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Abstract: Disease transmission and behavior change are both fundamentally social phenom-1

ena. Behavior change can have profound consequences for disease transmission, and epidemic2

conditions can favor the more rapid adoption of behavioral innovations. We analyze a simple3

model of coupled behavior-change and infection in a structured population characterized by ho-4

mophily and outgroup aversion. Outgroup aversion slows the rate of adoption and can lead to5

lower rates of adoption in the later-adopting group or even behavioral divergence between groups6

when outgroup aversion exceeds positive ingroup influence. When disease dynamics are coupled7

to the behavior-adoption model, a wide variety of outcomes are possible. Homophily can either8

increase or decrease the final size of the epidemic depending on its relative strength in the two9

groups and on R0 for the infection. For example, if the first group is homophilous and the10

second is not, the second group will have a larger epidemic. Homophily and outgroup aversion11

can also produce dynamics suggestive of a “second wave” in the first group that follows the peak12

of the epidemic in the second group. Our simple model reveals dynamics that are suggestive13

of the processes currently observed under pandemic conditions in culturally and/or politically14

polarized populations such as the United States.15

16

Keywords: transmission dynamics; coupled contagion; homophily; outgroup aversion; social17

distancing18

1. Introduction19

Behavior can spread through communication and social learning like an infection20

through a community (Bass, 1969; Centola, 2018). Cavalli-Sforza and Feldman, who21

pioneered treating cultural transmission in an analogous manner to genetic transmission,22

noted that “another biological model may offer a more satisfactory interpretation of the23

diffusion of innovations. The model is that of an epidemic” (Cavalli-Sforza and Feldman,24

1981, 32-33). The biological success of Homo sapiens has been attributed to its capacity25

for cumulative culture, and particularly to the rapid and flexible adaptability that arises26

from social learning (Henrich, 2015). Adoption of adaptive behaviors during an epidemic27

of an infectious disease could be highly beneficial to both individuals and the population28

in which they are embedded (Fenichel et al., 2011). Coupling models of behavioral29

adoption and the transmission of infectious disease, what we call coupled contagion30
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2 SMALDINO & JONES

models, may thus provide important insights for understanding dynamics and control of31

epidemics. While we might expect strong selection—both biological and cultural—for32

adaptive responses to epidemics, complications such as the potentially differing time33

scales of culture and disease transmission and the existence of social structures that34

shape adoption may complicate convergence to adaptive behavioral solutions.35

In this paper, we explore the joint role of homophily—the tendency to form ties with36

people similar to oneself—and outgroup aversion—the tendency to avoid behaviors pref-37

erentially associated with an outgroup. Identity exerts a powerful force on the dynamics38

of behavior (Hogg and Abrams, 2007; Bishop, 2009; Mason, 2018; Smaldino, 2019; Klein,39

2020; Moya et al., 2020). This is because identity at least partly determines whom we40

associate with, communicate with, and strive to either emulate or avoid. Our analysis41

is predicated on the idea that this matters for the dynamics of infection. For exam-42

ple, Salathé and Bonhoeffer (2008) showed that if rates of vaccine adherence cluster on43

networks, as when communities collectively adopt identity-based positions on the likely44

costs and benefits of vaccination (Bauch and Earn, 2004) or when like-minded individu-45

als tend to assort in social networks (Bishop, 2009), the overall vaccination rates needed46

for herd immunity can be substantially higher than suggested by models that assume47

random vaccination.48

Homophily involves interactions with ingroup members at rates higher than expected49

by chance. Homophily is often treated as though it were a global propensity for as-50

sortment by type (e.g. Centola, 2011). However, homophily is frequently observed to a51

greater or lesser degree across subgroups, a phenomenon known as differential homophily52

(Morris, 1991). Consider a case of two interacting groups, where one is more homophilous53

than the other. The less homophilous group may consist of more “frontline” workers,54

who are exposed to a broader cross-section of the population by nature of their work.55

In such cases, differential homophily may lead to differential disease dynamics in each56

group.57

Members of opposed identity groups not only engage with the world differently, they58

can react in divergent ways to identical stimuli. Asked to watch political debates or hear59

political arguments, partisans often grow more strongly partisan, to the consternation of60

moderates (Taber et al., 2009). In the U.S., partisan identities have become increasingly61

defined in terms of their opposition to the opposing party (Abramowitz and Webster,62

