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Abstract 
 
Skeletal muscle biopsy commonly used for light microscopic, electron microscopic and 

biochemical and transcriptional evaluation remains the gold standard for establishing the 

etiology of a myopathy. While most myopathies exhibit one or more phenotypes, early stages 

or several metabolic myopathies often exhibit normal muscle morphology, making diagnosis 

difficult. In such cases where standard staining techniques fail to offer definitive diagnostic 

information, a combination of expensive and time-consuming electron microscopy and 

biochemical testing is required to provide definitive diagnosis. As a step toward overcoming 

these limitations in diagnostic pathology of skeletal muscle tissue, here we report the 

application of parameter estimation machine learning approaches on immunofluorescent 

images of human skeletal muscle tissue acquired using fluorescent microscopy. The machine 

learning morphometric approach enables the recognition of fine cellular changes in skeletal 

muscle tissue, allowing determination of skeletal muscle remodeling as a consequence of 

immobilization. 
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Introduction 
 
Alongside non-invasive clinical examination, bioelectrical impedance analysis, 

electromyography, magnetic resonance spectroscopy, ultrasonography, computed tomography 

and X-ray absorptiometry (1-7), are among the approaches used to diagnose myopathy.  

However, skeletal muscle biopsy commonly used for light microscopic, electron microscopic 

and biochemical and transcriptional evaluation of the skeletal muscle remains the gold standard 

for establishing the etiology of a myopathy (8-12). Myopathy observed in light and electron 

micrographs of biopsy tissue include focal myofiber damage as in mitochondrial disorders, 

segmental damage in dystrophies, or multifocal damage in various inflammatory myopathies 

(13,14). Furthermore, common myopathic features include variable fiber size with both 

atrophied and hypertrophied muscle fibers. Atrophied fibers are often rounded, as opposed to 

the angulated atrophic fibers observed in neurogenic myopathy. Certain myopathies exhibit 

ragged red fibers which are common in mitochondrial disease. Other myopathies exhibit 

central core structures, found in central core disease, and the presence of rimmed vacuoles is 

found in inclusion body myositis (15-17). While most myopathies exhibit one or more such 

phenotypes, early stage or metabolic myopathies often exhibit normal muscle morphology on 

routine histochemical examination, making diagnosis difficult. In such cases where standard 

staining techniques fail to offer definitive diagnostic information, a combination of expensive 

and time-consuming immunohistochemistry, electron microscopy and biochemical testing is 

required to provide definitive diagnosis of the disease and for its appropriate treatment and 

management. To overcome these limitations in diagnostic pathology of skeletal muscle tissue, 

in the current study, we have developed a parameter estimation histomorphometry approach, 

that will in the immediate future, be combined with an inexpensive nanoscale imaging 

approach referred to as differential expansion microscopy (DiExM) (18), to diagnose 

myopathy. In the current study we use skeletal muscle biopsies obtained on day-1 and again 
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on day-12 from patients following immobilization, to determine changes in muscle 

morphology, i.e., remodeling of myosin bundles. Utilizing parameter estimation machine 

learning approach on immunofluorescent images of human skeletal muscle tissue, skeletal 

muscle remodeling as a consequence of immobilization was determined. This machine learning 

morphometric approach enables the recognition of fine cellular changes in skeletal muscle 

tissue, impossible otherwise. 

 

Materials and Methods 

Human skeletal muscle tissue sections: Human tibialis anterior muscle biopsies obtained from 

both male and female patients ages 52-84 years on day-1 and again on day 12 following 

admission to the ICU, was used in the study. In humans, the tibialis anterior muscle has a 

greater (nearly 80%) proportion of the slow muscle fibers. Tissues were handled, stored and 

sectioned, according to the published procedures and protocols approved by the institutional 

review board of Karolinska Institutet, Stockholm, Sweden. Part of each skeletal muscle biopsy 

was fixed in 4% para formaldehyde (PFA), washed in phosphate buffered saline (PBS), prior 

to setting the tissue in optimal cutting temperature compound (OCT) block, frozen, and cryo-

sectioned at a thickness of 8-10 µm and placed on poly-L-lysine coated glass slides. Tissue 

sections on glass slides were handled and stored according to the published procedures and 

protocols approved by the institutional review board of Wayne State University, prior to 

immunofluorescent staining and expansion microscopy. 

