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ABSTRACT 
 
Hematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis 
due to their incredible diversity of potential. During aging the heterogeneity of mouse HSCs 
evolves, which contributes to the deterioration of the immune system. Here we address the 
transcriptional plasticity of HSC upon aging at the single-cell resolution. Through the analysis of 
15,000 young and aged transcriptomes, we reveal 15 clusters of HSCs unveiling rare and specific 
HSC abilities that change with age. Pseudotime ordering complemented with regulon analysis 
showed that the consecutive differentiation states of HSC are delayed upon aging. By analysing 
cell cycle at the single cell level we highlight an imbalance of cell cycle regulators of very 
immature aged HSC that may contribute to their accumulation in an undifferentiated state. 
Our results therefore establish a reference map of young and old mouse HSC differentiation and 
reveal a potential mechanism that delay aged HSC differentiation. 
 
 
 
 
 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156893


INTRODUCTION 
 

The hematopoietic stem cell (HSC) is an adult tissue stem cell residing in the bone marrow 
(BM), with multipotent differentiation, regenerative and self-renewal abilities, the proper 
functioning of which is a guarantee of a healthy immune system. HSC properties have been 
extensively studied thanks to the use of specific surface markers and multicolored fluorescence-
assisted cell sorting (FACS) analyses that have made it possible to isolate them and test their 
properties during serial grafts 1, 2. This cell-surface marker-based HSC characterization has shaped 
the classical but largely revisited hematopoietic model, in which the long-term HSC (LTHSC), at 
the top of the hierarchy, undergoes a lineage commitment through a series of discrete intermediate 
progenitor stages in a stepwise manner. This approach has help to categorize short-term self-
renewal HSC (STHSC) and multipotent progenitor populations (MPP2, MPP3 and MPP4) 3; 4; 5; 6.  

It is now evident that HSCs are not a homogeneous cell population and that each HSC does not 
contribute equivalently to all blood lineages: HSC heterogeneity was first suggested with single 
cell transplantation experiments showing that phenotypically identical HSC differs in self-renewal 
abilities and lineage differentiation potential 7; 8; 9; Next, single cell transcriptomic approaches 
combined with lineage tracing suggested an initiation of transcriptional lineage programs in HSCs, 
which bias their differentiation potential 10; 11 supporting an early HSC lineage segregation and a 
continuous differentiation model 12. Thus, it is now admitted that each individual HSC, although 
sharing the same marker combination, differs in terms of functional outputs and molecular 
signature 13; 14; 15.  

This HSC heterogeneity has physiological consequences not only in terms of response to 
injury-induced infection and inflammation, which triggers emergency hematopoiesis and activates 
a subtype of phenotypic HSCs 16; 17, but it also intervenes upon physiological aging. 
Hematopoietic aging is associated with a reduced production of red blood cells and lymphocytes 
concomitant to an increase of myeloid and megakaryocytic cells, that promote immunosenescence 
and myeloid malignancies 18; 19. Evidence indicates that these alterations of the hematopoietic 
system come from an age-related modification of the HSC compartment. Intrinsic changes such as 
accumulation of DNA damage, changes in the activity of epigenetic modulators and imbalance 
between repressive and activating histone marks in HSCs have emerged as contributing factors of 
hematopoiesis aging 20; 21. HSCs that are heterogeneous with respect to their self-renewal and 
differentiation capacities at birth pass through clonal selection over time due to environmental 
cues 22. This results in an increase in myeloid- and megakaryocytic-biased but multipotent HSCs 
within the phenotypic LTHSC compartment 23; 24. Thus, aging is not only reflecting an intrinsic 
uniform change in lineage output of the HSCs but is rather due to a shift in the relative proportion 
of HSCs with different characteristics 25.  

Previous studies on age-related transcriptomic changes of HSCs at the single cell resolution 
have revealed an expansion of platelet-primed HSCs 26 and a gain of a self-renewal expression 
program 27 with aging. However, the resolution of the analyses in particular regarding the 
proportion of the different HSC population and their variation upon aging were limited due to the 
small number of analysed cells and sorting strategies. Here, we took advantage of the 10x 
Genomics approaches and the development of new bioinformatic methods and tools to increase 
the resolution and revisit the transcriptional heterogeneity and change upon aging of the HSC 
compartment. By analysing 15,000 single murine hematopoietic stem and progenitor cells (HSPC) 
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transcriptomes we could detect rare HSC subpopulations that accumulate upon aging. We could 
also highlight transcriptional program changes linked to cell cycle activity during aging that 
participate to the HSC age-related alterations. 

 
RESULTS 
 
Stratification of HSPCs using single-cell transcriptome analysis highlighted 15 different 
clusters 
To characterize HSC populations by single cell RNAseq (scRNA-seq), we purified immature 
hematopoietic cells by FACS from BM pools of young (2-3 months) and old (17-18 months) 
mice. To catch very early events in the HSC differentiation process and isolate HSPCs, including 
LTSHCs, STHSCs, MPP2 and MPP3, we applied the widely used Lin-, Sca1+, cKit+ (LSK) 
marker strategy with the addition of the Flt3 marker to exclude the Flt3+ LSKs also referenced as 
MPP4 (Fig. 1a and Supplementary Fig. 1A). Four pools (2 pools of young and 2 of old) of 
thousands HSPCs were subjected to 10x Genomics Chromium capture platform and a total of 
15000 single HSPC transcriptomes were sequenced (young pools, with 5189 and 2244 cells and 
old pools with 3328 and 4154 cells after quality control; Supplementary table 1). As we made the 
assumption that aging would not dramatically modify HSC identity, we first analysed young and 
old HSPCs together and performed batch and cell cycle correction using the Seurat workflow 28. 
Unsupervised clustering grouped the transcriptomes into 15 distinct clusters, which were 
visualized by Uniform Manifold Approximation and Projection (UMAP) 29 (Fig. 1b). We 
identified cluster markers using differential expressed gene (DEG) analysis (Supplementary 
Table 2) and cluster characteristics were deduced (Fig. 1c) from Gene Ontology term enrichment 
analysis (Supplementary Table 3) and confirmed with gene signatures related to hematopoiesis 
(Supplementary Table 4a). Six clusters were classified as lineage-primed clusters as they were 
clearly enriched for HSPCs with megakaryocyte (pMk), erythroid (pEr), neutrophil (pNeu), 
mastocyte (pMast), B lymphocyte (pB) or T lymphocyte (pT) commitment gene markers (Fig. 
1b-d; Supplementary Tables 2, 3 and 4a). Nine clusters were considered as non-primed due to 
their lack in expression of lineage restricted-genes. They accounted for a large majority of the 
analysed cells (90%) (Fig.1b-d; Supplementary Tables 2 and 4b).   
To further characterize the clusters, we looked at the distribution of the 4 phenotypically distinct 
HSPCs, LTHSCs, STHSCs, MPP2 and MPP3, within these clusters. We first identified these 
four HSPC subtypes in our dataset by transfer learning using previously published scRNA-seq 
data coupled with FACS-labelled HSPCs 12 (Supplementary Fig. 1B) and then analysed their 
proportion per cluster. This showed that globally lineage-primed clusters were enriched with 
MPP2 and MPP3, suggesting their “more differentiated” state in comparison to the remaining 
clusters (Fig. 1e and Supplementary Table 4c). Interestingly, the neutrophil-biased cluster 
(pNeu) was almost exclusively enriched with MPP3 (98%), while pMast and pEr were enriched 
with both MPP2 and MPP3 (Fig. 1e and Supplementary Table 4c). Noticeably, the pMK cluster 
was composed of almost 50% of LTHSCs, supporting previous work suggesting that platelet-
biased stem cells reside at the apex of the HSC hierarchy 30. Analysis of computationally 
assigned cell cycle phases in each of the 15 clusters confirmed that the “div” cluster was 
composed of dividing cells and indicated that globally the lineage-primed clusters contained a 
reduced proportion of cells in G1/G0 in comparison to the other clusters (Fig.1f and 
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Supplementary Table 4d). This goes in line with their enrichment in MPP sub-populations and 
reflects their activated states.  
Among the non-primed clusters, the four named np1, np2, np3 and np4 were overlapping and 
positioned at the centre of the UMAP (Fig. 1b). They could not be distinguished with specific 
gene expression signature (Fig. 1c, d; Supplementary Table 2 and Fig. 2) and were characterized 
by a high percentage of cells indexed as LTHSCs (Fig. 1e and Supplementary Table 4c). By 
contrast, 2 clusters, also composed mainly of LTHSCs, harboured a very distinguishable 
signature for growth factor signalling (tgf) and interferon response (ifn) respectively (Fig. 1b-d 
and Supplementary Table 3), witnessing the existence of cells with signalling features at the top 
of the differentiation hierarchy. The remaining 3 clusters (diff, div and rep) were composed of 
less than 50% of LTHSCs (Fig. 1e and Supplementary Table 4c) suggesting their intermediate 
state in term of differentiation. The cluster named diff had very few distinguishable markers but 
was enriched with Cd34 expressing cells (Fig. 1d and Supplementary Fig. 2). Interestingly, this 
cluster was the most enriched with STHSCs (Fig. 1e and Supplementary Table 4c), which have 
been characterized by the appearance of the Cd34 at their surface 2. The div cluster, 
characterized by enrichment for the Oocyte meiosis KEGG pathway (Fig. 1c and Supplementary 
Table 3) and genes involved in asymmetric division such as Gpsm2 (Fig. 1d and Supplementary 
Fig. 2) was particularly different from the other clusters by its enrichment in G2/M cells (Fig. 1f 
and Supplementary Table 4d). The rep cluster was characterized by replication and reparation 
gene signatures and presented a specific high expression of Lig1 (Fig. 1c, d and Supplementary 
Fig. 2 and Table 3).  
As a whole, these results highlight the interest of gene expression signature to identify 
heterogeneity in the HSC population. They support the presence of differentiation-biased cells in 
the immature hematopoietic compartment and demonstrate that transcriptional programs can 
subdivide HSPCs in different clusters besides their classical differentiation state defined by cell 
surface markers. 
 