2016). When considering the adoption of products, consumers often become disen-63

chanted with otherwise attractive purchases if the products are associated with identity64

groups viewed as different from their own (Berger and Heath, 2007, 2008). Smaldino65

et al. (2017) modeled the spread of a behavior among members of two groups who re-66

sponded positively to the behavioral contagion but tended to reject it if it was overly67

associated with the outgroup. They showed that outgroup aversion not only decreased68

the overall rate of adoption, but could also delay or even entirely suppress adoption in69

one of the groups. While populations vary in the extent to which they are polarized or70

parochial, identity clearly matters to the adoption of health behaviors in at least com-71

munities. For example, in the U.S., people who identify with the right-wing Republican72

party are much less likely than those identifying with the center-left Democratic party to73
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COUPLED DYNAMICS OF BEHAVIOR AND DISEASE 3

endorse mask-wearing or belief in its efficacy in preventing disease transmission during74

the COVID-19 pandemic (van Kessel and Quinn, 2020).75

Several previous studies have considered the coupled contagion of behavior and infec-76

tion, usually focused on cases where the behavior is one that decreases the spread of the77

disease (such as social distancing or wearing face masks) and sometimes using the as-78

sumption that increased disease prevalence promotes the spread of the behavior (Tanaka79

et al., 2002; Epstein et al., 2008; Funk et al., 2010; Verelst et al., 2016; Fast et al., 2015;80

Fu et al., 2017; Hébert-Dufresne et al., 2020; Mehta and Rosenberg, 2020). These models81

typically assume that individuals differ only in behavior and disease status. Thus, the82

spread of both disease and behavior depend primarily on rates of behavior transmission83

and disease recovery. This is true even of models in which the population is structured on84

networks. Network structure can change the dynamics of contagion. However, contrary85

to the assumptions of most models, behavioral distributions on social networks are any-86

thing but random. People assort in highly non-random ways (McPherson et al., 2001)87

and these non-random associations both drive and are driven by social identity. This88

suggests that the role of social identity is an important, but under-studied, component89

of coupled contagion models.90

Here, we consider how identity—and particularly homophilous interactions with in-91

group members and aversion to adopt behaviors used by an outgroup—influences the92

spread of novel behaviors that consequently affect the transmission of infectious disease.93

The model we will present is complex, and hence challenging to analyze. To help us94

make sense of the dynamics, we will first describe the dynamics of infection and behav-95

ior adoption in isolation, and then explore the full coupled model. We will first show how96

homophily can introduce temporal delays in the infection trajectories between groups.97

We will then show how outgroup aversion can lead to reduced or even fully inhibited98

behavior adoption by the later-adopting group. Finally, we will analyze the fully cou-99

pled model and show how the identity-driven forces we consider can lead differentiated100

identity groups to experience an epidemic in very different ways.101

2. The SIR model of infection with homophily102

We model infection in a population in which individuals can be in one of three states:103

Susceptible, Infected, and Recovered. When susceptibles interact with infected individu-104

als, they become infected with a rate equal to the effective transmissibility of the disease,105

τ . Infected individuals recover with a constant probability ρ per infection per unit time.106

This is the well-known SIR model of epidemics (Kermack and McKendrick, 1927; Tolles107

and Luong, 2020). The baseline model assumes random interactions governed by mass108

action, and the dynamics are described by well-known differential equations. This model109

yields the classic dynamics in which the susceptible and recovered populations appear110

as nearly-mirrored sigmoids, while the rate of infected individuals rises and falls. The111

threshold for the epidemic is given by the basic reproduction number, R0, which is a112

measure of the expected number of secondary cases caused by a single, typical primary113
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4 SMALDINO & JONES

case at the outset of an epidemic in a population entirely composed of uninfected individ-114

uals. An epidemic occurs when R0 > 1. For the basic SIR model in a closed population,115

R0 = τ
ρ .116

Our analysis will focus on scenarios where individuals assort based on identity. In117

this case, assume that individuals all belong to one of two identity groups, indicated118

with the subscript 1 or 2. Let wi be the probability that interactions are with one’s119

ingroup, i ∈ {1, 2}. It is therefore a measure of homophily; populations are homophilous120

when wi > 0.5. It is important to recognize that groups can differ in their homophily121

(Morris, 1991). For example, if groups differ in socioeconomic class and group 1 tends122

to employ members of a group 2 as service workers, homophily will be higher for group123

1; a member of group 2 is more likely to encounter members of group 1 than the reverse.124

