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Abstract

What does neuronal coherence tell us about neuronal communication? Does coherence between field poten-
tials (e.g. LFP, EEG, MEG) reflect spiking entrainment or coupling between oscillators? Is it a mechanism
for communication between brain areas, or a byproduct of interareal connectivity? We hypothesized that in-
terareal coherence is explained by the fact that outputs from one cortical area give rise to synaptic inputs in
the same brain area, and correlated synaptic inputs in another area. Our mathematical analysis demonstrates
that coherence between a sending and receiving area is precisely predicted from only two parameters: In-
terareal connectivity and oscillatory synchronization in the sending area. This model predicts narrow-band
coherence even in case of a flat transfer function and in the absence of spiking entrainment in a downstream
area, and reproduces frequency-specific Granger-causality patterns between brain areas (gamma feedforward,
beta feedback). In general, we find that Granger-causality between field potentials is dominated by oscillatory
synchronization in the sending area, whereas spiking entrainment is determined by the resonant properties of
the receiver. Our model accurately reproduces LFP-LFP beta-coherence between macaque areas 7B and F5 in
the absence of beta phase-locking within area F5. Together, these findings uncover a precise mechanistic model
of interareal coherence as a (by)product of connectivity and power.

Keywords: Coherence; oscillation; synchronization; gamma; beta; connectomics; connectivity; entrainment;
Wilson-Cowan; 7B; F5; macaque; resonance; feedforward; feedback; spike-field coherence; PPC (pairwise phase
consistency); Granger-causality; LFP (Local Field Potential); EEG (Electroencephalography); ECoG
(Electrocorticogram); MEG (Magnetoencephalography).

Introduction

The brain is a dynamical system that generates intelligent behavior through the interaction between different brain
areas (Buzsáki, 2006; Miller and Wilson, 2008; Varela et al., 2001; Bressler, 1995; Engel et al., 2001; Singer and
Gray, 1995; Nicolelis et al., 1995; Siegle et al., 2019; Fries, 2015). These interareal interactions can be studied by
measuring temporal correlations (e.g. coherence, Granger-causality, cross-correlations) between electrophysiological
signals from multiple brain areas. Electrophysiological signals are commonly distinguished into spike recordings and
measures of population synaptic activity, for example LFP, ECoG, EEG, MEG (Nunez and Srinivasan, 2006; Pesaran
et al., 2018; Buzsáki et al., 2012; Mitzdorf, 1985; Einevoll et al., 2013); we refer to the latter as “field potentials”. Field
potentials have obvious disadvantages as compared to spike recordings, such as: (i) The loss of spatial resolution, (ii)
volume conduction, and (iii) the fact that synaptic potentials are a mixture of local and afferent inputs (Pesaran et al.,
2018; Nunez and Srinivasan, 2006; Buzsáki and Schomburg, 2015; Einevoll et al., 2013; Buzsáki et al., 2012). Yet,
they also have clear advantages: (i) They can be recorded non-invasively or from the cortical surface; (ii) by pooling
over synaptic potentials in a large cortical volume, they can uncover weak interactions between areas.

Field potentials from different brain areas show coherent activity in various frequency bands (Buzsáki, 2006).
Interareal coherence is influenced by several cognitive and behavioral factors (Grothe et al., 2012a; Gregoriou et al.,
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2009; Salazar et al., 2012a; Richter et al., 2018; Colgin et al., 2009; Buschman and Miller, 2007; Fries, 2015; Varela
et al., 2001; Babapoor-Farrokhran et al., 2017; Phillips et al., 2014; Olcese et al., 2016; Montgomery and Buzsáki,
2007; Von Stein and Sarnthein, 2000; Bressler et al., 1993; Brunet et al., 2014). Furthermore, distinct frequency
bands are thought to play specific roles in interareal communication. For example, gamma (30-80Hz) and alpha/beta
frequencies (10-30Hz) have been related to feedforward and feedback corticocortical communication, respectively
(Buschman and Miller, 2007; Bastos et al., 2015; van Kerkoerle et al., 2014; Richter et al., 2018; Bressler et al.,
2006; Mejias et al., 2016). Yet, the unequivocal functional significance and causal interpretation of these findings
remains to be established. Does interareal coherence itself have an influence on the communication between areas?
Or is interareal coherence a byproduct of connectivity, and hence communication, between areas (coherence through
communication)?

The interpretation of interareal coherence between field potentials is fraught with many problems (Pesaran et al.,
2018; Buzsáki and Schomburg, 2015; Nolte et al., 2004; Nunez and Srinivasan, 2006; Einevoll et al., 2013; Vinck
et al., 2015, 2010). A well-known problem is the spread of electromagnetic fields over space (volume conduction)
(Sirota et al., 2008a; Nunez and Srinivasan, 2006; Pesaran et al., 2018; Vinck et al., 2016; Carmichael et al., 2019;
Parabucki and Lampl, 2017). In this paper, we investigate another major problem which we refer to as the synaptic
mixing problem: In the normal LFP range (<80Hz), field potentials primarily reflect the summed synaptic activity
(transmembrane currents) in a population of neurons (Einevoll et al., 2013; Pesaran et al., 2018; Nunez and Srinivasan,
2006; Buzsáki et al., 2012). These synaptic potentials can be decomposed into two parts: (i) Synaptic inputs caused
by spikes from neurons in the same brain area, and (ii) afferent synaptic inputs caused by spikes from neurons in other
brain areas. Likewise, spiking activity in one brain area (A) can cause synaptic potentials in the same brain area (A),
and highly correlated synaptic potentials in another brain area (B) at a delay. We refer to these effects as “synaptic
mixing”. As a consequence, electric signals measured in area A and area B may, in part, be delayed copies of the same
underlying signal, which would trivially give rise to interareal coherence and Granger-causality (Pesaran et al., 2018;
Buzsáki and Schomburg, 2015). Because the transmission of the signal in this case is not instantaneous, the synaptic
mixing problem cannot be solved with techniques that address the volume conduction problem (Trongnetrpunya et al.,
2016; Pesaran et al., 2018; Nolte et al., 2004; Haufe et al., 2012; Vinck et al., 2015, 2011).

Here, we develop a general theory of the way in which synaptic mixing determines interareal coherence, using
mathematical analysis, simulations of neuronal populations, and analysis of interareal recordings.

Results

Beta-coherence between areas F5 and 7B

We start out with the analysis of neural data, in which two distant brain areas show clear beta-synchronization
between LFP signals. Beta-synchronization is thought to be involved in motor preparation, maintenance of a cognitive
state and top-down modulation (Richter et al., 2018; Buschman and Miller, 2007; Salazar et al., 2012a; Bastos et al.,
2015; Engel et al., 2001; Scherberger et al., 2005). We recorded from subdivisions of the parietal (area 7B) and
premotor (area F5) cortex. These brain areas are involved in tasks like the reaching and grasping of objects (Dann
et al., 2016). Premotor area F5 is one of the main projection targets of area 7B; this is a strong long-range projection,
as area F5 lies several cm’s away from area 7B (Johnson et al., 1996; Luppino et al., 1999; Markov et al., 2014).

We recorded LFPs and spiking activity using two 32-channel flexible microelectrode arrays per area (Figure 1A).
We analyzed the memory period of the task (see Methods), in which beta oscillations are most prominent. We
observed a clear beta-peak (≈20 Hz) in the power spectrum of 7B LFPs (Figure 1B). To analyze how single units were
synchronized with LFPs, we computed the unbiased spike-field PPC value, which is proportional to the squared spike-
field coherence (Vinck et al., 2012). Consistent with the clear LFP beta-peak, single units in 7B showed significant
spike-LFP phase-locking in the beta-frequency band (Figure 1C). Spike-LFP locking was close to zero for frequencies
outside the beta-band (Figure 1C). We also found coherence between the two 7B electrode grids (Figure 1F,H). Thus,
synaptic and spiking activity in area 7B showed clear beta-band synchronization.

Next, we examined interareal LFP-LFP and spike-LFP coherence between area 7B and area F5. We observed rela-
tively strong and narrow-band beta-coherence between 7B and F5 LFPs (Figure 1E). This would suggest, prima facie,
oscillatory coupling between these two brain areas. To analyze whether this coherence was due to volume conduction,
we computed a measure of coherence that avoids spurious coherence due to volume conduction, namely the Weighted
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Figure 1: Coherence without spiking entrainment between macaque F5 and 7B (A) Illustration of electrode FMA grid recordings from the premotor
areas F5 and 7B of a macaque monkey during grasping task (see Methods). We analyzed the memory period before motor execution. (B) LFP
power spectrum for 7B (black) and F5 (red). (C) Spike-field phase locking (measured with PPC; see Methods) for different combinations of spikes
and LFPs: Spikes in 7B to LFPs in 7B (black); spikes in F5 to LFPs in F5 (red). Phase locking values were averaged over all electrodes in
corresponding grid. Spikes were pooled across all neurons in a session. The average number of neurons per session were 22.3 (7B) and 17.9 (F5).
(D) Same as (C), but now between spikes in 7B to LFPs in F5 (black), and spikes in F5 to LFPs in 7B (red). (E-F) Coherence between medial and
lateral 7B LFPs (F) and 7B and F5 LFPs (E). (G-H) Absolute value of weighted phase-lag index (Vinck et al., 2011) between 7B and F5 LFPs,
as well as medial 7B and lateral 7B LFPs. The debiased WPLI is a measure of phase-synchronization robust to volume conductionn (Vinck et al.,
2011). All figures have standard errors of the mean. For PPC the standard error is across 4 conditions × 6 recording sessions. For coherence and
WPLI, 6 sessions were pooled for the computation, and the standard error was computed across 4 conditions.

