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Abstract. 

T-box riboswitches constitute a large family of tRNA-binding leader sequences that play a central role in 
gene regulation in many gram-positive bacteria. Accurate inference of the tRNA binding to T-boxes is 
critical to predict their cis-regulatory activity. However, there is no central repository of information on 
the tRNA binding specificities of T-box riboswitches and de novo prediction of binding specificities 
requires advance knowledge of computational tools to annotate riboswitch secondary structure features. 
Here we present T-box annotation Database (TBDB, https://tbdb.io), an open-access database with a 
collection of 23,497 T-box sequences, spanning the major phyla of 3,621 bacterial species.  Among 
structural predictions, the TBDB also identifies specifier sequences, cognate tRNA binding partners, and 
downstream regulatory target. To our knowledge, the TBDB presents the largest collection of feature, 
sequence, and structural annotations carried out on this important family of regulatory RNA.   

Introduction. 
Bacteria exploit a wide-range of cis-acting RNA regulatory elements to control gene expression in 
response to specific environmental stimuli. One strategy used for modulating gene expression involves 
using 5′-UTR leader riboswitches to regulate transcription or translation [1–3]. The transcriptional or 
translational logic of riboswitch leader sequences are conditionally dependent on the binding of a specific 
ligand [4].   

In the gram-positive model organism Bacillus subtilis, an analysis of cis-regulatory sequences in the 
upstream region of several amino-acyl tRNA synthetase (ARS) genes revealed that non-amino-acylated 
tRNAs can act as a positive regulator [5,6]. The discovery of this feedback loop was a breakthrough in 
understanding the expression of ARSs under nutrient limiting conditions. The T-box leader sequence was 
the first classical “riboswitch” family to be discovered, preceding the discovering of metabolite-binding 
ribo-regulators [6].  

T-box leader sequences are cis-acting RNA elements that link either transcription or translation of 
downstream genes to the aminoacylation-state of tRNA [7–9]. In transcriptional regulation, the 3′-end of 
T-box leader sequences folds into either a terminator structure, prematurely stopping transcription, or 
antiterminator structure, allowing transcription to proceed (Figure 1A). Translational regulation occurs 
through a similar two-state mechanism, whereby a ribosome-binding site is either structurally 
sequestered, preventing ribosome binding, or exposed, allowing ribosome binding and translation [8].  

Mechanistic studies on T-box riboswitches have revealed important interactions between T-boxes and 
tRNAs. Classical Watson-Crick base pairing has been shown to occur between the T-box specifier 
sequence and the tRNA anticodon [10]. Additional Watson-Crick base pair between the tRNA acceptor 
arm (‘5-NCCA-3′) and the ‘T-box sequence’ (5′-UGGN-3′) was demonstrated to control regulatory logic 
(Figure 1B) [11,12]. These interactions confer initial T-box specificity to its cognate tRNA. If un-charged 
tRNA binds to the T-box, Watson-Crick base pairing between the ‘T-box sequence’ and acceptor arm 
causes the T-box leader to adopt an antiterminator fold (for transcriptional regulation) or antisequestrator 
fold (for translational regulation). If the bound species is charged-tRNA either a steric barrier or a charged 
tRNA dependent conformational change prevents acceptor arm base pairing, leading the T-box to adopt a 
terminator fold (for transcriptional regulation) or sequestrator fold (for translational regulation).  

Structural studies of T-box:tRNA complexes have highlighted the importance of additional interactions 
between T-boxes and cognate tRNAs. Initial X-ray crystallographic studies of Stem I complexed with 
tRNA provided evidence of π-stacking interactions between the apical portion of Stem I and tRNA D-
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loop [2,11,13]. More recent X-ray and cryoEM structures of the full complex show several structural 
folds of the T-box including the variable regions namely, Stem IIA, and Stem IIB engaging the tRNA in 
specific binding interactions [14–17]. These structural findings are supported by in vitro transcription 
studies where it was shown that Stem II contacts with cognate tRNA are important for tuning binding 
between a Clostridium sp. alanyl T-box and alanyl-tRNA [18].  

The intricate and specific interactions between the T-box:tRNA pair can be leveraged for a variety of 
applications across basic research and bioengineering. For example, a recent study used a glyQS T-box to 
engineer a ribozyme that can specifically charge tRNAgly for use in cell-free protein synthesis [19]. T-
boxes also have the potential to be used as a generalizable ‘registry-of-parts’, capable of independently 
sensing amino acid levels in the environment with a single RNA element[20]. Furthermore, due to their 
prevalence and importance in gram-positive bacteria, T-boxes are also being studied as targets for 
antibiotic therapeutics [21,22]. Bacterial genomes tend to have several hypothetical proteins, 
uncharacterized genes with remote homologs or amino-acid transporters whose functions cannot be 
reliably predicted from sequence similarity alone. In this regard T-box specifier prediction has been used 
as a tool to uncover the function of unknown cis-regulated genes [23,24]. In one case, the predicted T-box 
family was used to infer the substrate specificity of downstream amino acid transporters [25].  

Despite the identification of several thousand leader sequences across various databases, T-box structures 
and functions remain under characterized [23–30]. Existing public databases which host putative T-box 
sequences do not include potential tRNA partners for annotated T-boxes nor predict the tRNA binding 
specificities. Currently, in silico structure prediction and feature extraction is required to predict tRNA 
substrates from raw sequences, and therefore exists as a barrier for entry to anyone interested in T-box 
research.  