We can update the equations governing infection dynamics for members of group 1, with125

analogous equations governing members of group 2.126

dS1
dt

= −τS1 (w1I1 + (1− w1)I2)

dI1
dt

= τS1 (w1I1 + (1− w1)I2)− ρI1
dR1

dt
= ρI1

We assume the disease breaks out in one of the two groups, so the initial number127

of infected in group 1 is small but nonzero, while the initial number of infected in128

group 2 is exactly zero. Without loss of generality, we have assumed that group 1 is129

always infected first. When homophily is low, the model exhibits standard SIR dynamics130

approximating a single unified population. When an infection breaks out in group 1,131

homophily can delay the outbreak of the epidemic in group 2. Homophily for each group132

works somewhat synergistically, but the effect is dominated by w2. This is because the133

infection spreads rapidly in a homophilous group 1, and if group 2 is not homophilous, its134

members will rapidly become infected. However, if group 2 is homophilous, its members135

can avoid the infection for longer, particularly when group 1 is also homophilous. If136

only group 2 is homophilous, the initial outbreak will be delayed, but the peak infection137

rate in group 2 can actually be higher than in group 1, as the infection is driven by138

interactions with both populations (Figure 1).139

We also considered the case in which the transmissibility of the infection can be140

reduced to very near the recovery rate, so that R0 is very close to 1. In this case,141

homophily can protect groups where infection did not originally break out by keeping142

members relatively separated from the infection group (Figure S2).143

3. Behavioral Contagion with Outgroup Aversion144

We model behavior adoption as a susceptible-infectious-susceptible (SIS) process, in145

which individuals can oscillate between adoption and non-adoption of the behavior indef-146

initely. We view this as more realistic than an SIR process for preventative-but-transient147

behaviors like social distancing or wearing face masks. To avoid confusion with infection148
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Figure 1. Dynamics of the infected population of each group under
low and high homophily (wi = 0.6, 0.99). Other parameters used were
τ = 0.3, ρ = 0.07, I1(0) = 0.01, I2(0) = 0. R0 ≈ 4.28 in the absence of
homophily.

status, we denote individuals who adopted the preventative behavior as Careful (C),149

and those who have not as Uncareful (U). Unlike a disease, which is reasonably mod-150

eled as equally transmissible between any susceptible-infected pairing, where behavior151

is concerned, susceptible individuals are more likely to adopt when interacting with in-152

group adopters, but less likely to adopt when interacting with outgroup adopters. We153

model the behavioral dynamics for members of group 1 are as follows, with analogous154

equations1 governing members of group 2:155

dU1

dt
= − (α1 + βC1)U1 + (γC2 + δ)C1

dC1

dt
= (α1 + βC1)U1 − (γC2 + δ)C1

Members of group imay spontaneously adopt the behavior independent of direct social156

influence, and do so at rate αi. This adoption may be due to individual assessment of the157

1Because all individuals have either adopted or not, U1 = 1 − C1, these coupled equations can be
replaced by a single equation through substitutions. For intuitive reasons, we leave them as two coupled
equations.
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6 SMALDINO & JONES

behavior’s utility, to influences separate from peer mixing, such as from media sources,158

or to socioeconomic factors that make behavior adoption more or less easy for certain159

groups. For these reasons, we assume that groups can differ on their rates of spontaneous160

adoption. In reality, it is possible for groups to differ on all four model parameters, all of161

which can influence differences in adoption rates. For simplicity, we restrict our analysis162

to differences in spontaneous adoption.163

Uncareful individuals are positively influenced to become careful by observing careful164

individuals of their own group, with strength β. However, this is countered by the force165

of outgroup aversion, γ, whereby individuals may cease being careful when they observe166

this behavior among members of the outgroup. The behavior is eventually discarded at167

rate δ, representing financial and/or psychological costs of continuing to adopt preventive168

behaviors like social distancing or wearing face masks.169

This model assumes no explicit homophily in terms of behavioral influence. On the170

one hand, it seems obvious that we observe and communicate with those in our own171

group more than other groups. On the other hand, opportunities for observing outgroup172

behaviors are abundant in a digitally-connected world, which alter the conditions for173

cultural evolution (Acerbi, 2019). For simplicity, we do not add explicit homophily terms174

to this system. Instead, we simply adjust the relative strengths of ingroup influence and175

outgroup aversion, β/γ. When this ratio is higher, it reflects stronger homophily for176

behavioral influence.177

Numerical simulations that illustrate the influence of outgroup aversion are depicted178

in Figure 2. In all cases, the careful behavior is first adopted by group 1. In the absence179

of outgroup aversion, both groups adopt the behavior at saturation levels, with group 2180

being slightly delayed. When outgroup aversion is added, the delay increases, but more181

importantly, overall adoption declines for both groups. This decline continues as long as182

the strength of outgroup aversion is less than the strength of positive ingroup influence.183

A phase transition occurs here (Figure 2C,D). Although group 2 may initially adopt the184

behavior, adoption is subsequently suppressed, resulting in a polarizing behavior that is185

abundant in group 1 but nearly absent in group 2.186

We also consider the case in which one group has a higher intrinsic adoption rate,187

which could be driven by differences in personality types, norms, or media exposure188

between the two groups. When α1 > α2, the equilibrium adoption rate for group 1189

could be considerably higher than for group 2, even when ingroup positive influence was190

greater than outgroup aversion (Figure 2E, F). Note that these differences arise entirely191

because of outgroup aversion. When γ = 0, both groups adopt at maximum levels.192