Phase Lag Index (WPLI; see Methods) (Vinck et al., 2011). The WPLI spectrum showed beta-synchronization be-
tween 7B and F5 LFPs, suggesting that LFP-LFP coherence was not due to volume conduction (Figure 1G); this is
consistent with the large spatial distance between 7B and F5.

Because there was clear beta-coherence between 7B and F5 LFPs, we expected to also find interareal beta-
synchronization between spikes and LFPs. Surprisingly, we did not detect significant beta-band spike-LFP phase-
locking between F5 spikes and F5 or 7B LFPs (Figure 1C-D). Moreover, we found that the LFP power spectrum in
area F5 was dominated by the 1/ f component, and showed only a small peak in the beta-band (Figure 1B). Thus,
we found clear evidence for beta-oscillatory activity in area 7B and beta-coherence between F5 and 7B LFPs, but no
beta-synchronization within F5. How can this discrepancy be explained?
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Coherence predicted from connectivity and power

In this section, we will show that field-field (e.g. LFP-LFP, EEG-EEG or MEG-MEG) coherence between two
brain areas (“Areas 1 and 2”) can be predicted from two parameters: (i) The connection strength between Areas 1
and 2; (ii) the structure of the LFP power spectrum in both areas. We start out with the simple case of unidirectional
communication, where Area-1 projects to Area-2 with a connection weight w (Figure 2A). In this case, output spikes
from Area-1 can cause synaptic potentials both in Area-1 (through recurrent connections) and in Area-2 (through
interareal projections). At the same time, spikes from neurons in Area-2 will also cause synaptic potentials in Area-2.
Thus, the LFP in Area-2 will be a mixture of synaptic inputs from Area-1 and Area-2. We model the measured signal
in Area-1 as the sum of an oscillatory process and a broad-band process, e.g. 1/ f pink noise. We further suppose that
that the intrinsic signal of Area-2 has no rhythmic (oscillatory) component. The Area-2 LFP is therefore described as
a linear mixture of its own background fluctuations and the synaptic inputs from Area-1.

To understand the behavior of coherence in this model, we generated synthetic signals in both areas. A beta-
oscillation in Area-1 was generated using a dampened harmonic oscillator (AR(2); see Methods). The background
processes were generated as 1/ f pink-noise signals (see Methods). As expected, Area-1 showed a clear beta-frequency
peak in the power spectrum (Figure 2A). However, because of the small connection weight (w = 0.069), there were no
visible oscillations in the power spectrum of Area-2. Moreover, the transfer function from Area-1 to Area-2 was flat,
reflecting the linear superposition of inputs from Area-1 onto Area-2, and the lack of any form of filtering. Despite
this flat transfer function, LFP-LFP coherence and Granger-causality between Area-1 and 2 showed a clear spectral
peak in the beta frequency-band. Thus, a narrow-band peak in the coherence spectrum emerged as a byproduct of
synaptic mixing.

To generalize the results of this simulation, we derived an analytical expression for the coherence spectrum based
on the connection weight w and the SOS (“Sender Oscillation Strength”). The SOS was denoted α, defined as the
ratio of the power spectral density of the oscillatory component, S 11( f ), relative to the background signal, H11( f ).
The squared-magnitude coherence (approximately equal to Granger-causality) between Area-1 and Area-2 equals
(see Methods)

C2( f ) = Θ
(
w2 (1 + α( f ))

)
≈ w2 (1 + α( f )) . (1)

Here Θ(x) ≡ x
1+x is a sigmoid-like function (Figure 2B). We confirm this analytical expression with numerical simu-

lations based on generating AR(2) and 1/ f signals (Figure 2C). This analytical expression has two main implications:
(1) Coherence and Granger-Geweke causality are monotonically increasing functions of the SOS α( f ) and the

coupling weight w. The coherence peaks at the frequency where α( f ) reaches a maximum. Even for small values
of w, coherence can show a prominent peak if α( f ) is large. In this model, band-limited coherence between field
potentials is a byproduct of communication: The coherence “itself” does not contribute to communication, because
the transfer function is flat and there is no interaction between the inputs from Area-1 and the intrinsic activity of
Area-2.

(2) The dependence of coherence on coupling weight has a non-linear, sigmoidal form. Hence, a change in
coupling weight w causes a steep change in coherence for some values of w, but weakly affects the coherence for
other values of w. Specifically, the derivative reaches a maximum for w = 1/

√
1 + α. Thus, when α( f ) is large, steep

changes in coherence already occur for relatively small coupling weights. In general, the effect of the coupling weight
w on the coherence depends on the value of the SOS, α( f ). Furthermore, a change in the coherence can be caused
both by change in interareal connectivity and the SOS (Figure 2D).

Modelling the coherence between 7B and F5

We used the synaptic mixing model of coherence to reproduce the LFP-LFP coherence between areas 7B and F5.
To this end, we generated beta oscillations in Area-1 (7B) as dampened harmonic oscillators, and the background
processes as 1/ f n spectra (see Methods). This model produced an LFP-LFP coherence spectrum with a clear peak
in the beta-frequency band. However, it overestimated the LFP-LFP coherence at other frequencies (Figure 2E). This
suggests that our simple model of coherence cannot fully explain the interareal coherence between 7B and F5. Could
there still be some “genuine” oscillatory coupling between areas 7B and F5?
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Figure 2: Interareal coherence as a (by)product of connectivity and power. (A) Illustration of the synaptic mixing problem. The Area-2 LFP is
a linear superposition of intrinsic activity and afferent inputs from Area 1 weighted by w. The signal in Area-1 was modelled as a superposition
of an oscillatory process and a 1/ f background signal. The intrinsic activity in Area-2 was modelled by the same background signal. The power
spectrum in Area-1 but not Area-2 shows a clear beta-peak. The coherence and Granger-causality spectra show clear beta peaks, but the transfer
function is flat. The SOS (Sender Oscillation Strength) at the oscillatory frequency f1 = 20Hz was SOS ( f1) = 14; w = 0.1. (B-C) Coherence as
a function of the SOS and coupling weight. Analytical derivation matched the numerical simulations (C), performed using autoregressive models
with varying oscillation strengths. (D) Coherence spectra for two “behavioral” conditions, in which either the coupling weight (left) or the SOS
(right) changed. The change in coherence was greater at the sender’s oscillation frequency. The parameters were: SOS = 10 (blue and black - left),
w = 0.025 (black - left), w = 0.035 (blue - left) and SOS = 10 (black - left), SOS = 20 (blue - left), w = 0.025. (E) Modelling interareal coherence
between areas 7B and F5. Power spectra were fitted as a linear mixture of an AR(2) model with 1/ f n background fluctuations (w = 0.069). The
coherence at the peak frequency can be well reproduced, but that the coherence at other frequencies is not fitted well.
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The influence of the projection-source coherence
In this Section, we uncover an additional mechanism that further suppresses the coherence related to non-oscillatory

background fluctuations, namely the projection-source coherence (Figure 3A); the influence of the projection-source
coherence makes the synaptic mixing problem fundamentally different from the volume conduction problem. In the
model analyzed above, the background fluctuations in the sender were projected onto the receiver in the same way as
the oscillatory process in the sender. Specifically, the signal projected from Area-1 onto Area-2 was modelled as a
fully coherent copy of the signal in Area-1. In other words, we assumed that the inputs into Area-2, caused by Area-1
activity, were a fully coherent copy of the total activity in Area 1. However, because of the anatomy of interareal
connections, this assumption will be wrong:

The Area-1-to-2 projections will originate from a relatively small subset of neurons in Area-1, because some
neurons only project to other brain areas, and some neurons project only locally (Markov et al., 2011, 2014; Han
et al., 2018; Lur et al., 2016). Because the inputs into Area-2 are only caused by a subset of neurons in Area-1, the
inputs into Area-2 will be only be partially correlated with the total activity in Area-1. In other words, the coherence
between the summed activity of the Area-1-to-Area-2 projection neurons and the Area-1 LFP may not be equal to
1. We refer to this as the projection-source coherence. We will show that this coherence is an increasing function of
two factors: (i) The fraction of projecting neurons. (ii) The spike-LFP coherence of the Area-1-to-Area-2 projecting
neurons with the Area-1 LFP. In general, we expect that oscillations substantially enhance the spike-field coherence of
individual neurons (Onorato et al., 2020; Sirota et al., 2008b; Vinck et al., 2016; Buffalo et al., 2011; Chalk et al., 2010;
Buzsáki and Schomburg, 2015; Gregoriou et al., 2009) A related point, is that the projecting area typically consists of
spatially separated populations of projecting neurons. The outputs of these different populations may converge onto a
single receiver. In the absence of coherent activity, the LFP tends to be highly local, spanning a small cortical volume
(≈ 200µm) (Lindén et al., 2011; Einevoll et al., 2013; Katzner et al., 2009). In such a volume, the total number of
neurons will be only around 160000/125 = 1280 neurons (for a density of 160000 neurons/mm3) (Christensen et al.,
2007). Out of these 1280 neurons, only few to tens of active neurons might be projecting to another given brain
area. However, the coherence across populations can be strongly enhanced by rhythmic synchronization (Figure 1)
(Buzsáki, 2006; Gray et al., 1989). This effectively increases the number of coherently firing projection neurons, and
the spatial reach of the LFP (Lindén et al., 2011).