Aging affects HSPC clusters differently 
Aged HSCs have been characterized by changes at the transcriptome level that could be the 
result of a shift of HSPC populations with different transcriptomic programs and/or of intrinsic 
gene expression changes 20. Yet, the relationship between these two aged-related changes is still 
poorly described. Here, we used our 15000 single young or aged HSPC transcriptomes to 
analyse age-dependent population in relation to gene expression modifications.  
To assess the aging effect at the level of HSC populations, we first confirmed by FACS analyses 
and by transcriptomic based cell population predictions, the well-described accumulation of 
LTHSCs that occurs at the expense of the STHSCs and the MPP3 upon aging (Supplementary 
Fig. 1C, D). Analysis of young versus old cells in the UMAP plot showed that old cells were 
significantly more distributed in the non-primed clusters while lineage-primed clusters were 
enriched with young HSPCs (Fig. 2a, b). Indeed, the primed T-cell (pT) and the myeloid primed 
pMast, pNeu and pEr clusters were predominantly composed of young cells (Fig. 2b and 
Supplementary Table 4e). An exception was observed for the primed B-cell (pB) cluster; 
although representing very few cells, this cluster was comprised mainly of old ones (Fig. 2b and 
Supplementary Table 4b and e). Interestingly, these old B-biased cells were characterized, in 
addition to the expression of early B-cell markers such as Ly6d and Cd79a (Fig. 1d, 2c and 
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Supplementary Tables 2), by Trp53inp1 expression, for which we recently showed its 
involvement in the blockage of early B-cell developmental step 31. Thus, this cluster may 
represent an aged B-cell population that cannot complete its maturation. In addition to the pB 
cluster, four non-primed clusters, the np1, np2, ifn and tgf clusters were significantly enriched 
with old cells (Fig. 2b and Supplementary Table 4e), suggesting that aging favoured the 
amplification of specific featured LTHSCs. This result highlights an amplification of LTHSCs 
deregulated in their response to different stimuli such as inf and tgf signalling and, therefore, 
supports the previous observation of an increase of HSPCs with self-renewal and quiescence 
potential in older BM 25. Noticeably, amplification or reduction of a given cluster was not 
observed in the same way in our two batches of experiments. Indeed, we observed that the age 
induced decrease of pT cluster and increase of tgf cluster were mainly driven by one batch, 
specific for each of them (Supplementary Table 4e) witnessing a heterogeneity of aging inter 
mouse groups.  
From these results, we conclude that, globally, aged haematopoiesis is stemming from HSPCs 
that are not lineage primed and that HSPCs/individuals are not affected equally by aging. These 
observations are of particular interest for the myeloid bias of aging haematopoiesis, which, 
according to our analyses, would not come from the amplification of cells with myeloid lineage 
priming (eg: pNeu or pMast) but could come from the amplification of non-primed HSCs. 
 
Gene expression is more altered upon aging in non-primed clusters, with a loss of 
differentiation and a gain of hemostasis signatures 
To reveal age-dependent changes in gene expression, we first compared the transcriptomes of 
young and old HSPCs. Differentially expressed gene (DEG) analysis highlighted a global HSC 
aging signature that was characterized by an up regulation of the stress gene Nupr1, the platelet-
lineage markers Vwf and Clu, and markers of undifferentiated HSPCs such as Procr and Slamf1, 
as well as by a down regulation of genes that mark HSC differentiation, such as Cd34 and Cd48 
(Supplementary Fig. 3 and Supplementary Table 5). These results are in line with the altered 
differentiation potential and platelet bias of old HSPCs 26.  
In order to assess the heterogeneity of transcriptome changes upon aging according to HSC 
clusters, we analysed changes in gene expression of each cluster separately (Supplementary 
Table 6). Heatmap of the most differentially expressed genes (DEGs) (log fold change > 0.5) 
upon aging analysed per clusters showed that the non-primed clusters exhibited more differences 
in their transcriptome than the primed ones and that these differences were towards an increase 
of gene expression rather than a decrease, suggesting an increased cell-to-cell transcriptional 
variability upon aging (Fig. 3a and Supplementary Fig. 4). For these non-primed clusters, except 
for the tgf cluster, the differential gene expression analysis per cluster followed the aging 
signature that was observed when analysing the totality of the cells (R2 > 0.8 Supplementary Fig. 
5). Enrichment analysis of DEGs upon aging revealed a negative regulation of hematopoietic or 
lymphoid organ development (HLOD) marked by the down regulation of Cd34, Plac8 and 
Foxo3 (Supplementary Table 7A), together with a positive regulation of hemostasis with Clu and 
Selp increased expression, Cell Adhesions Molecule (CAM) genes such as Alcam, Jam2, Major 
Histocompatibility Complex (MHC) H-2 genes and genes involved in transcriptional mis-
regulation in cancer (TMC) (Supplementary Table 7B). TMC enrichment, in addition to TFs 
such as Fli1 and Pbx1, relies on cell cycle kinase inhibitors Cdkn1a and Cdkn2c and the stress 
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response gene Nupr1 suggesting a deregulation of the cell cycle phases upon aging. Globally, we 
found that aging feature-score differences were more pronounced in the non-primed clusters than 
in the lineage-primed ones (Fig. 3b Supplementary Table 7C).  However, this analysis per cluster 
highlighted that among the lineage-primed clusters the pT and pMK clusters were still 
transcriptionally affected by aging, with an increase in HEM, TMC and CAM signatures (Fig. 3b 
and supplementary Table 7C). Looking at some genes individually, we were able to highlight 
some age-related changes affecting peculiar clusters. We observed a downregulation of the T-
cell gene Tcrg-C4 in the old pT cluster and an upregulation of the protease mast cell gene Mcpt8 
and myeloid integrin gene Fcer1a in old pMast and pNeu cluster respectively (Fig. 3c 
supplementary table 6). We observed an upregulation of Alcam required for HSC maintenance in 
np2 clusters (Fig. 3c and supplementary Table 6). Finally, we also observed a very specific 
transcriptome in old tgf cluster characterized by an increase of genes involved in HSC 
quiescence such as Cdkn1a, Nr4a1 (Fig. 3c), which were clustered together in the heatmap of 
DEGs upon aging (Fig. 3a).  
Altogether, our results pointed peculiar age-related changes mostly affecting the transcriptome of 
HSPCs from non-primed clusters and characterized by a loss of differentiation genes that could 
account for the functional changes of the aged hematopoietic compartment. 
 