Outgroup aversion has a strong influence on adoption dynamics. It can delay adoption,193

reduce equilibrium adoption rates, and even suppress adoption entirely in the later-194

adopting group. As we will see, when the behavior being adopted influences disease195

transmission, quite interesting dynamics can emerge.196

4. Coupled Contagion with Homophily and Outgroup Aversion197

Before we explore the coupled dynamics of this system, we must add one more consid-198

eration to the model. We focus on the adoption of preventative behaviors that decrease199
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Figure 2. Dynamics of the behavioral adoption. (A-C) Behavior adop-
tion dynamics in each group for different levels of outgroup aversion, γ.
Parameters used were α1 = α2 = 0.001, β = 0.3, δ = 0, C1(0) = 0.01,
C2(0) = 0. (D) Equilibrium adoption rates for each group as a function
of outgroup aversion, γ. A bifurcation occurs when outgroup aversion
overpowers the forces of positive influence. (E) Behavior adoption dy-
namics for γ = 0.2 where group 1 has a higher spontaneous adoption
rate, α1 = 0.1. Here, the two groups converge to different equilibrium
adoption rates. (F) Equilibrium adoption rates for each group as a func-
tion of outgroup aversion, γ, when α1 = 0.1.

the effective transmission rate of the infection, such as social distancing or wearing face200

masks. We model this by asserting that the transmission rate is τC for careful individuals201

and τU for uncareful individuals, such that τU ≥ τC . When considering the interaction202

between careful and uncareful individuals, we use the geometric mean, so the transmis-203

sibility between SU and IU (that is, between susceptible and infected individuals who204

are both uncareful) is
√
τUτC . We use the geometric mean so that if either population205

reduces its transmissibility to zero, transmission among its members becomes impossible.206

The full model has six compartments, with two-letter abbreviations denoting the
disease and behavioral state (Figure 3). The coupled dynamics for members of group 1
are as follows, with analogous equations governing members of group 2, such that the
full system is defined by 12 coupled differential equations. A list of all parameters is
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Figure 3. Illustration of the dynamics for the coupled contagion model.
(A) Transition probabilities between compartments for members of group
1. For simplicity these probabilities do not include the influence of ho-
mophily. (B) homophilous interactions. Members of group i have phys-
ical contact with members of their own group with probability wi and
members of the outgroup with probability 1− wi.

presented in Table 1.

d(SU1)

dt
= [δ + γ (SC2 + IC2 +RC2)] (SC1)− [α1 + β(SC1 + IC1 +RC1)] (SU1)−

τU (SU1) [w1(IU1) + (1− w1)IU2]−
√
τUτC(SU1) [w1(IC1 + (1− w1)IC2]

d(SC1)

dt
=− [δ + γ (SC2 + IC2 +RC2)] (SC1) + [α1 + β(SC1 + IC1 +RC1)] (SU1)−
√
τUτC(SC1) [w1(IU1) + (1− w1)IU2]− τC(SC1) [w1(IC1 + (1− w1)IC2]

d(IU1)

dt
= [δ + γ (SC2 + IC2 +RC2)] (IC1)− [α1 + β(SC1 + IC1 +RC1)] (IU1)+

τU (SU1) [w1(IU1) + (1− w1)IU2] +
√
τUτC(SU1) [w1(IC1 + (1− w1)IC2]− ρ(IU1)

d(IC1)

dt
=− [δ + γ (SC2 + IC2 +RC2)] (IC1) + [α1 + β(SC1 + IC1 +RC1)] (IU1)+
√
τUτC(SC1) [w1(IU1) + (1− w1)IU2] + τC(SC1) [w1(IC1 + (1− w1)IC2]− ρ(IC1)

d(RU1)

dt
= [δ + γ (SC2 + IC2 +RC2)] (RC1)− [α1 + β(SC1 + IC1 +RC1)] (RU1) + ρ(IU1)

d(RC1)

dt
=− [δ + γ (SC2 + IC2 +RC2)] (RC1) + [α1 + β(SC1 + IC1 +RC1)] (RU1) + ρ(IC1)
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Table 1. Model parameters.