Here we present the T-box annotation Database (TBDB), a compilation of T-box sequences from various 
primary sources with detailed annotations to aid future research. TBDB predicts putative transcriptional 
and translational T-box sequences, annotates secondary structures, identifies functional features and 
downstream genes, finds cognate pairs of tRNAs from host organisms, calculates MFE (minimum free-
energy) structures, and provides rich visualization for known and predicted T-box leader sequences 
(Figure 2). The TBDB is browsable at https://tbdb.io, with the whole database available to download as a 
single flat file. The TBDB will be a valuable resource for studying canonical, engineered, and mutant T-
box mechanisms and will provide a point-of-entry for studying regulation and interactions between T-
box:tRNA pairs. As a resource for the wider non-coding RNA community, the TBDB is the first 
structural and functionally annotated database for studying gene regulation by T-box riboswitches.  
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Results and Discussion.  
 
Accessing TBDB content.  

The TBDB aims to be a comprehensive and approachable hub for predictions of T-box structure and 
function. Database entries are provided in a searchable, tabulated format. Users can query entries based 
on fields that include sequence, host organism, specifier sequence, T-box sequence, or predicted tRNA 
family (Figure S1).  

Detailed information on each TBDB entry can be obtained by accessing the unique ID in the database 
table. Doing so brings users to a T-box entry page that contains source, downstream protein annotation, 
structural, functional, and sequence information. The title of the entry page provides the unique T-box ID, 
a unique identifier generated by TBDB, as well as the predicted tRNA family the T-box interacts with, 
and host organism (Figure S2). The source information panel gives a high-level summary of the T-box 
entry and includes information regarding genetic locus and feature predictions. The following panel 
provides an interactive genome browser (NCBI) starting at the T-box locus and ending 5000 bp 
downstream. The genome browser allows users to visualize the genomic context of T-box sequences and 
provides a quick method to assess the validity of T-box codon specifier predictions.  For example, a Trp 
T-box is observed as a 5′-UTR of an operon involved in tryptophan biosynthesis (Figure S3).  

Towards the goal of making a T-box registry-of-parts, in the subsequent panel we provide a T-box 
sequence that stretches from the Stem I to the terminator poly-U region (Figure S4). Visualizations 
(VARNA) of the predicted secondary structures of the T-box are given in the next panel [31]. These 2-D 
representations highlight important features of the T-box entry including Stem I (light-yellow), specifier 
bases (dark yellow), antiterminator (light blue), T-box sequence (dark blue), and terminator stem (red). 
The dot-bracket representations of the 2-D structures also provided (Figure S5). Results for tRNA 
matching, generated using tRNAscan-SE, can be found in the following panel (Figure S6) [32]. Here, we 
show the sequence and description for the highest scoring predicted tRNA, with matching anticodon, in 
T-box host organism (if available). tRNAs for alternative specifier reading frames are also generated if 
our model could not identify a consensus specifier. Minimum free energy (MFE) predictions for each of 
the folds are given in the thermodynamics section, and are the result of structure refinement performed 
using ViennaRNA (Figure S7) [33].  Finally, the INFERNAL panel has output information from 
structural searches, which can be used as a reference by users interested in structure prediction 
information and quality (Figure S8) [34].  

Sourcing and curation of the TBDB. 

The T-box annotation Database comprises 23,497 non-redundant T-box sequences. Sequences used to 
build the TBDB were sourced from databases that either used covariance models or motif analysis for T-
box sequence discovery [24,26,35–38]. Duplicate T-boxes were removed as many of the input sequences 
used to generate the TBDB were shared across the various databases with varying definitions of T-box 
start and end. We used an INFERNAL covariance model (RFAM RF00230) to predict transcriptional T-
box structure from T-box input sequences [34,38]. For translational T-boxes, a custom covariance model 
was generated using seed sequences for translational T-boxes found in previously published work [8,24].  

In order to further curate the database, we only made tRNA predictions for sequences with predicted 
structures that properly fold into canonical Stem I and antiterminator regions. Proper in silico folding of 
these two regions are critical for identification of specifier sequence and T-box sequence. Sequences for 
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which we could not predict a plausible terminator stem are kept in the database, as they could be members 
of translational control T-boxes, which do not contain terminators but rather sequestrator stems. In the 
interest of preserving sequence information, T-boxes with no structural predictions are displayed in 
TBDB though only genetic context is available as additional information. For transcriptional T-boxes, in 
silico folding of T-box terminator and antiterminator regions were used as an additional metric to 
examine plausibility of structure predictions (Figure S9). The free-energy values for the folds predicted 
in the antiterminator and terminator regions (ΔGanti= -7.4 ± 4.2 kcal/mol, ΔGterm = -19.5 ± 7.9 kcal/mol) is 
largely consistent with the expectation that terminator hairpin is more stable than the antiterminator. In 
all, the TBDB contains 22,524 putative transcriptional T-boxes and 973 putative translational T-boxes.   