Differentiation trajectory shows a HSPC progression toward T, Mast/Neu and Mk/Er fates 
that is altered with age 
It has been recently suggested that HSCs undergo a continuous differentiation process rather than 
a stepwise process 13. In order to better capture and understand the progression of this 
differentiation process during aging, we constructed pseudotime trajectories by ordering HSPCs 
based on the similarities between their expression profiles with Monocle 32. We first generated the 
trajectories of young and old HSPCs separately. The two resulting trajectories showed a very 
similar shape, with the exception of a group of cells standing apart from the old trajectory, and 
made exclusively of pB cells (Supplementary Fig. 6A). Because these cells were detected only in 
old HSPCs and were clearly distant from the rest of the cells in the UMAP (Fig 1b), we excluded 
them for cell pooling and ordering for both ages. Thus, we analysed the differentiation trajectory 
inferred from young and old cells pooled together, without pB cells. The resulting trajectory was 
partitioned into 5 segments, called Monocle states labelled states 1, 2, 3, 4 and 5 (Fig. 4a). The 
departure of the trajectory was identified at the extremity of the state 1, as this state possessed the 
highest percentage of LTHSCs (Fig. 4b, c). States 2, 4 and 5 were enriched with MPPs suggesting 
their progression towards differentiated states (Fig. 4b, c). The 5 states of the trajectory were 
characterized with gene expression based on previously published signatures related to HSPCs and 
hematopoiesis (referenced in Supplementary Table 8A) and on our state marker analysis 
(Supplementary Table 8B). This characterisation revealed that HSPCs in state 1 expressed a HSC 
signature at a higher level than in the other states with especially cells expressing the dormant 
HSC marker (Procr); state 2 cells (after the first bifurcation) were characterized with Naive T-cell 
signature and were expressing Gata3, suggesting a primed-T differentiation state (Fig. 4d); state 4 
cells were characterized by a myeloid signature 33 and high expression of Hdc, previously reported 
as a marker of myeloid biased HSPCs 34, while cells in state 5 presented an erythrocyte signature 
33 and expressed Pf4 a megakaryocytic marker (Fig. 4d). To better characterize state 2 and because 
this state shared 72% of its markers with state 4 (Supplementary Table 8B), we looked at DEGs 
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between the two states, which highlighted an up regulation of genes involved in T cell 
differentiation such as Ctla2a, Zfp36l2 and Gata3 in state 2 (Supplementary Table 8C), 
confirming the primed-T identity of state 2 cells. 
Analysis of Seurat cluster position and spreading on the trajectory (Fig. 4e; Supplementary Fig. 7) 
strengthened the pseudotime differentiation relevance with lineage-primed clusters located at the 
two extremities of the trajectory and suggested a differentiation specificity of the states (Fig. 4e). 
Study of the five state proportions across the clusters, revealed a first bifurcation separating pT 
cells (state 2), from cells primed for myeloid lineages (state 3), and then a clear branching between 
Neu/Mast-primed (NeuMast) HSPCs (state 4) and Mk/Er-primed (MkEr) HSPCs (state 5) (Fig. 
4f). The specificity of state 5 for megakaryocyte differentiation was supported by the high 
representation of the rep cluster (Fig. 4f), characterized by a reparation gene signature 
(Supplementary Table 3), which was previously associated with megakaryocyte fate 35. Separate 
pseudotime ordering of young and old HSPCs provided very similar segregation between the 
lineage-primed HSPCs, with one bifurcation from LTHSC (state 6) towards Neu/Mast-primed 
(NeuMast) HSPCs (state 7) and Mk/Er-primed (MkEr) HSPCs (state 8) (Supplementary Fig. 6A-
E). However, the bifurcation towards the T lymphocyte fate was not retrieved probably because of 
the reduction of the pT cell number due to the sample splitting (Supplementary Fig. 6A). Hence, to 
synthetize our analyses, we proposed a tree-representation of the HSC differentiation trajectory 
(Fig. 4g) where nodes stand for pseudotime points, and edges for Monocles states. It contains 6 
nodes: a root, the starting point (s); two internal nodes, the first bifurcation point (p) and primed 
Myeloid bifurcation point (pMye); and three leave nodes, the three fates T-lymphocyte (T), 
Neutrophils/Mastocytes (NeuMast) and Megakaryocyte/Erythroid (MkEr).  
Next, we compared the differentiation progression of young and old HSPCs. Old HSPCs appear to 
be significantly delayed in the pseudotime (fig. 4h) while Seurat cluster spreading along the 
trajectory showed no clear differences of any cluster pseudotime position according to age (no 
median difference higher than 0.8 unit of pseudotime; Supplementary Fig. 8A). Looking at the 
proportion of the different Monocle states of the trajectory according to age revealed an increase in 
old HSPCs in states 1 and 3 in comparison to young ones (Fig. 4i). The old HSPCs accumulating 
in state 1 and 3 belong to the non-primed clusters np3, tgf, ifn, np4, diff and div (Supplementary 
8B), confirming the accumulation of old HSPCs in non-primed clusters, localized earlier in the 
pseudotime than the lineage-primed ones (Supplementary Fig. 7). When focusing on cells 
belonging to states 2, 4 and 5, which reflect the 3 lineage-primed HSPC states, we observed that 
the proportion of state 5 (MkEr fate) was larger in old than young condition (Fig. 4j), although age 
was not affecting the percentage of the Monocle states from lineage-primed cluster cells 
(Supplementary Fig. 8B).  This suggests that while less aged HSCs were detected in the three 
differentiation paths, cells with MkEr fate are more maintained upon aging than the ones toward 
NeuMast and T fates.  
In conclusion, our trajectory analysis revealed a priming of HSPCs for T lineage that occurs early 
in the differentiation process and evidenced a clear split between the NeuMast and the MkEr HSC 
fate identifying an early lineage specification of HSCs (Fig. 4g). While the global shape of the 
trajectory and the lineage specification of the HSPCs are conserved upon aging, repartition of the 
old HSPCs along the differentiation trajectory is altered with a decrease in terminal states 2 and 4 
conducing respectively to T and NeuMast fates, in favour to cells of the initial states 1 and 3. 
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HSPC differentiation trajectory is associated with transcriptional programs that are 
altered upon aging 
Cell fate decision and proper function of HSCs rely on tightly controlled transcriptional 
programs orchestrated by transcription factor (TF) activity 36. Since level of the expression of 
TFs is not sufficient to assess their activity, we measured changes in TF activity during 
differentiation and aging of HSPCs. For that, we took advantage of Single-Cell Regulatory 
Network Inference and Clustering (SCENIC) approach 37 that calculates the activity of a given 
TF (regulon score) based on target expression and cis-regulatory elements. We considered 154 
TFs, selected from the literature or from our single cell expression data analysis (Seurat cluster 
markers), out of which, 58 were identified as active regulons in our HSPCs (Supplementary 
Table 9A). By looking at regulon activities of young HSPCs along the trajectory, we revealed a 
specific regulon signature for each state (Supplementary Table 9B).  State 1 was characterized 
with activity of the stress sensors Atf3, the interferon signalling factors, Irf1, Irf7, Irf9 and the 
downstream targets of the Tgfbeta signalling, Stat1, Klf4, Egr1, Klf6, Junb, depicting a stemness 
state (regulon clusters C1a and C1b Fig. 5a and C1a Fig. 5b, young panel). Comparison of TF 
activities between state 2 and state 3 at the first bifurcation (p) emphasized the T fate of state 2 
with the detection of high activity of the T-cell transcription factors Ikzf1, Sox4 (regulon cluster 
C2 Fig. 5a, young panel) while state 3 cells enter a more general differentiation program with a 
slight increase of regulon activities such as Myc (regulon cluster C3 Fig. 5a, young panel). As 
expected, aging reduced the activity of the two regulons in state 2 witnessing the reduced T-cell 
activity during aging. By contrast, Klf6, Junb, Jun and Stat1 activities of old HSCs were spread 
and increased in old states 1 and 3, (Fig. 5a, b Supplementary Table 9C), which was consistent 
with the stem cell activity of old states 1 and 3 containing mainly LTHSC (fig 4b). 
By looking at the second bifurcation (pMye) between state 4 and state 5, we confirmed that state 
4 was neutrophil- and mast- biased as it was indorsed with a high activity of C/ebpa-e, Runx1 
and Irf8, involved in myeloid differentiation (regulon cluster C4 Fig. 5b, young panel). 
Noticeably, aging decreased the activity of regulons involved in myeloid fate such as Cebpa and 
-e in state 4 (Fig. 5b and Supplementary Table 9C). This result was consistent with the decrease 
of Neutrophils and Mastocyte primed-cell number with aging (observed in fig 2B) and 
strengthened our hypothesis that myeloid bias of aged haematopoiesis, would not come from this 
path of the trajectory. Cluster C5 of the heatmap shows that State 5 was characterized with a 
strong activity of Klf1, E2f8, Ybx1, Gfi1b and Ezh2, all of which are implicated in the 
erythroid/megakaryocyte development (regulon cluster C5 Fig. 5b, young panel). Interestingly, 
the activity of E2f8 was significantly reduced with aging in state 5 whereas Gfi1b activity was 
considerably increased in this old state. It should be noted that Gfi1b is the regulon that 
experienced the greatest increase in activity with aging, not only in state 5, but also in all states 
where the greatest increase observed was in state 1. As Gfi1b is master regulator of 
thrombopoiesis (reviewed in 38) and as we found some of its targets such as Clu, Esam and 
Serpinb1a, annotated for hemostasis (Supplementary Table 9A) upregulated with aging 
(Supplementary table 7B), we suggested that Gfi1b sustains the platelet bias of old HSPCs. 
Thus, TF activity analyses over the pseudotime corroborated the trajectory features and clearly 
identified a separation in TF activity that explains the T-lineage priming (Fig. 5a) and the two 
distinct myeloid fates, NeuMast and MkEr (Fig. 5b). It also indicated that aging is associated 
with marked changes in TF expression and activity with a gain of TFs involved in stemness and 
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platelet activity and a loss of lineage-specific factors that drive lineage commitment and terminal 
differentiation. 
 
