
 

NUMT dumping: validated removal of nuclear pseudogenes 
from mitochondrial metabarcode data  

 

 
Andújar, C1., Creedy, T. J.2, Arribas, P1., López, H1., Salces-Castellano, A1., Pérez-Delgado, A1., 
Vogler, A. P.2,3 & B. C. Emerson1

 

 

1. Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-
CSIC), San Cristóbal de la Laguna, Spain 
2. Department of Life Sciences, Natural History Museum, London, UK 
3. Department of Life Sciences, Imperial College London, Ascot, UK 

 

* Corresponding author: Carmelo Andújar. Email: candujar@ipna.csic.es; candujar@um.es;  

 

Key words: Metazoa, NUMT, pseudogene, spurious sequences, denoising, NGS, HTS, intraspecific 
variation, taxonomic inflation. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 

1. Metabarcoding of Metazoa using mitochondrial genes is confounded by the co-amplification of 

mitochondrial pseudogenes (NUMTs). Current denoising protocols have been designed to remove 

PCR and sequencing artefacts, but pseudogenes are not usually recognised by these procedures. 

Authentic mitochondrial amplicon sequence variants (ASVs), which represent the majority of reads, 

can be distinguished from PCR-derived errors, sequencing errors and NUMTs (non-authentic ASVs) 

due to their lower abundances. However, the use of simple read abundance thresholds is complicated 

by the highly variable DNA contribution of individuals in a metabarcoding sample. 

2. We show how ASVs that survive standard denoising, but are identified as non-authentic, are 

consistent with expectations for NUMTs with regard to patterns of phylogenetic relatedness, read-

abundance, and library co-occurrence. We then propose and demonstrate a new self-validating 

framework, named NUMT dumping, which allows NUMT filtering strategies to be evaluated by 

quantifying (i) the prevalence of non-authentic ASVs (NUMT and erroneous sequences) and (ii) the 

collateral effects on the removal of authentic ASVs (mtDNA haplotypes) in filtered data. We 

propose several filtering strategies within the NUMT dumping framework, based on the application 

of read-abundance thresholds, structured with regard to sequence library and phylogeny.  

3. The framework was validated using mock and natural communities, both of which showed 

opposing trends for the removal of authentic and non-authentic ASVs, when threshold values for 

minimum abundance to filter out sequences were increased. Filtering can be optimized to retain less 

than 5% of non-authentic ASVs while retaining more than 89% of authentic mitochondrial ASVs, or 

complete removal of non-authentic ASV with 77% of authentic mitochondrial ASVs retained.  

4. We provide a program, NUMTdumper, that can be used to evaluate and decide upon the most 

adequate metabarcoding filtering strategy for specific research objectives, providing a measure of 

expected prevalence of non-authentic ASVs in metabarcoding datasets. In addition, this evaluation 
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allows the user to quantify effects of taxonomic inflation when ASVs are clustered into OTUs. It 

improves the reliability of intraspecific genetic information derived from metabarcode data, opening 

the door for community-level genetic analyses requiring haplotype-level resolution. 
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1 | INTRODUCTION 

Bulk DNA amplification and high-throughput sequencing (HTS) of biological samples, known as 

metabarcoding (Taberlet et al. 2012), is becoming an established tool for the study of biodiversity 

(e.g., Hamady, Walker, Harris, Gold, & Knight, 2008; Yu et al., 2012). However, sequencing noise, 

inherent to metabarcoding, blurs the precision of metabarcoding to quantify intraspecific genetic 

variation. Consequently, sequencing reads are frequently grouped into Operational Taxonomic Units 

(OTUs) that broadly represent species, thus collapsing the fine-scale variation that would be needed 

to assess intraspecific diversity. Tools for filtering spurious sequences from authentic genomic 

sequences present in a sample, i.e. amplicon sequence variants (ASVs; Callahan, McMurdie & 

Holmes 2017), potentially allow direct analysis without the need for OTU clustering, resulting in 

improved resolution, reusability and reproducibility of metabarcoding data (Callahan, McMurdie & 

Holmes 2017). However, while existing denoising approaches efficiently remove sequences arising 

from PCR artefacts, sequencing error and chimera formation, many spurious sequences remain (e.g., 

Elbrecht et al. 2018). 

Denoising methods such as UNOISE (Edgar 2016), DADA2 (Callahan et al. 2016) and 

Deblur (Amir et al. 2017) remove sequencing errors, assuming that erroneous sequences are very 

similar to authentic haplotypes, but showing lower abundances and/or lower quality scores of base 

calls. The use of these methods for haplotype level community analyses has been implemented 

primarily in bacterial metabarcoding pipelines (e.g., Caruso et al. 2019), although erroneous 

sequences partly persist even after denoising (Nearing et al. 2018). In Metazoa, ASV-level 

metabarcoding has been used for haplotype matching against reference sequences (e.g. Corse et al., 

2017; Thomsen & Sigsgaard, 2019). Only one study to date explored the use of ASVs for community 

analysis but revealed a high proportion of unexpected sequences in mock communities with known 

haplotype composition (Elbrecht et al. 2018). Similarly, a higher than expected number of OTUs (so-
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called OTU inflation) is common in metazoan metabarcoding (e.g., Flynn et al. 2015; Clare et al. 

2016), even if denoising is followed by filtering and clustering steps (e.g., Andújar et al., 2018).  

The unexpected diversity in denoised metabarcode datasets may be derived from 

mitochondrial insertions into the nuclear genome, i.e. “nuclear mitochondrial” sequences (NUMT; 

Lopez et al. 1994) as has been recently suggested (Elbrecht et al. 2018; Liu et al. 2019). NUMTs 

have been found in most eukaryotes (Bensasson et al. 2001; Richly & Leister 2004), and insertions 

may occur repeatedly and thus accumulate in the nuclear genome throughout the evolutionary history 

of a lineage (e.g., Hazkani-Covo, Sorek & Graur 2003; Pons & Vogler 2005). For example, more 

than 700 NUMTs have been identified in the human genome, ranging in size from a mere 38 bp to 

nearly-complete mitogenomes (Ramos et al. 2011), with some insertions estimated to have occurred 

as much as 58 million years ago (Bensasson, Feldman & Petrov 2003). Once inserted into the nuclear 

genome, rates of nucleotide substitution, insertion and deletion may be relatively high due to the 

absence of selective forces, while placement in genomic regions characterised by low mutation rates 

may result in the retention of pre-insertion ancestral states (Bensasson et al. 2001). Thus, some 

NUMTs will be easily detected based on frameshifts, in-frame stop codons or mutational patterns 

inconsistent with functional genes, but others will have no obvious features to distinguish them from 

a mitochondrial copy, as has been documented in DNA barcoding studies (Song et al. 2008; 

Shokralla et al. 2014; Creedy et al. 2020). Among the latter, some will be minor variants of authentic 

mitochondrial sequences, thus resembling sequencing errors that may be removed by existing 

denoising software, or clustered within OTUs when intraspecific variation is not the object of 

investigation. However, other divergent NUMTs will retain their functional structure as ancestrally 

“frozen” pseudogenes (Bensasson et al., 2001) and result in an overestimation of species-level 

entities and haplotype diversity in DNA barcoding and metabarcoding studies (Song et al. 2008). 

As a first step to quantify the problem of NUMT co-amplification in metabarcoding, we use 

several lineages of arthropods to establish the patterns of co-occurrence, relative abundance, and 
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phylogenetic relatedness of ASVs that may constitute a mixture of authentic mitochondrial 

haplotypes and their associated NUMTs. This analysis suggested the possibility to apply certain rules 

for filtering NUMTs based on read abundance relative to presumed authentic haplotypes found in the 

same sample or in clades of close relatives. This is exploited in a framework for optimal selection of 

ASV filtering, which we call NUMT dumping, which weighs the removal of presumed NUMTs and 

erroneous sequences against the undesirable removal of authentic haplotypes. Modifications in the 

criteria for filtering will alter these proportions, facilitating the identification of optimal parameters 

according to the characteristics of target taxa, target genes, and research objectives.  

To facilitate NUMT dumping, we provide the NUMTdumper software that integrates several 

read-abundance filtering strategies designed to eliminate NUMTs. Copy number of NUMTs 

integrated in the nuclear genome is lower than mitochondrial genomes by a factor of 100 to 10000, 

depending on taxa, cell type and tissue (Bogenhagen 2012; Quiros et al. 2017), which should be 

reflected in lower relative abundances of sequence reads. However, in complex metabarcoding 

mixtures setting high threshold values for the minimum number of reads required to retain a 

particular gene copy carries the risk that rare but authentic mitochondrial haplotypes in the mixture 

may also be removed. Vice versa, a conservative threshold may be too low, such that many spurious 

sequences are not removed. Furthermore, different phylogenetic lineages may show different rates of 

relative NUMT incidence, so a particular threshold may remove NUMTs from one clade, while 

removing authentic sequences from another.  