Identification of T-box:tRNA pairs  

T-boxes tend to have a strict preference for canonical Watson-Crick (W-C) base pairing with the 
anticodons of their cognate tRNA [9]. Deviations from canonical W-C binding in any of the triplet codon 
positions (the central base being least tolerant, relative to the 5′ and 3′ positions) typically results in 
impaired tRNA binding and anti-termination [39]. Depending on the length of specifier bulge, it is also 
likely that there are alternative specifier reading frames, allowing for the possibility of multi-tRNA 
specificity in gene regulation [40]. However, experimental work uncovering the determinants of multi-
specificity in T-boxes remains sparse. Our specifier prediction assignment takes into consideration 
downstream gene assignment and possible W-C base pairing between the T-box sequence and the tRNA 
discriminator base from the host organism. In assigning T-box specifier, priority was given to as the 
region 2-4 bp (inclusive) 5′- from the Stem I specifier bulge, though “-1” and “+1” specifier reading 
frames were also considered (Figure S10). In a majority of the cases, the variable position (5′-UGGN-3′) 
on the T-box shows W-C base pairing with the discriminator base (5′-NCCA-3′) of the cognate tRNA 
species. Exceptions were noted in the Trp family, where 46% of T-boxes in our collection have a ‘U’ at 
the degenerate position while their cognate tRNAs have a ‘G’ at the discriminator position, suggesting a 
G:U wobble pair, as has been previously noted [41]. Based on this observation we allowed for wobble 
base-pair in our final T-box specifier model for the tRNA discriminator-T-box variable position. In the 
case of putative His T-boxes, discriminator base matching was not considered as most tRNAHis transcripts 
have an internally paired discriminator base.   

In practice, the TBDB identifies the cognate tRNA pairs from T-box hosts by first predicting the specifier 
sequence, then searching genome records of respective hosts for tRNAs that have a matching anticodon 
(W-C base-pairing only allowed) and discriminator base-pairing (both W-C and wobble pairing allowed). 
Our model gave a single specifier frame prediction for 16,010 T-box sequences, two possible specifiers 
frames for 2,860 sequences, and three specifier frames for 3,651 sequences. For 48 sequences, we were 
able to predict a specifier but were unable to find the canonical T-box sequence (5′-UGGN-3′). In cases 
where more than one specifier is possible, preference is given to the “+0” specifier reading frame based 
on empirical observations of experimentally studied T-boxes (Figure S10C). In all, T-box leaders 
containing Trp-, Leu-, and Ile- tRNA matching specifiers were most commonly observed in our collection 
while Lys-, Glu-, and Gln- matching specifiers were the least common. Supplementary Table 1A & 1B 
show composition of the T-box Annotation Database amino acid family and specifier usage.  

Through our tRNA search, we were able to match 76.9% of T-box sequences (for which we predicted a 
specifier) with a tRNA of the native host. Grouping T-boxes by specifier sequence, we found that tRNA-
matching was >80% for most specifiers (Supplementary Table 1B). Interestingly, though we were able 
to match 18,084 T-box sequences with tRNAs, we only identified a tRNA pair for 8.6% of T-boxes with 
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3′-U specifiers, consistent with observations that 5′-A starting anticodons in bacterial tRNAs are rare 
(Supplementary Table 1C). In these cases, it is possible that these T-boxes are controlled by tRNAs 
without matching anticodons (e.g. rely on wobble base-pairing) or are using an alternative specifier 
reading frame when binding anticodons. Alternative reading frames for T-box sequences have previously 
been observed in at least one experimentally studied system [40]. 

T-box specifier usage.  

Identifying specifier sequences for T-boxes allowed us to interrogate the choice of tRNA anticodon, and 
therefore the tRNA, that is used for regulation. Analogous to ‘codon usage tables’, which summarize an 
organism’s codon preference for translating a particular amino acid, Table 1 depicts a ‘specifier usage 
table’ generated from 23,497 sequences in the TBDB.  For T-boxes of amino acid families that only have 
two codons (Lys, Asp, Asn, Glu, Gln, His, Tyr, Cys, Phe), a single specifier is preferred in over 85% of 
corresponding T-box sequences. The choice of specifier is also consistent, with 3′-A and 3′-C always 
favored over 3′-G and 3′-U respectively. T-boxes of amino acid families decoded by four codons (Gly, 
Ala, Pro, Val, Thr) have more diversity in specifier usage. Much like the two-codon sets, there is a 
preference for Val, Thr, and Gly T-boxes to use 3′-A and 3′-C specifiers. Interestingly, Ala and Pro T-
boxes display a preference for 3′-U specifiers. T-box families for amino acids with 6 codons (Leu, Ser, 
Arg) show a 3′-A and 3′-C preference, with an even stronger preference for 3′-C specifiers. In the case of 
Leu family T-boxes, the CUC specifier is observed in 74% of sequences. For the special case of Ile, 3′-C 
(AUC) specifier is preferred, though there is potential ambiguity in cases where Ile and Met tRNA share 
anticodons. The large-collection of sequences has allowed us to reinforce previous observations that the 
“C-rule” (3′-C in specifiers) is prevalent, while additionally discovering that 3′-A usage is also largely 
preferred for specific amino-acid classes (Supplementary Table 1BC) [23,24,36]. 

There are possible explanations for the source of specifier-usage bias in T-box riboswitches. First, 
specifier usage does not follow the same observed patterns of codon usage. In most cases, the preferred 
specifier is the least preferred codon for the amino acid family. For example in the taxonomical order 
Bacillales, the Phe UUU codon is used in approximately 70% of cases for translation, but is present in 
only 1% of Phe T-box specifiers [42]. One possible hypothesis for the specifier-use bias could be 
attributed to T-boxes favoring interaction with a single tRNA species and disfavoring wobble base-
pairing. In the absence of tRNA with 5′-I (Inosine) anticodons, 3′-A and 3′-C anticodons are only decoded 
by a single tRNA species (5′-U and 5′-C anticodons), whereas 3′-G and 3′-U codons can be decoded by 
multiple tRNAs (5′-U/C and 5′-A/G anticodons). T-boxes likely co-evolved to be highly specific in their 
response towards a single tRNA species, which would have been made more difficult if specifier binding 
is made competitive with two (or more) tRNA species (Watson-Crick basepair vs wobble). Additionally, 
tRNAs with 5′-A anticodons are not prevalent in bacteria, as the U:G wobble-pair is the preferred 
mechanism for decoding 3′-U codons [43]. The consensus sequence of the 23,497 T-boxes 
(Supplementary Figure 10) revealed that 5’-NNC-3’ specifiers were preferred overall, being represented 
at 57.6% of T-box sequences with predicted specifiers.  