Cell cycle analysis along pseudotime highlights a delay in differentiation associated with 
cell cycle arrest in aged condition  
As one of the hallmarks of HSC aging is a reduction of cycling HSCs 39 we analysed the cell 
cycle phases according to BM age. We showed an increase of non-cycling HSPCs (G1/G0) at 
the expense of the S and G2/M phases in old BM in comparison to young one (Fig. 6a). Analysis 
of LTHSC, STHSC, MPP2 and MPP3 population separately showed that age did not typically 
affect the proportion of cycle phases within each subtype, with the exception of a slight but 
significant change in LTHSCs and MPP2 (Fig. 6b). This suggests that the increase of the G1/G0 
phase proportion observed upon aging is mainly due to the accumulation of quiescent LTHSCs 
that are known to be arrested in G1/G0 phase 40, and to a lesser extend to LTHSC and MPP2 
intrinsic cell cycle changes induced by aging. 
Previous studies have pointed a clear link between HSC cell cycle and commitment 41. 
Positioning quiescent versus proliferative cells along the trajectories showed that quiescent cells 
were at the departure of the trajectory while proliferating cells were towards the differentiated 
states (Fig. 6c, left panel). Comparison of the quiescence and proliferation signatures between 
young and old HSPCs showed a quiescence gain in the old condition in the first part of the 
trajectory (states 1, 2 and 3) while the proliferation signature remained unchanged (Fig. 6c, right 
panel and supplementary Table 10A). 
Next, we addressed the question of the cell cycle and its influence on HSPC aging. We first 
analysed the distribution of young and old HSPCs along the trajectory, analysing T, NeuMast 
and MkEr fates separately (Fig. 6d). Doing so, we confirmed the accumulation of old HSPCs in 
state 1 before the first bifurcation point p and the decrease of old cells in the differentiated states 
2, 4 and 5 (Fig. 6d). To associate cell-cycle status and cell accumulation, we performed a high-
resolution analysis of cell cycle progression along the trajectory by plotting the ratio of dividing 
cells on pseudotime bins for young and old cells in T, NeuMast and MkEr fates separately (Fig. 
6e). This highlighted a dramatic loss of dividing cells in old condition in state 1 with the 
exception of cells located at the very beginning of the trajectory (Fig. 6e). We hypothesised that 
these dividing cells (that are LTHSCs and belong to np3 cluster) represent cell-cycle activity of 
self-renewing LTHSCs. Interestingly, we found no difference in cell cycle phase proportion 
between these young and old LTHSCs (p-value > 0.3 Pearson's Chi-squared test Supplementary 
Fig. 10), suggesting a conservation of self-renewal potential in old HSCs. By opposition, the 
absence of cell cycle activity of old HSPCs later in state 1, which may represent cell cycle 
activity linked to differentiation, underlines a default in cell division of old HSPCs associated to 
differentiation (Fig. 6e). Division rate of old HSPCs became positive after the first bifurcation 
and was similar to what we observed in young HSPCs (Fig. 6e), with the exception of a decrease 
in old cycling cells in state 4 (toward NeuMast fate) suggesting a default of cell cycle in old 
Neu-primed HSPCs. Visualization of the distribution of the different HSPC subsets confirmed 
the accumulation of old LTHSCs at the expense of the STHSCs and revealed a dramatic loss of 
NeuMast-primed cells upon aging (Fig. 6f).  
We took advantage of our analysis of DEGs with aging per monocle state (supplementary table 
10B) to identify DEGs involved in proliferation and cell cycle as well as in differentiation and 
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analysed their expression profile in young and old cells along the trajectory. For the two 
proliferation-division genes, Ccnb1 and Mki67, we observed a pronounced increase of 
expression in the young HSPCs that was occurring in state 1 concomitant to the increase of the 
marker of differentiation Cd48 (Fig. 6g). In the old cells, increase in the expression of these 
three genes was also detected but was delayed until the branching point pMye suggesting a delay 
in the commitment of old HSPCs. To grasp molecular mechanism(s) that could be involved in 
this delay, we compared cell cycle inhibitor expression across young and old HSPC trajectory. 
Cdkn1a and Cdkn2c were upregulated along the old trajectory (except in state 4 for Cdkn2c) 
especially in the first part of the trajectory (state 1, 2 and 3) in comparison to young one. By 
contrast, Cdkn1b was downregulated in state 1 and 2 of the old trajectory (Fig. 6g and 
Supplementary table 10B). The change in expression with aging of the three cell cycle inhibitors 
known to control the fate of HSCs indicates deregulation of cell cycle progression in aged HSCs. 
It is interesting to note that Cdkn1a was found to be a target of Stat1, Jun and Junb which are 
themselves targets of the Klf6 regulon (Supplementary Table 9A), four regulons whose activities 
increased with aging in the same range of pseudotime as changes in the level of Cdkn1a 
expression (Fig. 6g and 5b). 
Together, these results suggest that aged HSCs have a default in cell cycle, concomitant to a 
delay in their differentiation program, which occurs before the lineage priming of the HSPCs. 
 
 
DISCUSSION 

HSCs represent a heterogeneous cell population in terms of their ability to self-renew and 
differentiate. In this study we questioned the effect of aging on HSC populations and properties. 
As scRNAseq now provides a powerful method for defining cell subtypes as well as a detailed 
description of the functional properties specific to these subtypes, we profiled 15,000 mouse 
HSPCs from young and old mouse BM by scRNAseq. This high resolution profiling of young and 
old HSPCs was the base to generate a reference map of mouse HSPCs and understand how this 
map is affected during aging. 

At first, the large number of cells analysed provided us new insights of HSPC heterogeneity, 
through the identification of 15 distinct HSPC clusters that we divided in two categories, the non-
primed clusters by opposition to the lineage-primed clusters composed of low-abundant HSPCs 
with restricted lineage potential that was previously described 12. Indeed, our analyses identified 
distinct lineage-primed HSPCs; HSPCs not only with Mk–restricted signature, which were widely 
reported within the HSPC compartment 9; 30; 12 but also HSPCs with mastocytes, neutrophils, 
erythrocytes, lymphoid B and lymphoid T-restricted lineage signatures. The wide range of lineage 
potentials of HSPCs detected in this study favours an early HSPC uni-lineage segregation 42; 43; 12  
and argues against the previous notion of a unique HSC with multi-lineage potential 44. By using 
pseudotemporal reconstruction of differentiation trajectories, we further investigated the early pre-
determined HSPC potential by highlighting bifurcations in the trajectory that reflect clear 
separations in the fate of specific lineage-primed HSPCs. Our clustering analysis in addition to 
transcriptional activities detected along the trajectories clearly characterised two bifurcation 
points, revealing three distinct HSPC fates towards T lymphocyte, Neu/Mast or Mk/Er lineages. In 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156893


addition, our analysis showed that lineage priming of HSPCs is not delineate by a specific HSPC 
subset such as LTHSC, STHSC, MPP2 and MPP3 in any instance. Although we showed that Neu 
priming is clearly stemming from MPP3 and Er priming from MPP2, lineage priming could also 
arise from a combination of HSPC subsets. For example, the megakaryocyte potential was 
stemming from LTHSC and MPP2 subsets, in line with previous studies 12; 26. In addition, we 
detected a T potential in the four subsets of HSPCs and a B potential in MPP2 and MPP3, 
suggesting a lymphoid-priming occurring earlier in the BM and not restricted to the more engaged 
Flt3 positive MPP4 as previously reported 45. The fact that we detected lineage primed cells in the 
very early subset of HSPCs goes in line with a previous study showing the existence of four 
distinct and closely related stages of self-renewing LTHSCs in adult BM that stably adopt lineage-
restricted fates (platelet, B and T lymphoid, erythroid and myeloid lineages) despite remaining 
multipotent 46. 