NUMTdumper integrates several read-abundance filtering strategies designed to balance the 

competing demands of removal of NUMTs and retention of mitochondrial reads by applying 

abundance thresholds not over an entire dataset, but to the sequences within individual ecological 

samples (frequently represented by individual sequencing libraries) and/or within lineages defined by 

sequence similarity or taxonomic ranks, and providing a measure of prevalence of both authentic and 

non-authentic sequences in the final dataset. We propose that NUMTdumper should be of general 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


utility to metazoan metabarcoding, allowing comprehensive evaluation and validation of optimal 

filtering strategies and thresholds according to specific research objectives.  

 

2 | MATERIALS AND METHODS 

2.1 | The NUMT dumping framework 

The NUMT dumping rationale is based on the prevalence of NUMTs and erroneous sequences 

versus authentic haplotypes, which is evaluated for a range of NUMT filtering strategies (and a range 

of parameters or threshold values for each strategy). Filtering strategies can be designed to consider 

read-abundance by dataset, library, or lineage (as a proxy for phylogenetic relatedness). This 

evaluation allows users to decide upon the most adequate metabarcoding filtering parameters while 

providing a measure of the expected number of NUMTs and erroneous sequences in the final dataset. 

It comprises two main steps: 

1. Classification of ASVs. Our starting point is a dataset of ASVs, each of which should 

exclusively belong to one of two categories: (i) authentic ASVs (a-ASVs) that correspond to actual 

mitochondrial copies, and (ii) non-authentic ASVs (na-ASVs) that are either sequencing artefacts or 

NUMTs. Evaluation of NUMT dumping performance relies on the ascertainment of a subset of 

ASVs that can be confidently considered as authentic sequences (designated as verified-authentic-

ASVs; va-ASVs) or non-authentic (designated as verified-non-authentic-ASVs; vna-ASVs). va-

ASVs can be identified by BLAST searches against reference databases requiring a perfect match (-

perc_identity 100), under the assumption that references are valid mtDNA COI sequences. Any ASV 

that includes indels and/or stop codons in the translation rendering it non-functional is designated as 

a vna-ASV. We consider all other ASVs to be unclassified-ASVs (u-ASVs). Improvements in the 

confident classification of ASVs as va-ASVs or vna-ASVs, such as the availability of improved 

reference databases, will benefit NUMT dumping.  
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2. Data filtering and evaluation of filtering performance. ASV datasets are subject to filtering 

procedures with the aim of removing na-ASVs while retaining a-ASVs. Filtering automatically 

generates data on the survival of va-ASV and vna-ASV. The application of a given filtering criterion 

(e.g. minimum number of reads by library required to retain an ASV) for a range of values for 

filtering parameters allows trends for the survival of va-ASV and vna-ASV to be analysed. Here we 

implement five different filtering strategies based on read abundances with increasing threshold 

values, and also evaluate the synergistic effect of using two simultaneously (see below). Additional 

methods and more complex models can potentially be incorporated into and evaluated within the 

NUMT dumping framework. 

In addition to obtaining values for the survival of va-ASV and vna-ASV, for each filtering 

exercise the number of (i) a-ASVs in the initial ASV dataset; (ii) surviving a-ASVs in the filtered 

dataset; (iii) na-ASVs in the initial dataset, and; (iv) surviving na-ASVs in the filtered dataset can be 

estimated. These estimations are made from the known values of (i) the number of ASVs in the 

initial dataset and the number of ASVs retained after filtering and (ii) the proportion of retained va-

ASVs and vna-ASVs, under the assumption that va-ASVs and vna-ASVs are a representative subset 

of all a-ASVs and na-ASVs respectively in the initial dataset. This assumption implies that (i) the 

ratio between the number of va-ASVs before and after filtering will be similar and can be 

extrapolated to the ratio between a-ASVs before and after filtering, and (ii) the ratio between the 

number of vna-ASVs before and after filtering will be similar and can be extrapolated to the ratio 

between all na-ASVs before and after filtering.  

Then, we can estimate the total number of surviving a-ASVs a using the formula:
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 Where Av and av are the numbers of initial and surviving va-ASVs, Nv and nv are the numbers 

of initial and surviving vna-ASVs and T and t are the total number of initial and surviving ASVs. 

From this, we can also calculate the estimated total number of surviving na-ASVs n and the total 

number of initial a-ASVs and na-ASVs (A and N) (formula derivation in Supplementary Materials). 

 To facilitate the application of NUMT dumping, the workflow has been implemented in 

NUMTdumper, written in Python3, with some aspects in R. The python code draws heavily on the 

BioPython libraries, as well as numpy, itertools, csv and argparse. The R code makes use of libraries 

ape (Paradis, Claude & Strimmer 2004), phangorn and getopt. The current version of the software 

(v1.0) allows the user to (i) classify ASVs as va-ASVs and vna-ASVs, (ii) apply the five alternative 

filtering criteria we provide with customized parameter ranges, facilitating the analysis of trends in 

survival of va-ASVs and vna-ASVs, and (iii) estimate the number of surviving a-ASV and na-ASVs 

for each filtering criterion and parameter range explored, using the formula and assumptions 

described above. Further details on the application of the software are provided in the Supplementary 

Materials and software tutorial. The software is available at 

https://github.com/tjcreedy/NUMTdumper. 

 

2.2 | Empirical application of NUMTdumper 

2.2.2 | Datasets 

Three existing COI metabarcoding datasets were used, originating from: (i) 780 individually 

metabarcoded bees (BEE dataset; Creedy et al. 2020) which were used for current purposes to 

generate 50 in silico mock communities of 100 individuals drawn from a subset of 462 confidently 

identified specimens; (ii) 94 Coleoptera communities from soil samples from the island of Tenerife 

(COL dataset) (Andújar et al. in prep), and (iii) 48 communities of Coleoptera, Acari and Collembola 

from soil samples from Grazalema, southern Spain (CAC dataset) (Arribas et al. in prep) (Suppl. Fig. 
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S1). The three datasets were generated using a nested PCR approach with Nextera XT indexes. In all 

cases, initial amplification was performed using degenerate primers for 418 bp of the 3’ end of the 

COI barcode region (Andújar et al. 2018a). 

To ensure uniform treatment of datasets, raw sequence reads were re-processed following a 

uniform protocol including primer removal, paired end merging, quality filtering, length filtering for 

reads ranging between 416-420 bp (the expected 418 bp amplicon ± 2 bp), followed by denoising by 

library with the –unoise3 command in Usearch v11 (Edgar, 2016). The last step included chimera 

checking, dereplication, and removal of all singleton reads which were not considered further. Final 

datasets included reads surviving the cleaning and denoising steps and are referred to as ASVs. For 

BEE, COL and CAC datasets respectively only ASVs assigned to Apoidea, Coleoptera, and 

Coleoptera, Acari, or Collembola were retained. To perform this selection, we generated a reference 

database comprised of (i) the NCBI nt database (downloaded 17 June, 2018) combined with (ii) 

1,011 additional reference COI sequences from Coleoptera, Acari and Collembola specimens 

collected in the Canary Islands and Sierra de Grazalema. For each of the three datasets, searches 

against the reference database were performed using the BLASTn algorithm (Altschul et al. 1990), 

with the following settings: outfmt 5, -evalue 0.001, -max_target_seqs 100. Blast results were then 

processed with MEGAN6 (Huson et al. 2016), using the weighted lowest common ancestor 

algorithm to assign taxonomy to ASVs.  

 

2.2.3 | Phylogenetic assignment of va-ASVs and vna-ASVs 

Phylogenetic analysis of ASVs was conducted for four lineages to explore the extent of NUMT co-

amplification. We used three species within the genera Halictus (Hymenoptera; Apoidea) from the 

BEE dataset, and the genus Cryptocephalus (Coleoptera: Chrysomelidae) from the COL dataset. A 

ML tree was first estimated for all ASVs from across all libraries for each dataset, with the aim of 
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identifying the clade of ASVs corresponding to the target taxa. All relevant ASVs were extracted, 

but for logistical purposes related to dataset size and graphical representation, ASVs with a read-

count of less than five were excluded from each library and in the case of Cryptocephalus, only the 

largest 10 libraries (>1000 reads within the Cryptocephalus lineage) were represented. 

Classification as va-ASVs and vna-ASVs for the COL dataset was by query against the 

reference database described above using BLASTn (-perc_identity 100). For the BEE dataset, va-

ASV were those matching the authentic haplotype that was known for all the 462 individuals 

included, and any ASV that included indels and/or stop codons in the translation was designated as 

vna-ASV. All others were considered unclassified u-ASVs. We used maximum-likelihood (ML) 

phylogenetic analysis to establish relationships of the ASVs within each lineage, and mapped ASV 

distributions and read abundances against each library using Cytoscape (Shannon et al. 2003). ML 

inferences were conducted in RAxML (Stamatakis 2006) with 100 searches for the best tree 

(GTR+G+I model) and 1000 bootstrap pseudoreplicates. In addition, a species delimitation analysis 

was conducted on the ML tree using bPTP (Zhang et al. 2013) on the bPTP web server 

(https://species.h-its.org/) with 100,000 generations and a burn-in of 10%. 

