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Abstract 22 

The bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for 23 

maintenance of cell shape and survival. Many bacteria alter their PG chemistry as a strategy to 24 

adapt their cell wall to environmental challenges. Therefore, identifying these factors is 25 

important to better understand the interplay between microbes and their habitat. Here we used 26 

the soil bacterium Pseudomonas putida to uncover cell wall modulators from plant extracts and 27 

found canavanine (CAN), a non-proteinogenic amino acid. We demonstrated that cell wall 28 

chemical editing by CAN is licensed by P. putida BsrP, a broad-spectrum racemase which 29 

catalyzes production of D-CAN. Remarkably, D-CAN alters dramatically the PG structure of 30 

Rhizobiales (e.g. Agrobacterium tumefaciens, Sinorhizobium meliloti), impairing PG synthesis, 31 

crosslinkage and cell division. Using A. tumefaciens we demonstrated that the detrimental effect 32 

of D-CAN is suppressed by a single amino acid substitution in the cell division PG 33 

transpeptidase penicillin binding protein 3a. Collectively, this work provides a fascinating 34 

example of how interspecies metabolic crosstalk can be a source of novel cell wall regulatory 35 

molecules to govern microbial biodiversity.  36 
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Introduction 37 

Bacteria establish a myriad of complex social structures with other living organisms in the 38 

biosphere that frequently involve competitive and cooperative behaviours [1, 2]. For instance, 39 

many mutualists rely on each other for nutrients and protection [3–6]. Evolution has 40 

consolidated these partnerships by selecting specific mechanisms which provide a mutual 41 

benefit to the partners, making the interactions more efficient and robust. A representative 42 

example of mutualism is the case of legume plants and rhizobia bacteria. Legumes produce 43 

flavonoid signals to recruit nitrogen fixing bacteria to the plant. Microbes provide nitrogen in 44 

return for energy-containing carbohydrates [7–11]. Ecologists consider that these type of plant-45 

bacteria interactions are more widespread in nature than was previously thought [12, 13].  46 

The development of specific social relationships often requires communication strategies. One 47 

such strategy is the production and release of small diffusible molecules, which facilitate 48 

interactions between organisms in the distance and often are instrumental to shape the 49 

biodiversity, dynamics and ultimately, the biological functions of the ecosystems [14, 15]. Many 50 

taxonomically unrelated bacteria produce non-canonical D-amino acids (NCDAAs) to the 51 

extracellular milieu in order to regulate diverse cellular processes at a population level. The 52 

regulatory properties of NCDAA seem to be specific for each D-amino acid, e.g. D-Met and D-53 

Leu downregulate peptidoglycan (PG) synthesis [16–18], D-Ala represses spore germination 54 

[19] and D-Arg affects phosphate uptake [20] (reviewed in [21]).  55 

The modulatory effects of NCDAA on the cell wall require that these molecules replace the 56 

canonical D-Alanine located at the terminal position (4th or 5th) of the PG peptide stems. NCDAA 57 

editing at 4th position is catalysed by LD-transpeptidases (Ldts), which are enzymes involved in 58 

PG crosslinking (i.e. dimer synthesis) through the formation of meso-diaminopimelic acid 59 

(mDAP-mDAP) peptide bridges [17]. In contrast, incorporation of NCDAA at the 5th is mediated 60 

by penicillin binding proteins (PBPs) with DD-transpeptidase activity [22] or by synthesis of 61 
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modified precursors in the cytoplasmic de novo synthetic pathway [17]. Since muropeptides are 62 

substrates for many enzymes, PG changes induced by NCDAA can have an obvious impact on 63 

the enzymes that synthesize and remodel the PG.  64 

Production of many NCDAAs depends on the enzyme broad-spectrum racemase (Bsr), which 65 

converts L-amino acids, protein building blocks, into D-amino acids, regulatory molecules [23]. 66 

The wide distribution of Bsr-bacteria [23] and the metabolic investment in producing NCDAA 67 

suggests an important physiological role for these molecules. It is worth mentioning that the 68 

capacity to incorporate NCDAA in the PG is widespread in bacteria. The fact that non-producer 69 

organisms can be also influenced by PG editing suggests that NCDAA can act as engines of 70 

biodiversification within poly-microbial communities [20].  71 

Although the implications of NCDAAs in microbial ecology is rapidly growing, yet most studies 72 

focus on the production of D-amino acids from their proteinogenic L-counterparts while non-73 

proteinogenic amino acids are much less studied. Here, we report that Bsr of soil bacterium 74 

Pseudomonas putida (BsrP) can effectively produce D-canavanine (D-CAN) from plant derived 75 

L-canavanine (L-CAN), an allelopathic non-proteinogenic amino acid produced by many 76 

agronomically important legumes (e.g. alfalfa, jack beans) in high amounts [24–26].  77 

Previous studies have reported that L-CAN causes growth inhibition of non-producer plants due 78 

to the induction of systemic protein misfolding associated with the capacity of L-CAN to replace 79 