Parameter Definition
τC disease transmissibility for careful individuals
τU disease transmissibility for uncareful individuals
ρ disease recovery rate
wi homophily for group i
αi spontaneous behavior adoption rate for group i
β ingroup positive influence on behavior
γ outgroup negative influence on behavior
δ behavior discard rate

Behavioral adoption is independent of infection status in this model. This may not207

be a realistic assumptions for some systems, such as Ebola, where the both the infec-208

tion status of the adopter and the perceived incidence in the population are likely to209

influence behavior. The assumption seems more realistic for infections like influenza210

and COVID-19, where infection status is not always transparent and decisions are likely211

to be made on the basis of more abstract socially-transmitted information. There are212

intermediate cases, however, such as where media reports of disease prevalence or the213

perceived availability may influence the adoption of preventative behaviors (Lau et al.,214

2010; Zhang et al., 2015; Seale et al., 2020). We do not consider such cases here.215

To make the behavioral adoption most meaningful, we focus on the case where in-216

stantaneous and universal adoption of the careful behavior would decrease the disease217

transmissibility so that R0 < 1. That is, if everyone immediately adopted the behavior,218

the epidemic would fizzle out. However, behavior adoption does not typically work this219

way. We have already noted that under assumptions of between-group variation and220

outgroup aversion, a behavior is likely to be adopted neither instantaneously nor uni-221

versally. The question we tackle now is how those socially-driven facets of behavioral222

adoption influence disease dynamics.223

Figure 4 illustrates the wide range of possible disease dynamics under varying as-224

sumptions of homophily and outgroup aversion. A wider range of homophily values are225

explored in the Supplemental Materials (Figures S4, S5). In the absence of either ho-226

mophily or outgroup aversion, our results mirror previous work on coupled contagion in227

which the adoption of inhibitory behaviors reduces peak infection rates, flattening the228

curve of infection. Due to differences in spontaneous adoption rates, however, group229

2 may see a higher peak infection rate even when the infection breaks out in group 1,230

because the inhibitory behavior spreads more slowly in that group (Figure 4A).231

Homophilous interactions further lower infection rates. If group 1 alone is homophilous,232

the infection rate declines in that group, while peak infections actually increase in group233

2 (Figure 4C). This is because group 1 adopts the careful behavior early, decreasing their234

transmission rate and simultaneously avoiding contact with the less careful members of235

group 2, who become infected through their frequent contact with group 1. If group 2236

alone is homophilous, on the other hand, the infection is staved off even more so than if237

both groups are homophilous (Figure 4B, D). This is because members of group 2 avoid238
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contact with group 1 until the careful behavior has been widely adopted, while members239

of group 1 diffuse their interactions with some members of group 2, and these are less240

likely to lead to new infections.241

Outgroup aversion considerably changes these dynamics. First and foremost, outgroup242

aversion leads to less widespread adoption of careful behaviors, dramatically increasing243

the size of the epidemic. Moreover, because under many circumstances there will be244

between-group differences in equilibrium behavior-adoption rates, this can lead to dra-245

matic group differences in infection dynamics. In the absence of outgroup aversion, we246

saw that homophily in group 2 could lead to an almost total suppression of the epidemic.247

Not so with outgroup aversion, in which the peak infection rates increase relative to the248

low homophily case (Figure 4E, F). This occurs because homophily causes a delay in249

the infection onset in group 2. Behavioral adoption slows the epidemic initially in both250

groups. However, when the infection finally reaches group 1, behavioral adoption has251

decreased past its maximum due to the outgroup aversion, causing peak infections in252

both groups to soar.253

The dynamics are particularly interesting for the case where the group in which the254

epidemic first breaks out (group 1 in our analyses) is also strongly homophilous. Due255

to homophily along with rapid behavior adoption, the epidemic is initially suppressed256

in this group. However, due to slower and incomplete behavior adoption, the infection257

spreads rapidly in group 2. As the infection peaks in group 2 while group 1 decreases258

its behavior adoption rate, we observe a delayed “second wave” of infection in group 1,259

well after the infection has peaked in group 2 (Figure 4G). This effect is exacerbated260

when both groups are homophilous, as the epidemic runs rampant in the less careful261

group 2 (Figure 4H). As shown in the Supplementary Material, the timing of the second262

wave is also delayed to a greater extent when the adopted behavior is more efficacious263

at reducing transmission (Figure S6).264

We explored the differences in the timing of the infection peaks between the two265

groups, as illustrated in Figure 5. As noted, homophily in group 1 has a larger effect than266

homophily in group 2 because the infection first breaks out in group 1. Without outgroup267

aversion, the infection peak in group 1 is usually closely timed to the infection peak in268

group 2, usually coming slightly later due to group 2’s lagged adoption of the preventative269

behavior (Figure 5A). If group 1 has very strong homophily, however, the infection can270

peak earlier there, as its spread to group 2 is impeded. When outgroup aversion is strong,271

however, group 2’s adoption of the preventative behavior is severely impeded, which cases272

its infection rate to peak much earlier than in group 1, and this effect is only bolstered273

by strong homophily in group 1 (Figure 5B). The effect of outgroup aversion on the274

differential timing between groups of infection rate peaks is non-monotonic (Figure 5C),275