In the Methods section, we derive a general expression for the coherence between Area-1 and Area-2, which
contains an additional dependence on the projection-source coherence, denoted Cproj,source( f ):

C2( f ) ≈ w2 (α( f ) + 1) C2
proj,source( f ) . (2)

Here α( f ) is the ratio of intrinsic power in the sender over intrinsic power in the receiver. This equation states that the
original influence of the SOS and w on coherence is multiplied by the projection-source coherence. Thus, oscillations
in the sender increase the interareal coherence because of two factors, Cproj,source( f ) and α( f ).

Next, we derive an expression for the projection-source coherence Cproj,source( f ) (see Methods) as

C2
proj,source ≈ Np φ

2( f ) . (3)

Here, φ2( f ) is the squared spike-LFP coherence of an individual projecting neuron with the Area-1 LFP. The variable
Np represents the number of Area-1-to-Area-2 projecting neurons. By combining all equations we state our main
analytical result, namely that

C2 ≈ w2 (α + 1) Np φ
2( f ). (4)

Note that the same equation applies to the coherence between Area-1-LFP and Area-2 spiking, if Area-2 spiking
relates in a linear or sigmoidal way to synaptic inputs (see Methods). In sum, LFP-LFP coherence is determined by
the following four factors:

1. The connection weight w relative to other inputs into the receiver.
2. The number of active projecting neurons in Area-1.
3. The spike-field coherence of projection neurons. From neural recordings, the value φ2( f ) can be estimated

using the unbiased spike-field PPC, which approximates the spike-field coherence (Vinck et al., 2012; Onorato
et al., 2020; Vinck et al., 2016).
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Figure 3: Interareal coherence is strongest at the frequency where the sender exhibits oscillatory synchronization. (A) Illustration of two mecha-
nisms due to which coherence is suppressed at frequencies where the sender does not exhibit synchronization. The sending area consists out of
multiple local sub-populations, whose projections may converge onto another area. We expect the high coherence at the oscillatory frequency, but
low coherence for the background 1/ f fluctuations. In addition, the sending area contains only a small population of Area-1-to-2 projecting neu-
rons. The summed potential of these projecting neurons will be mostly coherent with the Area-1 LFP at the oscillation frequency. (B) Simulation
where the subset of Area-1-to-2 projecting neurons is most coherent with the Area-1 LFP at the oscillation frequency (Top, right). The interareal
coherence and Granger-causality (Bottom) show spectral peaks only at the oscillation frequency. In this case, the SOS at the oscillatory frequency
was SOS = 14 and coupling weight w = 0.1; the oscillation was modelled as an AR(2). The background fluctuations in Area-1 were only partially
transmitted, with a weight of

√
1 − γ, γ = 1 (see Methods). (C) Same as in Figure (B), but now with the presence of an oscillation in Area-2 with

the same strength as Area-1. In this case the coherence is substantially lower than in (B), because the SOS equals 1 for all frequencies. However, it
still exhibits a spectral peak because of the coherence of the Area-1 LFP with the Area-1-to-2 projection neurons. (D) Both increases in coupling
weight and SOS cause a narrow-band increase in interareal coherence. The parameters were: SOS = 10 (blue and black - left), w = 0.025 (black
- left), w = 0.036 (blue - left) and SOS = 10 (black - right), SOS = 20 (blue - right), w = 0.025. (E) LFP-LFP coherence between macaque 7B
and F5 (dashed) can be reproduced (solid) by the synaptic mixing model shown in (B). The background fluctuations in Area-1 are only partially
transmitted, with a weight of

√
1 − γ, γ = 0.95, w = 0.077.

4. The sender-oscillation-strength α( f ).

We further observe that the SOS and the spike-LFP PPC are proportional to each other, i.e. α( f ) ∝ φ2( f ) (see
Methods). For small values of Np, α( f ) also depends linearly on Np (see Methods). Moreover, the number of
projecting neurons in an area should be proportional to the connection weight w between the areas (Markov et al.,
2011, 2014). Hence we obtain the supra-linear relationship

C2( f ) ∝ w4 φ4( f ) (5)

for small values of w and φ. Hence, 2-fold changes in spike-LFP coherence or firing rates in the sending area can,
ceteris paribus, cause a 16-fold change in the squared interareal coherence. For larger values of w and φ, the expression
takes the linear form C2( f ) ∝ w2 φ2( f ) as Cproj,source is bound by 1.

The connection weight w depends on several factors: (i) The number of synaptic connections that are made into
another area; (ii) factors modulating synaptic efficacy, like compartementalized dendritic inhibition and neuromodu-
lators (Batista-Brito et al., 2018; McGinley et al., 2015; Chiu et al., 2013).; (iii) the termination zone of the synapses,
given that synaptic currents on basal and apical dendrites cancel each other out (Lindén et al., 2011); (iv) the average
firing rates of the projecting neurons.
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Figure 4: Analytical derivation of projection-source coherence, and interareal coherence predicted through spike-LFP Phase Locking in sender area
(A) Squared coherence between Area-1 LFP and the summed activity of Area-1-to-2 projection neurons, as a function of the number of projecting
neurons (Np) and the phase-locking of individual neurons (spike-field PPC). For this simulation, we generated an AR(2) signal in the sender and
generated spikes in 10000 neurons according to inhomogenous Poisson processes modulated by this AR(2) process (see Methods). The dashed
lines show a tight match between our analytical derivations and the simulations (see Methods). (B) Interareal coherence spectrum between 7B and
F5. Data: dashes. Model: solid. Model predictions were inferred from: the spike-LFP PPC within area 7B; the SOS α( f ); and the coupling weight
w of the model in Figure 2 (E). The total number of Neurons in area 7B is 100000 (which was arbitrarily chosen) and 550 of these are projecting
to area F5.

Given the dependence of interareal coherence on so many factors, it is highly non-trivial to infer changes in
interareal synaptic gain as a function of cognition or behavior. To make matters worse, controlling for the average
firing rate or spike-field coherence will be insufficient, because projection neurons are a highly specialized subclass
of cells (Lur et al., 2016; Han et al., 2018).

Simulations of extended model
We performed several simulations to validate our theoretical model. The projection-source coherence can be

incorporated by simulating the activity in the sender as a weighted superposition of two 1/ f background processes
(see Methods) (Figure 3B): The projected 1/ f background had a weight of

√
0.05, and the non-projected background

a weight of
√

0.95. In this case, the projection-source coherence equals 0.25 for the 1/ f background process. We
found that, as expected, the coherence was strongly suppressed at frequencies outside the oscillation frequency band.

An important consequence of the analytical expression in Eq. 2 is that a peak in the coherence spectrum can
emerge even when the sender and receiving area have identical oscillation strength, and are not phase-synchronized.
By contrast, the simple synaptic-mixing model would not predict a peak in the coherence spectrum, because α( f ) is
now equal to 1 for all frequencies. However, due to the dependence of the interareal coherence on the projection-
source coherence, the coherence does attain a narrow-band structure (Figure 3C). Changes in coherence with the SOS
α( f ) or interareal connectivity w also occurred in a narrow frequency range, and were only visible at the oscillation
frequency of the sender (Figure 3D).

Finally, we performed additional simulations to confirm the analytical expression obtained for the projection-
source coherence (Eq. 3, 33, 39) (Figure 4A).

Explaining coherence between areas 7B and F5
We found that the coherence spectrum between 7B and F5 LFPs could not be accurately reproduced based on the

SOS and interareal connectivity alone. We therefore applied the extended model, in which the 1/ f background is
only partially transmitted. The extended model was able to accurately reproduce the observed LFP-LFP coherence
between 7B and F5 (Figure 3E). We further modelled the interareal coherence based on the spike-LFP PPC within
area 7B (Figure 4B). For this, we used the analytical expression for the coherence based on spike-LFP PPC, the SOS
α( f ), coupling weight w and the number of projecting neurons Np. The coherence was well predicted from this model:
The required number of projecting neurons to reproduce the coherence was about 550. Note that the literature reports
about two orders of magnitude more 7B-to-F5 projection neurons for a given retrograde injection in F5 (Markov
et al., 2011, 2014). Together, these data suggest that beta coherence between F5 and 7B LFPs can be explained by the
synaptic mixing model.
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Figure 5: Gamma bottom-up and beta top-down Granger-causality are byproducts of connectivity and differences in power spectra. (A) We model
feedforward (bottom-up) and feedback (top-down) interactions between two areas. The intrinsic activity of each area is modelled as a linear mixture
of an AR(2) model and 1/ f n background fluctuations. The AR(2) model of Area-1 is oscillating at 20 Hz. The AR(2) model of Area-2 is oscillating
at 60 Hz. The signals are transmitted to the other area with a conduction delay of 5ms. (B) We simulate the interareal interactions according to
the simple linear synaptic mixing model shown in Figure 2. Shown from left to right are: Power spectra of Area-1 and 2 and Granger-causality
in feedforward (red) and feedback (black) direction. Thus, feedforward Granger at gamma and feedback Granger at beta frequencies can be
reproduced by synaptic mixing alone, but some distortions are observed for feedback gamma and feedforward beta. (C) Same as (B), but now for
the model where the background fluctuations in Area-1 are only partially transmitted, with a weight of

√
1 − γ, γ = 0.95. This again gives rise to

gamma feedforward and beta feedback, but flattens the Granger-causality spectrum at frequencies outside the oscillation bands, producing a better
fit to the published literature (Bastos et al., 2015). In (B) and (C) the signals were transmitted with a weight of w = 0.08.