 
Immunohistochemistry: Eight to 10 µm 4% PFA fixed human skeletal muscle biopsy tissue 

sections adhered to poly-L-lysine coated glass slides, were used to perform 

immunohistochemistry. Tissues sections were hydrated for 48h at 4 °C in PBS pH 7.4. Sections 

were exposed to 10 mM sodium citrate pH 6.0 for 30 min at 60 °C. Tissue sections were washed 
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six times (2 min per wash) using PBS pH 7.4. at RT. Sections were blocked with MaxBlock 

blocking medium (Active Motif) containing 0.1% Tween-20 for 2 hours at RT, followed by 6 

washes (2 min per wash) in PBS pH 7.4 containing 0.1% Tween-20 at RT. Tissue sections 

were incubated at 4 °C overnight with the primary-conjugated fluorescent antibody [Slow 

myosin heavy chain MYH7-Alexa Flour 647 (red); Santa Cruz Biotechnology, Inc], at 1:50 

dilution using MaxBind (Active Motif) or 0.5 µg/ml of each antibody. To label the nucleus, 

sections were incubated with 0.2 µM of 4′,6-diamidino-2-phenylindole (DAPI) (Molecular 

Probes, Life Technologies, Carlsbad, CA) in PBS pH 7.4, washed 2 times (5 min per wash) 

with PBS containing 0.1% Tween-20 at RT. 

 

Light microscopy: Imaging was carried out using a Zeiss apotome imager Z1 fluorescence 

microscope at 10X and 40X magnifications. For each treatment group, 4 spatially distinct and 

randomly chosen 2-channel (DAPI 461nm and DsRed 568nm) images were acquired at 

identical illumination. Each image was extracted with Zeiss apotome imager with extended 

depth of focus rendered through Zen Imaging Software (Carl Zeiss AG). 

 

Machine Learning Approach: A machine-learning framework was used to enable the 

recognition of fine cellular changes in skeletal muscle tissue [Figure 1]. This was accomplished 

by using the immunomicrographs obtained from human skeletal muscle biopsies obtained from 

patients on Day 1 and Day 12 of immobilization. Micrographs of nuclei stained using DAPI 

and muscle fibers immunolabeled using the slow myosin heavy chain conjugated Alexa Flour 

647 (red), are fed into a Convolutional Neural Network (CNN) model for object segmentation. 

During training, the biopsy images were manually annotated as foreground (nuclei stain DAPI 

and slow twitch myosin) and background (cytoplasm) are used to build a predictive model 

capable of classifying each pixel on an independent validation set. The model was then tested 
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on the remaining biopsies, to automatically identify the boundaries of each organelle (i.e. object 

segmentation). The parameters associated with the automatically annotated organelles was then 

fed into a separate artificial neural network (ANN). The ANN is able to distinguish between 

D1 and D12 tissue, which are visually indistinguishable. 

 

Figure 1. Machine-learning framework enabling the recognition of fine cellular changes 

in skeletal muscle tissue. A. Human skeletal muscle biopsy sections obtained from patients 

on Day 1 and Day 12 of immobilization, stained for uclei stained with DAPI and fibers 

immunolabeled using slow myosin heavy chain. Image data are fed into a CNN for object 

segmentation. During training, images are manually annotated as foreground (nuclei stain 

DAPI and slow twitch myosin) and background (cytoplasm) and used to build a predictive 

model capable of classifying each pixel on an independent validation set. The model is then 

tested on the remaining biopsies to automatically identify the boundaries of each organelle. B. 

Parameters associated with the automatically annotated organelles (e.g. average gray intensity, 

area, pixel count, etc.) are fed into an ANN to differentiate Day 1 from Day 12 of 

immobilization. 

 
Results and Discussion 
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Immunolabeled human skeletal muscle biopsy obtained from four patients (M639, M623, 

M626 and M629) on Day 1 (D1, control) and Day 12 (D12, experimental) of immobilization, 

demonstrate the loss of slow myosin heavy chain immunoreactivity following 12 days of 

immobilization. However, changes in size and shape of the nuclei stained with DAPI and the 

myosin bundles between D1 and D12 samples, were visually indistinguishable in all four 

patients [Figure 2]. To be able to determine the pathophysiological status of the skeletal muscle 

in ICU patients from immunofluorescent images of human skeletal muscle tissue acquired 

using fluorescent microscopy, we applied a parameter estimation machine learning approach. 

The machine learning morphometric approach enables the recognition of fine cellular changes 

in skeletal muscle tissue visually indistinguishable, allowing determination of skeletal muscle 

remodeling as a consequence of immobilization. 
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Figure 2. Immunolabeled human skeletal muscle biopsy obtained from four patients 

(M639, M623, M626 and M629) on Day 1 (D1, control) and Day 12 (D12, experimental) 

of immobilization using the nuclei stain DAPI and slow myosin heavy chain antibody-

conjugated fluorophore (red). Note that there is variability in the amounts and distribution of 

myosin in different patients in the beginning of the study (D1). Also note the difference 

between patients in the extent of loss of slow myosin heavy chain immunoreactivity following 

12 days of immobilization. However, the size and shape of the nuclei and the myosin bundles 

between D1 and D12 are visually indistinguishable. Bar = 100 µm. 