L-Arginine in proteins [27–30]. Our results show that conversion of L- into D-CAN by BsrP 80 

eliminates the toxic effect of L-CAN in the growth of Arabidopsis thaliana. 81 

Since this is the first time enzymatic D-CAN production is reported we decided to investigate the 82 

biological activity of this plant-derived D-amino acid on the physiology of rhizosphere microbes. 83 

We found that D-CAN is incorporated in high amounts in the cell wall of certain Rhizobiales 84 

species. Cell wall chemical editing by D-CAN affects PG synthesis and structure which causes 85 

cell division impairment and fitness loss. Using the plant pathogen Agrobacterium tumefaciens 86 
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we demonstrated that D-CAN deleterious effects on cell wall integrity can be alleviated by just a 87 

single amino acid substitution in the cell division PG transpeptidase penicillin binding protein 3a 88 

(PBP3a).   89 
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Materials and Methods  90 

Media and growth conditions 91 

Detailed information about strains and growth conditions is listed in supplementary materials 92 

and methods. All strains were grown at the optimal temperature and in LB (Luria Bertani broth) 93 

medium unless otherwise stated. Growth of diverse rhizobial species shown in Figure 2 was 94 

performed at room temperature. 95 

 96 

Seed extract preparation and use of P. putida as a reporter 97 

3 gr of seeds (e.g. Medicago sativa) were mashed and soaked in 10 mL of water overnight 98 

followed by centrifugation at 5,000 rpm to remove the particulate fraction. The supernatant was 99 

next (i.e. extract) filter-sterilized and concentrated 5x. P. putida were grown either in LB medium 100 

or in LB medium supplemented with seed extract to a final concentration 1x. Cultures were 101 

grown up to stationary phase prior PG purification and analysis by liquid chromatography and by 102 

mass spectrometry. 103 

 104 

Peptidoglycan analysis 105 

PG isolation and analysis were done according previously described methods [31, 32]. In brief, 106 

PG sacculi were obtained by boiling bacterial cells in SDS 5%. SDS was removed by 107 

ultracentrifugation, and the insoluble material was further digested with muramidase (Cellosyl). 108 

Soluble muropeptides were separated by liquid chromatography (high-performance liquid 109 

chromatography and/or ultra high-pressure liquid chromatography) and identified by mass 110 

spectrometry. A detailed protocol is described in supplementary materials and methods. 111 

 112 

Protein expression and purification 113 
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P. putida gene PP3722 encoding broad-spectrum racemase was amplified with FCP1097 (5’- 114 

AAAACATATGCCCTTTCGCCGTACC-3’) and FCP1098 (5’- 115 

AAAAGCGGCCGCGTCGACGAGTAT-3’) primers and cloned in pET22b for expression in E. 116 

coli Rosetta 2 (DE3) cells, resulting in C-terminal His-tagged protein. 117 

Protein was purified using Ni-NTA agarose column (Qiagen). A detailed protocol is described in 118 

supplementary materials and methods. 119 

 120 

Racemase activity assay 121 

5 µg of purified racemase and various concentration of L-canavanine in 50 µl of 50 mM sodium 122 

phosphate buffer pH 7.5 were incubated at 37 °C for 30 min, then heat inactivated (5 min, 123 

100°C), and centrifuged (15,000 rpm, 10 min). Supernatant was derivatized with Marfey’s 124 

reagent [33] and resolved by high-performance liquid chromatography as described previously 125 

[23]. Detailed protocols are available in supplementary materials and methods. 126 

 127 

BsrP mutant construction in P. putida 128 

For deletion of PP3722 in P. putida the upstream and downstream regions of the gene were 129 

amplified from purified genomic DNA with primers FCP1145 (5’-130 

AAAATCTAGATCATCAGCAGCGACAT-3’) and FCP1092 (5’-131 

CAATGGCAATTGGTGATTACTCGTGTTC-3’); FCP1093 (5’-132 

GAGTAATCACCAATTGCCATTGAAAGGAG-3’) and FP1146 (5’-133 

AAAATCTAGAGCGACGTCACGC-3’) respectively. The upstream and downstream fragments 134 

were combined with FCP1145 and FCP1146 into a 1010 bp fragment, and inserted into 135 

pCVD442 [34]. E. coli DH5α λPIR was used in the cloning and the resulting plasmid 136 

pCVD442bsrP was confirmed by sequencing. In‐frame deletion was introduced by allele 137 
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replacement via homologous recombination. In short, exconjugants were obtained by 138 

conjugating with Sm10 λPIR containing pCVD442bsrP and selected on LB plates with 139 

chloramphenicol 25 μg/ml and carbenicillin 1,000 μg/ml. Exconjugants were grown in LB with 140 

10% sucrose (w/v) medium overnight and then plated on LB plates with chloramphenicol 25 141 

μg/ml and 10% (w/v) sucrose. Colonies sensitive to carbenicillin were confirmed by PCR. 142 