Distribution of T-boxes in TBDB by phyla 

A majority of the transcriptional T-box collection in TBDB primarily derives from gram-positive phylum 
Firmicutes (Figure 3) [44]. In particular, sequences in the Bacilli and Clostridia family, within the phylum 
Firmicutes, constitute the majority of T-box sequences. T-boxes with specifiers matching all the standard 
20 tRNA families are observed in Bacilli and Clostridia, and agrees with the prevailing notion that these 
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bacteria use T-boxes as primary regulators for controlling aminoacylation homeostasis. For non-
Firmicutes sequences in the TBDB, the diversity and distribution of T-box does not follow the trend 
within Firmicutes and likely reflect phyla specific usage and adaptation. The other major family 
represented in the TBDB collection are the Ile translational T-boxes derived from Actinobacteria. Overall 
the Ile, Trp, Leu, Met and Val families constitute 50% of the T-boxes in TBDB. The diversity of T-boxes 
in Firmicutes, and relative lack thereof in other phyla, brings to question their origins. The distribution of 
T-boxes in TBDB conforms to previous observations that T-boxes likely evolved in a common ancestor 
of Firmicutes and the Actinobacteria, the Chloroflexi, and the Deinococcus-Thermus (DT) group while 
potentially being distributed across other phyla through horizontal gene transfer (HGT) events [23].  

Conclusion  
As riboswitches, T-boxes were the first to be discovered but remain under characterized. Of the known 
>20,000 sequences, few have been tested for regulatory activity. Currently, T-box research is stymied by 
the necessity of secondary structure modeling to resolve which tRNA a given T-box binds.  Through a 
comprehensive compilation of sequence information, the TBDB increases access to T-box functional 
information. The TBDB has aggregated and processed over 23,000 T-box sequences in order to identify 
structural folds and tRNA binding partners. The TBDB aims to be an approachable hub for the riboswitch 
community and in future version aims to integrate well with experiments with both natural and 
engineered T-box riboswitches. As more experiments are being carried out in this area, additional feature 
annotations will become available - such as predictive models for tandem T-boxes and mutability of 
synthetic T-boxes.  
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Materials and Methods.  
 
Data collection and sequence curation. Transcriptional T-box leader sequences used to generate the 
database were obtained from a variety of primary sources including RFAM 14.0 database, RibEX 
database, GeConT3 database, and others [24,35–38]. Redundant sequences were removed from the input 
dataset before further processing. For T-box leader sequences that did not necessarily contain the 
terminator (RFAM and GeConT3 sequences) Entrez (NCBI) was used to extend sequences by 50 nt. 
Extended sequences were then subsequently trimmed to end in penta poly-U (3′-UUUUU). Sequences 
from these databases that were too short (<100 nt) or too long (>500 nt) were also removed. After 
structural prediction, sequences with INFERNAL scores under 15 were removed (Figure S11). Duplicate 
T-boxes were removed and a unique ID (TBID) was generated for each T-box. 

Structural prediction of T-box leaders and identification of specifier and T-box sequence. 
INFERNAL was used to predict the secondary structure of input sequences using the RFAM 14.0 T-box 
leader sequence covariance model (RF00230.cm) [34]. The secondary structure predicted by the 
covariance model was then used to predict T-box features. The first stem-loop in the secondary structure 
was assigned as Stem I. The last bulge within the Stem 1 structure was assigned as the specifier bulge. 
The specifier sequence was assigned as the bases 2-4 (inclusive) 5′- from the end of the Stem I specifier 
bulge (Figure S10C). The antiterminator was assigned as the last stem-loop predicted by the covariance 
model. The T-Box sequence was assigned as the first unpaired 5′-UGGN-3′ sequence within the 
antiterminator bulge, and the antidiscriminator base was assigned as the last base of this sequence. 

Detection of isoleucyl translational T-boxes. A set of 115 unique ileS leader sequences was generated 
by BLAST search using a set of 37 published ileS T-box sequences as inputs [8,24]. These sequences 
were aligned using mlocarna, and the multiple sequence alignment was manually annotated with 
secondary structure corresponding to the published structure of the Nocardia farcinica ileS T-box [17,45]. 
Next, INFERNAL was used to construct a covariance model while iteratively refining the alignment. The 
covariance model was then applied to search all NCBI reference genomes in the Actinobacteria phylum 
(TaxID:1760). The covariance model used to identify translational T-boxes is available in our repository 
(https://github.com/mpiersonsmela/tbox/blob/master/translational/translational_ILE.cm). Finally, features 
were annotated using the same method as for transcriptional T-boxes, except that the specifier loop was 
assigned as the Stem 1 hairpin loop. 

T-box structure refinement. The INFERNAL predicted secondary structure and sequence were 
processed to remove gaps and truncations. For each entry, truncations were filled from the corresponding 
FASTA sequence. Gaps in the aligned sequence and their corresponding structural characters in the dot-
bracket notation were removed. Pairs between nucleotides and gaps in the INFERNAL predicted structure 
were unpaired by removing the gap/bracket from the sequence/structure, respectively, and changing the 
paired bracket to a dot. Energetically unfavorable hairpin loops of 0, 1, or 2 nt were expanded into loops 
of 3 or greater. Antiterminator structures were further refined by 1) using the INFERNAL antiterminator 
structure as a soft constraint for RNAfold (ViennaRNA) and 2) using the discriminator and the 
nucleotides downstream of the antiterminator unpaired using hard constraints [33].  