 

2.2.4 | Application of NUMTdumper 

We applied NUMTdumper to each dataset to evaluate the effects on the survival of a-ASVs and na-

ASVs under a range of threshold values for different filtering strategies based on read-abundance of 

ASVs, structured with regard to sequence library and phylogeny. In all cases, thresholds were 

applied by library, and a given ASV was only excluded if it did not pass the read-abundance 

threshold in all libraries where it was present. The five filtering strategies tested were: (i) Absolute 

ASV abundance by library. ASVs were filtered setting a minimum threshold of read-abundance in a 

given library, with threshold values between 3 and 100 reads. (ii) Relative ASV abundance by 
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library. ASVs were filtered based on a minimum proportion of read-abundance relative to the total 

number of reads in that library, with threshold values between 0.025% to 1%. (iii) Relative ASV 

abundance by library and 20% clade. ASVs were filtered based on a minimum read proportion 

relative to the total number of reads within clades that are divergent by more than 20%, within which 

an ASV is included. Read abundance thresholds from 0.1% to 90% were explored. (iv) Relative ASV 

abundance by library and 15% clade. (v) Relative ASV abundance by library and 26% clade. To 

identify clades used for criteria (iii) to (v), a UPGMA tree of all ASVs was constructed using F84 

model-corrected distances (Felsenstein & Churchill, 1996) based on a MAFFT FFT-NS-2 alignment 

(Katoh et al. 2002) of the ASV sequences. Clades were delimited based on a specified divergence 

threshold within these trees. As an alternative, NUMTdumper also allows for clade assignation based 

on taxonomic identity of the ASVs (externally designated), which allows for filtering within custom 

defined taxonomic ranks (e.g., when multiple phyla are present in the dataset, each ASV could be 

assigned to a phylum). 

 Potential synergy among criteria for removal of na-ASVs while maximizing the survival of a-

ASVs was evaluated for the COL dataset, by applying a combination of two of the following criteria: 

(i) absolute ASV abundance by library, (ii) relative ASV abundance by library, and (iii) relative ASV 

abundance by library and 20% clade. Only ASVs surviving the separate application of both criteria 

were retained. 

 Finally, using the COL dataset we explored how ASV survival and removal affect: (i) the 

number of OTUs recovered under similarity thresholds for OTU clustering of 3% and 6%, (ii) the 

number of surviving OTUs that include one or more va-ASV and consequently can be considered as 

verified authentic OTUs, and (iii) the number of surviving OTUs that exclusively comprise vna-

ASVs and consequently can be considered as verified non-authentic OTUs. The latter contribute to 

taxonomic inflation. Similarity clusters were obtained using distances estimated with the F84 model 

and a UPGMA tree as before.  
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3 | RESULTS 

Raw sequence reads were subjected to uniform procedures of merging, cleaning, and denoising to 

establish the total ASVs for each dataset (Suppl. Fig. S1), of which a subset could be confidently 

classified as authentic mitochondrial (va-ASVs) against the respective reference databases (see 

Material and Methods) or non-mitochondrial (vna-ASV), leaving all others as unclassified (u-ASVs). 

The BEE dataset contained 2251 total ASVs identified as Apoidea, including 160 va-ASVs and 117 

as vna-ASVs. The COL dataset yielded 1845 ASVs classified as Coleoptera, with 74 classified as va-

ASVs and 228 as vna-ASVs. The CAC dataset yielded 4804 ASVs, with 712 assigned to Coleoptera 

(55 va-ASVs and 40 vna-ASVs), 2731 to Acari (99 va-ASVs and 92 vna-ASVs), and 1361 to 

Collembola (67 va-ASVs and 105 vna-ASVs).  

 

3.1 | Phylogenetic distribution of ASVs 

A subset of ASVs was assessed using phylogenetic analysis, to establish the relationships of verified 

authentic mitochondrial (va-ASVs) and non-mitochondrial (vna-ASVs) copies. Phylogenetic 

relationships and their distributions across libraries were displayed relative to their abundance in a 

bipartite graph (Fig. 1). The three species of BEE, Halictus rubicundus (5 individuals, where each 

individual was sequenced in a separate library), H. tumulorum (5 individuals), and L. malachurum 

(33 individuals) produced a total of 18, 43, and 45 ASVs, respectively, and included 2, 1 and 2 va-

ASVs. In every individual, the most abundant ASV corresponded to a va-ASV (Table 1). A total of 

and 3, 8 and 8 vna-ASVs were identified for each species respectively, with relatively low read-

counts summed across libraries (maximum read-count for a vna-ASV = 344; mean for the 19 vna-

ASVs = 62) (Table 1). Fifteen of the 19 were shared across 2 or more individuals, including one vna-

ASV that was shared across 24 individuals. The 82 unclassified ASVs (u-ASVs) showed relatively 
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low accumulated read-counts summed across libraries (range 10-1795; mean = 87) and 58 of 82 were 

shared across 2 or more individuals (Fig. 1).  Species delimitation analysis on the phylogenetic tree 

from all ASVs with the bPTP procedure produced two candidate species for both H. tumulorum and 

L. malachurum, and in both cases one was exclusively composed of low abundance u-ASVs. It is 

worth noting that in the case of the BEE dataset all a-ASVs were known, thus all other ASVs had to 

be either sequencing artefacts or NUMT sequences. 

For the genus Cryptocephalus, 6 of 118 ASVs were identified as va-ASVs, each with a high 

read-count summed across libraries (Fig. 2, Table 1). Several u-ASVs, closely related to the va-

ASVs in the ML tree, showed similarly high read abundances, suggesting their mitochondrial origin 

(only a subset of the COL authentic haplotypes are known). Several libraries showed more than one 

high-abundance va-ASV, as expected if more than one Cryptocephalus species was present in a 

sample (libraries correspond to soil samples that sometimes contained tens of Cryptocephalus 

larvae). Thirty ASVs classified as vna-ASVs were found, all of them with low abundances (read-

counts summed across libraries from 5 to 43; mean = 13). These vna-ASVs clustered together with 

additional low abundance u-ASVs into several clades (named C1-C8 in Figure 1D) and grades 

(named G1 and G2 in Figure 1D). Several of these clades were classified by bPTP as candidate 

species, producing 39 species in total where only 4 were expected. Despite the notable divergence of 

sequences inside these clades or grades from the closest va-ASV (e.g, clade C1 has a mean non-

corrected p distance of 14.5% against the closest va-ASV), in many cases, vna-ASVs or closely 

related low abundance u-ASVs are co-amplified in two or more libraries that in addition (i) share the 

presence of the same Cryptocephalus species or (ii) share the presence of closely related species, 

suggesting a NUMT origin that predates speciation. As an example, libraries S20 and S92 (Fig. 1D) 

that share the presence of authentic mitochondrial haplotypes from Cryptocephalus sp. 4, also share 

the co-amplification of one vna-ASV and 3 closely related low abundance u-ASVs within the grade 

G2 and clade C8. Also, all six libraries including va-ASVs from Cryptocephalus sp. 3 and sp. 4 share 
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co-amplified distantly related ASVs (p-distances >15%) from clade C1 (composed of a set of low 

abundance u-ASVs and vna-ASVs) (Fig. 1D). In a consistent manner, libraries S29, S30, S56 and 

S74, that only include va-ASVs from Cryptocephalus sp. 1 and sp. 2 did not include any ASVs from 

clade C1 (Fig. 1D).  

 

3.2 | NUMT removal efficiency of NUMTdumper 

For all datasets, across all read abundance filtering strategies, increasing thresholds for minimum 

read abundance resulted in contrasting trends for the removal of va-ASVs and vna-ASVs. In general, 

the proportion of surviving vna-ASVs dropped quickly below 10% as thresholds were increased, at 

which point the percentage of surviving va-ASVs exceeded 90% (Fig. 2).  