 143 

A. thaliana growth 144 

A. thaliana was grown in ½ MS agar medium (half strength of Murashige and Skoog basal salt 145 

mixture (Sigma), 0.5% sucrose, 1% agar, with pH adjusted to 5.7) with or without canavanine 146 

supplementation. Ethanol sterilized seeds were pre-incubated on the plates in the darkness at 147 

4°C for 3 days before moving to the in vitro chamber with day/night cycle 16/8 hours, 148 

22°C/18°C. Root length was measured after 10 days of growth in the chamber with Fiji [35]. 149 

Pictures of the root hairs were taken with stereomicroscope Nikon SMZ1500 (Tokyo, Japan). 150 

 151 

Growth curves and relative growth  152 

At least three replicates per strain and growth condition were grown in 200 μl of LB alone or 153 

supplemented with canavanine in a 96-well plate at 30°C with 140 rpm shaking in a BioTek Eon 154 

Microplate Spectrophotometer (BioTek, Winooski, VT, USA). The A600 was measured at 10 155 

minutes intervals. Relative growth was calculated as a percentage of growth in the presence of 156 

DL-canavanine compared to growth without canavanine. 157 

 158 

Phase contrast microscopy 159 

Stationary phase bacteria were placed on 1% agarose LB pads. Phase contrast microscopy 160 

was done using a Zeiss Axio Imager.Z2 microscope (Zeiss, Oberkochen, Germany) equipped 161 
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with a Plan-Apochromat 63X phase contrast objective lens and an ORCA-Flash 4.0 LT digital 162 

CMOS camera (Hamamatsu Photonics, Shizuoka, Japan), using the Zeiss Zen Blue software. 163 

 164 

Quantification of cell constrictions 165 

Exponentially growing cells (OD600=0.4-0.6) in ATGN medium [36] were imaged on 1% agarose 166 

ATGN pads using phase contrast microscopy (inverted Nikon Eclipse TiE (Tokyo, Japan) with a 167 

QImaging Rolera em-c2 1K EMCCD camera (Surrey, British Columbia. Canada), and Nikon 168 

Elements Imaging Software) as described previously [37]. Cell length and constrictions were 169 

detected using MicrobeJ software [35].  Old poles were identified as having a larger maximum 170 

width compared to the new poles.  The longitudinal position of cell constrictions was then plotted 171 

against cell length. A longitudinal position of 0 represents the true midcell while positive values 172 

approach the new pole and negative values approach the old cell.  173 

 174 

Suppressor mutants  175 

To obtain suppressor mutants, A. tumefaciens was grown at optimal conditions overnight (see 176 

supplementary methods), and serial dilutions were inoculated on the LB plates containing DL-177 

CAN 10 mM. Plates were incubated at room temperature until suppressor mutant colonies 178 

arose. For confirmation of the resistance, the selected colonies were passed through LB plates 179 

before being tested on LB plates containing DL-CAN 10 mM. 180 

 181 

Whole-genome sequencing and single-nucleotide polymorphism analysis 182 

Genomic DNA was isolated from suppressor mutants and the parental strain of A. tumefaciens. 183 

Indexed paired-end libraries were prepared and sequenced in a MiSeq sequencer (Illumina, 184 

San Diego, CA, USA) according to the manufacturer’s instructions.  185 
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Data quality control was performed with FastQC v0.11.5 [38] and MultiQC v1.5 [39]. The raw 186 

data in FASTQ format was trimmed using Trimmomatic v0.36 with arguments 187 

'ILLUMINACLIP:adapters.fa:2:30:10','SLIDINGWINDOW:5:30' and 'MINLEN:50' [40]. The exact 188 

adapter sequences that were used can be retrieved from the supplementary materials and 189 

methods. The trimmed FASTQ was aligned to genome GCF_000092025.1_ASM9202v1 (A. 190 

tumefaciens, [41]) using the 'mem' algorithm in BWA v0.7.15-r1140 [42] with default parameters 191 

and subsequently converted to sorted BAM format. Optical duplicates were marked using picard 192 

tools v2.18.2 with default arguments [43]. Finally, variants were called in freebayes v1.1.0-dirty 193 

using the parameters '-p 1', '--min-coverage 5' and '--max-coverage 500' [44]. 194 

 195 

Reconstruction of suppressor mutant pbp3aK537R in A. tumefaciens 196 

For reconstruction of point mutation in pbp3aK537R in A. tumefaciens, a 650 bp fragment 197 

containing the mutated nucleotide was amplified from purified genomic DNA with primers 198 

FCP3354 (5’-AAAAGGATCCCGACACCGTTGG-3’) and FCP3355 (5’- 199 

AAAAGGATCCATAAGACACGAGCA-3’) and inserted into pNPTS139 plasmid [45]. E. coli 200 