The terminator region was found by searching for the first poly-U sequence (defined as a seven-
nucleotide region containing at least five U’s) starting 10 nt after the end of the antiterminator hairpin. 
Once this sequence was identified, RNALfold was used to generate a list of candidate terminator hairpins 
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between the discriminator region and the poly-U region. Next, this list was filtered to remove hairpins 
with stem length shorter than 6 nt, as well as hairpins ending more than 2 nt before the poly-U region. The 
terminator hairpin was chosen as the largest hairpin among this filtered list, and the energy was evaluated 
using RNAeval. If this search method failed, due to lack of a poly-U region or otherwise, a fallback 
method simply used RNAfold to find the minimum free energy structure of the sequence from the 
antiterminator start to the end of the T-box. Energies of terminators predicted by the fallback method 
were not included in analysis. Terminator energies were not predicted for translational T-boxes. 

Thermodynamic calculations. RNAeval (ViennaRNA) was used to calculate Gibbs free energy (MFE) 
of predicted secondary structures for terminator and antiterminator sequences [33]. The sequence and 
associated secondary structures starting at the antiterminator and ending at the poly-U if present were 
used to calculate ΔGanti (kcal/mol) and ΔGterm (kcal/mol). Calculations were performed at 37 °C with 
default settings, allowing GU pairing. The free energy change between terminator and antiterminator 
conformations for the T-box ΔΔGterm-anti was taken as the difference between ΔGterm and ΔGanti. 
Thermodynamic contributions from tRNA binding are not taken into consideration.  

Pairing T-boxes with putative cognate tRNAs. Top specifier sequence predictions were used to identify 
a putative tRNA family pair for each T-box. To find the sequence of cognate tRNA, Entrez (NCBI) was 
used to query for all genomic records of the T-box host organism. Genome sequences, either partial or 
full, were downloaded from RefSeq or GenBank. tRNAscan-SE (Lowe Lab, UCSD) was used to identify 
all possible tRNAs in each host organism. tRNAs with predicted anticodons matching the specifier were 
considered matches. For cases where more than one possible tRNA gene was possible, a single tRNA was 
chosen from among the matching tRNAs for display. tRNA visualization was generated using VARNA 
[31].  

Identification of downstream gene. The T-box NCBI accession was used to identify the genetic locus of 
the T-box within its host organism. An Entrez query for features 500 nt downstream of the T-box end was 
used to retrieve downstream gene/protein description, protein accession, and enzyme commission number 
if available. The protein accession was then used to obtain additional gene ontology information by 
querying the appropriate database (Uniprot, KEGG, ENA, or DDBJ). 

Prediction of T-box specifier sequence. The T-box specifier region was assigned as the 1-5 bp 
(inclusive) 5′- from the Stem I specifier bulge. In these five bases, three possible specifier reading frames 
(-1, +0, +1) were examined for meeting specifier-match criteria. For each possible specifier, we identify 
the putative tRNA family (by matching anticodon) that would bind. We then check to see if 1) the 
predicted tRNA family had a discriminator base that could base pair with the T-box sequence, with 
wobble allowed, and 2) if the predicted tRNA amino acid family matches the downstream gene ontology. 
In the case of predicted His T-boxes, discriminators were not used as a criterion for matching, as most 
mature tRNAHis transcripts have a paired discriminator base. For matching T-box sequence with tRNA 
discriminators, we first searched the host for all tRNAs of given tRNA family and identified which 
discriminator base that specific host used. In cases where we could not identify matching tRNAs in the 
host organism, the bacterial discriminator base frequency information was extracted from tRNAviz and 
utilized in the specifier prediction model [46].  The top specifier was then assigned as the specifier that 
met most of these conditions, equally weighted, with preference given in the following order: +0 > -1 > 
+1 specifier reading frames. In cases where more than one specifier was possible, the top specifier was 
assigned as mentioned but alternative specifier reading frames are also provided in TBDB.  
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Benchmarking specifier feature prediction. The feature-annotated T-box leader dataset from 
Vitreschak et al. was used to benchmark the pipeline for structure and feature prediction [24]. Of the 
initial 698 sequences from the curated input Vitreschak et al. dataset, INFERNAL was able to detect T-
box leaders in 694 sequences (99.5%). Of these, 621 (89.5%) scored high enough to match both specifier 
bulge and T-box sequence predictions. Our structure prediction pipeline was able to accurately predict 
589 of 621 specifier sequences (94.8%) from the Vitreschak et al. dataset [24]. In one additional sequence 
the appropriate specifier was found in the “-1” specifier frame (0.2%) and in 9 other sequences the correct 
specifier was found “+1” specifier frame (1.4%) (Supplementary Figure S10C). 22 sequences (3.5%) 
had specifier predictions that did not match the Vitreschak et al dataset predictions and include cases 
where specifier predictions were off by 2 or more nucleotide.  

Visualization of T-box structures. The MFE structure predictions of the refined terminator and 
antiterminator structures were combined with the INFERNAL prediction structure of the Stem I, Stem III, 
and other regions, if present [34]. VARNA was used to convert structures from dot-bracket notation to 2D 
flat image representation [31].  

