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Abstract 

 Glioblastoma Multiforme (GBM) is an aggressive tumor of the brain, with an average 

post-diagnosis survival of 15 months.  GBM stem cells (GBMSC) resist the standard-of-care 

therapy, temozolomide, and are considered a major contributor to tumor resistance. mTORC1 

regulates cell proliferation and has been shown by others to have reduced activity in GBMSC. 

We recently identified a novel chemical series of human-safe piperazine-based brain-penetrant 

mTORC1-specific inhibitors. We assayed piperazine-mTOR binding strength by two biophysical 

measurements-- biolayer interferometry and field effect biosensing, and these confirmed each 

other and demonstrated a structure-activity relationship. Since mTORC1 is reduced in human 

GBMSC, and as mTORC1 inhibitors have been tested in previous GBM clinical trials, we tested 

the killing potency of the tightest-binding piperazines and observed these were potent GBMSC 

killers. GBMSCs are resistant to the standard-of-care temozolomide therapy--but temozolomide 

supplemented with tight-binding piperazine meclizine and flunarizine greatly enhanced GBMSC 

death over temozolomide alone. Lastly, we investigated IDH1-mutated GBMSC mutations that 

are known to affect mitochondrial and mTORC1 metabolism, the tight-binding Meclizine 

provoked 'synthetic lethality' in IDH1-mutant GBMSCs. These data tend to support a novel 

clinical strategy for GBM, i.e. the co-administration of meclizine or flunarizine as adjuvant 

therapy in the treatment of GBM, and IDH1-mutant GBM.  
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1. Introduction   

 Glioblastoma multiforme (GBM) is a deadly tumor with a usual post-diagnosis survival of 

15 months. One major hypothesis for GBM tumor resistance is that GBM stem cells (GBMSCs) 

resist standard chemotherapy and through growth, proliferation, and mutation cause tumor 

relapse (1, 2). Several studies have shown that mTORC1 inhibition through rapamycin 

attenuates cancer stem cell chemotherapy insensitivity (3-5). 

 The mechanistic or mammalian target of rapamycin (mTOR) is a highly conserved 

protein kinase that serves as a central regulator of cell growth and connects cellular 

metabolism with environmental factors (6). It is divided into two distinct complexes labelled 

mTORC1 and mTORC2, both of which are often dysregulated in cancer, including GBM (7-9). 

mTORC1 is made up of a regulatory-associated-protein-of-mTOR (RAPTOR), proline-rich AKT 

substrate 40 kDa (PRAS40), mammalian lethal with Sec-13 protein 8 (mLST8), and DEP-domain 

TOR – binding protein (DEPTOR) (9). It is inhibited by rapamycin which binds to FK506-binding 

protein that only interacts with mTORC1. Growth factors, energy levels, oxygen levels, and 

amino acids all modulate mTORC1 activity through their effect on TSC1/2, a GTP-ase activating 

protein that acts on Ras-homolog enriched in the brain (Rheb) which interacts with mTORC1. In 

the active form, mTORC1 promotes cell growth and proliferation mainly by phosphorylating 

eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and ribosomal protein 

S6Kinase (S6K). mTORC1 plays a significant role in autophagy, lipid synthesis, and mitochondrial 

metabolism and biogenesis, and is altered in many tumor types(10-12). mTORC1 activity is 

reduced in patient-derived GBMSCs (13), suggesting that further depletion of mTORC1 could be 

specifically lethal to GBMSCs. 
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 Numerous mutations occur to drive GBM tumor progression. One such mutation is an 

R132H in the isocitrate dehydrogenase 1 (IDH1) protein. This is a gain of function mutation that 

alters metabolism, increasing conversion of alpha-ketoglutarate into 2-hydroxyglutarate (D-

2HG) (14). Recently it was shown that among patients with GBM IDH1 mutations, those 

patients with the lowest mTORC1 activity survived the longest (15). These authors found that 

among GBM patients with IDH1 mutation, the low mTORC1 group survived about 10-fold longer 

(200 months) than the High mTORC1 group (20 months) (15). Thus, it could be hypothesized 

that pharmacologically decreasing mTORC1 activity in IDH1-mutant-bearing GBM patients could 

be a novel strategy for extending disease-free survival. 