DH5α λPIR was used in the cloning and the resulting plasmid pNPTS139pbp3aK537R was 201 

confirmed by sequencing. 202 

Nucleotide substitution in A. tumefaciens pbp3a gene (atu2100) was done according to an 203 

established allelic-replacement protocol [46]. In short, exconjugants were obtained by 204 

conjugating with E. coli S17-1 λPIR containing pNPTS139pbp3aK537R and selected on ATGN 205 

plates with kanamycin 300 μg/ml. Exconjugants were grown in ATGN medium overnight and 206 

then plated on ATSN plates with 5% (w/v) sucrose [36]. Colonies sensitive to kanamycin were 207 

streak-purified twice on ATSN plates and sequenced. 208 

 209 
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PBP3a protein folding prediction 210 

Prediction of PBP3a protein was done by Phyre2 [47]. 211 

212 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156976


12 

 

Results 213 

Bacterial racemization of canavanine licenses its incorporation into the cell wall 214 

To identify new environmental modulators of the bacterial cell wall we tested the capacity of 215 

diverse plant extracts to induce changes in the PG chemical structure of soil associated 216 

bacteria. We found that our reporter strain Pseudomonas putida displayed new muropeptides 217 

when we supplemented its growth medium with alfalfa (M. sativa) seed extract. By mass 218 

spectrometry, we identified that the modification corresponded to a molecule of 176.2807 mass 219 

units that was replacing the D-Alanine normally found at fourth position of the peptides stems 220 

within the bacterial PG (Fig. 1a). In silico analyses suggested L-canavanine (L-CAN), a non-221 

proteinogenic amino acid similar to L-arginine and found in legumes as the most likely 222 

candidate. Consistently, supplementation of P. putida with pure L-CAN produced the same 223 

monomeric muropeptide, now renamed as M4CAN, but also its crosslinked dimeric form D44CAN 224 

(Fig. 1b). Since the fourth position in the peptide moiety of muropeptides is normally restricted to 225 

D-amino acids, we hypothesized that P. putida might have produced D-CAN from L-CAN. In 226 

fact, we found that P. putida genome encodes a putative broad-spectrum racemase orthologue 227 

(PP3722). To test whether PP3722 could racemize canavanine we purified the protein and 228 

performed in vitro racemization (reversible interconversion between L-AA and D-AA 229 

enantiomers) assays using pure L-CAN as substrate. Indeed, using High Performance Liquid 230 

Chromatography (HPLC) we observed that PP3722 converted L-CAN into D-CAN and hence 231 

we named this protein as BsrP for Broad-spectrum racemase in P. putida (Fig. 1c). 232 

Consistently, deletion of bsrP in P. putida produced a strain incapable to make D-CAN-233 

containing muropeptides in L-CAN supplemented cultures (Fig. 1d). P. putida ∆bsrP was only 234 

able to produce a PG edited with CAN when this was exogenously added as D-form. Since we 235 

did not succeed in purifying D-CAN, we used DL-CAN racemic mixture as a source of D-CAN 236 

(DL-CAN) (Fig. S1a). In agreement, D-CAN containing supernatants (from wild-type (wt) P. 237 
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putida) induced production of D-CAN muropeptides in E.coli, a bacterium that lacks broad-238 

spectrum racemase (Fig. S1b), further supporting that PG modification by D-CAN is Bsr-239 

independent. As expected, no D-CAN muropeptides were induced in E. coli when this bacterium 240 

was cultured with preconditioned media from the ∆bsrP strain. Collectively, these results 241 

indicate that bacterial broad-spectrum racemase BsrP can change the chirality of plant-derived 242 

amino acid L-CAN, thereby licensing its D-form for PG editing. 243 

 244 

Enantiomerization changes the functionality of canavanine 245 

Previous studies showed that production of L-CAN by legumes underlies a defensive strategy 246 

against certain competitors (e.g. plants, insects) [27, 48, 49] based on the incorporation of this 247 

toxic atypical amino acid into proteins due to its chemical similarities with L-arginine [28–30]. 248 

Compared to L-CAN, there is virtually no information about D-CAN. Thus, to understand the 249 

biological role of this D-amino acid we first checked if D-CAN displayed the same activity as L-250 

CAN. In agreement with previous reports, L-CAN inhibited root growth of A. thaliana seedlings 251 

at 5 µM concentration with the resulting root length almost 3 times shorter than in control (Fig. 252 

2). However, the average root length in the presence of DL-CAN 5 µM was 1.5 times longer 253 

than that grown with the same concentration of L-CAN suggesting that CAN enantiomers have 254 

different functions. Indeed, additional experiments comparing root lengths at L-CAN 5 µM 255 

versus DL-CAN 10 µM (i.e. 5 µM D-CAN + 5 µM L-CAN), and L-CAN 10 µM versus DL-CAN 20 256 

µM (i.e. 10 µM D-CAN + 10 µM L-CAN), where in both cases amount of L-form is the same, 257 

revealed no significant differences between them (Fig. S2a) and suggests that only L-CAN 258 

inhibits root development in A. thaliana. Interestingly, in addition to tap root length, development 259 

of lateral roots and root hairs were also affected by L-CAN, but not by D-CAN (Fig. S2b). 260 