Data availability. The TBDB is free to access and does not require user registration to use. The database 
is accessible to browse at https://tbdb.io. All data used to generate TBDB can be accessed for download at 
https://tbdb.io/download. The full pipeline used to generate entries in TBDB (from FASTA to TBDB 
entry) is available to download in our repository (https://github.com/mpiersonsmela/tbox/). Additionally, 
a site repository is also available that contains the front-end of the website.  

Acknowledgements. Funding for this work was provided by U.S Department of Energy grant DE-FG02-
02ER63445. Merrick Pierson Smela was supported by an NSF graduate research fellowship. We thank 
Alex Mijalis, Devon Stork, Erkin Kuru, Anush Chiappino-pepe, and John Aach for their feedback on the 
database and manuscript.  

Author contributions. Project conceptualization, KN and JAM; Source code, MPS, JAM and THHJ; 
Database creation JAM and MPS; Data analysis: JAM, MPS, KN and THHJ; manuscript writing and 
editing, JAM and KN with assistance from MPS and THHJ; Supervision, KN, JAM and GMC. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.157016doi: bioRxiv preprint 

https://tbdb.com/
https://tbdb.io/download
https://github.com/mpiersonsmela/tbox/
https://doi.org/10.1101/2020.06.17.157016
http://creativecommons.org/licenses/by-nc/4.0/


11 

Fig 1. T-box riboswitches are cis-regulatory elements that use tRNA as a ligand. T-boxes control 
translation or transcription of downstream genes. When uncharged cognate tRNA binds the T-box, 
transcription or translation can proceed through stabilization of the antiterminator/antisequestrator 
structures. If charged cognate tRNA binds the T-box, a terminator/sequestrator secondary structure forms 
preventing transcription or translation of downstream gene. A) An archetypal “two-state” conformational 
switch of a transcriptional T-box is shown with structural features labeled: I = stem I; IIA = stem IIA; IIB 
= stem IIB; III = stem III; AT = antiterminator; T = terminator; Spec = specifier loop (blue); T-box = T-
box sequence (gray). B) Watson-Crick base pairing between T-box and tRNA in two critical regions 
dictate T-box specificity: (i) Specifier:anticodon base pairing dictates tRNA ligand binding while (ii) T-
box:acceptor arm base pairing controls regulatory logic.  
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Fig 2. Flow diagram - Construction of TBDB. T-box structures were predicted from input sequences 
using INFERNAL and RNAfold (Vienna RNA) [33,34]. T-box features (specifier sequence and T-box 
sequence) were extracted from structural predictions. For input sequences where genomic information 
was not provided, BLAST (NCBI) was used to identify genetic locus within host. Entrez (NCBI) queries 
were used to compile all genomic sequence records of T-box host organisms including genes found 
downstream of T-box input sequences. tRNAscan-SE was run on all genomes to find tRNAs in the hosts 
with antiterminator sequences that are reverse complements of T-box specifier sequences. Predicted, 
structures were refined using ViennaRNA. Refined structures, with predicted features, were visualized as 
2-D representations using VARNA. Minimum free energy (MFE) calculations were performed using 
ViennaRNA on refined terminator and antiterminator structures.  
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Table 1.  Specifier usage table based on “Top” specifier predictions for T-box leader sequences in the 
TBDB. Frequency given on an amino acid basis for the entire sequence collection in TBDB.  
 
SPEC AA FREQ  SPEC AA FREQ  SPEC AA FREQ  SPEC AA FREQ 
AAA K 0.87  AGA R 0.24  ACA T 0.13  AUA I 0.01 

AAG K 0.13  AGG R 0.04  ACG T 0.01  AUG M 1.00 

AAC N 0.98  AGC S 0.09  ACC T 0.60  AUC I 0.99 

AAU N 0.02  AGU S 0.01  ACU T 0.25  AUU I 0.01 

               
GAA E 0.88  GGA G 0.17  GCA A 0.18  GUA V 0.61 

GAG E 0.12  GGG G 0.04  GCG A 0.01  GUG V 0.02 

GAC D 0.94  GGC G 0.77  GCC A 0.09  GUC V 0.29 

GAU D 0.06  GGU G 0.02  GCU A 0.72  GUU V 0.08 

               
CAA Q 0.95  CGA R 0.01  CCA P 0.16  CUA L 0.02 

CAG Q 0.05  CGG R 0.08  CCG P 0.10  CUG L 0.07 

CAC H 0.95  CGC R 0.52  CCC P 0.14  CUC L 0.77 

CAU H 0.05  CGU R 0.12  CCU P 0.60  CUU L 0.11 

               
UAA * 0.00  UGA * 1.00  UCA S 0.06  UUA L 0.01 

UAG * 0.00  UGG W 1.00  UCG S 0.03  UUG L 0.02 

UAC Y 0.99  UGC C 1.00  UCC S 0.65  UUC F 0.99 

UAU Y 0.01  UGU C 0.00  UCU S 0.16  UUU F 0.01 
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Fig 3. Composition of TBDB by phyla and T-box family. TBDB contains 23,497 T-box sequences 
from 3,621 different species. The majority of sequences (20,683) in our collection originate from the 
phyla Firmicutes. T-boxes shown are displayed in decreasing order of abundance in the TBDB collection, 
with Ile being the most commonly represented and Glu the least. Phyla were clustered by hierarchical 
clustering using binary distance metric from the Superheat R package [47]. Heatmap displays abundance 
(total number) of individual T-box families for each phyla in our TBDB collection, using a log10 scale to 
visualize low abundance distribution. 
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Supplementary Results and Discussion  
 
Table S1. Sequence composition of the T-box Database  
A) Composition of T-box database by tRNA family.  

tRNA family  # Sequences 
# Sequences  
(w/ tRNA) 