peaking at intermediate values of γ.276

5. Discussion277

It is well known that disease transmission is influenced by behavior. What is often278

overlooked is how behavior itself changes within heterogeneous cultural populations.279
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Figure 4. Coupled contagion dynamics when the behavior leads to
highly effective reduction in transmissibility, under varying conditions
of homophily and outgroup aversion. Notice difference in y-axis scale
for infection rate between top and bottom sets of graphs. Parame-
ters used: τU = 0.3, τC = 0.069, ρ = 0.07, α2 = 0.1, α2 = 0.001,
β = 0.3, δ = 0, SU1(0) = 0.98, SC1(0) = 0.01, IU1(0) = 0.01,
IC1(0) = RU1(0) = RC1(0) = 0, SU2(0) = 1.0, SC2(0) = IU2(0) =
IC2(0) = RU2(0) = RC2(0) = 0 .
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Figure 5. Difference in the timing of the peak infection rates between
groups. These plots show the extend to which the peak in group 1 lags
behind the peak in group 2. The first two plots show the peak delay
for group 1 as a function of group 1 homophily, (A) with and (B) with-
out outgroup aversion, γ. The third plot (C) more systematically varies
outgroup aversion, for several values of group 1 homophily and moder-
ate group 2 homophily, w2 = 0.7. Other parameters used: τU = 0.3,
τC = 0.069, ρ = 0.07, α2 = 0.1, α2 = 0.001, β = 0.3, δ = 0.

Both population structure and social identity influence who interacts with whom, af-280

fecting disease transmission, and who learns from whom, affecting behavior change. We281

have highlighted two of these forces—homophily and outgroup aversion—and shown282

their dramatic influence on disease dynamics in a simple model.283

In terms of social interaction and behavior adoption dynamics, group identity exerts284

its influence by way of homophily, a powerful social force. Aral et al. (2009), for ex-285

ample, showed that homophily accounted for more than 50% of contagion in a natural286

experiment on behavioral adoption. The effect of homophily on diffusion dynamics can287

be variable. For example, homophily can slow down convergence toward best responses288

in strategic networks (Golub and Jackson, 2012). This can be critical when the time289

scales of learning and infection are different. Homophily can also lower the threshold for290

desirability (or the selective advantage) required for adoption of a behavior. Creanza and291

Feldman (2014) showed that homophily and selection can have balancing effects—the292

selective advantage of a trait does not need to be as high to spread when it is trans-293

mitted assortatively by its bearers. In the case of our coupled-contagion model, strong294

homophily interferes with the adaptive adoption of protective behavior. Centola (2011)295

showed that homophily can increase the rate of adoption of health behaviors, but his296

experimental population could assort only on positive cues, and had no ability to signal297

or perceive group identity.298

Consider the observed adoption dynamics under differential homophily. When the299

homophily of group 1 is less than group 2, group 1 can be interpreted as “frontline”300

workers, who are exposed to a broader cross-section of the population by nature of their301

work. Outgroup avoidance of this group’s adopted protective behavior can arise if there302

are status differentials across the groups. Prestige bias, the tendency to adopt behaviors303
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associated with high-status individuals, is a mechanism that can drive differential uptake304

of novel behavior by different groups (Boyd and Richerson, 1985), for which there is quite305

broad support (Jiménez and Mesoudi, 2019). When both groups are highly homophilous306

and outgroup aversion is strong, the resulting dynamics suggest the case of negative307

partisanship, a type of outgroup aversion in which partisans select actions based not on308

explicit policy preferences but in opposition to the outgroup (Abramowitz and Webster,309

2016). In this case, differences in the relative size of the epidemic will be driven purely310

by differences in the rates of preventative behavior adoption by the two groups, including311

those differences induced by outgroup aversion.312

Incorporating adaptive behavior into epidemic models has been shown to significantly313

alter dynamics (Fenichel et al., 2011). Prevalence-elastic behaviors (Funk et al., 2010)314

are those behaviors that increase with the growth of an epidemic. While these behav-315

iors may be protective, they can also lead to cycling of incidence, which can prolong316

epidemics. Similarly, the adoption of some putatively-protective behaviors that are ac-317

tually ineffective can be driven by the existence of an epidemic when the cost of adoption318

is sufficiently low (Tanaka et al., 2009). We have shown in this paper that group-identity319

processes can have large effects, leading groups that would otherwise respond adaptively320

to the threat of an epidemic to behave in ways that put them, and the broader popula-321

tions in which they are embedded, at risk.322

The context of the ongoing COVID-19 pandemic provides some interesting and timely323

perspective on the relationship between behavior, adaptive or otherwise, and transmis-324

sion dynamics. While there remains much uncertainty about the infection fatality ratio325

of COVID-19, and how this varies according to individual, social, and environmental326