Collectively, these results stress the idea that CAN enantiomers have different activities.  261 

 262 
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D-CAN severely alters cell wall composition and abundance in Rhizobiales  263 

To ascertain the physiological role of D-CAN we investigated its effect on bacterial growth using 264 

diverse bacteria species that can potentially be exposed to this D-amino acid in the natural 265 

environment. We found that Rhizobiales were the most affected species by DL-CAN (Fig. 3a) 266 

while P. putida growth was not affected even at high levels of DL-CAN (up to 10 mM) (Fig. S3) 267 

suggesting that producer species (i.e. encoding a broad-spectrum racemase) might have 268 

developed tolerance to D-CAN.  269 

Although D-CAN induced PG modifications in all species tested, Rhizobiales displayed the 270 

highest levels of muroCAN, i.e. ca. 40% of the muropeptides were edited by D-CAN both in the 4th 271 

and 5th positions of the peptide moieties (Fig. 3a, b, Fig. S4a). Therefore, we hypothesized that 272 

D-CAN might be interfering in cell wall biosynthesis, in a similar way as has been reported for 273 

other NCDAAs (e.g. D-Met [20, 50]). Indeed, A. tumefaciens cells treated with DL-CAN 274 

contained less PG than non-treated cells (Fig. 3c) or cells treated with L-CAN (Fig. S4b). To 275 

investigate the consequences of D-CAN incorporation on the PG architecture, we added 276 

increasing concentrations of DL-CAN to A. tumefaciens and monitored fluctuation of the 277 

different PG components. Our results show that D-CAN causes a dramatic increase in 278 

pentapeptides (M5 and D45) (Fig. 3b, d), and a reduction in crosslinkage due to lower amount 279 

of LD-crosslinked muropeptides (Fig. 3e). L-CAN alone did not change A. tumefaciens PG 280 

crosslinkage at tested concentration (Fig. S4c).  281 

To know if the effects of D-CAN in A. tumefaciens’ PG extend to other Rhizobiales, we analyzed 282 

both PG composition and amount in the legume symbiont Sinorhizobium meliloti. As in A. 283 

tumefaciens, we found the same types of D-CAN modified muropeptides, reduction in PG 284 

density and crosslinkage in S. meliloti treated with D-CAN (Fig. S5a, S5b, S5c). Interestingly, 285 

we had to use lower concentration of the compound, since S. meliloti was more sensitive to D-286 
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CAN than A. tumefaciens. These results suggest that D-CAN downregulates PG synthesis and 287 

crosslinkage likely through its incorporation in the cell wall. 288 

Given the effects of D-CAN in S. meliloti, we decided to explore the effect of this D-amino acid 289 

on Medicago sativa, a legume which produces L-CAN and establishes symbiosis with 290 

Sinorhizonium medicae for nitrogen fixation. Pre-treatment of S. medicae with DL-CAN delayed 291 

nodulation, reduced the nodule number and caused early senescence and disintegration of the 292 

nitrogen-fixing nodule zone (Fig. S6a, b). As a consequence of the lack of active persistent 293 

nitrogen-fixing cells, the aerial part of plants was underdeveloped and similar to the non-294 

infected, nitrogen-starving plants (Fig. S6c). Collectively, our data demonstrates that D-CAN 295 

activity can affect the fitness of certain rhizobia and as a consequence, their symbiotic 296 

relationship with plants. 297 

 298 

D-CAN impairs viability and cell separation 299 

To gain further insights on D-CAN’s mechanism of action we cultured A. tumefaciens with or 300 

without L- or DL-CAN and monitored growth and morphology. Our results showed that D-CAN 301 

inhibited growth of A. tumefaciens in liquid culture and induced lysis, branching and bulging 302 

(Fig. 4a). No significant changes in growth or morphology were caused by L-CAN (Fig. 4a) 303 

further strengthening the idea that these enantiomers have different functions. To get more 304 

quantitative insights of the morphological defects caused by D-CAN we measured cell length, 305 

longitudinal position of the constriction (Fig. 4b), and the number of constrictions per cell (Fig. 306 

4c). While in the untreated culture, or in cultures treated with L-CAN, A. tumefaciens division 307 

sites localized slightly closer to the new pole (Fig. 4b, Fig. S7a), in DL-CAN treated cultures 308 

cells were up to 1.5 times longer and the position of the constrictions exhibited a more scattered 309 

pattern (Fig. 4b). In addition, untreated cells and cells treated with L-CAN had 0 or 1 constriction 310 

per cell, while DL-CAN induced up to 3 constrictions per cell (Fig. 4c, Fig. S7a). As before, S. 311 
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meliloti grown on DL-CAN recapitulated the results obtained with A. tumefaciens on growth, 312 

morphology and number of constrictions (Fig. S7b, c, d) further supporting that D-CAN 313 

interferes with the cell division. 314 

 315 

D-CAN interfere with a cell division transpeptidation  316 

To identify the molecular targets of D-CAN, we screened for suppressor mutants resistant to 317 