ALA 759 159 

ARG 706 321 

ASN 753 635 

ASP 510 451 

CYS 878 836 

GLN 226 217 

GLU 51 43 

GLY 556 523 

HIS 476 425 

ILE 3320 2769 

LEU 2099 1481 

LYS 171 158 

MET 1951 1783 

SUP 9 0 

PHE 1483 1321 

PRO 837 314 

SER 1225 895 

THR 1430 1023 

TRP 2337 2133 

TYR 1393 1266 

VAL 1642 1331 

NONE 685 0 
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B) Composition of T-box database by predicted specifier sequence. ‘SPEC’ column indicates 
predicted specifier sequence (5′-3′), ‘SEQ’ shows total number of sequences with predicted specifier in 
the TBDB, and ‘w/ tRNA’ shows the number of sequences where tRNAscan-SE found a matching tRNA 
in the host genome.  

SPEC SEQ w/tRNA SPEC SEQ w/tRNA  SPEC SEQ w/tRNA  SPEC 

AAA 148 137 CAA 215 209 GAA 45 42 UAA 0 0 
AAC 739 635 CAC 453 425 GAC 477 451 UAC 1382 1266 
AAG 23 21 CAG 11 8 GAG 6 1 UAU 11 0 

AAU 14 0 CAU 23 0 GAU 33 0 UAG 0 0 

            
ACA 188 175 CCA 132 124 GCA 137 92 UCA 72 55 

ACC 865 799 CCC 120 105 GCC 71 66 UCC 799 729 
ACG 18 4 CCG 81 68 GCG 4 1 UCG 37 11 
ACU 359 45 CCU 504 17 GCU 547 0 UCU 198 0 

            
AGA 167 154 CGA 4 1 GGA 95 93 UGA 9 0 
AGC 105 100 CGC 367 5 GGC 430 420 UGC 877 836 

AGG 27 24 CGG 56 54 GGG 20 10 UGG 2337 2133 
AGU 14 0 CGU 85 83 GGU 11 0 UGU 1 0 

            
AUA 17 0 CUA 33 28 GUA 1002 873 UUA 26 23 
AUC 3286 2769 CUC 1622 1228 GUC 482 447 UUC 1463 1321 
AUG 1951 1783 CUG 153 122 GUG 32 11 UUG 37 36 

AUU 17 0 CUU 228 44 GUU 126 0 UUU 20 0 

 
C) Composition of T-box database by 3′-base of predicted specifier sequence.  

Specifier # Sequences 
# Sequences 
(w/ tRNA) % 

NNA 2290 2006 87.6% 

NNU 2191 189 8.6% 

NNC 13538 11602 85.7% 

NNG 4793 4287 89.4% 
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Table S2.  Summary of RNA folding energies for sequences in the database. Mean and standard 
deviation ΔGanti, ΔGterm, ΔΔGterm-anti for all sequences in the database, grouped by tRNA family 

 ΔGanti (kcal/mol) ΔGterm (kcal/mol) ΔΔGterm-anti (kcal/mol) 