context, it is clear that the great majority of infections do not lead to death (Russell327

et al., 2020; Meyerowitz-Katz and Merone, 2020). Furthermore, the extensive presymp-328

tomatic (or even asymptomatic) transmission of the SARS-CoV-2 (He et al., 2020; Li329

et al., 2020; Arons et al., 2020) is likely to reduce associations between behavior and local330

infection rates. We expect that such a situation will not induce strong prevalence-elastic331

behavioral responses, and that the sorts of identity-based responses we describe here will332

dominate the behavioral effects on transmission.333

How do we intervene in a way to offset the pernicious effects of negative partisanship on334

the adoption of adaptive behavior? While it may seem obvious, strategies for spreading335

efficacious protective behaviors in a highly-structured population with strong outgroup336

aversion will require weakening the association between protective behaviors and par-337

ticular subgroups of the population. Given that we are writing this during a global338

pandemic in which perceptions and behaviors are highly polarized along partisan lines,339

attempts to mitigate partisanship in adaptive behavioral responses seem paramount to340

support.341

The models we have analyzed in this paper are broad simplifications of the coupled342

dynamics of behavior-change and infection. It would therefore be imprudent to use343

them to make specific predictions. The goal of this approach is to develop strategic344

models in the sense of Holling (1966), sacrificing precision and some realism for general345

understanding of the potential interactions between social structure, outgroup aversion,346
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and coupled contagion (Levins, 1966; Smaldino, 2017). Such models provide a scaffold for347

the development of richer theories concerning coupled disease and behavioral contagions.348
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APPENDIX (ONLINE SUPPLEMENT)507

Coupled Dynamics of Behavior and Disease508

Contagion Among Antagonistic Groups509

Appendix A. The SIR model with homophily510

We extended the SIR model to explore scenarios where individuals assort based on511

identity, as described in the main text. Here we present some additional analyses of this512

model.513

Figure S1 illustrates that when an infection breaks out in group 1, homophily can delay514

the outbreak of the epidemic in group 2. Homophily for each group works somewhat515

synergistically, but the effect is dominated by w2. This is because the infection spreads516

rapidly in a homophilous group 1, and if group 2 is not homophilous its members will517

rapidly become infected. However, if group 2 is homophilous, its members can avoid the518

infection for longer, particularly when group 1 is also homophilous.519
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Figure S1. Infection dynamics in the SIR model with asymmetric ho-
mophily. Here τ = 0.3, ρ = 0.07.

We also explored a scenario where R0 for the basic model was very close to 1, indicating520

a small epidemic (we used R0 = 1.14; Figure S2). Note that this calculation of R0 does521

not account for homophily; we derive R0 for the homophily model in the SI Appendix522

and show that this is a reasonable approximation. When homophily was low (w = 0.6),523

the populations mixed a lot. The proportion of infected individuals in group 1 briefly fell,524
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as the majority of new infected individuals were in group 2. However, the groups quickly525

matched their pace and experienced the outbreak in tandem. When homophily was high526

(w = 0.99), not only did group 2 experience a delayed outbreak, it also experienced a527

substantially lower peak infection rate, because the total number of infected individuals528

at the start of its outbreak was so much lower than that experienced by group 1. Thus,529

homophily can serve not only to delay an epidemic, but also to reduce it in the cases of530

lower transmissibility infections.531
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Figure S2. Infection dynamics in the SIR model with homophily when
R) is close to 1. Here τ = 0.08, ρ = 0.07, w1 = w2 = w.

Appendix B. Basic Reproduction Number532

We can calculate the basic reproduction number, R0, for the homophily model. We533

employ the next-generation matrix approach described by Heffernan et al. (2005), which534

concisely summarizes the ideas for calculating R0 in structured populations articulated535

by, e.g., Diekmann et al. (1990) and van den Driessche and Watmough (2002).536

Following the notation of Heffernan et al. (2005), the next generation matrix G is537

comprised of two component matrices: F and V −1, where538

(1) F =

[
∂Fi(x0)

∂xj

]
,

and539

(2) V =

[
∂Vi(x0)

∂xj

]
.

These are square matrices of the partial derivatives of new infections (Fi) and transfers540

between different compartments (Vi). The rank of these matrices is the number of541

distinct classes of infections. x0 is the disease-free equilibrium state. This matrix should542

be non-negative, irreducible, and primitive.543

is given by the dominant eigenvalue of the matrix G = FV −1.544

For the homophily model, the only two equations that yield new infections are those545

for İ1 and İ2:546
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dI1
dt

= τS1 (w1I1 + (1− w1)I2)− ρI1(3)

dI2
dt

= τS2 (w2I2 + (1− w2)I1)− ρI2(4)

Applying the next-generation-matrix approach described above to these equations,547

and noting that in the disease-free equilibrium S1 + S2 = 1, we get the next-generation548

matrix:549

(5) G =

(
S1τw1
ρ

S1τ(1−w1)
ρ

S2τ(1−w2)
ρ

S2τw2
ρ

)
.