Explaining frequency-dependent interactions (gamma bottom-up, beta top-down)

In the models above, we considered a unidirectional communication setting. In reality, brain areas are typically
bidirectionally connected (Markov et al., 2011). The extent to which activity in Area-1 predicts activity in Area-2,
and vice versa, can be quantified using Granger-Geweke-causality (Geweke, 1982). Previous studies in primate visual
and parietal areas have suggested that feedforward and feedback Granger-causality are respectively strong at gamma
and alpha/beta frequencies (Bastos et al., 2015; van Kerkoerle et al., 2014; Buschman and Miller, 2007; Mejias et al.,
2016; Michalareas et al., 2016). One possible interpretation of these findings is that brain areas communicate with
different frequencies in the feedforward or feedback direction (Bastos et al., 2015). Alternatively, frequency-specific
Granger-causality might be a consequence of the presence of distinct oscillation bands in different brain areas, not of
frequency-specific transfer functions. In particular, there exists a gradient of oscillation frequencies and time constants
across the cortical hierarchy; gamma and beta oscillations are prominent in early visual areas and parietal cortex,
respectively (see also Figure 1B) (Figure 5) (Bastos et al., 2015; Brovelli et al., 2004; Bosman et al., 2012; Vinck
et al., 2016; Salazar et al., 2012a; Murray et al., 2014; Onorato et al., 2020; Spyropoulos et al., 2020; Scherberger
et al., 2005).

We modelled the intrinsic signals in both Area-1 and Area-2 as the sum of a broad-band process (pink noise),
and an oscillatory signal (Area-1: gamma; Area-2: beta) (Figure 5A). We then coupled the areas bidirectionally. Our
synaptic mixing models accurately reproduced the Granger spectra previously reported, with stronger feedforward
and feedback Granger-causality at gamma and beta frequencies, respectively (Figure 5B-C).
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E/I networks

We found that narrow-band LFP-LFP coherence results from synaptic mixing alone. However, it is possible that
oscillatory synaptic inputs cause some spiking entrainment in the receiver, which could further increase LFP-LFP
coherence. Note that with “spiking entrainment”, we simply mean that some spikes in the receiver are caused by the
sender, not that the entire intrinsic oscillation in a receiver is phase-locked to the oscillation in a sender. To investigate
this question, we modelled each area as a network of E/I neurons whose dynamics are governed by stochastic Wilson-
Cowan equations. These networks show noisy oscillations that mimick oscillatory behavior in the brain (Spyropoulos
et al., 2020; Wallace et al., 2011; Powanwe and Longtin, 2019; Mejias et al., 2016). Note that the E/I network did
not contain dendritic low-pass filtering, which would in practice diminish the influence of excitatory to excitatory
connections at higher frequencies (Buzsáki and Schomburg, 2015; Pike et al., 2000). We constructed two types of
scenarios: Mixing without entrainment: In Simulation 1, spikes from Area-1 generated field potentials in Area-2,
but the neurons in Area-2 were “blind” to the inputs from Area-2. Thus, there was synaptic mixing, but no spiking
entrainment, and LFP-LFP coherence was strictly due to synaptic mixing. Mixing with entrainment: In Simulation
2, there was spiking entrainment, i.e. spiking in the receiver was modulated by synaptic inputs from the sender. We
simulated different cases, e.g. gamma oscillations in the sender, beta oscillations in the receiver, or a combination
of these. In Figure 6, we only show coherence, because Granger-causality is approximately equal to the squared
coherence for unidirectional communication (see Methods).

Without spiking entrainment, we found strong LFP-LFP coherence at the frequency of the sender (Figure 6B-
C), as predicted from the results obtained above. However, spiking entrainment in the receiver did not substantially
contribute to the interareal LFP-LFP coherence if the sender and the receiver had different oscillation frequencies
(Figure 6B-C,E).

In Figure 6D, we considered a scenario where the sender and the receiver had the same oscillation frequency
(gamma) and power. Without spiking entrainment, we found only weak gamma LFP-LFP coherence 6D. This is
due to the fact that the SOS was now matched to the receiver oscillation strength, i.e., α( f ) = 1 for all f (see also
Figure 3). With spiking entrainment, we observed a strong increase in LFP-LFP gamma coherence. For low interareal
connectivity, LFP-LFP coherence now mostly reflected spiking entrainment (Figure 6E), in contrast to the case where
the receiver oscillated in a different frequency band (Figure 6B,E); this difference reflects the resonant properties of
the receiver. Although LFP-LFP coherence was now more strongly influenced by spiking entrainment, the value of
LFP-LFP coherence was comparable to the case where the receiver oscillated in the beta band (Figure 6E). Overall,
the contribution of spiking entrainment to LFP-LFP coherence increased as the difference in oscillation frequency
between sender and receiver became smaller (Figure 6G).

For all cases of sender-receiver frequencies, LFP-LFP coherence showed the stereotypical sigmoidal increase
as a function of interareal connection strength. For the gamma-to-gamma simulation, spike-field phase-locking to
the sender oscillations was initially weak; this indicated that most spikes in the receiver were triggered by its own
intrinsic oscillations, but some spikes were triggered by the afferent oscillatory inputs (Figure 6F). With an increase
in interareal connectivity, we observed a gradual increase in spike-field phase-locking (Figure 6F). Thus, there was no
sudden phase transition where the intrinsic oscillations in the receiver were fully phase-locked to the sender.

These findings show that communication between a sender and receiver can produce LFP-LFP coherence in two
ways: (i) By synaptic mixing, and (ii) by triggering spikes in receiver. In both cases, the amount of coherence showed
a similar sigmoidal dependence on the interareal connectivity; the strength of interareal coherence was determined
by interareal connectivity strength. Interareal LFP coherence should in both cases also depend on the projection-
source coherence and the factors that govern it. Finally, the frequency at which spiking entrainment, i.e. actual
communication, will be prominent, is determined by the resonant properties of the receiver, not the sender (Figure
7). However, the frequency at which LFP-LFP coherence or Granger-causality will be large is determined by the
oscillatory properties of the sender, not the receiver.

Discussion

We showed that interareal coherence between a sending and receiving area depends on four factors: (i) The spike-
field coherence of projection neurons in the sender. (ii) The oscillation strength in the sender relative to the intrinsic
activity in the receiver. (iii) The interareal connectivity. (iv) The number of projection neurons. We concluded that
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Figure 6: Spiking entrainment in the receiver does not substantially contribute to interareal LFP-LFP coherence, except when the frequencies
in the sender and receiver overlap. (A) Illustration of the two models. Each area consisted of a population of spiking neurons whose dynamics
were modelled by stochastic Wilson-Cowan equations. In the first model (left two columns), synaptic potentials due to inputs from Area-1 were
superimposed onto the synaptic potentials from Area-2 itself. Neurons in Area-2 were “blind” to the synaptic inputs from Area-1, i.e. spiking
entrainment was prohibited. The second model (right two columns) is identical to the first model, however synaptic inputs from Area-1 could now
entrain the neurons in Area-2. (B) First two columns: Sender oscillates at gamma and the receiver at beta. Coherence spectra show clear peaks,
following the power in the sender. Last two columns: Spiking entrainment increases coherence slightly. (C) and (D) Same as in (B), but now with
different oscillation frequencies. When the oscillation frequency in the sender matches with the receiver, there is a increase in LFP-LFP coherence
due to spiking (D). (B-D) all for coupling value of w = 0.1. (E) Change in coherence as a function of the ratio of inter- to intra-regional connection
rates. (F) Spike-field phase-locking-value of neurons in the receiver population to the oscillations in the receiver (i.e. sum of all synaptic inputs
caused by spikes in Area 2) and oscillations in the sender (i.e. sum of all synaptic inputs caused by spikes in Area 1). As the number of connections
increases, the phase locking gradually increases. (G) Change in coherence going from unentrained to entrained case, expressed as a ratio, for
w = 0.05. A value of 3 means 3 times more coherence in the entrained than the unentrained case.
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Figure 7: Illustration of difference between LFP-LFP coherence and spiking entrainment, and ability to switch communication by changing
oscillations in the sender. In the left case, the sender oscillates at beta, and it would have a high LFP-LFP coherence with a receiver at gamma
due to synaptic mixing. However, this LFP coherence does not translate into spiking entrainment. When the receiver also oscillates at beta, the
LFP coherence due to synaptic mixing is lower, but due to resonance, the receiver will now exhibit more spiking entrainment. In the right case, the
sender switches to gamma, and now switches communication to the gamma receiver. Paradoxically, LFP-LFP coherence might be higher between
the sender and the receiver that communicate less.

narrow-band coherence between field potentials is a predicted byproduct of power and connectivity: It does not require
coupling between oscillators, frequency-specific information transmission, or spiking entrainment.