DL-CAN. Characterization of the single-nucleotide polymorphism by genome sequencing 318 

revealed a K537R substitution in the primary cell division transpeptidase PBP3a (atu2100) [51, 319 

52]. Phyre2 alignments [47] of A. tumefaciens PBP3a to crystallized PBP3 proteins localized 320 

K537 in the loop between β5 and λ11, close to the active-site cleft (Fig. 5a).  321 

Reconstruction of the K537R mutation (i.e. A. tumefaciens PBP3aK537R) recapitulated the 322 

suppressor tolerance to DL-CAN (Fig. 5b). Interestingly, K537R substitution appeared to be 323 

specific since it did not suppress the growth inhibitory effect of D-amino acids other than D-Arg, 324 

a chemical analogue of D-CAN (Fig S8). No difference in the growth of the wt and PBP3aK537R 325 

strains was detected in the absence or presence of L-CAN (Fig. S9a). In addition to growth, PG 326 

reduction was partially alleviated in the PBP3aK537R strain (Fig. 5c). Both wild-type vs the 327 

PBP3aK537R strains showed similar levels of D-CAN containing muropeptides (muroCAN) in 328 

cultures supplemented with DL-CAN indicating that the suppressing role of the PBP3aK537R 329 

mutations is not associated with a reduction of D-CAN incorporation in the PG (Fig. S9e). 330 

Consistent with the idea that D-CAN inhibits PBP3a activity, the PBP3aK537R strain showed a 331 

reduction in the accumulation of pentapeptides (i.e. M5) compared to that of the wild-type in the 332 

presence of D-CAN (Fig. 5d, Fig. S9b). Overall crosslinkage levels and particularly LD-333 

crosslinkage also improved in the PBP3aK537R strain (Fig. 5e, Fig. S9c), while no difference 334 

between strains was observed in control condition (Fig. S9d). Similarly, altered cell length and 335 

constriction positioning in the presence of DL-CAN improved in the PBP3aK537R strain compared 336 
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to wt (Fig. 5f), while no difference was observed in the control condition or in the presence of L-337 

CAN (Fig. 5f, Fig. S9f). Collectively, these data suggest that D-CAN interfere with PG 338 

transpeptidation at cell division.   339 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156976


18 

 

Discussion 340 

Bacteria can edit the canonical chemistry of their cell wall as a strategy to cope with 341 

environmental challenges [53–55]. As PG can be modified by secreted molecules, we reasoned 342 

that we could use bacteria as a biochemical trap to discover elusive environmental modulators 343 

of the cell wall. To test this, we exposed plant-derived soluble extracts to the soil bacteria P. 344 

putida and discovered canavanine (CAN) as a new PG modulator. The fact that L-CAN was 345 

previously reported to be produced by legume plants [24–26] further supported the efficacy of 346 

our screening. However, CAN was found at the terminal position of the PG peptide moieties, 347 

which is reserved for D-amino acids [16]. Remarkably, we found that P. putida encodes a broad-348 

spectrum racemase (Bsr) that changes the chirality of CAN to permit its incorporation in the 349 

bacterial PG. Collectively, these observations underscore a fascinating example of interspecies 350 

metabolic crosstalk where a plant-derived metabolite (L-CAN) is transformed by a bacterial 351 

enzyme (BsrP) into a previously unrecognized molecule (D-CAN) (Figure 6). Discovery of D-352 

CAN adds to a growing list of metabolites produced as a result of plant-soil feedbacks and 353 

contributes to chemical ecology. [56–58]. 354 

Since amino acid enantiomers have different functions, racemization of CAN may lead to 355 

multiple environmental effects. On one side, Bsr racemization of L-CAN to D-CAN decreases 356 

the concentration of the L-CAN, alleviating its toxic effect on plants [27]. In addition, Bsr 357 

produces D-CAN, a molecule that alters bacterial PG composition (Figure 6).  358 

PG editing is a mechanism by which the environment can regulate the cell wall structure and 359 

biosynthesis. Whether this regulation is positive or detrimental seems to depend both on the 360 

type of D-amino acid and on the bacteria species. For instance, although Vibrio cholerae 361 

produces and incorporates both D-Arg and D-Met in its PG, only the latter has an effect on cell 362 

wall synthesis [20]. In the particular case of D-CAN, it seems clear that the most sensitive 363 

species were those with polar growth and higher levels of D-CAN in the PG. Indeed, many 364 
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Rhizobiales elongate unidirectionally by adding PG to the new pole, generated after cell division 365 