 

Muscle biopsies fixed with 4% PFA and cryo-sectioned (8-10 um sections), were stained with 

DAPI, and slow (red) myosin. A convolutional neural network (CNN) was trained using the 

tissue micrograph data for object segmentation. During training, the sub cellular structures (e.g. 

nuclei in fibers expressing slow myosin) in multiple images are annotated manually. Once a 

fully trained CNN model is constructed based on the labeled data, the new biopsy images were 

fed into the network to automatically annotate each pixel and determine the group of pixels 

defining each object. To illustrate, Figure 3A shows the human skeletal muscle cells with nuclei 

stained (blue) and Figure 3B shows the corresponding nuclei segmentation. Similarly, Figure 

3D shows the human skeletal muscle biopsy section stained for myosin heavy chain (red) and 

Figure 3E shows the myosin segmentation using CNNs. The parameters of each organelle are 

calculated through computational image analysis. Parameters associated with each organelle 

on day 1 and day 12 are then used as input features fed into a machine learning model to 

understand significant features associated with prolonged ICU stays. The results of this study 

serve as a proof of concept in understanding cellular changes in patients with various stages of 

skeletal muscle myopathy. 
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An artificial neural network (ANN) is then trained using fluorescent micrographs of D1 and 

D12 skeletal tissue sections [Figure 2,3] for the identification of significant predictive features, 

for example those associated with the DAPI-stained nucleus (e.g. area, roundness, circularity, 

pixel count, convexity etc.), that could differentiate between D1 and D12. at 81% prediction 

accuracy using a separate validation set. Table I shows the detailed prediction accuracy using 

DAPI-stained nucleus by the immobilization class. 

 

 

 

Figure 3. Parameter estimation using a classification model and computational image 

analysis of human skeletal muscle biopsy tissue. (A) Human skeletal muscle cells with nuclei 

stained blue (DAPI). (B) Nuclei segmentation and (C) parameter estimation using a 
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classification model and computational image analysis. (D) Human skeletal muscle biopsy 

section stained for slow myosin heavy chain (E). 

 

Table 1: Detailed prediction accuracy using DAPI-stained nucleus by immobilization class. 

 
TP: True Positive; FP: False Positive; Precision: Positive Predictive Value; Recall: Fraction of the total amount 
of relevant instances retrieved; F-measure: Measure of Tests Accuracy; ROC Area: Relative tradeoffs between 
TP and FP. 
 

Similarly, Table 2 shows the detailed prediction accuracy of the immobilization class using 

myosin stining. The results have shown that the ANN is able differentiate between D1 and D12 

with 88% accuracy. The minimum mean and maximum amount of red intensity are calculated 

as the most significant predictive features.  

 

Table 2: Detailed prediction accuracy of the immobilization class using myosin staining. 
 

   TP Rate 
 FP 
Rate  Precision  Recall    

F-
Measure 

 ROC 
Area Class 

  0.973 0.213 0.818 0.973 0.889 0.926 Day 1 

  0.787 0.027 0.967 0.787 0.868 0.926 Day 12 

Weighted Avg. 0.879 0.120 0.893 0.879 0.878 0.926 
 

TP: True Positive; FP: False Positive; Precision: Positive Predictive Value; Recall: Fraction of the total amount 
of relevant instances retrieved; F-measure: Measure of Tests Accuracy; ROC Area: Relative tradeoffs between 
TP and FP. 
 

 In summary, we report in this study the application of parameter estimation machine 

learning applied on immunofluorescent images of human skeletal muscle tissue, to determine 

skeletal muscle remodeling as a consequence of immobilization. Besides cellular changes 

visually indistinguishable in the skeletal muscle micrographs in D1 and D12 of immobilization, 

there appears to be variability in the amounts and distribution of myosin in different patients 
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in D1 at the beginning of the study. However, this study shows that the machine learning 

approach utilized, enables the recognition of fine cellular changes visually indistinguishable in 

skeletal muscle tissue as a consequence of immobilization, allowing determination of skeletal 

muscle remodeling as a consequence of immobilization. Results of this study serves as a proof 

of concept in understanding cellular changes in patients with various stages of skeletal muscle 

wasting, further contributing to the field of diagnostic pathology. Furthermore, the future 

application of this approach combined with DiExM (18), will help the diagnosis of myopathy 

at the nano scale. 
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