Dynamic changes in interareal coherence with cognition can be caused by a combination of these four factors,
including the interareal connectivity. Although the anatomical substrate of interareal connectivity changes slowly,
interareal connectivity can be rapidly modulated by several mechanisms. These include (i) compartmentalized den-
dritic inhibition and (ii) neuromodulators (Batista-Brito et al., 2018; McGinley et al., 2015; Chiu et al., 2013). Gain
modulation of firing rates in the sending area also leads to an effective increase in interareal connectivity, if the firing
rates of other sources of synaptic input do not change. We conclude that band-limited changes in interareal LFP-LFP
coherence do not imply frequency-specific changes in information transmission. In fact, a change in interareal con-
nectivity is expected to increase information transfer at all frequencies. However, at the level of LFP-LFP coherence,
a change in e.g. interareal connectivity only has measurable effects at the frequencies where neurons in the sending
area fire synchronously (Figure 3).

A function for coherence?

There are numerous theories ascribing functional roles to interareal phase-synchronization and coherence in coor-
dinating neuronal interactions, e.g. (Varela et al., 2001; Bressler, 1995; Engel et al., 2001; Kreiter, 2006; Fries, 2005;
Miller and Wilson, 2008; Abeles, 1982; Bonnefond et al., 2017; Salinas and Sejnowski, 2001; Singer and Gray, 1995;
Palmigiano et al., 2017; Börgers and Kopell, 2008; Buzsáki and Draguhn, 2004; Vinck et al., 2013a). Various aspects
of these theories have been summarized in the CTC (“communication-through-coherence”) hypothesis (Fries, 2005,
2009, 2015), which contains three premises: (i) Interareal coherence reflects phase synchronization between the in-
trinsic oscillations in the sender and receiver. (ii) Interareal communication is enhanced when afferent synaptic inputs
consistently arrive at an excitable phase of the intrinsic oscillation (Volgushev et al., 1998; Burchell et al., 1998). (iii)
Selective communication is implemented through selective coherence (Fries, 2015).

The current paper takes a very different point of view: Two brain areas can only communicate if they are connected,
and if they are connected, they will exhibit coherence at a “good” phase-relationship. This is due to the fact that the
sending area will be coherent with the inputs that the sender causes in the receiving area. The resulting coherence
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is a consequence of communication, not a cause of it. To demonstrate coherence between intrinsic oscillations, it
is therefore imperative to rule out that interareal coherence is not due to synaptic mixing. Otherwise, the cause
(connectivity and communication) can be easily confused with the effect (coherence). And, if coherence is byproduct
of communication, then it is unclear what experimental outcomes would possibly falsify CTC; if cognition is expected
to increase interareal communication, e.g. due to attention, then an increase in coherence would a priori be an expected
outcome.

Theories like CTC also propose that communication between two connected areas can be blocked by the absence
of coherence (Fries, 2009): Yet, synaptic mixing models also predict that there is no coherence if there is no com-
munication. Furthermore, communication is not consistently blocked by the absence of coherence, because interareal
phase-relationships randomly fluctuate between “good” and “bad” phases (Akam and Kullmann, 2012). Alternatively,
interareal communication may be prohibited by interareal coherence with a consistent “bad” phase-relationship (Vol-
gushev et al., 1998; Burchell et al., 1998; Fries, 2005; Tiesinga and Sejnowski, 2010; Akam and Kullmann, 2012). This
could block communication quite effectively (Volgushev et al., 1998; Burchell et al., 1998; Tiesinga and Sejnowski,
2010; Akam and Kullmann, 2012) and is not predicted by synaptic mixing models; however, phase separation between
competing inputs has not been reported in studies that examined the modulation of interareal coherence by attention
(Grothe et al., 2012a; Bosman et al., 2012).

How do we disentangle coherence through communication from phase-synchronization between intrinsic oscil-
lations? The strength of interareal coherence may be one indicator as to whether coherence can be explained by
synaptic mixing. Because interareal connections are typically weak (Markov et al., 2014, 2011), synaptic mixing
is unlikely to yield very high coherence values; these would be more indicative of a pacemaker or strong coupling
between oscillators. However, the most compelling correlational evidence for CTC is a moderate change in V1-V4
gamma-coherence with attention (from about 0.06 to 0.09, i.e. squared-magnitude coherence values below 0.01)
(Ferro et al., 2020; Bosman et al., 2012; Grothe et al., 2012b). Notably, area V1 contains a very strong source of
narrow-band gamma, which is associated with a unique class of excitatory neurons (Gray and McCormick, 1996;
Onorato et al., 2020) and shows up to 300-fold power increases (Spyropoulos et al., 2020)). Thus, it should be easy to
induce weak V1-V4 gamma coherence and feedforward Granger with synaptic mixing models (see Figure 5). A local
increase in the firing rates and phase-locking of V1 or V2 projection neurons with attention would then be sufficient
to increase V1-V4 coherence, even in the absence of coupling between local V1 and V4 oscillators (Luck et al., 1997;
van Kerkoerle et al., 2014; Buffalo et al., 2011; Chalk et al., 2010).

These considerations highlight a basic problem, namely how to experimentally identify intrinsic oscillations using
“local” field potential signals, which contain a mixture of local and afferent synaptic inputs (Buzsáki and Schomburg,
2015; Pesaran et al., 2018; Saleem et al., 2017). The strength and prevalence of oscillations show great variation
across the cortical sheet; distinct brain regions have particular spectral profiles (Buzsáki, 2006). A few brain regions
exhibit very strong oscillations under specific sensory or behavioral conditions. For example: there is a strong source
of gamma in V1/V2 (Gray et al., 1989; Peter et al., 2019; Vinck and Bosman, 2016; Onorato et al., 2020; Henrie and
Shapley, 2005; Spyropoulos et al., 2020); beta in parieto-frontal cortex (Figure 1,(Scherberger et al., 2005; Dann et al.,
2016; Brovelli et al., 2004; Salazar et al., 2012b; Hagan et al., 2012; Donoghue et al., 1998; Murthy and Fetz, 1996));
and theta and gamma in rodent hippocampus (Buzsáki, 2006; Colgin et al., 2009; Bragin et al., 1995). Coherence
between these oscillatory sources and areas with weak or no intrinsic oscillations will be dominated by synaptic
mixing (Figure 1, (Schomburg et al., 2014)); due to synaptic mixing, oscillations will now appear in areas without
intrinsic oscillations. The contribution of afferent inputs to the LFP might depend strongly on the cortical layer.
Feedforward projections target the granular layer 4, which has relatively little recurrent connectivity (Lund et al.,
2003), and may not exhibit intrinsic oscillatory activity (Livingstone, 1996; Xing et al., 2012). Local field potentials
in layer 4 might therefore be dominated by synaptic mixing of afferent inputs, and spiking entrainment in pyramidal
neurons might be strongly diminished because of dendritic low-pass filtering (Buzsáki and Schomburg, 2015). To
identify that oscillations have at least some local component, it is critical to analyze local spiking activity. However,
because interareal projections may induce only weak spiking entrainment in the receiver, spiking entrainment by itself
does not demonstrate intrinsic oscillations in the receiver. Suppression of brain areas can be a useful diagnostic tool:
For example, (Saleem et al., 2017) showed that in mouse V1, luminance/locomotion-related LFP oscillations in the
60-65Hz range are driven by LGN afferents and not affected by pharmacological suppression of V1 spiking activity.

Even if there are clear intrinsic oscillations with overlapping frequency bands in two connected areas, it is often
unclear what mechanism would make them phase-synchronized, and how to measure this. In principle, intrinsic
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oscillations can be phase-synchronized by a pacemaker that entrains multiple areas. Clear examples are subcortical
areas like the thalamus (sleep spindles) and the medial septum (hippocampal theta) (Steriade et al., 1993; Wang,
2002). Yet it is unclear whether there are pacemakers for neocortical rhythms like gamma and beta. The notion of a
pacemaker becomes especially problematic for oscillations that are generated by local circuits and show substantial,
stochastic fluctuations in instantaneous amplitude and frequency (e.g. V1 gamma) (Spyropoulos et al., 2020; Burns
et al., 2011); in this case a pacemaker would have to continuously reset the ongoing rhythm.

Previous studies have raised other theoretical concerns about the suitability of coherence as a mechanism for se-
lective communication: (1) How can communication be made selective when there is no intrinsic oscillatory activity?
For example, V1 gamma can be found for some (e.g. large gratings) but not for other stimuli (e.g. irregular textures),
even though both can be seen and attended to (Hermes et al., 2015; Vinck and Bosman, 2016; Henrie and Shapley,
2005; Peter et al., 2019; Ray and Maunsell, 2015). How does attention change interareal coherence for the latter
kind of stimuli? (2) Spectral coherence can only be defined over longer time periods, and is usually computed over
many trials, in contrast to instantaneous phase. For reliable, selective transmission of one out of multiple sources of
afferent inputs, very strong coherence differences and a long integration window are needed (Akam and Kullmann,
2012). This holds true especially when oscillators show stochastic fluctuations in instantaneous frequency (Akam and
Kullmann, 2012).