The observed values of va-ASVs and vna-ASVs, and estimated values of initial and final a-

ASVs and na-ASVs (using the rationale and formula described in methods) are summarized in Table 

2 and Supplementary Tables S1-S15, and represented in Figures 2 and 3. For the BEE dataset, it was 

possible to eliminate 99% of vna-ASVs while keeping more than 95% of the va-ASVs using filters 

for either an absolute or a relative ASV abundance by library. Filtering by the three variants for 

minimum proportion of reads by similarity cluster and library produced some recalcitrant vna-ASVs 

that were not removed. For COL and CAC, the filtering criteria generally allowed elimination of 90-

95% of vna-ASVs while retaining 80-90% of the va-ASVs. The observed value of vna-ASVs and 

estimated value of final (surviving) na-ASVs always showed a strong decay reaching 0 (in the case 

of filtering by minimum absolute or relative ASV abundance by library) or a certain number 

(filtering based on relative ASV abundance by library and similarity cluster) corresponding to a fixed 

number of recalcitrant na-ASVs not removable with such criteria. The observed value of va-ASVs 

and the estimated value of final (surviving) a-ASVs showed a shallower decay with increasing 

threshold values. 
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For the BEE and COL datasets, estimates of initial a-ASVs and na-ASVs were approximately 

constant through increasing threshold values with the strategies of a minimum absolute or relative 

ASV abundance by library. In the case of BEE, estimated values for A and N (estimated number of a-

ASVs and na-ASVs before filtering) approached the known true values (from Creedy et al. 2020) of 

A = 160 and N = 2091. Filtering by minimum absolute ASV abundance by library, we obtained A 

mean = 167 (SD = 10) and N mean = 2083 (SD = 10) across different thresholds while minimum 

relative ASV abundance by library, resulted in A mean = 165 (SD = 10) and N mean = 2086 (SD = 

10). For COL, for the same two criteria, estimated values were always close to A = 600 (mean = 581, 

SD = 20; and mean = 605, SD = 27, respectively) and N = 1250 (mean = 1263, SD = 20; and mean = 

1238, SD = 27). Estimation of initial a-ASVs and na-ASVs for the CAC dataset showed a different 

pattern, with a decrease in the estimated value of initial a-ASVs with increasing threshold values, 

from around 2,200 a-ASVs to 1,000 a-ASVs (mean = 1451, SD = 360; and mean = 1398, SD = 263, 

respectively for the two criteria), and an increase of initial na-ASVs from 2600 to 3800 (mean = 

3245, SD = 360; and mean = 3352, SD = 263). Based on the minimum percentage of reads by 

similarity clusters, the estimation of final and initial a-ASVs and na-ASVs is less predictable (Fig. 3), 

resulting in incorrect values in the case of the mock community (BEE dataset) and stronger trends 

toward the increasing number of na-ASVs and decreasing number of a-ASVs with increasing 

threshold values in all datasets.  

The simultaneous application of two filtering strategies to the COL dataset improved filtering 

performance (Table 3). Several of the better filtering combinations resulted in a proportion of 

surviving vna-ASVs between 2% and 2.6%, estimated to represent 5-6% of all ASVs surviving 

filtering. The same parameters retained between 82% and 88% of the va-ASVs, estimated as 94-95% 

of all ASVs surviving filtering. With more stringent combinations of parameters, estimated 

proportions of na-ASVs in the final dataset can be reduced to 0, 1%, and 2% while still retaining 

77%, 80%, and 81% of a-ASVs. (Table 3). 
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Lastly, we examined the effect of NUMT dumping on the number of OTUs. Increasing 

thresholds for minimum read abundance resulted in a similar trend to that found for ASVs, with 

contrasting results for the removal of those OTUs verified as authentic and non-authentic (Table 4). 

The number of surviving OTUs verified as non-authentic (exclusively formed by vna-ASVs) reduces 

more quickly than the number of OTUs verified as authentic. The proportion of surviving OTUs 

verified as authentic for both 3% and 6% clustering was very similar to the proportion of surviving 

va-ASVs for the three filtering criteria and all thresholds values. The proportion of surviving OTUs 

verified as non-authentic showed a higher rate of survival than that observed for vna-ASVs. As an 

example, filtering with a minimum relative ASV abundance by library of 0.009 resulted in the 

survival of 87.8% of va-ASVs, 86.5% of verified authentic OTUs, 4.8% of vna-ASVs, and 21.9% of 

verified non-authentic OTUs (OTU clustering at 3%) (Table 4). Thus, “taxonomic inflation” 

generated by spurious variants can be a more recalcitrant problem than removal of individual 

NUMTs, requiring higher threshold values for filtering, with an associated cost in the removal of rare 

species from the dataset. 

 

4 | DISCUSSION 

While NUMTs have long been recognised to confound barcoding with Sanger and high throughput 

sequencing (e.g., Song et al. 2008; Shokralla et al. 2014; Creedy et al. 2020), the potential impact of 

NUMTs on metabarcoding has only been raised in a few studies (e.g., Andújar et al. 2018b; Elbrecht 

et al. 2018; Liu et al. 2019) but never evaluated quantitatively. NUMTs are likely to be 

consequential because of: (i) the wide use of degenerate primers for metabarcoding (e.g. Andújar et 

al. 2018a; Elbrecht et al. 2019); (ii) the complexity of specimen mixtures that produce 

metabarcoding data, and; (iii) the sensitivity of single-molecule sequencing with HTS platforms. 

NUMT insertions have been documented to occur multiple times within lineages (Bensasson, 
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Feldman & Petrov 2003; Hazkani-Covo, Sorek & Graur 2003; Pons & Vogler 2005; Shi et al. 2016), 

with NUMTs accumulating within genomes over time. In addition, once inserted, duplication events 

within the nuclear genome may contribute to the formation of NUMT families (Bensasson, Feldman 

& Petrov 2003; Pamilo, Viljakainen & Vihavainen 2007; Baldo et al. 2011), potentially resulting in 

hundreds of NUMTs (e.g., Ramos et al., 2011). Our datasets reveal the potential magnitude of 

NUMT diversity in metazoan metabarcoding. Despite thorough quality filtering for removal of 

sequencing artefacts (procedures that may also collaterally remove NUMTs), remaining ASVs 

identified as non-authentic (vna-ASVs) fit patterns of phylogenetic relatedness, read-abundance, co-

occurrence and haplotype sharing across independent libraries that are expected from NUMT 

evolution (Fig. 1). Here we show how NUMT dumping can be used to evaluate and select 

customised filtering strategies according to user requirements and filtering performance, which is 

estimated for a subset of amplicons known to be either authentic mitochondrial haplotypes or non-

functional copies with a presumed nuclear origin, and extrapolated to the full metabarcode dataset.  

We have demonstrated the potential benefit of evaluating the efficiency of different filtering 

strategies for the removal of spurious sequences. NUMTdumper implements several filtering 

strategies based on absolute read numbers and relative read-abundances of ASVs against the total 

number of reads in libraries or lineages. For all strategies, opposing trends are observed for the 

removal of authentic mitochondrial (va-ASVs) and presumed nuclear sequences (vna-ASVs) with 

increasing threshold values. Rapid decay of NUMTs relative to authentic copies allows the 

elimination of 90-95% of vna-ASVs, while retaining 80-90% of va-ASVs. In addition, 

NUMTdumper can be used with more complex, custom made filtering models. Using paired 

combinations of filtering criteria, results were improved by removing 98% of vna-ASVs, while 

retaining 81% of the va-ASVs, and more complex filtering models may further improve these results. 

After obtaining the survival ratios of both va-ASVs and vna-ASVs, NUMTdumper estimates 

the number and proportion of surviving a-ASVs and na-ASVs for each abundance threshold (Table 
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2; Fig. 3), on the assumption that the subset of va-ASVs and vna-ASVs are representative of the 

initial number of a-ASVs and na-ASVs, respectively. This allows for the selection of thresholds 

based on individual acceptance criteria for the maximum number (or proportion) of na-ASVs in a 

given final dataset. Results from the mock community and real datasets analysed here illustrate the 

potential utility and issues associated with estimations of a-ASVs and na-ASVs in the initial and 

final (filtered) datasets. Increasing thresholds based on absolute and relative ASV abundance by 

library for both the BEE and the COL datasets resulted in estimates of the initial number of a-ASVs 

(A) and na-ASVs (N) that are approximately constant after reaching certain values, with estimates for 

BEE approaching the known true values. This supports the reliability of estimates. However, the 

CAC dataset revealed a different pattern, with a decrease in the estimated number of initial a-ASVs 

and an increase for initial na-ASVs with increasing threshold values. This variation in the estimated 

values is likely due to the violation of the assumption that va-ASVs are a representative subset of all 

a-ASVs (��
��
�

�

�
), and thus presents a potential means to evaluate the assumption itself. To explore 

this further, we manipulated the subset of va-ASVs used within the COL dataset to simulate both (i) 

bias from a lack of low abundance va-ASVs, and (ii) bias from a lack of high abundance va-ASVs. 

For both types of bias we explored three intensities: strong, moderate and low (Fig. 4). Results reveal 

that bias generated by a lack of low abundance va-ASVs produces the pattern found for the CAC 

dataset, whereas bias for a lack of high abundance va-ASVs generates the opposite trend. These 

analyses show that the effect of bias on the estimated initial number of a-ASVs and na-ASVs 

increases with increasing threshold values. However, they also reveal a limited effect on the 

estimated number of a-ASVs and na-ASVs in the final dataset, a consequence of the low number of 

surviving na-ASVs with increasing thresholds (Fig. 4). All filtering strategies that use relative ASV 

abundance estimated within similarity clusters result in biased estimations, likely due to the 

prevalence of recalcitrant na-ASVs associated to clusters exclusively formed by a single or several 

na-ASVs. Taken together, these analyses of bias suggest that: (i) if the assumption of the ratios 
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(��
��

�

�

�
) is met, the correct estimation of both initial and final (surviving) numbers of a-ASVs and na-

ASVs is straightforward; (ii) violation of the assumption results in predictable changes in the initial 

number of a-ASVs and na-ASVs, with only limited effect on the estimation of the number of a-ASVs 

and na-ASVs in the final dataset, and; (iii) estimates obtained from criteria where abundance is 

calculated within similarity clusters alone are less reliable and should not be used.  