Letting S2 = 1− S1 in the disease-free equilibrium, the larger of the two eigenvalues550

of this matrix is:551

(6)

R0 =
τ

2ρ

(√
S2
1w

2
1 + 2(1 − S1)S1w1w2 − 4(1 − S1)S1w1 + (1 − S1)2w2

2 − 4(1 − S1)S1w2 + 4(1 − S1)S1 + ρ2S1w1 + ρ2(1 − S1)w2

)

This relationship is greatly simplified by assuming uniform homophily (w1 = w2 = w):552

(7) R0 =
τ

2ρ
(w +

√
S2
1(8w − 4) + S1(4− 8w) + w2).

Note that if we collapse the structure of the population such that S1 = 1 (which also553

implies that w = 1), then equation 7 reduces to R0 = τ/ρ, the standard definition for the554

basic reproduction number in an unstructured SIR model (Keeling and Rohani, 2007).555

We see from figure S3 that structure and homophily (in the absence of coupled adap-556

tive behavior and outgroup aversion) are actually somewhat protective from an epidemic557

perspective. R0 is lowest when the population is evenly split between the two groups and558

when homophily is extreme. This makes sense since structure generally slows epidemics559

by subdividing the potential for contacts and thereby slowing mixing (Arthur et al.,560

2017).561

Appendix C. Coupled contagion dynamics562

Here we present an extended version of the full model analysis presented in the main563

text, that includes intermediate homophily of wi = 0.9. Analysis with no outgroup564

aversion is shown in Figure S4, and with outgroup aversion is shown in Figure S5.565

The figures illustrate how homophily and outgroup aversion can interact to produce566

unintuitive dynamics. When both forces are present, an infection that begins in group 1567

can peak earlier and stronger in group 2, followed by a smaller peak in the group where568

it began.569
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Figure S3. R0 for the uniform-homophily model (Equation 7) as a func-
tion of the strength of homophily (w) and the initial population structure.
τ = 0.3, ρ = 0.07.

Appendix D. Analysis of behavioral efficacy570

In the main text analysis, we assumed that the adopted behavior reduced the trans-571

mission to below the threshold for R0 < 1. In other words, if everyone immediately and572

universally adopted the behavior at the start of the outbreak, it would not become an573

epidemic. Although we view this as a reasonable assumption (that is, the efficacy of the574
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Figure S4. Coupled dynamics of the full model without outgroup aver-
sion (γ = 0) for with varying homophily. Darker lines are group 1, lighter
lines are group 2. Parameters used: τU = 0.3, τC = 0.069, ρ = 0.07,
α2 = 0.1, α2 = 0.001, β = 0.3, δ = 0.

behavior is reasonable, not the expectation that it will be either immediately or univer-575

sally adopted), it is also worth examining what happens with the spread of behaviors576

that reduce transmission, but not below epidemic levels. Figure S6 illustrates the model577

dynamics for varying levels of behavior efficacy (τC) with and without outgroup aversion578

and for both weak and strong homophily.579

Without outgroup aversion (γ = 0), the effect is clear: the more efficacious the behav-580

ior, the smaller the epidemic. This occurs because the behavior spreads effectively. With581

outgroup aversion, two things happen. First, the more effectively the behavior reduces582

transmission (that is, the smaller τC is), the smaller the overall epidemic, but with an583

effect that is much stronger in group 1. In group 2, the effect of increased behavior584

efficacy is relatively small, because adoption is reduced and delayed. Second, the better585

the behavior reduces transmission, the bigger the delay in when group 1 experiences a586

“second wave.” This illustrates that the dynamics of disease transmission can become587

quite complex when even simple assumptions about behavior and group structure are588

considered.589
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Figure S5. Coupled dynamics of the full model with outgroup aversion
(γ = 0.2) for with varying homophily. Darker lines are group 1, lighter
lines are group 2. Parameters used: τU = 0.3, τC = 0.069, ρ = 0.07,
α2 = 0.1, α2 = 0.001, β = 0.3, δ = 0.
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Figure S6. Coupled dynamics of the full model for varying levels of
behavior efficacy, τC = {0.15, 0.1, 0.069}, where only the last case would
provide R0 < 1 if immediately and universally adopted at the start of the
outbreak. We provide analyses with and without outgroup aversion and
for both weak and strong homophily. Darker lines are group 1, lighter
lines are group 2. Parameters used: τU = 0.3, ρ = 0.07, α2 = 0.1,
α2 = 0.001, β = 0.3, δ = 0.
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