If the accumulation of very immature HSCs in the BM of aged individuals is now an accepted 
criterion of hematopoietic aging, we still do not fully understand what are the characteristics of 
these aged HSCs and what causes them to accumulate. In terms of characteristics, it has been 
reported that accumulating old HSCs are LTHSCs with platelet-restricted lineage output26. 
However, this feature was challenged by a study showing that aging was characterized by the 
existence of latent-HSCs, a subpopulation of aged HSCs that displayed a five blood-lineage 
(Platelets, Erythrocytes, neutrophils-monocytes, T-, and B-lymphocytes) HSC phenotype 
following transplantation into secondary recipients 24. By looking at the transcriptomic changes at 
the single cell scale, we confirmed the global increase of the LTHSC fraction within the HSPCs. 
However, by analysing our old HSPCs by clusters or individually we could demonstrate that 
HSPCs are not affected uniformly by aging and grasp some interesting aging feature. At first, we 
showed that the proportion of old HSPCs in pMast, pNeu pEr and pT primed clusters was 
decreased while increased in ifn, tgf, np1 and np2 clusters. In addition young and old cells were 
found in the expected ratio in the pMk cluster. This clearly indicates that the platelet and myeloid 
bias observed upon aging is not due to an amplification of the pool of lineage restricted cells but 
stem from other subsets of HSPCs. Secondly, we highlighted some specific amplification of 
LTHSCs such as LTHSCs with miss-regulated interferon signalling (ifn cluster). As the increase 
in interferon response with aging in a number of different tissues has been observed 47 and is 
consistent with the concept of inflammaging 48, this amplification could afford for the myeloid 
bias observed in aging. Another interesting HSC group that we detected amplified during aging 
was the cluster of LTHSCs harbouring a Tgf signature that may correspond to the accumulation of 
the HSC subtypes with differential responses to TGF that was previously identified 49. These two 
types of old HSCs need to be further analysed but considering their characteristics it is tempting to 
hypothesize that their proportion was increased under stress selection pressures to compensate for 
the loss of mature cell production that occurs upon aging. They might witness the emergence of 
competitive clones that amplify during aging and fit quite well with the clonal haematopoiesis 
model. In another perspective, the apparition of the pB-primed cluster that we observed quasi 
exclusively in the old BM might also represent clonal evolution. Since this cluster was 
characterized with the expression of Trp53inp1, a gene limiting lymphoid differentiation upon 
aging, it could correspond to an accumulation of old HSPCs altered in their lymphoid 
differentiation 31 but resulting for a pressure of immune deficiency.  
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Pseudotime trajectory analysis led us to address the question concerning the differentiation state 
of old LTHSCs, which were thought to accumulate in a more undifferentiated state compared to 
young LTHSCs 27. First, the outcome of our analyses is in favour of no difference in term of 
differentiation state between young and old LTHSCs as when plotted together along the 
trajectory the most immature old cells were not positioned at an anterior pseudotime compared to 
the young ones. Second, our results support that old LTHSCs are delayed in their differentiation 
journey in comparison to young ones and that this delay occurs pretty early in the pseudotime, 
before the first bifurcation point that splits T fate from myeloid fate. This was clearly 
emphasised by our regulon activity analysis of transcription factors such as Myc, Trp53 or Spi1 
that were previously described involved in multipotency and commitment of HSCs 50 and for 
which we could observe a delay in their activity along the differentiation trajectory.  
Thus, the old HSCs are not more undifferentiated that the young ones but seem to have intrinsic 
defaults that would delay their commitment. This finding is interesting when putting in 
perspective what causes the accumulation of LTHSCs. Increase of LTHSCs with aging could 
originate from an increase in the self-renewal rate of HSCs or/and from a blockade or at least a 
slowdown of the LTHSC along their differentiation journey. It was also hypothesised that label-
retaining HSCs (LR-HSCs), which divide minimally over time accumulate in old BM after 
completing four traceable symmetric self-renewal divisions to expand its size before entering a 
state of dormancy 51. Although, we could not directly address the question of self-renewal, we 
can argue based on our regulon and cell cycle analyses that old LTHSCs have kept their capacity 
to self-renew and did not reach a state of complete dormancy but reduced their proliferation 
linked to differentiation. Interestingly, we could associate this reduced and age-related 
proliferation/differentiation potential to a high level of Klf6 and Mycn activity, known to 
contribute to the stemness and self-renewal of different stem cells 52 and a high level of Gfi1b 
activity known to promote self-renewal of HSC 53.  
One interesting outcome of our analysis is the link between the delay in differentiation and cell 
cycle activity changes of old HSPCs. First, we deduced from our computational cell cycle 
classification that lineage-primed HSPCs were less in G1/G0 than the LTHSC non-primed. This 
observation is fully consistent with current knowledge that the most undifferentiated HSCs 
reside in the G0 phase and cycle infrequently and that cell cycle overall becomes more frequent 
as HSCs are gradually committed 40; 54. Second, we detected an increase in HSPCs in G1/G0 
phases in aged BM and old LTHSCs with increased in G1/G0 phases in comparison to young 
LTHSCs, reflecting the decrease in cell cycle activity of old HSCs when considered as a whole 
55. Finally, when calculating a division rate per cells and studying division gene expression along 
the trajectory we could detect a loss of old dividing HSPCs located before the first bifurcation of 
the differentiation trajectory. These cells partially overlap in our trajectory with the div cluster, 
marked by genes related to asymmetric division such as gpsm2, Ragcap and Ccnb1 56; 57, 
suggesting that the delay in differentiation could be linked to an altered capacity of old HSPCs to 
divide asymmetrically. In addition, gene expression of cell cycle inhibitors clearly show that 
HSPCs at the beginning of the trajectory have increased expression in Cdkn1a and Cdkn2c, 
promoters of quiescence but a reduction in Cdkn1b activation, which promotes commitment 58. 
Interestingly, our analysis pointed out Cdkn1a as a direct target of Junb, and indirectly of Klf6. 
As the activation of Cdkn1a by Junb has been previously described to limit hematopoietic stem 
cell proliferation 59 and as Klf6 is a key factor in the Tgfbeta signalling pathway 60 ; 61, our work 
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unveils an interesting pathway controlled by the cytokine Tgfbeta involving Klf6 as a key 
regulon and Cdkn1a as a cell cycle regulator that are enhanced upon aging and limit HSC 
differentiation.   

In conclusion, our single-cell transcriptome-based identification of cell identity and its 
modifications associated with aging provides new information on cellular heterogeneity and 
intrinsic changes that will be useful for future investigation of the role of other regulators on the 
aged HSC phenotype. 
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MATERIALS AND METHODS  
 
Mouse model and cell sorting. C57BL/6-CD45.2 mice were purchased from Charles River 
Laboratories and were aged at the CRCM animal facility under specific pathogen-free conditions 
and according to the current European regulation. Only males were analysed, at young (2-3 
months) and old (17-18 months) ages. HSPCs were collected from the BM of 5 young and 5 old 
mice over 2 independent batches with cells from 2 pooled young (Young_A sample) and 3 
pooled old (Old_A sample) mice for one batch, and cells from 3 pooled young (Young_B 
sample) and 2 pooled old (Old_B sample) mice for the other one (Supplementary Table 1). For 
each sample, the BM was lineage depleted by using the Lineage Cell Depletion Kit (Miltenyi 
Biotec) and labelled with the following antibody cocktail: anti CD45.2, anti Sca-1, anti-cKit, anti 
CD150, anti Cd48, anti Cd34, and anti Flt3 antibodies (Supplementary Table 11) to purify Lin-
Sca1+cKit+ Flt3- cells (HSPCs) by multi-parameter fluorescence-activated cell sorting (FACS) 
on a FACSAriaII (SpecialOrderResearch Products; BDBiosciences). Flow cytometry analyses 
were performed using a BD-LSRII cytometer and analysed using BD-DIVA Version 6.1.2 
software (Special Order Research Products; BD Biosciences). 
 
Single cell RNA-seq and data processing. We used the 10x genomics platform from two 
facilities: HalioDX for samples Young_A and Old_A (Marseille, France) and TGML for samples 
Young_B and Old_B (Marseille, France). In both facilities, FACS purified HSPCs were loaded 
30 min after the sorting onto a Chromium Single Cell Chip and processed with the Chromium 
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Controller (10x Genomics) according to the manufacturer’s instructions for single cell barcoding 
at a target capture rate of 4000 individual cells per sample. Libraries were prepared using 
Chromium Single-Cell 3′ Reagent Kits v2 (10x Genomics) and were sequenced using an 
Illumina NextSeq500 sequencer to an average depth of about 45,000 reads per cell for Young_A 
and Old_B samples and about 130,000 reads per cell for Old_A and Young_B samples. Cell 
ranger software v2.2 was used to align reads to the (GRCm38) mm10 mouse reference genome. 
Cell counts and transcript detection rates are summarized in Supplementary Table 1. 
 