 NUMTdumper complements existing denoising protocols (e.g. UNOISE, Edgar, 2016; 

DADA2, Callahan et al., 2016; and Deblur, Amir et al., 2017) that are designed to efficiently remove 

erroneous sequences derived from PCR and sequencing artefacts, but that may not efficiently remove 

NUMTs. Given the differences in copy number between the nuclear and the mitochondrial genomes, 

read abundance is an obvious parameter to filter NUMTs. However, this relationship may be 

imperfect due to (i) authentic haplotypes with relatively low read abundances overlapping with the 

abundance ranges of NUMTs, and (ii) potential amplification biases increasing the read abundance 

of some particular NUMT copies. This implies that: (i) it is very unlikely that a single abundance 

threshold can be devised for the removal of all NUMTs, while not excluding authentic haplotypes; 

(ii) different grouping criteria and thresholds need to be explored to minimise proportions of false 

positives (NUMTs retained) and false negatives (authentic haplotypes excluded); and (iii) different 

datasets, with different heterogeneity and amplification biases, will likely vary with regard to optimal 

criteria and thresholds to minimise false positives and/or false negatives. To accommodate this 

variation, NUMTdumper incorporates different abundance-based filtering strategies to evaluate 

performance with regard to the removal of NUMTs and retention of authentic mitochondrial 

sequences.  

Our results also reveal that OTU clustering alone may not be sufficient to remove the effect 

of na-ASVs. OTUs that are identified as non-authentic can pass filtering based on read-abundance 

even in higher proportions than individual vna-ASVs. This highlights the problem of “taxonomic 

inflation” (Flynn et al. 2015), which we show can be reduced by increasing read-abundance 
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thresholds, but with the expected trade-off for the removal OTUs representing rare species (Table 4). 

Thus, NUMT dumping can be also used at the OTU level to evaluate filtering performance and the 

expected taxonomic inflation in datasets before and after filtering, optimising between taxonomic 

inflation and the removal of rare species. 

In conclusion, our results demonstrate the potential for abundance-based removal of NUMT 

sequences, but also highlight the need to evaluate thresholds for each dataset according to user-

defined acceptable levels of false positives and false negatives. Studies seeking data with minimal 

error, such as for phylogeographic (e.g., Turon et al., 2019) or population genetic analyses (e.g., 

Elbrecht et al., 2018), should opt for stringent thresholds, to minimise the confounding effect of 

NUMTs, even at the expense of removing some authentic haplotype data and rare species. For other 

applications, such as those based on measures of beta diversity to explore broad ecological patterns, 

less strict thresholds may be admissible. In addition, studies aiming to estimate richness values at 

haplotype or even OTU levels may consider expected biases generated by surviving NUMTs to 

correct data and generate estimates of a-ASVs and authentic OTUs in the initial and final (filtered) 

datasets. Ultimately these are decisions that can now be made and reported with the incorporation of 

NUMTdumper in analysis pipelines. NUMTdumper is fully compatible and complementary with 

current denoising methods designed for the removal of non-authentic sequences generated during the 

amplification and sequencing steps. Thus, NUMTdumper builds upon existing denoising strategies to 

improve the reliability of intraspecific genetic information derived from metabarcode data, opening 

the door for community-level genetic analyses requiring haplotype-level resolution. 
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Table 1. Summary of the number of libraries, ASVs, va-ASVs, and vna-ASVS obtained for the three Halictus 
species and the Crytocephalys lineage. Read counts refers to the sum of the ASV read-abundance across all libraries 
where a given ASV is present. 

 

   va-ASVs vna-ASVs 

 Libraries ASVs n read-counts* n read counts* 

H. rubicundus 5 18 2 6915 (6799-7031) 3 15 (10-19) 

H. tumulorum 5 43 1 8713 (8713-8713) 8 78 (11-344) 

L. malachurum 33 45 2 48282,5 (4253-92312) 8 64 (11-298) 

Crytocephalus 10 118 6 2223 (763-3986) 30 13 (5-43) 

*mean value (minimum - maximum values) 
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Table 2. Filtering performance of three filtering criteria and a range of minimum threshold values for read 
abundance for the COL dataset. Data for the full range of threshold values analysed, additional criteria, and datasets 
are provided in Supplementary Tables S1-S15.  

Criterium Threshold  
Surviving 

ASVs 
(t)* 

Surviving  
va-ASVs 

 (av)* 

Surviving  
vna-ASVs  

(nv)* 

Initial 
a-ASVs 
(A)** 

Surviving 
a-ASV 
(a)** 

Initial 
na-ASVs 

(N)** 

Surviving 
na-ASV 

(n)** 

n/t 
*** 

Pre-filtering initial values T = 1845 Av = 74 Nv = 228      

Absolute ASV 
abundance by 

library  
(Threshold = 

minimum 
threshold of read-

abundance in a 
given library) 

3 1350 (73.2%) 74 (100%) 143 (62.7%) 517.2 517.2 1327.8 832.8 0.617 
4 1139 (61.7%) 74 (100%) 105 (46.1%) 536.3 536.3 1308.7 602.7 0.529 
5 1008 (54.6%) 74 (100%) 76 (33.3%) 589.5 589.5 1255.5 418.5 0.415 
8 787 (42.7%) 68 (91.9%) 41 (18%) 615.9 566.0 1229.1 221.0 0.281 
10 706 (38.3%) 67 (90.5%) 32 (14%) 584.3 529.1 1260.7 176.9 0.251 
12 662 (35.9%) 65 (87.8%) 24 (10.5%) 605.1 531.5 1239.9 130.5 0.197 
15 598 (32.4%) 64 (86.5%) 18 (7.9%) 575.6 497.8 1269.4 100.2 0.168 
20 526 (28.5%) 57 (77%) 10 (4.4%) 612.7 472.0 1232.3 54.0 0.103 
25 482 (26.1%) 57 (77%) 5 (2.2%) 590.0 454.5 1255.0 27.5 0.057 
35 413 (22.4%) 51 (68.9%) 2 (0.9%) 583.2 401.9 1261.8 11.1 0.027 
40 400 (21.7%) 51 (68.9%) 1 (0.4%) 572.3 394.4 1272.7 5.6 0.014 
45 371 (20.1%) 48 (64.9%) 0 (0%) 572.0 371.0 1273.0 0.0 0.000 
50 355 (19.2%) 44 (59.5%) 0 (0%) 597.0 355.0 1248.0 0.0 0.000 

Relative ASV 
abundance by 

library  
(Threshold = 

minimum 
proportion of read-
abundance relative 
to the total number 

of reads in that 
library)  

0.001 1381 (74.9%) 74 (100%) 147 (64.5%) 538.9 538.9 1306.1 842.1 0.610 
0.0015 1159 (62.8%) 74 (100%) 106 (46.5%) 563.0 563.0 1282.0 596.0 0.514 
0.002 1026 (55.6%) 74 (100%) 84 (36.8%) 548.3 548.3 1296.8 477.8 0.466 
0.0025 920 (49.9%) 72 (97.3%) 65 (28.5%) 572.8 557.3 1272.2 362.7 0.394 
0.003 832 (45.1%) 72 (97.3%) 48 (21.1%) 581.8 566.1 1263.2 265.9 0.320 
0.004 725 (39.3%) 68 (91.9%) 36 (15.8%) 569.9 523.7 1275.1 201.3 0.278 
0.005 653 (35.4%) 67 (90.5%) 27 (11.8%) 552.1 499.9 1292.9 153.1 0.234 
0.006 604 (32.7%) 65 (87.8%) 17 (7.5%) 580.3 509.7 1264.7 94.3 0.156 
0.007 563 (30.5%) 65 (87.8%) 13 (5.7%) 557.4 489.6 1287.6 73.4 0.130 
0.008 538 (29.2%) 65 (87.8%) 11 (4.8%) 540.9 475.1 1304.1 62.9 0.117 
0.009 514 (27.9%) 62 (83.8%) 10 (4.4%) 545.5 457.0 1299.5 57.0 0.111 
0.01 498 (27%) 58 (78.4%) 8 (3.5%) 578.7 453.6 1266.3 44.4 0.089 
0.015 431 (23.4%) 53 (71.6%) 3 (1.3%) 578.5 414.3 1266.5 16.7 0.039 
0.02 387 (21%) 48 (64.9%) 2 (0.9%) 579.5 375.9 1265.5 11.1 0.029 
0.025 352 (19.1%) 44 (59.5%) 1 (0.4%) 582.7 346.5 1262.3 5.5 0.016 
0.03 326 (17.7%) 42 (56.8%) 1 (0.4%) 564.5 320.4 1280.5 5.6 0.017 
0.035 302 (16.4%) 39 (52.7%) 1 (0.4%) 562.4 296.4 1282.6 5.6 0.019 
0.04 289 (15.7%) 38 (51.4%) 1 (0.4%) 551.7 283.3 1293.3 5.7 0.020 
0.045 265 (14.4%) 36 (48.6%) 0 (0%) 544.7 265.0 1300.3 0.0 0.000 
0.05 245 (13.3%) 32 (43.2%) 0 (0%) 566.6 245.0 1278.4 0.0 0.000 