Connectivity mapping through coherence

How to move forward? The synaptic mixing problem can to some extent be addressed by analyzing the (laminar)
current-source-densities instead of field potentials, and techniques like ICA (Pesaran et al., 2018; Mitzdorf, 1985;
Einevoll et al., 2013; Buzsáki and Schomburg, 2015; Buzsáki et al., 2012; Schomburg et al., 2014). To interpret
LFP-LFP coherence, it is also critical to analyze spike-spike and spike-field synchronization (Pesaran et al., 2018;
Buzsáki and Schomburg, 2015). In general, it is not a priori obvious whether rhythmicity in weak afferent inputs
is at all transferred to spiking outputs, and whether weak entrainment is physiologically meaningful or not. Spiking
entrainment may be prevented or boosted by several various factors: (i) Non-linearities in single neurons and recurrent
networks; (ii) Dendritic low-pass filtering in pyramidal neurons (Buzsáki and Schomburg, 2015; Pike et al., 2000),
which counteracts spiking entrainment in the gamma-frequency range (Schomburg et al., 2014; Vinck et al., 2016;
Buzsáki and Schomburg, 2015); (iii) Resonance in the receiver (Figure 6).

Even if neuronal responses are linearly or sigmoidally related to afferent synaptic inputs, spike-field coherence can
still be explained as a by-product of interareal connectivity and the projection-source coherence (see Methods). For
various reasons, the interareal spike-field coherence of a single neuron might be very weak compared to the field-field
coherence (see Methods, and Figure 1). One reason is that each neuron in the receiver might be targeted by only a
few projection neurons, such that it sees a noisy and distorted copy of the rhythm of the sending area (see Methods).

Despite its limitations, interareal LFP-LFP coherence remains a promising tool for studying interareal connectivity
and dynamic changes therein, especially in human ECoG. For example, (Bastos et al., 2015; Michalareas et al., 2016)
have shown that in the primate visuo-parietal system, interareal Granger-causality between LFP signals can predict
layer-specific anatomical projection patterns. Our results suggest that interareal connectivity can be best predicted
at the frequencies where one of the areas has a strong intrinsic oscillation (Figure 3 and 6). Improved estimates can
be obtained based on the spike-field coherence of projecting neurons (Figure 3. Further progress can be made by
factoring in “third area sources” in connectivity and coherence estimates, and the contribution of spiking entrainment.
Thus, the presented theoretical model of coherence and Granger-causality opens new avenues for mapping interareal
connectivity in the human brain, providing an interesting alternative to DTI.
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Methods

Subjects

Neural activity was recorded simultaneously from many channels in one female rhesus macaque monkey (Animals
S, body weight 9, 7 kg). Detailed experimental procedures have been described previously (Dann et al., 2016). All
procedures and animal care were in accordance with German and European law and were in agreement with the
Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research (National Research Council,
2003).

Macaque data

The monkey was trained to perform a delayed grasping task. In this task, the monkey was either instructed to grasp
a target with one of the two possible grip types (power and precision), or free to choose between the grip types, as
described in detail in previous studies (Dann et al., 2016). During instructed trials, the monkey was visually cued by
one of two discs displayed on a monitor to perform the associated grip type. During free-choice trials, both discs were
displayed and monkeys could choose freely between grip type. To encourage switching behavior during consecutive
free-choice trials, the reward was iteratively reducing every time the monkey repeatedly chose the same grip type.
Note that also delayed instructed trials were part of the task. These were not used in this study and are therefore not
further explained. The monkey learned to perform the task with high accuracy of 95 +- 0.01 % SD successful trials
on average.

Surgical procedures have been described in detail previously (Dann et al., 2016). In short, the monkey was
implanted with four chronically implanted 32-channel microelectrode arrays (FMAs; Microprobes for Life Sciences;
32 electrodes; spacing between electrodes: 0.4mm; length: 1.5 to 7.1 mm monotonically increasing to target grey
matter along the sulcus), two in part of the ventral premotor cortex (area F5) and two in area 7B, specifically around
the anterior intraparietal area (AIP), for a total of 128 channels. Electrode signals from the implanted arrays were
amplified and digitally stored using a 128 channel recording system (Cerebus, Blackrock Microsystems; sampling
rate 30 kS/s; 0.6-7500Hz band-pass hardware filter).

To detect spikes, electrode signals were first high-pass filtered with a median filter (window length 3ms) and
then low-pass filtered with a non-causal Butterworth filter (5000 Hz; 4 th order). Next, common noise-sources were
eliminated by applying principal component (PC) artifact cancellation and spike waveforms were detected and semi-
automatically sorted using a modified version of the offline spike sorter Waveclus. Finally, redetection of the different
average waveforms (templates) was done to detect overlaid waveforms. The exact procedures of spike detection are
described previously (Dann et al., 2016). Note that only well isolated single units were used for all analyses. To detect
LFPs, electrode signals were first low-pass filtered with a median filter (window length 6.7 ms) and then high-pass
filtered with a non-causal Butterworth filter (1 Hz; 4th order). In order to filter outpower line noise and their harmonic
and additional band-stopfilter filtering out signals between 49 and 51 Hz and 98 and 102 was applied. Subsequently,
signals were down-sampled by averaging 30 consecutive frames from 30000 to 1000 Hz. Broken channels and trials
containing movement noise were removed from all further data analyses. For this purpose, the total power, the
correlation and the maximum deflection of all channels and trails was compared and all outliers discarded. Finally, to
reduce the influence of the on array ground and reference electrode on each array, the trimmed mean over all channels
per array (leaving highest two and the lowest two values per time point out) was removed by using linear regression.
After spike and LFP detection, single neuron spike events were binned in non- overlapping 1-ms windows to obtain
an equal sampling rate of 1000 Hz for both signals. Subsequently, signals were aligned to cue and movement onset
for the instructed- and free- choice-task, since activity was locked to both events.

All analyses of macaque data were performed in Matlab (Mathworks) using custom scripts and the FieldTrip
toolbox (Oostenveld et al., 2011). Power and coherence spectra were assessed using integration windows of 0.35s
length moved over the whole data in steps of 50ms. The epochs were Hann tapered to avoid spectral leakage. Pairwise
phase consistency (PPC) between spikes and LFPs was calculated using windows of 350ms around every spike (Vinck
et al., 2012), using the spiketriggeredspectrum functions in the FieldTrip SPIKE toolbox. To compute spike-LFP PPC,
we first pooled the activity of single units in the area together, which gives the most sensitive estimate of entrainment
in an area by increasing the number of pairwise phase comparisons (Vinck et al., 2013b).
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Predicting interareal coherence based on connectivity and power
In this Section we derive an analytical expression for coherence based on interareal connectivity and power.
We start out from a unidirectional communication setting, where brain Area-1 projects to brain Area-2. The

measured signals are denoted z1(t) and z2(t). In the following derivations, and our simulations, we assume that the
signals are measured without the addition of extrinsic noise. That is we assume that all signals reflect neural activity,
and we assume that there is no volume conduction.

We model the signal z1(t) in Area-1 as the sum of an oscillatory process s1(t) and a broad-band process, e.g. Pink
noise, η1(t):

z1(t) ≡ s1(t) + η1(t) . (6)

The intrinsic signal z2(t) of Area-2 has no rhythmic component and is modelled as a linear mixture of its own noise
term and the projected input from Area-1,

z2(t) = η2(t) + w (s1(t) + η1(t)) (7)

where w denotes the projection strength from Area-1 to Area-2. We assume that the background processes η1(t) and
η2(t + τ) are linearly uncorrelated for all τ. For the purpose of mathematical derivation, we suppose that the power
spectral densities of the broad-band processes are equal for all f , i.e. H11( f ) = H22( f ) ≡ H( f ), with f frequency. We
denote the spectral density of s1(t) as S 11( f ). We define the SOS (“Sender Oscillation Strength”) as

α( f ) ≡
S 11( f )
H11( f )

≡
S 11( f )
H( f )

. (8)

The cross-spectral density between z1(t) and z2(t) equals

Z12( f ) = w (S 11( f ) + H11( f ))

= w Z11( f ) (9)

and is real-valued. Note that the other cross-terms fell out because we assumed that η2, η1 and s1 are uncorrelated.
The squared coherence C2( f ) between Area-1 and Area-2 is defined by

C2( f ) ≡
|Z12( f )|2

Z11( f ) Z22( f )
. (10)

This simplifies as follows:

C2( f ) =
w2Z11( f )2

Z11( f ) Z22( f )

=
w2 Z11( f )

Z22( f )
. (11)

Since η2(t) and s1(t) are uncorrelated, we have

Z22( f ) = H( f ) + w2Z11( f ) . (12)

Eq. 8 now reduces to

C2( f ) =
w2 Z11( f )

H( f ) + w2 Z11( f )

=
1

1 + H( f )
(
w2 Z11( f )

)−1 . (13)

From Eq. 8 it follows that

Z11( f ) = H( f ) (α( f ) + 1) . (14)
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Hence H22( f )
(
w2 Z11( f )

)−1
reduces to the expression

1
w2 (α( f ) + 1)

. (15)

Thus the coherence can be simplified to

C2( f ) =
w2 (1 + α( f ))

1 + w2 (1 + α( f ))

= Θ
(
w2 (1 + α( f ))

)
, (16)

where Θ ≡ x
1+x is the sigmoid function.

We can estimate the connectivity weight from the measurement variables by solving for w and α( f ),

w =

√
C2( f )

−(α( f ) + 1)(C2( f ) − 1)

≈

√
C2( f )
α( f ) + 1

, (17)

Here, the approximation is based on the first-order Taylor expansion of the coherence around C( f ) = 0. We can also
take the Taylor expansion around w = 0 for Eq. 16 and obtain

C2( f ) ≈ w2(1 + α( f )) . (18)

Note that the same model derivations (and the derivations below) pertain to Granger-causality, because for uni-
directional coupling the following relationship holds between Geweke-Granger causality and coherence (Geweke,
1982):

G1→2( f ) = − ln(1 −C2( f )) ≈ C2( f ) , (19)

where the approximation was made based on the first order Taylor-expansion around C( f ) = 0.