tRNA family  μ σ μ σ μ σ 

ALA -7.1 2.2 -16.2 7.5 -9.1 6.7 

ARG -5.9 2.2 -17.4 5.4 -11.5 4.4 

ASN -7.2 2.2 -20.0 6.3 -12.9 5.6 

ASP -7.5 2.6 -19.8 7.7 -12.6 6.6 

CYS -5.7 1.8 -19.1 5.5 -13.5 5.3 

GLN -8.1 2.8 -21.8 5.8 -13.6 5.0 

GLU -6.9 1.8 -19.5 5.7 -12.8 4.8 

GLY -9.1 2.9 -24.1 12.0 -15.0 10.5 

HIS -6.1 2.4 -20.0 5.2 -13.9 4.6 

ILE -11.1 7.9 -19.2 10.2 -12.2 8.2 

LEU -8.0 3.1 -20.5 7.3 -12.5 6.2 

LYS -7.4 2.2 -21.0 5.9 -13.6 4.8 

MET -5.8 2.8 -20.4 6.9 -14.7 6.8 

PHE -6.7 2.3 -17.4 5.7 -10.7 5.5 

PRO -7.1 2.0 -19.1 6.3 -12.1 5.9 

SER -7.4 2.2 -19.2 6.8 -11.8 6.4 

THR -6.8 2.5 -19.4 5.7 -12.6 5.1 

TRP -6.7 2.5 -19.9 6.4 -13.4 6.1 

TYR -6.6 2.0 -18.5 5.2 -12.0 5.0 

VAL -5.5 2.3 -18.6 8.2 -13.1 6.9 
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Fig S1. The TBDB interface – Database table. A) Entries into the TBDB are searchable by a variety of 
fields including sequence, specifier, tRNA family, amino acid family, discriminator bases, and 
downstream protein. B) The T-box column displays name of T-box by TBDB unique ID. Clicking on an 
individual ID brings users to a T-box entry page, where additional information is displayed. C) The ‘Host 
Organism’ column displays species from which the T-box input sequence was obtained from. D) Clicking 
on genomic accession in the ‘Accession’ column brings users to an NCBI genetic locus entry page for a 
T-box. E) The ‘Specifier’ column shows predicted specifier sequence (5′-3′) for given T-box. F) The 
‘discriminator’ column shows the T-box sequence, or anti-acceptor arm. G) ‘tRNA Family’ indicates the 
type of tRNA, alongside the corresponding amino acid, with anticodon matching the specifier sequence. 
H) A description of the protein found downstream of the T-box is provided in the ‘Downstream protein’ 
column.  
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Fig S2. The TBDB interface – Entry title and source information. A) Entries into the TBDB are titled 
using the TBDB unique ID. B) A brief description of the T-box is also provided, and includes tRNA 
family displayed as amino acid (anti-codon), and host organism where T-box input sequence was found. 
C) The ‘Source Information’ panel provides a summary of important T-box features.  
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Fig S3. The TBDB interface – Genomic context viewer. An integrated NCBI graphical display of T-
box genomic region can be used to interrogate genes or operons controlled by T-box riboswitches from 
host organism. Here, a Trp T-box is shown upstream of a tryptophan biosynthesis operon. A) Browsing 
menu allows users to change a variety of settings for the NCBI graphical viewer. B) T-box input sequence 
is highlighted in blue, with arrows indicating the direction, (+) or (-) strand of T-box transcription. C) 
Genomic region is shown as the top gray bar, with numbers indicating genomic locus. D) Genes are 
provided in the center panel and are annotated as provided by NCBI.  
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Fig S4. The TBDB interface – T-box FASTA sequence. The FASTA sequence of T-box, starting from 
Stem I and ending at the terminator, is provided as a panel. Sequence header uses the TBDB unique ID.  
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Fig S5. The TBDB interface – Predicted secondary structure visualization. Secondary structures for 
T-boxes, as predicted by folding and refinement, are provided as dot-bracket structures for antiterminator 
and terminator. The dot-bracket representations can be used alongside the FASTA sequence provided in 
the “Full T-box FASTA sequence” panel to generate custom 2-D representations of T-boxes. Headers use 
TBDB unique ID for each T-box. A) Two secondary structure representations are provided, if available, 
for each T-box sequence. For transcriptional T-boxes, the ‘Antiterminator’ option shows the 
antiterminator fold while the ‘Terminator’ option shows the terminator fold representation. Sequences are 
displayed using VARNA flat representation for B) antiterminator and C) terminator conformations. Gaps 
are inserted after the Stem I structure to improve clarity of display and prevent overlaps between the 
stem-loops in visualization. Important features are highlighted as follows: Stem I (light yellow), specifier 
bases (orange), antiterminator (light blue), anti-acceptor arm (blue), and terminator (red). Note that 
terminator representations are not displayed for sequences where local fold using ViennaRNA failed to 
find an MFE terminator structure.  
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Fig S6. The TBDB interface – tRNA scan results. Results from tRNA scan for a matching tRNA from 
host organism are provided in the ‘tRNA prediction’ panel. tRNAscan-SE was used on the host organism 
to identify tRNA with anticodons matching the specifier sequence of the given T-box. A) The sequence 
and structure, in dot-bracket notation, for the top tRNA match is shown. FASTA header displays tRNA 
family and host organism. If no tRNA was found in the host, a null result will be displayed. If there was 
ambiguity in deciding the reading frame, results for alternative reading frames are also displayed. B) For 
T-boxes where a matching tRNA from native host was found, secondary structure is displayed as a 2-D 
VARNA generated image.  
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Fig S7. The TBDB interface – MFE predictions. Gibbs free energies from MFE predictions (Vienna 
RNA) are provided for A) antiterminator structure, B) terminator structure. C) Displays the difference in 
MFE between terminator and antiterminator conformations.    
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Fig S8. The TBDB interface – INFERNAL prediction output. Information used to predict T-box 
structures using INFERNAL is provided in the ‘Infernal T-box prediction output’ panel [34]. A) 
INFERNAL quality score metrics (E-Value, score, bias, and covariance model accuracy (CM)) are 
provided. B) Feature identification output, using input sequence of T-box, gives the position information 
for Stem I, antiterminator, terminator, and specifier. All stems found using the INFERNAL model are 
provided as ‘All Stems’. Loci are shown in [index start, index end] format. C) Input sequence (as obtained 
from source database) that was used for T-box predictions is shown in FASTA format. Header indicates 
host organism genomic accession with locus start-end. D) INFERNAL output sequence is provided in 
FASTA format, as well as E) INFERNAL output structure.  
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Fig S9. Distribution of minimum free energy structures in the TBDB.. A) Distribution of sequences 
by Gibbs free energy of folding for antiterminator structure (ΔGanti , kcal/mol). B) Distribution of 
sequences by Gibbs free energy of folding for terminator structure (ΔGterm , kcal/mol).  C) Distribution of 
sequences by change in Gibbs free energy between terminator and antiterminator conformation (ΔΔGterm-

anti , kcal/mol). D) Density plots showing distributions for change in Gibbs Free Energy (ΔΔGterm-anti) for 
T-boxes, sorted by tRNA family.  
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Fig S10. Consensus sequence and structure for T-box and tRNA families in the TBDB. A) T-box 
consensus sequence from the TBDB with important structural features highlighted. Specifier sequence is 
highlighted in blue, while the T-box sequence is highlighted in green. B) Consensus tRNA sequence for 
tRNAs that match with T-boxes in the TBDB. Anticodon is highlighted in blue, while the acceptor arm is 
highlighted in green. Sequences and structures were generated using cmalign and trimmed using trimal 
[48]. ‘N’ bases are shown where no base was present in >50% of sequences. C) Three specifier reading 
frames within the specifier bulge are considered in model decision.    
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Fig S11. INFERNAL score density plot for sequences in the TBDB.  
The INFERNAL score is a measure of how well the sequence matches the covariance model and 
corresponds to the log-odds ratio of the hit sequence relative to random sequence. Sequences scoring <15 
(equivalent to an E-value of >0.05) were removed from the database. 
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