Relative ASV 
abundance by 

library and 20% 
clade  

(Threshold = 
minimum read 

proportion relative 
to the total number 

of reads in the 
20% divergence 
clade where each 
ASV is included 
in that library) 

0.001 1749 (94.8%) 74 (100%) 213 (93.4%) 385.8 385.8 1459.2 1363.2 0.779 
0.0025 1509 (81.8%) 74 (100%) 158 (69.3%) 750.6 750.6 1094.4 758.4 0.503 
0.005 1289 (69.9%) 74 (100%) 109 (47.8%) 779.7 779.7 1065.3 509.3 0.395 
0.01 1077 (58.4%) 72 (97.3%) 70 (30.7%) 766.6 745.9 1078.4 331.1 0.307 
0.015 960 (52%) 71 (95.9%) 50 (21.9%) 750.4 719.9 1094.6 240.1 0.250 
0.02 897 (48.6%) 70 (94.6%) 42 (18.4%) 731.4 691.9 1113.6 205.1 0.229 
0.03 808 (43.8%) 69 (93.2%) 32 (14%) 693.2 646.3 1151.8 161.7 0.200 
0.04 750 (40.7%) 68 (91.9%) 27 (11.8%) 664.0 610.1 1181.0 139.9 0.186 
0.05 708 (38.4%) 66 (89.2%) 20 (8.8%) 679.2 605.7 1165.8 102.3 0.144 
0.06 680 (36.9%) 64 (86.5%) 19 (8.3%) 673.4 582.4 1171.6 97.6 0.144 
0.09 613 (33.2%) 62 (83.8%) 14 (6.1%) 643.6 539.2 1201.4 73.8 0.120 
0.1 600 (32.5%) 62 (83.8%) 13 (5.7%) 633.7 530.9 1211.3 69.1 0.115 
0.15 529 (28.7%) 59 (79.7%) 11 (4.8%) 587.4 468.3 1257.6 60.7 0.115 
0.2 492 (26.7%) 58 (78.4%) 10 (4.4%) 555.6 435.4 1289.4 56.6 0.115 
0.25 452 (24.5%) 56 (75.7%) 10 (4.4%) 520.5 393.9 1324.5 58.1 0.129 
0.3 425 (23%) 56 (75.7%) 8 (3.5%) 499.2 377.8 1345.8 47.2 0.111 
0.35 390 (21.1%) 53 (71.6%) 7 (3.1%) 486.3 348.3 1358.7 41.7 0.107 
0.4 379 (20.5%) 53 (71.6%) 7 (3.1%) 470.2 336.8 1374.8 42.2 0.111 
0.5 355 (19.2%) 52 (70.3%) 7 (3.1%) 444.0 312.0 1401.0 43.0 0.121 
0.6 319 (17.3%) 48 (64.9%) 5 (2.2%) 444.4 288.3 1400.6 30.7 0.096 
0.7 296 (16%) 46 (62.2%) 5 (2.2%) 426.1 264.9 1418.9 31.1 0.105 
0.8 275 (14.9%) 46 (62.2%) 5 (2.2%) 391.1 243.1 1453.9 31.9 0.116 
0.9 238 (12.9%) 38 (51.4%) 5 (2.2%) 401.8 206.4 1443.2 31.6 0.133 

* Observed values; ** Estimated values; *** The ratio n/t represents the estimated proportion of na-ASVs in the filtered 
dataset. 
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Table 3. Filtering performance for a selection of pairwise combinations of filtering criteria and minimum 
thresholds values for read abundance for the COL dataset. Combinations are shown that minimise the number of 
surviving verified non-authentic ASVs (vna-ASVs) when the number of excluded verified authentic ASVs (va-ASVs) is 
between 0 and 17. 

 

Excl. 
va-

ASVs 
 

Absolute 
ASV 

abundance 
by library 

Relative 
ASV 

abundance 
by library 

Relative 
ASV 

abundance 
by library 
and 20% 

clade 

Surviving 
ASVs 
(t)** 

Surviving 
va-ASVs 

(av)** 

Surviving 
vna-ASVs 

(nv)** 

Initial 
a-ASVs 
(A)*** 

Surviving 
a-ASV 
(a)*** 

Initial 
na-ASVs 
(N)*** 

Surviving 
na-ASV 
(n)*** 

n/t 
**** 

 

Pre-filtering initial values T = 1845 Av = 74 Nv = 228      
0 5 0.002 - 866 (46.9%) 74 (1000%) 56 (24.6%) 547 547 1298 319 0.368 
2 5 0.003 - 752 (40.8%) 72 (97.3%) 36 (15.8%) 565 550 1280 202 0.269 
3 5  0.015 722 (39.1%) 71 (95.9%) 28 (12.3%) 592 568 1253 154 0.213 
4 5  0.02 685 (37.1%) 70 (94.6%) 24 (10.5%) 584 552 1261 133 0.194 
5 5  0.035 617 (33.4%) 69 (93.2%) 15 (6.6%) 572 533 1273 84 0.136 
6 - 0.0035 0.035 585 (31.7%) 68 (91.9%) 14 (6.1%) 550 505 1295 80 0.137 
7 - 0.0035 0.04 572 (31%) 67 (90.5%) 14 (6.1%) 543 492 1302 80 0.140 
8 5 - 0.045 535 (29%) 66 (89.2%) 11 (4.8%) 599 502 1246 33 0.062 
9 8 - 0.035 556 (30.1%) 65 (87.8%) 6 (2.6%) 596 523 1249 33 0.059 
10 10 - 0.035 534 (28.9%) 64 (86.5%) 5 (2.2%) 586 506 1259 28 0.052 
11 8 0.008 - 516 (28%) 63 (85.1%) 5 (2.2%) 573 488 1272 28 0.054 
12 10 0.008 - 512 (27.8%) 62 (83.8%) 5 (2.2%) 578 484 1267 28 0.055 
13 10 - 0.045 513 (27.8%) 61 (82.4%) 5 (2.2%) 589 485 1256 28 0.055 
14 20 - 0.03 469 (25.4%) 60 (81.1%) 2 (0.9%) 565 458 1280 11 0.023 
15 20 0.008 - 461 (25%) 59 (79.7%) 1 (0.4%) 571 455 1274 6 0.013 
17 20 0.009 - 451 (24.4%) 57 (77.0%) 0 (0%) 586 451 1259 0 0.000 

* Excluded va-ASVs: values lacking (i.e., 1 and 16) represent solutions that were not found with any pairwise 
combinations of criteria and threshold values; ** Observed values; *** Estimated values; **** The ratio n/t represents 
the estimated proportion of na-ASVs in the filtered dataset. 
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Table 4. Filtering performance for the survival of OTU clusters defined at 3% and 6% similarity for three 
filtering criteria. Data correspond to the COL dataset and a selected range of minimum thresholds values for read 
abundance. In addition to the total number of surviving OTUs, the number of “Surviving verified authentic OTUs” (those 
that include one or more va-ASV) and “Surviving verified non-authentic OTUs” (those exclusively formed by vna-
ASVs) are also shown. Number of surviving ASVs, va-ASVs and vna-ASVs are shown for comparative purposes. 

 

Criterium 
Thresh-

old 

Surviving 
ASVs 

(t) 

Surviving 
va-ASVs 

(av) 

Surviving 
vna-ASVs 

(nv) 

OTU clustering 3% OTU clustering 6% 

Surviving 
OTUs 

Surviving 
verified 

authentic 
OTUs 

Surviving 
verified 

non-
authentic 

OTUs 

Surviving 
OTUs 

Surviving 
verified 

authentic 
OTUs 

Surviving 
verified 

non-
authentic 

OTUs 
Pre-filtering initial values T = 1845 Av = 74 Nv = 228 407 67 41 286 66 24 

Absolute ASV 
abundance by 

library  
(Threshold = 

minimum 
threshold of read-

abundance in a 
given library) 

3 1350 (73.1%) 74 (100%) 143 (62.7%) 365 (89.6%) 67 (100%) 34 (82.9%) 259 (90.5%) 66 (100%) 20 (83.3%) 
4 1139 (61.7%) 74 (100%) 105 (46.0%) 334 (82.0%) 67 (100%) 27 (65.8%) 237 (82.8%) 66 (100%) 13 (54.1%) 
5 1008 (54.6%) 74 (100%) 76 (33.3%) 314 (77.1%) 67 (100%) 18 (43.9%) 228 (79.7%) 66 (100%) 8 (33.3%) 
8 787 (42.6%) 68 (91.8%) 41 (17.9%) 272 (66.8%) 61 (91.0%) 12 (29.2%) 208 (72.7%) 60 (90.9%) 5 (20.8%) 
10 706 (38.2%) 67 (90.5%) 32 (14.0%) 256 (62.8%) 60 (89.5%) 13 (31.7%) 195 (68.1%) 59 (89.3%) 4 (16.6%) 
12 662 (35.8%) 65 (87.8%) 24 (10.5%) 243 (59.7%) 59 (88.0%) 9 (21.9%) 191 (66.7%) 58 (87.8%) 3 (12.5%) 
15 598 (32.4%) 64 (86.4%) 18 (7.89%) 234 (57.4%) 58 (86.5%) 9 (21.9%) 187 (65.3%) 57 (86.3%) 4 (16.6%) 
20 526 (28.5%) 61 (82.4%) 10 (4.38%) 218 (53.5%) 55 (82.0%) 6 (14.6%) 175 (61.1%) 54 (81.8%) 3 (12.5%) 
25 482 (26.1%) 57 (77.0%) 5 (2.19%) 201 (49.3%) 51 (76.1%) 4 (9.75%) 167 (58.3%) 50 (75.7%) 3 (12.5%) 