Quality control and data normalization. Cells outside 2 medians absolute deviation (MADs) 
from the median UMI log-counts were filtered out for each sample to discard poor quality cells 
and doublets. In total, 7433 young and 7482 old cells were kept. For each dataset (our four 
samples and the Rodriguez-Fraticelli dataset), genes with no UMI count in more than 0.5 percent 
of the cells were discarded. All gathering, 17513 genes were kept. Then, UMI counts were 
normalized with the NormalizeData Seurat function. For each cell, we considered the log 
transformation of the ratio of UMI counts per gene by the total UMI counts of the cell, multiply 
by a scaling factor of 10,000 (log(10,000(UMIgene/UMIcell)+1)). 
 
Cell cycle phase classification. Prediction of cell cycle phase for each cell was made with the 
cyclone 62, which relies on a pre-defined classifier for cell division constructed from a training 
dataset of synchronized mouse embryonic stem cells 63. For each cell a score based on raw count 
data before gene filtering was computed for each phase (G2/M, S and G1/G0) and used to assign 
a phase to the cell. 
 
HSPC subtype assignment.  In order to assign known FACS cell identity in our HSPC pool, we 
used CaSTLe, a transfer learning method consisting in labeling cells in a scRNA-seq experiment, 
using knowledge learnt from other experiments on similar subtypes 64. We chose as source 
dataset a published scRNA-seq dataset obtained from FACS isolated HSPCs 12. Cells from this 
data set (approximately 2000 /per type) were divided into 4 subsets: the LTHSC (Lin- Sca1+ Kit+ 
Flt3- Cd150+ Cd48-), the STHSC (Lin- Sca1+ Kit+ Flt3- Cd150- Cd48-), the MPP2s (Lin- Sca1+ 
Kit+ Flt3- Cd150+ Cd48+), and the MPP3 (Lin- Sca1+ Kit+ Flt3- Cd150- Cd48+). 
 
Integration of the datasets. To minimize batch effect between datasets, we integrated our 4 
sample datasets (Young_A, Young_B, Old_A, Old_B) following the procedure of Seurat 3 28. 
Integration was done also for young and old conditions separately. Briefly, the highly variable 
genes for each dataset were selected with the FindVariableFeatures function (selection.method 
=”vst”) and ranked according to the number of datasets in which they were independently 
identified as highly variable. The top highly variable 2000 genes were thus integrated by 
iteratively merging pairs of datasets according to a given distance. Integration anchors, 
representing two cells that are predicted to originate from a common biological state in both 
datasets using a Canonical Correlation Analysis (CCA), was done using the 
FindIntegrationAnchors function (dims=1:15). Then, the expression of the target dataset was 
corrected using the difference in expression between the two expression vectors for each pair of 
anchor cells. This step was realized using IntegrateData function (dims= 1:15). This process 
resulted in an expression matrix that contains the batch-effect-corrected expression for the 2000 
selected genes of the cells from the 4 samples. 
 
Data scaling and cell cycle regression. Standardised (i.e. centered and reduced) expression 
values with cell to cell variations due to cell cycle effect regressed were obtained with the 
ScaleData function of Seurat using the G2/M, S and G1/G0 scores previously computed for each 
cell by cyclone for the var.to.regress argument (cf Cell cycle phase classification). 
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Dimension reduction and clustering. A PCA was performed on the scaled data using RunPCA 
Seurat function (npc = 40). The 15 first principal components of the PCA were kept for nonlinear 
dimension reduction and cell clustering. Uniform Manifold Approximation and Projection 
(UMAP), 29, a nonlinear dimension reduction method, was run using RunUMAP Seurat function 
package in order to embed cells in a 2-dimensional space. A K-nearest neighbour graph (KNN) 
based on the euclidean distance in PCA space was constructed (k = 20) to cluster the cells with 
the Louvain algorithm (resolution=0.5) using the FindNeighbors and FindClusters Seurat 
functions respectively.  
 
Pseudotime ordering. Unsupervised ordering of the HSPCs was done with the Seurat 3 
integrated results as input to build a tree like differentiation trajectory using the DDRTree 
algorithm of the R package Monocle v2 32. Integrated cells from: (i) all samples (young and old) 
excluding the primed pB cluster cells, (ii) young cells only or (iii) old cells only were processed 
with Monocle. For the three pseudotime ordering analyses (all cells, young only and old only), 
the 2000 gene expression matrix, scaled and regressed for cell cycle effect (see Data scaling and 
cell cycle regression) issued from the Seurat 3 integrated samples was loaded into Monocle 
using the newCellDataSet function (lowerDetectionLimit = 0.1, expressionFamily = 
uninormal()). The 2000 genes were set as ordering genes and trajectory building was made by 
calling the reduceDimension Monocle function (max_components = 2, reduction_method = 
'DDRTree', norm_method = "none", pseudo_expr = 0). For each of the three trajectories the root 
state was identified by selecting the Monocle state with the highest proportion of LTHSC 
predicted subtype (Fig. 4b; Supplementary Fig. 6B) in order to compute pseudotime values for 
the cells using the orderCells Monocle function. Expression of some genes as a function of 
pseudotime (Fig. 6g) was plotted with the plot_gene_expression Monocle function (using the 
Monocle normalization method with the estimateSizeFactor Monocle function).  
 
Differential gene expression analysis. Specific markers for each cluster (Supplementary Table 
2) and for each Monocle state (Supplementary Table 8B) were identified using FindAllMarkers 
Seurat function, with default parameters. Genes significantly overexpressed in one cluster/state 
versus all the others (positive markers) were tested with Wilcoxon rank sum tests on the log-
normalized data of the given cluster against all the others. DEGs between monocle state 2 and 4 
(Supplementary Table 8C) were identified using the FindMarkers Seurat function.  Only genes 
expressed in at least 10% of the cells in either of the two groups (min.pct = 0.1) and with a log 
fold change threshold of 0.25 (logfc.threshold = 0.25) were tested. A p-adjusted value 
(Bonferroni correction) threshold of 0.05 was applied to filter out non-significant markers.  
Aging markers for the global population were obtained with the FindConservedMarkers Seurat 
function (min.pct = 0.1, logfc.threshold = 0) using the sequencing platform as grouping variable 
to minimize batch effect (Young_A, Old_A were processed on HalioDx platform and Young_B, 
Old_B on TGML platform). A Wilcoxon Rank sum test was performed on the log-normalized 
data between all young versus all old cells (Supplementary Table 5) from each batch separately 
and the two p-values for each gene were combined using the Tipett’s method. Genes presenting 
an opposite variation between the 2 batches were filtered out.  
Aging markers for each cluster (Supplementary Table 6) and for each Monocle state 
(Supplementary Table 10B) were obtained with the same method by looking at the difference 
cluster per cluster and state per state (min.pct = 0.1, logfc.threshold = 0.25 for each cluster and 
min.pct = 0, logfc.threshold = 0 for each state). No tests were performed in the primed B cells 
clusters because it contained less than 3 cells in one young pool. From these results, for each 
cluster and each state only significant aging markers (combined p-value < 0.05 and same 
direction of variation in the 2 batches) were kept.  
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Among these markers the highly variable ones (average log fold change > 0.5 with aging in at 
least one cluster in both batches) were selected to generate heatmap for all clusters with primed 
clusters gathered (Fig. 3a) and for primed clusters only (Supplementary Fig. 4) with an 
adaptation of the DoHeatmap Seurat function with default parameters. Genes (raw) were ordered 
using hclust R function on standardised aging gene expression of the subset. Euclidian distance 
and unweighted pair group method with arithmetic mean (UPGMA) were used. Up and down 
regulated genes with aging were ordered separately. 
Volcano plots for the global aging markers were drawn (Supplementary Fig. 3) with 
EnhancedVolcano function from the R package of the same name 65. 
 