Model of interareal coherence taking into account projection patterns
In the model above we assumed that the signal received by the receiver is fully coherent with the signal in the

sender. As explained in more detail in the Results Section, this is likely not the case for two reasons: 1) The sender
consists of sub-populations that are not fully coherent with each other, especially for frequencies where there is no
oscillatory synchronization. 2) The number of projecting neurons in Area-1 may be small, and the coherence between
the summed potential of Area-1-to-2 projection neurons and the Area-1 LFP (the projection-source coherence) may
not be 1.

Expression of the coherence based on power, interareal connectivity and coherence between Area-1-to-2 projection
neurons and the Area-1 LFP.

We first derive an expression of the interareal coherence that includes a linear dependence on the projection-source
coherence.

We model the signals as

z1(t) = s1(t) + η1(t) (20)

z2(t) = η2(t) + w
(
s∗1(t) + ε1(t)

)
. (21)

Here, s∗1(t) is the projected oscillatory signal into Area-2, and ε1(t) is the projected background signal into Area-2.
The coherence between η1(t) and ε1(t) is denoted Cη,ε( f ). The coherence between s1(t) and s∗1(t) is denoted Cs,s( f ).
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We assume that s1(t) and s∗1(t) have the same power spectral densities. Likewise we assume that η1(t), η2(t) and ε1(t)
have the same power spectral densities.

We now obtain

Z12( f ) = w
(
Cs,s( f ) S 11( f ) + Cη,ε( f ) ,H( f )

)
= w

(
Cs,s α( f ) + Cη,ε( f )

)
H( f ) ;

Z11( f ) = S 11( f ) + H( f ) (22)
= (1 + α( f )) H( f ) ;

Z22( f ) = w S 11( f ) + (1 + w) H( f )
= (1 + w (1 + α( f ))) H( f )

The squared coherence C2( f ) now simplifies as

C2( f ) ≡
w2

(
Css( f )α( f ) + Cη,ε( f )

)2

(1 + α( f )) (1 + w (1 + α( f )))
. (23)

Plugging in α( f ) = 0 for all f we obtain

C2
12( f ) =

w2 C2
η,ε( f )

w + 1
(24)

≈ w2 C2
η,ε( f ) (25)

where the first-order Taylor expansion was made around w = 0. Thus, the squared coherence between areas scales
with the coupling weight and the squared interareal coherence in the sender. For the oscillatory part, assuming the
background fluctuations have coherence close to zero, we have

C2( f ) ≈ w2 α( f )2

α( f ) + 1
C2

s,s( f ) (26)

Following the same derivation we can also obtain an expression for the squared coherence that combines both the
noise and the oscillatory term as

C2( f ) ≡
w2

(
Cproj,source( f ) (α( f ) + 1)

)2

(1 + α( f )) (1 + w (1 + α( f )))
(27)

≈ C2
proj,source (α + 1) w2 .

Here Cproj,source is the projection-source coherence, and α( f ) is defined as the ratio of power of the intrinsic signal in
the sender over the intrinsic signal in the receiver.

Expression of the coherence based on power, interareal connectivity and the projection-source coherence
We derive the projection-source coherence based on Np active (i.e. firing spikes) projecting neurons as follows.

Let xi(t) be the activity of a single neuron in Area-1 with power spectral density X( f ) for all i. The cross-spectral
density of the Np projecting neurons with the signal based on all Nt neurons in Area-1 equals

Xproj,source( f ) = NpX( f ) + Np (Nt − 1) X( f )c( f ) , (28)

where c( f ) is the coherence between two individual neurons,

c( f ) ≡
Xi, j( f )
X( f )

. (29)
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The factor (Nt − 1) accounts for the fact that each projecting neuron is fully coherent with itself. For simplicity,
we assumed that the cross-spectral density between any two neurons is real-valued (i.e. all neurons are on average
coherent at zero-phase). The power of the signal in the source (Area-1) equals

Xsource,source( f ) = NtX( f ) + Nt (Nt − 1) X( f )c( f ) . (30)

The power of the signal of the projection equals

Xproj,proj( f ) = NpX( f ) + Np

(
Np − 1

)
X( f )c( f ) . (31)

The squared coherence now equals

C2
proj,source ≡

|Xproj,source( f )|2

Xproj,proj( f ) Xsource,source( f )
= · · ·

(
NpX( f ) + Np (Nt − 1) X( f )c( f )

)2

(NtX( f ) + Nt(Nt − 1)X( f )c( f )) (NpX( f ) + Np(Np − 1)X( f )c( f ))
, (32)

which simplifies further to

C2
proj,source =

Np (1 − c( f )) + c( f )NpNt

Nt (1 − c( f )) + c( f )NpNt
. (33)

Plugging in g ≡ Np

Nt
where g is the fraction of projecting neurons, we obtain,

C2
proj,source =

c( f )g(Nt − 1) + g
c( f )(gNt − 1) + 1

. (34)

By taking the Taylor expansion around c( f ) = 0, since the coherence between two individual neurons will be small,
we obtain the first-order approximation

C2
proj,source ≈ g + c( f )(1 − g)gNt

≈ g + g c( f ) Nt . (35)

Here we removed the term (1−g) because we can assume that g is typically close to zero. Hence the projection-source
coherence is proportional to the fraction of projecting neurons, plus the coherence times the total number of projecting
neurons. We can furthermore relate c( f ) to the coherence of an individual neuron with the total signal in Area-1 (the
spike field coherence). The squared-magnitude spike-field coherence can be expressed in terms of c( f ) as

φ2 =
((Nt − 1) c( f )X( f ) + X( f ))2

(NtX( f ) + (Nt − 1) NtX( f )c( f )) X( f )
(36)

= c( f )
(
1 −

1
Nt

)
+

1
Nt
.

Note that we used here

Xsource,i =

Nt∑
j=1

Xi, j (37)

= X( f ) + (Nt − 1)X( f )c( f )

because we assumed all cross-spectra to be real-valued. Furthermore the total power in the source can be decomposed
as

Xsource,source =

Nt∑
j=1

Nt∑
i=1

Xi, j (38)

= NtX( f ) + Nt(Nt − 1)X( f )c( f ) .
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Solving Eq. 36 for c( f ) yields

c( f ) =
φ2Nt − 1
Nt − 1

, (39)

where φ2Nt ≥ 1. Plugging this into Eq. 35 we obtain the approximation

C2
proj,source ≈ g + g

(
φ2Nt − 1

)
≈ g Nt φ

2 . (40)

We thus obtain

C2( f ) ≈ w2(α( f ) + 1)2φ2 g Nt . (41)

Expression of the power on spike-field coherence.
We further expect α( f ) to be proportional to φ2: Let be φ( f ) here is the consistency of single spikes (estimated by

spike-field PPC) and divide the population into Nt spike trains of single spikes. The power due to the oscillation that
is projected equals

S osc( f ) = NpX( f ) + Np(Np − 1)c( f )X( f ) (42)

≈ NpX( f ) + Np(Np − 1)φ2( f )X( f ) .

The power due to the background equals

S background( f ) = NpX( f ) + Np(Np − 1)cbackground( f )X( f ) (43)

≈ NpX( f ) + Np(Np − 1)φ2
background( f )X( f ) .

Here φbackground is the spike-field coherence related to the background 1/ f fluctuations, which may be non-zero. We
note that if Np is large enough, we have

α( f )→
φ2( f )

φ2
background

. (44)

However, for small Np, we obtain the first-order Taylor expansion

α( f ) ≈ 1 + (Np − 1)
(
φ2( f ) − φ2

background

)
. (45)

In this case the SOS depends on Np. The reason for that is that when Np is small, the contribution of the phase
consistency across neurons is relatively small and the intrinsic power due to the individual energy contributions weighs
in.

Non-linear dependence of coherence on spike-field coherence and connection weight.
Because the connection weight w should be proportional to the total number of projection neurons (Markov et al.,

2011), we therefore expect coherence to be proportional to w and φ. Combining all results we obtain:

C2( f ) ∝ w4φ4 . (46)

The factor φ4 follows from the dependence of α on φ2 and Cproj,source( f ) on φ2. The factor w4 follows from the
dependence of C2( f ) on w2, the dependence of α( f ) on Np and therefore w, and the dependence of Cproj,source( f ) on
Np and therefore w. When the number of projection neurons Np and φ( f ) is sufficiently high, the projection-source
coherence Cproj,source( f ) should converge to one, and α( f ) to φ2( f )

φ2
background

. In that regime we obtain

C2( f ) ∝ w2φ2 . (47)
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Linear mixture with intrinsic noise in Area-1: simulations
For the purpose of simulations, we model the signal in Area-1 as follows:

z1(t) ≡ s1(t) +
√

(1 − γ)η1(t) +
√
γε(t) . (48)

The intrinsic signal z2(t) of Area-2 is defined as a linear mixture of its own background fluctuations, and the input
from Area-1:

z2(t) = η2(t) + w(s1(t) + η1(t)) . (49)

For the purpose of simulations, we assume that the projected oscillatory component s1(t) is fully coherent with the
oscillatory process in the sending area. We now obtain

Z12( f ) = w(S 11( f ) +
√

(1 − γ)H( f )) (50)

= w(α( f ) +
√

(1 − γ))H( f ) .