 There are other connections between IDH1 and mTORC1.  It was found that the 2HG 

metabolite produced in IDH1-mutant cells is an mTORC1 stimulator (16). Others have observed 

that inhibition of mTORC1 reduces the 2HG metabolite that appears to underlie GBMSC 

progression (17). So, in the IDH1->2HG->mTORC1->GBMSC progression pathway, a novel 

mTORC1 inhibitor might potentially slow progression, or be 'synthetically lethal' to IDH1-

mutant tumors specifically. 

 Previously, we identified four piperazine compounds (cinnarizine, hydroxyzine, 

meclizine, and flunarizine) as novel mTORC1 specific inhibitors (18) Two of the piperazine 

compounds, cinnarizine and flunarizine, have shown promise as radiation sensitizers in 

numerous mouse tumor types, perhaps through this previously-unknown capacity to inhibit 

mTORC1 (19, 20). Given the finding of reduced mTORC1 in patient-derived GBMSCs (13), we 

hypothesized that piperazine mTORC1 inhibitors might be effective killers of GBMSCs in vitro. 

Furthermore, because these drugs are known to be brain-penetrant and have low side-effect 
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profiles, we tested the concept that they might be used as adjuvant therapy alongside the 

chemotherapeutic standard of care in GBM, namely temozolomide.  Lastly, we tested the 

hypothesis that through the metabolic connection between IDH1 mutations and mTORC1, 

these mTORC1 inhibitors would be synthetically lethal to GBMSCs harboring IDH1 mutation. 

Our results tend to support the ideas that piperazine toxicity to GBMSCs is related to their 

binding to mTOR protein itself, and that the piperazines plus temozolomide combination is 

much more toxic to GBMSCs than temozolomide alone, and that piperazines appear to have 

synthetic lethality in GBMSCs in the context of IDH1 mutations.  
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2. Methods 

2.1. Cell lines and cell culture  

 The Mus musculus (mouse) normal hepatocyte liver cell line (FL83B) was purchased 

from American Type Culture Collection (Manassas, VA). FL83B cells were cultured in Dulbecco's 

Modification of Eagle's Medium/Ham's F-12 50/50 Mix with L- glutamine and 15 mM HEPES and 

10% fetal bovine serum (FBS), both from Corning (Fremont, CA). The cell line was grown at the 

standard 37 °C and 5% CO2 conditions. All drug treatment was performed in the absence of 

pen/strep and FBS.  

 The GBMSC lines used were patient derived from a recurring tumor and gifted to us by 

Kevin Woolard DVM, PhD from the University of California Davis. This cell line was named 0827 

and will be referred to as IDH1 wildtype. The 0827 GBM stem cells were cultured in Neurobasal 

A minimal media with 1X N-2 supplement, 1X B-27 supplement, 1X GlutaMAX, and (50 units/mL 

of penicillin/50 μg/mL of streptomycin) from Gibco (Gaithersburg, MD), and human EGF and 

FGF-154 from Shenandoah Biotechnology (Warwick, PA). The IDH1 mutant cell line was named 

905 and will be referred to as IDH1 mutant or R132H IDH1 mutant. These cells were cultured in 

the same media as the IDH1 wildtype with the addition of 1ml of 10ug/ml PDGF. Cells used did 

not exceed passage 15.  

2.2. Compounds 

 All chemicals (DMSO, insulin, penicillin/streptomycin…) were purchased from Sigma-

Aldrich, unless indicated otherwise. Rapamycin was purchased from EMD Millipore (Billerica, 

MA).  

2.3. Bi-layer Interferometry 
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 Proteins we purified from HEK T293 cells. Terminally biotinylated mTOR protein and the 

GFP as a non-binding control were produced using following plasmids, for mTOR – EX 

Mm31144-M48, and for GFP - EX-EGFP-M48 GeneCopoeia (Rockville, MD), and loaded onto 

sets of Octet RED 384 SSA biosensors (Pall ForteBio LLC., Menlo Park, CA) to density of 12 nm 

followed by blocking of non-occupied streptavidin residues of biosensors with 200 u biotin. 

Sensors were tested against indicated concentrations of compounds using the Octet RED. 384 

BLI instrument in BLI Kinetic Buffer (Pall ForteBio LLC., Menlo Park, CA) containing 1% BSA. 