Gene set enrichment analysis. To characterize the identified clusters with Seurat, we performed 
gene set enrichment analysis on cluster markers with g:Profiler v0.6.7 66 with default arguments 
except for background set to all genes expressed in the whole dataset (i.e. genes that passed 
filtering during quality control). We tested enrichments in GO terms (GO:BP, GO:MF, GO:CC) 
as well as in terms from KEGG, REAC, TF, MI, CORUM, HP, HPA, OMIM databases (Fig. 1c 
and Supplementary Table 3). Cluster markers were also tested for enrichment in previously 
published gene set signatures related to HSPCs (Supplementary Table 12). Signatures tested 
were: Bcell_Chambers, Diff_Chambers, Gran_Chambers, HSC_Chambers, Lymph_Chambers, 
Mono_Chambers, Mye_Chambers, NK_Chambers, NaiveT_Chambers, and Ner_Chambers 33, 
lineage priming of HSC signatures C1, C2, C3, Mk, Er, Ba, Neu, Mo, Mo2, preDC, preB and 
preT 12, and HSCs and aging signatures Mm_HSC_Runx1_Wu, Mm_HSC_Tcf7_Wu 67, 
Mm_LT_HSC_Venezia, Mm_Proliferation_Venezia, Mm_Quiescence_Venezia 68, 
Polarity_factors_Ting and Novel_HSC_regul_polar_Ting 57. Cluster marker enrichment for 
the different signatures in comparaison to all dataset genes was tested using a 
hypergeometric test (phyper R function). To perform enrichment analysis of aging markers 
with a consistent gene number we gathered the overexpressed (resp. underexpressed) markers 
from at least one cluster and used gprofiler as describe above (Supplementary Table 7A & B). 
Expression scores of the signatures or of selected aging features from the enrichment analysis 
were calculated for each individual cell using the AddModuleScore Seurat function (on log-
normalized data) with default parameters, using as input the genes of the signatures or the aging 
markers annotated for the selected features. 
 
Differential signature score analysis. Signature markers of Monocle state were tested in the 
same way as gene state markers (see above) using FindAllMarkers (min.pct= 0, 
logfc.threshold=0) with Student's t-tests.  Only signatures with an average score differences 
above 0.015 between one state versus all were kept. A p-adjusted value (Bonferroni correction) 
threshold of 0.05 was applied to filter out non-significant differences.  
Signature score differences with aging in each state were tested in the same way as the aging 
markers per clusters (see above) using the FindConservedMarkers Seurat function (sequencing 
platform as grouping variable, min.pct and logfc.threshold set to 0) with Student's t-tests. For 
each Monocle state, only average score differences of same sign and above 0.015 in the two 
batches presenting a combined p value < 0.05 were kept (Supplementary Table 8A). 
The selected aging features expression score differences with aging in each cluster were tested in 
the same way as the aging markers per clusters (see above) using the FindConservedMarkers 
Seurat function (sequencing platform as grouping variable, min.pct and logfc.threshold set to 0) 
with Student's t-tests (Supplementary Table 7C). For each cluster, only average score differences 
of same sign and above 0.1 in the two batches presenting a combined p value < 0.05 are 
considered as significant (Fig. 3b). No tests were performed in the primed B cells clusters 
because it contained less than 3 cells in one young pool. 
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Regulons analysis. pySCENIC (1.10.0) was used with its command line implementation 37. The 
raw expression matrix for the cells of all samples was filtered, by keeping genes with a total 
expression greater than 2*0.01*(number of cell). 10698 genes passed the filtering. pyscenic grn 
command was used with grnboos2 method and default options and a fixed seed to derive co-
expression modules between transcription factors and potential targets. We used as input all the 
markers of the Seurat clusters for which a transcription factor binding motif was available in the 
motifs-v9-nr.mgi-m0.001-o0.0 database provided by Scenic plus several TFs involved in early 
hematopoiesis, Spi1, Tal1, Zfpm1, Cbfa2t3, Erg, Fli1, Gata1, Gata2, Hhex, Runx1, Smad6 69, 
Gfi1b 70, Zbtb16 71. The obtained modules were refined by pruning targets that did not have an 
enrichment for a corresponding motif of the TF with pyscenic ctx command with –maskdropouts 
option using the motif database motifs-v9-nr.mgi-m0.001-o0.0 and the cis-target database mm9-
tss-centered-10kb-7species.mc9nr. Only positive regulons (i.e. those with a positive correlation 
between the TF and its targets) were kept for downstream analysis (Supplementary Table 9A). 
AUCell scores (regulon activities) in each cell were computed with pycenic aucell command 
(default options). To be noted that number of target genes was highly variable from a regulon to 
another (Supplementary Fig. 9) 
For young and old HSPCs, two Heatmaps of regulon activity scores, along pseudotime were 
made, in order to analyze transcriptional activity at the two bifurcation points for both ages. See 
supplemental methods for detailed regulons heatmaps construction.  
Regulon markers of monocle states were tested in the same way as gene state markers (see 
above) with their AUCell scores using FindAllMarkers Seurat function (min.pct= 0.1, 
logfc.threshold=0) with Wilcoxon rank sum tests.  Only regulon with an average AUCell score 
differences above 0.002 between one state versus all the others were kept. A p-adjusted value 
(Bonferroni correction) threshold of 0.05 was applied to filter out non-significant differences.  
Regulon activity differences with aging in each state were tested in the same way as the aging 
markers per clusters (see above) using the FindConservedMarkers Seurat function (sequencing 
platform as grouping variable, min.pct = 0.1 and logfc.threshold = 0) with Wilcoxon rank sum 
tests. For each state, only average AUCell score differences of same sign and above 0.002 in the 
two batches presenting a combined p value < 0.05 were kept (Supplementary Table 9B). 
  
Analysis of HSPC subtypes and cell cycle phases in the differentiation trajectory depending 
on age.  Cell Density (Fig. 6d), division rate (Fig. 6e) and stacked plot of HSPC subtypes (Fig. 
6f) were computed and plotted along pseudotime at each age for the 3 HSPC fates: toward the T 
lymphocyte priming (Monocle states 1 and 2), toward the Mastocytes/Neutrophils priming 
(Monocle states 1, 3 and 4) and toward the Megakaryocytes/Erythrocytes priming Monocle 
states 1, 3 and 5). For division rate and stacked plot of HSPC subtypes, pseudotime was cut into 
50 bins. For each age, in each pseudotime bin, division rate was computed as the ratio of the 
number of cells with a G2/M phase assigned to the total number of cells in the bin. 

Statistics. Statistics were computed with R software v3.5.1. The statistical tests for gene 
expression and signature or regulon activity scores were performed with Seurat and are detailed 
above. In each cluster and in non-primed/primed clusters gathered, the enrichment of age was 
tested using a hypergeometric test (phyper R function Fig. 2b). Chi2 tests (chisq.test R function) 
were performed to test independence between cell cycle phase and age, in all cells (Fig. 6a) and 
in each HSPC subtype separately (Fig. 6b), and in the cells at the departure of the trajectory 
(Pseudotime <2, Supplementary Fig. 10) and to test independence between Monocle state and 
age in all Monocle states (Fig. 4i) and in the states 2, 3 and 5 only (Fig. 4j). Fisher's exact test 
(fisher.test R function) were performed to test independence between Monocle state and age in 
each Seurat cluster (Supplementary Fig. 8B). Wilcoxon rank sum test was used to test for median 
difference between pseudotime value distributions of young and old cells (Fig. 4h). In each 
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cluster a linear regression was computed between the average log fold change (in the cluster) and 
the global (in all cells) average log fold change of the aging markers recovered in the cluster (lm 
R function Supplementary Fig. 5). Smooth curves of module score expression in pseudotime 
through the different fates for young and old cells were drawn for quiescence and proliferation 
signature (Fig. 6C) using the geom_smooth function ggplot2 R package 72 with the gam function 
of mgcv R package 73. 

Data and code availability. The single-cell RNA-seq data generated here are available in the 
Gene Expression Omnibus database under accession code GSE147729. All R and python codes 
used for data analysis are integrated in a global snakemake workflow available at: 
https://gitcrcm.marseille.inserm.fr/herault/scHSC_herault 
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Figure Legends 

Fig. 1 Unsupervised clustering of young and old HSPCs revealed 15 clusters gathering mainly 
immature and to a lesser extend lineage-primed HSPCs. a Overview of the scRNA-seq sample 
preparation and analysis. Cells were isolated from bone marrow (BM) of young and old mice 
and pooled to obtain 2 pools for each age. Pools correspond to 2 or 3 BM (n=2/3). BM cells were 
FACS sorted to purify Lin-, Sca-1+, c-Kit+ (LSK) Flt3- cells that defined the HSPCs. The four 
pools of HSPCs were processed using droplet-based single cell sequencing (10X Genomics) and 
multiple analyses were performed using bioinformatics tools to characterize aging effects. b 
UMAP plot of young and old HSPCs (15000 cells) analysed using Seurat. Colours marked the 
15 distinct clusters identified by gene enrichment analysis. Each dot represents a cell. c Selected 
enrichment for each cluster and corresponding p-values adjusted for multiple testing (padj). NA 
indicates non-relevant enrichment. d UMAP plots coloured by expression of selected cluster 
markers. Cluster names are indicated in parenthesis. e Percentage of LTHSCs, STHSCs, MPP2 
and MPP3 within the HSPC population, identified by transfer learning in each of the 15 clusters. 
f Percentage of computationally assigned cell cycle (G1/G0, S and G2/M) phases in each of the 
15 clusters. 