Since η1(t) and γ1(t) are uncorrelated:

Z11( f ) = S 11( f ) + (1 − γ)H( f ) + γH( f ) (51)
= S 11( f ) + H( f )
= (1 + α( f ))H( f ) ; (52)

Z22( f ) = H( f ) + w2(S 11( f ) + H( f )) (53)

= H( f ) + w2Z11( f )

= (1 + w2(1 + α))H( f ) .

The squared coherence C12( f ) now simplifies as

C2( f ) =
w2(α +

√
(1 − γ))2

(1 + α( f ))(1 + w2(1 + α( f )))
. (54)

Plugging in α( f ) = 0 we obtain

C2( f ) =
w2(1 − γ)
(1 + w2)

. (55)

This is comparable to Eq. 24.

Synthetic signals
Pink-noise signals

The background fluctuations in Figure 2 to 5 were simulated as 1/ f 2/3 pink-noise processes. For every trial we
generate a trace of white noise sample points. Each traces was Fourier transformed. The complex coefficients of
the positive frequencies were multiplied by the 1/ f 2/3-function. By concatenating the resulting coefficients with a
flipped version of their complex conjugated we obtain a spectrum following the 1/ f 2/3-function. By inverse Fourier
transforming the resulting spectrum we obtain a time series.

AR(2) model
The oscillatory processes in Figure 2 to 5 were simulated using an AR(2)-model. The AR(2)-model is defined as

xt = a1xt−2 + a2xt−1 + ηt (56)

where η(t) is a white noise process with zero mean. To obtain a stationary signal, the roots must lie within the unit
circle. If the AR process has complex conjugated roots it becomes a stochastic noise driven oscillator. The eigenvalues
determine the strength of the oscillations.
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Wilson-Cowan model

In this section we summarize the population model from Figure 4. The Wilson Cowan Model is a stochastic
network model of nonlinear neuron models. It is often used to demonstrate the appearance of oscillations on a network
scale (Powanwe and Longtin, 2019; Wallace et al., 2011; Wilson and Cowan, 1972). Each area shown in Figure 4
is modeled by a Wilson-Cowan model, composed of fully connected Ne excitatory and Ni inhibitory neurons. The
neurons are modeled as two-state Markov processes (one active and one quiescent state). The transition probability
of neuron i to change from the active to the quiescent state equals:

Pi(active→ quiescent, dt) = αidt . (57)

Whereas the transition probability of neuron i to change from the quiescent to the active state is as follows:

Pi(quiescent → active, dt) = βi fi (si(t)) dt . (58)

Here the activation function is defined:

f (s) ≡
1

1 + e−s (59)

The total input current sE to excitatory neurons and sI to inhibitory neurons is given by:

sE(t) =
Wee

Ne
k(t) −

Wei

NI
l(t) + hE (60)

and

sI(t) =
Wie

Ne
k(t) −

Wii

NI
l(t) + hI , (61)

where hI and hE are the external input current to the correspondent neuron types. The number of active excitatory
neurons is referred to as k(t) and the number of active inhibitory neurons as l(t). The synaptic strength from excitatory
neurons to inhibitory neurons is Wie, accordingly Wei is the synaptic strength from inhibitory neurons to excitatory
neurons. The total synaptic weight between excitatory neurons is referred to as Wee, whereas the total synaptic weight
between excitatory neurons is referred to as Wii.

The model determines the rates of transition between states by the variables alpha and beta. However, since
biological networks are stochastic processes, it is necessary to randomize the time of the next event. We achieved
this by running the simulation with a Gillespie algorithm (Gillespie, 1977). In the scenario of “synaptic mixing with
entrainment”, the excitatory neurons from Area-1 formed connections with the excitatory neurons of Area-2. This
changes equation 60 for region 2 as follows:

sE,2(t) =
Wee,2

Ne,2
k2(t) −

Wei,2

NI,2
l2(t) +

Wee,1

Ne,1
k1(t) + hE,2 . (62)

Whereas the neurons within an area are all-to-all connected, the inter-regional connection rate in 6 B to D (right) is
5%. For simplification, each connection is represented in the LFP signal as one synapse. We calculated the LFP signal
by convolving every incoming spike to an area with an alpha function α(t) ≡ g(e−t/τ1 −e−t/τ2 ). The variable t is defined
as the time relative to the spike onset and α(t) = 0 for t < 0. The factor g is defined as g = −1 for inhibitory synapses
and g = 1 for excitatory synapses. Finally, the synaptic potentials of all input connections within an area are summed
up to calculate an overall LFP signal of the corresponding area.

Each simulated area consists of 800 excitatory and 200 inhibitory neurons. The neurons within one area are fully
connected. In Figure 6 A-D, each neuron in Area-2 received inputs from 40 randomly chosen excitatory neurons
within Area-1. All simulations in Figure 6 have the following parameter values, Wee = 25.4, Wii = 1.3, Wei = 24.3,
Wie = 30, hE = −3.8, hI = −3.8. Areas oscillating in the beta-frequency band have parameter values αe = 0.038,
αi = 0.076, βe = 0.379 βi = 0.758. Areas oscillating in the gamma-frequency band have parameter values αe = 0.1,
αi = 0.2, βe = 1 βi = 2.
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Extension to spiking activity
The same model developed for field-field coherence should apply to spiking activity, if spiking relates in a linear

or sigmoidal way to synaptic inputs. Consider that z2(t) represents the average voltage fluctuations in the receiver. If
population spiking activity is a linear function of z2(t), i.e. y2(t) = z2(t), then the same equation for coherence applies.
Because spiking activity is stochastic and sparse for a single neuron, a population of neurons will contain additional
variance that suppresses the coherence, i.e. we can write

y2(t) = s2(t) + ξ2(t) + w
(
s∗1(t) + ε1(t)

)
. (63)

where s2(t) is the intrinsic signal in the receiver. This distortion ξ2, which should decrease with the number of neurons,
will decrease the interareal spike-field coherence by increasing the intrinsic power in the receiver. Next, consider the
case where the population spiking activity is a standard sigmoidal activation function of z2(t), i.e.

y2(t) = σ(z2(t)) , (64)

where σ(x) ≡ 1/(1 + exp(−x)). In analogy to the data processing equality, we expect that the coherence after the
transformation should always be lower than in the linear case, because the signal gets distorted by the sigmoid trans-
formation, and coherence expresses the amount of variance that can be explained by linear prediction. Assuming that
w is relatively small we can make a Taylor-expansion around w = 0 and obtain

y2(t) = σ(s2(t) + ξ2(t)) + w s∗1(t) σ̇(s2(t) + ξ2(t)) ,

where σ̇(x) denotes the first derivative of the sigmoid function at x. Note that

E
{
s∗1(t)s∗1(t + τ) σ̇(s2(t + τ) + ξ2(t + τ))

}
(65)

= E{s∗1(t)s∗1(t + τ)}E{σ̇(s2(t + τ) + ξ2(t + τ))} .

We can thus scale the signal as follows. Define a new transformation function by scaling inside the sigmoid as

v(x) = σ

(
x

E{σ̇(x)}

)
. (66)

Assuming that s1(t) and s2(t) are statistically independent, we can see that the resulting coherence between z1(t) and
y2(t) now equals

C2
Area-1-LFP, Area-2-Spikes ≈

C2
proj,sourcew2

S v
22( f )

S 11( f )
+ w2

. (67)

where S v
22( f ) is the spectral density function of v(s2(t) + ξ2(t)). Here, we can recognize that the equation has the same

form above and is scaled by the weight and the projection-source coherence; for small w this dependence is linear. To
conclude, in case of a sigmoid input-output curve:

1. For small w, the squared spike-field coherence scales with w2 and C2
proj,source, similar to the case of field-field

coherence.
2. Coherence between Area-1 LFP and a population of spikes in Area-2 will be lower compared to field-field

coherence because the spikes will be a noisy approximation of the input signal (for a finite population). Suppose
that y2(t) reflects the superposition of spiking traces from a population of neurons. The number of neurons that
we superimpose in the receiver has two effects: (i) If we assume that each neuron receives the same input,
then adding more neurons increases the coherence between the Area-1 LFP and the Area-2 spikes, because the
population sum becomes a more accurate approximation of the LFP (Zeitler et al., 2006; Vinck et al., 2012) (i.e.
in the equation above, ξ(t) will decrease). (ii) Each neuron the receiver may receive synaptic inputs from only a
few Area-1 projection neurons. That is, the number of projection neurons sending inputs to a single neuron in
the receiver will now be equal to Npk, where k is the fraction of projection neurons that goes to a single neuron
in the receiver. Therefore, C2

proj,source may be very small for a single neuron, and it should increase with number
of neurons we superimpose. Thus, the coherence between the sum of a population of Area-2 neurons and the
Area-1 LFP should depend in a non-linear way on the number of neurons we sum over.
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3. We expect that if the spikes are a non-linear function of the input signal, there will be a frequency-dependent
distortion in interareal coherence; we expect this always to be a reduction, which remains to be proven. The dis-
tortion might be greater at higher frequencies, because the sigmoid transformation of low-frequency fluctuations
can increase energy at high frequencies.
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