Relative ASV 
abundance by 

library 
(Threshold = 

minimum 
proportion of 

read-abundance 
relative to the 

total number of 
reads in that 

library) 

0.001 1381 (74.8%) 74 (100%) 147 (64.4%) 365 (89.6%) 67 (100%) 37 (90.2%) 263 (91.9%) 66 (100%) 23 (95.8%) 
0.0015 1159 (62.8%) 74 (100%) 106 (46.4%) 337 (82.8%) 67 (100%) 30 (73.1%) 246 (86.0%) 66 (100%) 17 (70.8%) 
0.002 1026 (55.6%) 74 (100%) 84 (36.8%) 319 (78.3%) 67 (100%) 24 (58.5%) 235 (82.1%) 66 (100%) 13 (54.1%) 
0.0025 920 (49.8%) 72 (97.2%) 65 (28.5%) 301 (73.9%) 65 (97.0%) 22 (53.6%) 225 (78.6%) 64 (96.9%) 12 (50%) 
0.003 832 (45.0%) 72 (97.2%) 48 (21.0%) 285 (70.0%) 65 (97.0%) 18 (43.9%) 214 (74.8%) 64 (96.9%) 9 (37.5%) 
0.004 725 (39.2%) 68 (91.8%) 36 (15.7%) 266 (65.3%) 61 (91.0%) 17 (41.4%) 202 (70.6%) 60 (90.9%) 8 (33.3%) 
0.005 653 (35.3%) 67 (90.5%) 27 (11.8%) 248 (60.9%) 60 (89.5%) 15 (36.5%) 197 (68.8%) 59 (89.3%) 8 (33.3%) 
0.006 604 (32.7%) 65 (87.8%) 17 (7.45%) 233 (57.2%) 58 (86.5%) 10 (24.3%) 187 (65.3%) 57 (86.3%) 5 (20.8%) 
0.007 563 (30.5%) 65 (87.8%) 13 (5.70%) 223 (54.7%) 58 (86.5%) 9 (21.9%) 181 (63.2%) 57 (86.3%) 4 (16.6%) 
0.008 538 (29.1%) 65 (87.8%) 11 (4.82%) 215 (52.8%) 58 (86.5%) 9 (21.9%) 177 (61.8%) 57 (86.3%) 4 (16.6%) 
0.009 514 (27.8%) 62 (83.7%) 10 (4.38%) 209 (51.3%) 55 (82.0%) 8 (19.5%) 172 (60.1%) 54 (81.8%) 3 (12.5%) 
0.01 498 (26.9%) 58 (78.3%) 8 (3.50%) 202 (49.6%) 52 (77.6%) 6 (14.6%) 167 (58.3%) 51 (77.2%) 3 (12.5%) 
0.015 431 (23.3%) 53 (71.6%) 3 (1.31%) 180 (44.2%) 48 (71.6%) 2 (4.87%) 151 (52.7%) 47 (71.2%) 2 (8.33%) 
0.02 387 (20.9%) 48 (64.8%) 2 (0.87%) 167 (41.0%) 43 (64.1%) 1 (2.43%) 141 (49.3%) 42 (63.6%) 1 (4.16%) 

Relative ASV 
abundance by 

library and 20% 
clade  

(Threshold = 
minimum read 

proportion 
relative to the 

total number of 
reads in the 20% 
divergence clade 
where each ASV 
is included in that 

library) 

0.001 1749 (94.7%) 74 (100%) 213 (93.4%) 406 (99.7%) 67 (100%) 41 (100%) 286 (100%) 66 (100%) 24 (100%) 
0.0025 1509 (81.7%) 74 (100%) 158 (69.2%) 382 (93.8%) 67 (100%) 33 (80.4%) 278 (97.2%) 66 (100%) 22 (91.6%) 
0.005 1289 (69.8%) 74 (100%) 109 (47.8%) 367 (90.1%) 67 (100%) 30 (73.1%) 269 (94.0%) 66 (100%) 18 (75%) 
0.01 1077 (58.3%) 72 (97.2%) 70 (30.7%) 340 (83.5%) 65 (97.0%) 26 (63.4%) 257 (89.8%) 64 (96.9%) 16 (66.6%) 
0.015 960 (52.0%) 71 (95.9%) 50 (21.9%) 313 (76.9%) 64 (95.5%) 20 (48.7%) 241 (84.2%) 63 (95.4%) 13 (54.1%) 
0.02 897 (48.6%) 70 (94.5%) 42 (18.4%) 301 (73.9%) 63 (94.0%) 17 (41.4%) 232 (81.1%) 62 (93.9%) 10 (41.6%) 
0.03 808 (43.7%) 69 (93.2%) 32 (14.0%) 287 (70.5%) 62 (92.5%) 14 (34.1%) 227 (79.3%) 61 (92.4%) 9 (37.5%) 
0.04 750 (40.6%) 68 (91.8%) 27 (11.8%) 282 (69.2%) 61 (91.0%) 12 (29.2%) 223 (77.9%) 60 (90.9%) 7 (29.1%) 
0.05 708 (38.3%) 66 (89.1%) 20 (8.77%) 274 (67.3%) 59 (88.0%) 11 (26.8%) 219 (76.5%) 58 (87.8%) 7 (29.1%) 
0.06 680 (36.8%) 64 (86.4%) 19 (8.33%) 269 (66.0%) 57 (85.0%) 10 (24.3%) 216 (75.5%) 56 (84.8%) 7 (29.1%) 
0.075 644 (34.9%) 63 (85.1%) 16 (7.01%) 261 (64.1%) 57 (85.0%) 9 (21.9%) 211 (73.7%) 56 (84.8%) 6 (25%) 
0.09 613 (33.2%) 62 (83.7%) 14 (6.14%) 254 (62.4%) 56 (83.5%) 8 (19.5%) 208 (72.7%) 55 (83.3%) 5 (20.8%) 
0.1 600 (32.5%) 62 (83.7%) 13 (5.70%) 251 (61.6%) 56 (83.5%) 7 (17.0%) 206 (72.0%) 55 (83.3%) 4 (16.6%) 
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Figure captions 

Figure 1. Patterns of phylogenetic relatedness and library co-amplification of ASVs within selected 

lineages. (A) Halictus rubicundus, (B) Halictus tumulorum (C), Lasioglossum malachurum, and (D) 

Cryptocephalus. Graphs show ML phylogenetic trees with mapped distributions of read abundances 

across libraries onto each ASV. For (A), (B) and (C) each library is a single specimen, whereas in 

(D) each library includes a complex natural community of beetles where Cryptocephalus specimens 

were present. Phylogenetic lineages in red are the best-supported species clusters from bPTP 

analyses, green dashed lines highlight ASVs that are identical to a reference sequence (va-ASVs), 

and black dashed lines highlight ASVs with STOP codons or INDELS (vna-ASVs). Codes on nodes 

mark clades (C1-C8) and grades (G1-G2) exclusively formed by vna-ASVs and u-ASVs.  Circles at 

the tips of the tree represent each ASV, with size proportional to accumulated abundance across all 

libraries. Circles on the right side of each graph represent the libraries, with size proportional to the 

library read number. Edges of the network represent the presence and abundance (line width) of each 

ASV within each library.  

 

Figure 2. Proportions of va-ASVs removal (false negatives) and vna-ASVs retention (false 

positives) with increasing minimum abundance thresholds. Graphs represent alternative filtering 

criteria (up-down) and different datasets (left-right). The “X” axis corresponds to minimum threshold 

values based on: (A) absolute ASV abundance by library, (B) relative ASV abundance by library, 

(C) relative ASV abundance by library and within 15% similarity clades, (D) within 20% similarity 

clades, and (E) within 26% similarity clades. The percentage of removed va-ASVs (validated against 

reference sequences) is indicated with squared dots and a black line. The percentage of surviving 

vna-ASVs (including stop codons or indels) is indicated with circles and a red line. 
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Figure 3. Estimated numbers of a-ASVs and na-ASVs comprising initial and filtered ASV datasets 

after the application of each abundance-based filtering threshold. Graphs show trends for the 

estimated number of initial a-ASVs (shaded-grey), initial na-ASVs (shaded-red), retained a-ASVs 

(squared dots and black line), and retained na-ASVs (circles and red line) with increasing minimum 

abundance thresholds for alternative filtering criteria (up-down) and different datasets (left-right). 