Fig. 2 Aging affects more the immature than the lineage-primed HSPCs. a UMAP plot (same as 
in figure 1b) showing the young (blue) and the old (red) HSPCs. b Distribution of young (blue) 
and old (red) HSPCs in the clusters. On the left, percentage of young and old HSPCs in 
primed/non-primed clusters gathered and in each of the 15 clusters is presented. The Black 
vertical line indicates expected young and old cell proportions according to dataset size. Names 
of the clusters for which proportion of old or young cells was significantly higher than expected 
(hypergeometric test p-value < 0.05) are coloured in red for old cells and in blue for young cells. 
On the right, barplots represent the number of cells composing each ensemble: primed/non 
primed clusters gathered and individual clusters. c Violin plots showing Ly6d and Trp53inp1 
expression significantly up regulated in the pB cells cluster in comparison to the other cells (p-
value < 0.05 & log fold change > 0.25). 

Fig. 3 Gene expression is more impaired during aging in non-primed clusters with loss of 
differentiation and gain of hemostasis signatures. a Heatmap of the most significant differentially 
expressed genes (DEGs) during aging (p-value < 0.05 & log fold change > 0.5 in at least one 
cluster) in the different clusters revealed by Seurat analysis (Figure 1b). The lineage-primed 
clusters are gathered and labelled as primed. The upper coloured bars indicate cluster identity 
according to the colour code in figure 1b. The lower coloured bars indicate the proportion of 
young (blue) and old (red) cells in a given cluster. Gene expression are standardised across the 
entire dataset. b Combined violin plots showing signature scores (x-axis) in young (blue) and old 
(red) conditions per cluster. Signature scores represent the global expression of annotated genes 
for selected terms from enrichment analysis issued from DEGs during aging (p-value < 0.05 & 
log fold change > 0.25 in at least one cluster). Significant terms (enrichment gprofiler p-value < 
0.05) are: Hematopoietic or Lymphoid Organ Development (HLOD) retrieved from 
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GO:Biological Process, Hemostasis (HEM) retrieved from REACTOM pathways, Cell Adhesion 
Molecule (CAM) retrieved from KEGG pathways, MHC protein complex (MHC) retrieved from 
GO:Cellular Component, Transcriptional Miss-regulation in Cancer (TMC) retrieved from 
KEGG pathway. See supplementary Tables 7A & B for the lists of genes enriched in the terms. 
Stars show significant differences between the signature scores of young and old cells, per 
cluster (average score difference > 0.1 and p-value < 0.05). c Combined violin plot showing 
aging marker expression in young (blue) and old (red) conditions for the different clusters. Stars 
show significant differences of gene expression between young and old cells (average log fold 
change > 0.25 and p-value < 0.05). 

Fig. 4 HSPC differentiation trajectory revealed a clear split between T-, MastNeu and MkEr 
primed cells. a Differentiation trajectory generated using Monocle 2 with all HSPCs excepted 
primed B cells that were excluded. Cells are coloured according to five states (1 grey, 2 yellow, 
3 green, 4 orange and 5 blue), which partition the trajectory. b Barplots representing the LTHSC, 
STHSC, MPP2 and MPP3 proportions in the five states. c HSPC differentiation trajectory 
coloured according to HSPC pseudotime values and representing their differentiation 
progression. d HSPC differentiation trajectories coloured according to HSPC scores for 
hematopoietic lineage signatures retrieved from the literature (upper panel) and according to the 
expression level of HSPC differentiation markers (lower panel). For signatures, positive (red) or 
negative (blue) scores indicate whether the expression of the tested genes is more or less 
important than the reference signature. Signatures identified are HSC, naïve T, Myeloid and  
Erythroid. HSPC differentiation markers shown are: Procr for LTHSCs, Gata3 for T-cell primed 
HSPCs, Hdc for myeloid-primed HSPCs and Pf4 for erythrocyte-megakaryocyte-primed HSPCs. 
e Repartition of the Seurat clusters along the pseudotime. Box plots of pseudotime values are 
coloured according to the most represented state. f Repartition (in percentage) of the different 
states (1 to 5) of the trajectory for each Seurat cluster. g Tree representation of HSC 
differentiation trajectory, edges representing the states (state 1 in grey, 2 yellow, 3 green, 4 
orange and 5 blue), and nodes standing for pseudotime points: the starting point (s), the first 
bifurcation point (p), the primed Myeloid bifurcation point (pMye); and the three fates T-
lymphocyte (T), Neutrophils/Mastocytes (NeuMast) and Megakaryocyte/Erythroid (MkEr). h 
Boxplot of pseudotime value for young and old cells. * indicates a significant difference between 
young and old pseudotime value distribution (median difference > 2.9, p-value < 10-16 Wilcoxon 
rank sum test) i - j Percentage of Monocle states in young and old conditions, when considering 
all states (i) or only states 2, 4 and 5 (j). * indicates a significant dependence between state and 
age repartitions (p-value < 10-10 Pearson's Chi-squared test). 

Fig. 5 HSPC differentiation trajectory associates with transcriptional programs that are altered 
upon aging. a-b Heatmaps showing standardised regulon activity scores, recovered with the 
AUCell procedure of Scenic, for young (left panel) and old (right panel) HSPCs across Monocle 
states. Cells (columns) were ordered according to their pseudotime, and colour bars at the top of 
the heatmaps indicate the state at which cell belongs (1 grey, 2 yellow, 3 green, 4 orange and 5 
blue). Regulons (rows) were hierarchically clustered, based on their activity score in young 
HSPCs. In a, 4 clusters of regulons are highlighted when analysing regulon activity along 
pseudotime trajectories from s to T fate and from s to pMye bifurcation point (i.e. across 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156893


Monocle states 1, 2 and 1, 3). In b, regulon activity along pseudotime trajectories from s to 
NeuMast and from s to MkEr fates (i.e. across states 1, 3, 4 and 1, 3, 5) is analysed and 4 other 
clusters of regulons are highlighted. Arrows mark regulons for which a significant difference of 
activity with aging (average AUCell score difference between young and old cells > 0.002 and p-
value < 0.05) were found in at least one of the considered states (i.e states 1, 2 and 3 in a and 1, 
3, 4 and 5 in b). The colour indicates if regulon activity is increased (red) or decreased (blue) in 
old compared to young cells. 
 
Fig. 6 Cell cycle analysis along pseudotime highlights a delay in differentiation associated with 
cell cycle arrest in aged condition. a Repartition (in percentage) of the cell cycle phases 
(estimated with cyclone) in young and old HSPCs. b Repartition (in percentage) of the cell cycle 
phases (estimated with cyclone) in LTHSCs, STHSCs, MPP2 and MPP3 in young and old 
conditions. For a and b * indicates a significant dependence between cell cycle phase and age 
repartitions (p-value < 0.05 Pearson's Chi-squared test). c Left panel, differentiation trajectory of 
HSPCs coloured in accordance to their score for previously published quiescence and 
proliferation signatures; Right panel, comparison of the scores for the quiescence and 
proliferation signatures between young and old HSPCs in pseudotime. d Density plot of young 
(blue) and old (red) cells along pseudotime for the T (left), NeuMast (middle) and MkEr (right) 
fates. Black and red dashed lines mark respectively p and pMye bifurcation points. e Division 
rate along pseudotime for young (blue) and old (red) HSPCs for the T (left), NeuMast (middle) 
and MkEr (right) fates. On x-axis, pseudotime was cut into 50 bins and a division rate is 
calculated for each bin, by dividing the number of young (resp. old) cells assigned to G2M phase 
by the total number of young (resp. old) cells of the bin. Black and red stretched lines mark p 
and pMye pseudotime bifurcation point respectively. f Stacked plot of predicted cell types along 
pseudotime cut into 50 bins for young (upper part of the plots) and old (lower part of the plots), 
for the T (left), NeuMast (middle) and MkEr (right) fates. Black and red stretched lines mark p 
and pMye bifurcation point pseudotime respectively. g Relative expression of some genes as a 
function of pseudotime for young (upper panel) and old (lower panel) HSPCs. Points represent 
cells, which are coloured according to their belonging to the 5 different states (1 grey, 2 yellow, 
3 green, 4 orange and 5 blue). The y-axis is in log scale. * indicates significant differences in 
gene expression between young and old cells (p-value < 0) and star colour indicates the state 
where the difference is found. 
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