[59]. When new cell compartment gets bigger in length and width, the zone of active PG growth 366 

together with division proteins localize to midcell prior to cell division. A. tumefaciens encodes 367 

multiple LD-transpeptidases (e.g. 14 Ldts in A. tumefaciens compared to just two predicted 368 

orthologues in P. putida) and different Ldts are localized to the new pole or midcell, and 369 

presumably important for both polar growth and division [51]. Ldts are the enzymes that perform 370 

mDAP-mDAP crosslinks, which are very abundant in Rhizobiales (40-50% in A. tumefaciens) 371 

compared to e.g. P. putida (ca. 1 %), and catalyze PG editing in the 4th position of the peptide 372 

moieties [17]. Therefore, free D-CAN might act as a competitive substrate on Ldts to prevent 373 

their LD-crosslinking activity in favor of high D-CAN incorporation. In fact, D33 and D34 LD-374 

crosslinked dimers are significantly reduced in the present of D-CAN. The high number of Ldt 375 

paralogs in these species suggest they are important for the lifestyle of these organisms and 376 

thus might be difficult to assess whether a D-CAN deleterious effect can be suppressed in a Ldt-377 

deficient strain. Another target of D-CAN inhibition might be DD-carboxypeptidases, enzymes 378 

that remove the terminal D-Ala from pentapeptides (M5). Accumulation of both the canonical (D-379 

Ala-terminated pentapeptides) and the non-canonical (D-CAN-pentapeptides) in the presence of 380 

D-CAN strongly suggest that free D-CAN decreases the activity of A. tumefaciens DD-381 

carboxypeptidases.  382 

Interestingly, our suppressor analyses did not identify any mutations in Ldts or DD-383 

carboxypeptidases that improved the growth of A. tumefaciens in the presence of D-CAN. The 384 

high number of Ldt and DD-carboxypeptidase paralogues (14 and 4 predicted, respectively) 385 

makes very unlikely that a single mutation in these proteins would show a suppressor effect. 386 

Instead, we discovered that a K537R point mutation in the PBP3a (atu2100) is sufficient to 387 

alleviate D-CAN sensitivity in A. tumefaciens. There are two important evidences in agreement 388 

with the idea of D-CAN targeting PBP3a: i) PBP3a has been reported to localize at the septum 389 
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and be involved in cell division. Consistently, D-CAN induces branching and bulging in the wt 390 

and the PBP3a K537R mutation suppresses this phenotype. Ii) PBP3a is a DD-transpeptidase. 391 

Inhibition of these enzymes reduce crosslinkage levels and increase accumulation of the 392 

monomeric substrates (pentapeptide and/or tetrapeptide monomers, i.e. M5 and M4, 393 

respectively). Indeed, D-CAN induces M5 accumulation in the wt, which is suppressed in the 394 

K537R mutant. Overall DD-crosslinkage is not reduced by D-CAN, but it’s possible that D-CAN 395 

targets PBP3a and other PBPs are not inhibited. 396 

The nature of the observed increase in D34 dimers in the K537R mutant seems to be indirect 397 

while yet connected to the presence of D-CAN. D34 dimers are formed between two monomer 398 

tetrapeptides (M4) by LD- transpeptidases, not by PBP3a, which is DD-transpeptidase and 399 

would produce a D43 dimer instead. One might speculate that PG analysis gives overview on 400 

overall PG structure, however structural changes in the septal PBP3a might have allosteric 401 

consequences on nearby enzymes within a same protein complex. In this line, it has been 402 

reported that several Ldt enzymes predominantly localize to the midcell at cell division in A. 403 

tumefaciens [51]. Therefore, it might possible that PBP3a K537R mutation influences the activity 404 

of septal Ldts. Alternatively, PBP3a K537R mutation might induce allosteric regulatory changes 405 

in DD-carboxypeptidase at the septum, leading to local consumption of pentapeptides at cell 406 

division and increase in the levels of M4, which as Ldt substrates, can boost formation of D34. 407 

Collectively, these results suggest that D-CAN incorporation downregulates PBP3a, among 408 

other cell wall associated activities, to inhibit PG synthesis, cell division and induce cell lysis 409 

(Figure 6). We hypothesize that K537R substitution might change the properties of the loop 410 

between β5 and λ11, which is proximal to the active-site cleft to preserve PBP3a activity while 411 

making it insensitive to D-CAN. Understanding the structural changes that K-R mutation induces 412 

in the PBP3a structure might provide insights about the underlying mechanisms behind D-CAN 413 

tolerance in other bacterial species. 414 
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Finally, we have demonstrated that D-CAN affects S. medicae’s capacity to facilitate nitrogen-415 

fixation to M. sativa (Figure 6). Whether this phenomenon occurs as a consequence of D-CAN 416 

impairing the symbiont’s general fitness or a more specific cellular process is something that still 417 

needs to be determined. However, recent studies have shown that a DD-carboxypeptidase is 418 

critical for bacteroid (specialized nitrogen-fixing cells) differentiation in Bradyrhizobium spp. [60, 419 

61], which is consistent with our results of D-CAN downregulating these PG enzymes.  420 

