 neurons at the recorded eccentricity. Each
stimulus was repeated 114-124 times. In the anesthetized experiments, we measured size
tuning with static circular gratings, testing a larger range of conditions (diameters of 0.34,
0.55, 0.90, 1.5, 2.4, 3.8 and 6.2 deg; orientations of 0,45,90 and 135 deg), and repeated each
stimulus 20 times.

Surround orientation tuning experiments. We measured orientation tuning of surround
modulation in two awake monkeys, using static compound gratings with a spatial frequency
of 1 cyc/deg presented for 200 ms (100 ms inter-stimulus interval). For monkey M we used
a central grating of diameter 1 deg, orientations of 0 and 90 deg, and an annular surround
with inner diameter of 1 deg and outer diameter of 6 deg, with orientation either matched
or orthogonal to the center. For monkey C, the central grating was 0.5 deg in diameter;
orientations were 0, 45, 90 and 135 deg; and a surround with inner diameter of 1.5 deg and
outer diameter of 5 deg, with orientation either matched or orthogonal to the center. We
introduced this gap between center and surround stimulus, to reduce the extent to which
the surround stimulus encroached on the neurons’ RFs. The results for both monkeys were
qualitatively similar. Therefore, we combined them in our analyses.

4.3 Data Analysis

For each electrode, we extracted waveform signals (sampled at 30 kHz) whenever the extra-
cellular voltage exceeded a threshold of 5 times the square root of the mean square signal
on each channel. We then sorted waveforms manually using the Plexon Offline Sorter, and
isolated both single and multi-unit clusters, here both referred to as neurons. Data analysis
was then performed in Julia (https://julialang.org).

Characterization of neuronal responses and inclusion criteria. We computed spike counts
in a fixed window with length equal to the stimulus duration, shifted by 50 ms after stimulus
onset. We also computed baseline activity in the 50 ms window from 20 ms before to 30 ms
after stimulus onset. We excluded from further analyses all neurons that were not driven
by any stimulus above baseline + 1 std. We also excluded all natural images and grating
orientations that, when presented at a size closest to 1 degree (out of those presented), did
not drive the neurons above the baseline + 1std. Next, we defined the response latency of
each neuron as the first time at which the peristimulus time histograms (regularized using a
smoothing cubic spline with parameter 2 - 10~%) at the preferred stimulus size (for size-tuning
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experiments) or at the smallest size presented (0.5 or 1 degree, for the other experiments)
crossed a threshold of baseline + 1 std. All further analyses were performed on spike counts
in windows shifted by the latency of each individual neuron. In the surround modulation
experiments on anesthetized monkeys with natural image patches (Fig. 2C) we selected only
neurons that responded significantly to at least 10 distinct images.

We computed the mean spike-count by averaging across trials, and characterized variability
by the Fano factor (FF), the ratio between across-trial variance and mean of the spike count.
We focused on the FF because, when compared across conditions, it quantifies changes in
variability beyond the changes in mean activity. We excluded neurons whose average FF
across all stimulus conditions was larger than 2.

Because we were interested in surround modulation of variability, we excluded neurons with
RFs not well centered on the stimuli. In experiments with anesthetized animals, we measured
multi-unit spatial RFs using small circular oriented gratings (size 0.5 deg, 4 orientations, 250
ms presentation), fitting the spike-counts with a two-dimensional Gaussian. We only kept for
further analysis those neurons whose RF center was within 0.4 deg of the stimulus center.
Due to the limited duration of the awake sessions, we could not measure spatial RFs prior to
each session. We therefore relied only on the responsivity to small stimuli (described above),
and on the following additional criteria (for size-tuning experiments, Fig. 2F and Table 1), as a
proxy for appropriate stimulus centering. First, we excluded the neurons that had maximum
response for very small (0.3 deg) or very large (> 4 deg) stimuli, because this was indicative of
poor centering. Second, we excluded natural images that elicited weak surround suppression
of the mean spike count (below 15%). We verified that our results did not change qualitatively
when we changed this threshold (Supplementary Fig. S9).

Lastly, we excluded the neurons whose mean spike count was zero for any given stimulus
size (for size tuning experiments) or surround condition (for surround orientation tuning
experiments), because the FF is not defined in those cases. For the surround orientation
tuning experiments (Fig. 3) we analyzed only the preferred orientation out of those presented,
to ensure responses were robust enough that we could measure surround suppression effects
reliably.

Statistical analysis. In the size tuning experiments (Fig. 2E-F and Table 1) we first computed
mean spike-count and FF for each neuron, each stimulus size and condition (natural image
identity or grating orientation). We then averaged across conditions, using mean for spike-
counts and geometric mean for FFs, obtaining an area summation curve for both spike count
and FF for each neuron (e.g. Fig. 2E). The differences in FF across sizes were measured as:

(FF, — FFy)
(FF,, + FFg) /2

Where « refers to the stimulus size closer to RF and § to the stimulus size approximately

%difference in FF = 100 - (5)

21



twice the RF. To visualize population averages in Fig. 2F and Supplementary Fig. S6-S7, we
expressed stimulus size relative to RF size, and then averaged across neurons for each relative
size. Note that some of the relative sizes were available only in a subpopulation with a specific
RF size. In those points, averages refer to the available neurons. Supplementary Fig. S7
shows instead the groups as separate. For the surround orientation tuning experiments,
we quantified differences in FF also by Eq. 5, but with « representing the stimulus with
orthogonal surround, and § the stimulus with matching surround. Confidence intervals in
the population plots were estimated by bootstrapping.

For the mean-matching tests in the area-summation experiment (Table 1 and Supplement,
Fig. S3, we compared the FF between stimuli that were smaller versus larger than the RF, and
elicited a similar trial-averaged spike count. Specifically, we pooled the mean spike counts of
all neurons and stimuli smaller than the RF in one group, and all neurons and stimuli larger
than the RF in a second group. We then subsampled the same number of cases from each
group, so as to obtain identical histograms of mean spike counts. Lastly, we compared the FF
distributions of the two groups. The p-values in Table 1 were computed using a paired sample
t-test of the null hypothesis that differences between samples from the two conditions (i.e. RF
size versus 2 x RF size) had mean < 0.
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