The “X” axis corresponds to minimum threshold values based on: (A) absolute ASV abundance by 

library, (B) relative ASV abundance by library, (C) relative ASV abundance by library and within 

15% similarity clades, (D) within 20% similarity clades, and (E) within 26% similarity clades. 

 

Figure 4. Estimated number of a-ASVs and na-ASVs comprising the initial and filtered COL dataset 

after the application of thresholds for the minimum absolute ASV abundance by library, using 

manipulated subsets of va-ASVs. Manipulations included (i) a bias for a lack of low abundance va-

ASVs (above), and (ii) a bias for a lack of high abundance va-ASVs (below; each with three bias 

intensities: strong, moderate and low). Graphs show estimations of initial a-ASVs (shaded-grey), 

initial na-ASVs (shaded-red), retained a-ASVs (squared dots and black line), and retained na-ASVs 

(circles and red line) with increasing minimum abundance thresholds. The black and red dotted lines 

represent, respectively, a-ASVs and na-ASVs estimations using the full set of va-ASVs. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment 

search tool. Journal of Molecular Biology, 215, 403–10. 

Amir, A., Daniel, M., Navas-Molina, J., Kopylova, E., Morton, J., Xu, Z.Z., Eric, K., Thompson, L., 

Hyde, E., Gonzalez, A. & Knight, R. (2017). Deblur rapidly resolves single-nucleotide 

community sequence patterns. American Society for Microbiology, 2, 1–7. 

Andújar, C., Arribas, P., Gray, C., Bruce, C., Woodward, G., Yu, D.W. & Vogler, A.P. (2018a). 

Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Molecular 

Ecology, 27, 146–166. 

Andújar, C., Emerson, B.C., Arribas, P., Yu, D.W. & Vogler, A.P. (2018b). Why the COI barcode 

should be the community DNA metabarcode for the metazoa. 3968–3975. 

Baldo, L., De Queiroz, A., Hedin, M., Hayashi, C.Y. & Gatesy, J. (2011). Nuclear-mitochondrial 

sequences as witnesses of past interbreeding and population diversity in the jumping bristletail 

mesomachilis. Molecular Biology and Evolution, 28, 195–210. 

Bensasson, D., Feldman, M.W. & Petrov, D.A. (2003). Rates of DNA duplication and mitochondrial 

DNA insertion in the human genome. Journal of Molecular Evolution, 57, 343–354. 

Bensasson, D., Zhang, D.X., Hartl, D.L. & Hewitt, G.M. (2001). Mitochondrial pseudogenes: 

Evolution’s misplaced witnesses. Trends in Ecology and Evolution, 16, 314–321. 

Bogenhagen, D.F. (2012). Mitochondrial DNA nucleoid structure. Biochimica et Biophysica Acta - 

Gene Regulatory Mechanisms, 1819, 914–920. 

Callahan, B.J., McMurdie, P.J. & Holmes, S.P. (2017). Exact sequence variants should replace 

operational taxonomic units in marker-gene data analysis. ISME Journal, 11, 2639–2643. 

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. & Holmes, S.P. (2016). 

DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 

581–583. 

Caruso, V., Song, X., Asquith, M. & Karstens, L. (2019). Performance of microbiome sequence 

inference methods in environments with varying biomass. mSystems, 4, 1–19. 

Clare, E.L., Chain, F.J.J., Littlefair, J.E. & Cristescu, M.E. (2016). The effects of parameter choice 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


on defining molecular operational taxonomic units and resulting ecological analyses of 

metabarcoding data. Genome, 59, 981–990. 

Corse, E., Meglécz, E., Archambaud, G., Ardisson, M., Martin, J.F., Tougard, C., Chappaz, R. & 

Dubut, V. (2017). A from-benchtop-to-desktop workflow for validating HTS data and for 

taxonomic identification in diet metabarcoding studies. Molecular Ecology Resources, 17, 

e146–e159. 

Creedy, T.J., Norman, H., Tang, C.Q., Qing Chin, K., Andujar, C., Arribas, P., O’Connor, R.S., 

Carvell, C., Notton, D.G. & Vogler, A.P. (2020). A validated workflow for rapid taxonomic 

assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA 

barcoding. Molecular Ecology Resources, 20, 40–53. 

Edgar, R. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 

sequencing. bioRxiv, 081257. 

Elbrecht, V., Braukmann, T.W.A., Ivanova, N.V., Prosser, S.W.J., Hajibabaei, M., Wright, M., 

Zakharov, E. V, Hebert, P.D.N. & Steinke, D. (2019). Validation of COI metabarcoding primers 

for terrestrial arthropods. PeerJ, 7:e7745. 

Elbrecht, V., Vamos, E.E., Steinke, D. & Leese, F. (2018). Estimating intraspecific genetic diversity 

from community DNA metabarcoding data. PeerJ, 6:e4644. 

Flynn, J.M., Brown, E. a., Chain, F.J.J., MacIsaac, H.J. & Cristescu, M.E. (2015). Toward accurate 

molecular identification of species in complex environmental samples: testing the performance 

of sequence filtering and clustering methods. Ecology and Evolution, 5, 2252–2266. 

Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J. & Knight, R. (2008). Error-correcting barcoded 

primers for pyrosequencing hundreds of samples in multiplex. Nature Methods, 5, 235–237. 

Hazkani-Covo, E., Sorek, R. & Graur, D. (2003). Evolutionary dynamics of large Numts in the 

human genome: Rarity of independent insertions and abundance of post-insertion duplications. 

Journal of Molecular Evolution, 56, 169–174. 

Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J. & Tappu, 

R. (2016). MEGAN community edition - Interactive exploration and analysis of large-scale 

microbiome sequencing data. PLoS Computational Biology, 12, 1–12. 

Liu, M., Clarke, L.J., Baker, S.C., Jordan, G.J. & Burridge, C.P. (2019). A practical guide to DNA 

metabarcoding for entomological ecologists. Ecological Entomology, 45, 373–385. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lopez, J. V., Yuhki, N., Masuda, R., Modi, W. & O’Brien, S.J. (1994). Numt, a recent transfer and 

tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal 

of Molecular Evolution, 39, 174–190. 

Nearing, J.T., Douglas, G.M., Comeau, A.M. & Langille, M.G.I. (2018). Denoising the Denoisers: 

an independent evaluation of microbiome sequence error-correction approaches. PeerJ, 6, 

e5364. 

Pamilo, P., Viljakainen, L. & Vihavainen, A. (2007). Exceptionally high density of NUMTs in the 

honeybee genome. Molecular Biology and Evolution, 24, 1340–1346. 

Paradis, E., Claude, J. & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R 

language. Bioinformatics, 20, 289–290. 

Pons, J. & Vogler, A.P. (2005). Complex pattern of coalescence and fast evolution of a 

mitochondrial rRNA pseudogene in a recent radiation of tiger beetles. Molecular Biology and 

Evolution, 22, 991–1000. 

Quiros, P.M., Goyal, A., Jha, P. & Auwerx, J. (2017). Analysis of mtDNA/nDNA ratio in mice. 

Current protocols in mouse biology, 7, 47. 

Ramos, A., Barbena, E., Mateiu, L., del Mar González, M., Mairal, Q., Lima, M., Montiel, R., Aluja, 

M.P. & Santos, C. (2011). Nuclear insertions of mitochondrial origin: Database updating and 

usefulness in cancer studies. Mitochondrion, 11, 946–953. 

Richly, E. & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and 

Evolution, 21, 1081–1084. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, 

B. & Ideker, T. (2003). Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome research, 13, 2498–504. 

Shi, H., Dong, J., Irwin, D.M., Zhang, S. & Mao, X. (2016). Repetitive transpositions of 

mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats 

(Rhinolophus, Chiroptera). Gene, 581, 161–169. 

Shokralla, S., Gibson, J.F., Nikbakht, H., Janzen, D.H., Hallwachs, W. & Hajibabaei, M. (2014). 

Next-generation DNA barcoding: Using next-generation sequencing to enhance and accelerate 

DNA barcode capture from single specimens. Molecular Ecology Resources, 14, 892–901. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


Song, H., Buhay, J.E., Whiting, M.F. & Crandall, K. a. (2008). Many species in one: DNA barcoding 

overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. 

Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–

91. 

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 

thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22, 2688–90. 

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. (2012). Towards next-

generation biodiversity assessment using DNA metabarcoding. Molecular Ecology, 21, 2045–

50. 

Thomsen, P.F. & Sigsgaard, E.E. (2019). Environmental DNA metabarcoding of wild flowers 

reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 9, 1665–1679. 

Turon, X., Antich, A., Palacín, C., Præbel, K. & Wangensteen, O.S. (2019). From metabarcoding to 

metaphylogeography: separating the wheat from the chaff. bioRxiv, 629535. 

Yu, D., Ji, Y., Emerson, B., Wang, X., Ye, C., Yang, C. & Ding, Z. (2012). Biodiversity soup: 

metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in 

Ecology and Evolution, 3, 613–623. 

Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013). A general species delimitation method 

with applications to phylogenetic placements. Bioinformatics (Oxford, England), 29, 2869–76. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.17.157347doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157347
http://creativecommons.org/licenses/by-nc-nd/4.0/