All in all, the ubiquity of bacteria encoding Bsr enzymes strongly suggests that amino acid 421 

racemization is an evolutionary driver of cell wall chemical plasticity in the environment. Future 422 

research on these enzymes will uncover more interkingdom/interspecies regulatory networks as 423 

well as shed new light on how the chirality of amino acids can impact the biodiversity in natural 424 

ecosystems.  425 
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Figure legends 592 

Fig. 1 D-canavanine is produced from L-canavanine. (a) Scheme of PG-modifying metabolites 593 

identification. Modified M4 was found in the sample grown with Medicago sativa (alfalfa) seeds 594 

extract. (b) Cell wall analysis of P. putida, grown without (control) or with addition of L-595 

canavanine 5 mM.  (c) HPLC analysis of Marfey’s derivatized L-canavanine and L-canavanine 596 

incubated with P. putida broad-spectrum racemase. (d) Cell wall analysis of P. putida wt and 597 

∆bsrP mutant, grown in the presence of L-canavanine 5 mM.  598 

Fig. 2 Functionality of D-canavanine is different from L-canavanine. Root length in A. thaliana 599 

grown on ½ Murashige-Skoog agar supplemented with L- or DL-canavanine 5 µM or not 600 

(control). Pictures show representative plants. P value < 0.0001 (***). 601 

Fig. 3 High D-canavanine incorporation changes structure and amount of peptidoglycan in A. 602 

tumefaciens. (a) Sensitivity of soil and ubiquitous bacteria to DL-canavanine. Relative growth 603 

was calculated for bacteria grown in the presence of 5 mM DL-canavanine. D-canavanine 604 

incorporation was measured for bacteria supplemented with 2.5 mM DL-canavanine. (b) 605 

Representative PG profiles of A. tumefaciens supplemented with DL-canavanine 10 mM or not 606 

(control). Illustrations show D-canavanine-containing muropeptides. (c) PG amount 607 

quantification in 10 mM DL-canavanine supplemented A. tumefaciens cultures normalized to 608 

control (no canavanine). P-value < 0.05 (*). (d) Abundance of D-canavanine-containing 609 

muropeptides in A. tumefaciens supplemented with 10 mM DL-canavanine. Monomer M4G and 610 

dimer D34G are calculated as part of non-modified M4 and D34. (e) Abundance of monomers, 611 

dimers and trimers in A. tumefaciens supplemented with 10 mM DL-canavanine. Abundance of 612 

LD- and DD-crosslinked muropeptides in A. tumefaciens supplemented with 10 mM DL-613 

canavanine. P value < 0.0001 (***).  614 

Fig. 4 D-canavanine inhibits growth of A. tumefaciens and leads to aberrant cell morphology. (a) 615 

Growth curves of A. tumefaciens in the absence (control) or presence of L- or DL-canavanine 616 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.156976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.156976


31 

 

10 mM, and phase contrast images of A. tumefaciens cells without (control) or supplemented 617 

with L- or DL-canavanine 10 mM. Scale bar 2 µm. (b) Longitudinal position of cell constriction in 618 

A. tumefaciens cells without (control) or with DL-canavanine 10 mM. New pole is marked by 619 

green color, old pole – by blue. (c) Number of constrictions per cell in A. tumefaciens grown 620 

without (control) or with DL-canavanine 10 mM.  621 

Fig. 5 K537R amino acid change in A. tumefaciens PBP3a protein provides resistance to D-622 

canavanine. (a) Position of the PBP3a K537R amino acid change in the protein scheme and in 623 

the protein structural prediction. (b) Growth curves of A. tumefaciens wild-type and PBP3aK537R 624 

in the presence of DL-canavanine 10 mM. (c) PG amount quantification in 10 mM DL-625 

canavanine supplemented A. tumefaciens wild-type and PBP3aK537R cultures normalized to wild-626 

type control (no canavanine). P-value < 0.05 (*). (d) Quantification of the monomer (M5) and 627 

dimer (D34) abundance in A. tumefaciens wild-type and PBP3aK537R grown with DL-canavanine 628 

10 mM. P-value < 0.005 (**) and < 0.0001 (***).  (e) Abundance of monomers, dimers and 629 

trimers in A. tumefaciens wild-type and PBP3aK537R supplemented with 10 mM DL-canavanine. 630 

P-value < 0.05 (*). (f) Longitudinal position of cell constriction in A. tumefaciens wild-type and 631 

PBP3aK537R cells without (control) or with DL-canavanine 7.5 mM. New pole is marked by green 632 

color, old pole – by blue. 633 

Fig. 6 Model illustrating the impact of L- to D-CAN conversion on the soil-plant ecosystem. CAN 634 

enantiomerization by Bsr bacteria (e. g. P. putida) detoxifies L-CAN for non-legume plants. D-635 

CAN inhibits Rhizobiales bacteria (e. g. S. meliloti, A. tumefaciens), thus modulating microbial 636 

diversity in the soil. 637 

 638 

 639 

 640 
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