Parameters: baseline 20 seconds, association 30 seconds, dissociation 40 seconds. Real-time 

binding sensogramms were recorded and analyzed using Octet BLI software 8.1 (Pall ForteBio 

LLC., Menlo Park, CA) and Excel. 

2.4. Field Effect Biosensing 

 The human 6His::mTOR was purified from HEK T293 cells using plasmid Ex-E1870-M01-

GS GeneCopoeia (Rockville, MD) and loaded onto the Ni-NTA chip Nanomedical Diagnostics 

(San Diego, CA); compounds were tested at 10 uM concentration in triplicates; kon, koff and KD 

were determined using Nanomedical Diagnostics Agile Plus Version 4.2.2.20754 software, 

Nanomedical Diagnostics (San Diego, CA). The association time was 5 minutes, the dissociation 

time was 10 minutes, the baseline was 15 minutes. 

2.5. Cell Viability Assay  

 0827 GBM differentiated cells were seeded, 250,000 cells/well, in 12-well cell culture 

plates and allowed to grow for 24 hours. Cells were treated with vehicle (0.1% DMSO) or 

compounds dissolved in DMSO for 48 hours before being assayed. Media plus drug was 

removed, 0.5mL of 0.25% Trypsin was added to each well, incubated for 3 minutes, and then 
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neutralized with serum containing media. Samples were re- suspended and pipetted thoroughly 

to create single cell suspensions for analysis. We utilized the Vi-CELLTM Cell Viability Analyzer 

from Beckman Coulter (Indianapolis, IN) to evaluate cell viability and survival of both GBM 

differentiated and stem cells after drug treatment.  0827 GBM stem cells were seeded, 300,000 

cells/well, in 12-well cell culture plates and allowed to grow for 24 hours. Cells were treated 

with vehicle (0.1% DMSO) or compounds dissolved in DMSO for 48 hours before being assayed. 

Cells in media plus drug was then removed and centrifuged at 1200rpm for 3 minutes. Media 

was aspirated off, 0.5mL of 0.05% trypsin was added to each well, incubated for 3 minutes, and 

then neutralized with serum containing media. Samples were re-suspended and pipetted 

thoroughly to create single cell suspensions for analysis. We utilized the Vi- CELLTM Cell 

Viability Analyzer from Beckman Coulter (Indianapolis, IN) to evaluate cell viability and survival 

of both GBM differentiated and stem cells after drug treatment.  

2.6. pS6K ELISA  

 The PathScan® Phospho-S6Kinase (Thr389) Sandwich ELISA and PathScan® Total S6K 

Sandwich ELISA Kits were purchased from Cell Signaling Technologies (Danvers, MA). 200,000 

FL83B cells/well were seeded onto a 24 well plates and allowed to grow for 48 hours; the media 

was changed to DMEM-F12 without FBS, and cells were incubated for another 18 to 20 hours. 

Cells were treated for two hours with tested compounds at indicated concentrations; the media 

was aspirated, and plates were washed once with ice cold PBS. Cells were lysed with 200μl of 

lysis buffer; lysates were transferred to a 96-well plate for ELISA. ELISA was performed 

according to manufacturer instructions. 

2.7. Data Analysis 
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 Graphpad Prism 9.0 and Microsoft Excel were used for the statistical analysis. The three 

or four parameter sigmoidal dose response model was used for fitting analysis (as indicated in 

legend). Significance was assigned as follows: * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 

All p-values generated through student t-test.  
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3. Results 

3.1. Piperazine compounds dose dependently inhibit mTORC1 downstream target.  

 Previously our lab has shown that members of the piperazine drug class are mTORC1 

specific inhibitors (18). In Figure 1, we show that three piperazines dose dependently inhibit the 

downstream target of mTORC1, pS6K (Figure 1). Hydroxyzine and cinnarizine yield significant 

inhibition beginning at 0.1µM and have a maximum effect at 10um (Figure 1 B, C). Meclizine 

follows a similar trend, showing significant inhibition at 0.1µM; however, it does not show a 

maximum effect at the highest dose of 10µM. Nonetheless, the meclizine results were 

consistent with those of cinnarizine and hydroxyzine.  

Figure 1. Piperazine drugs dose dependently inhibit mTORC1 downstream target S6Kinase. The 
amount of phosphorylated S6Kinase relative to total S6Kinase was measured by ELISA. The bars 
are the fold change over the vehicle control. Error bars are 1 Standard Deviation.  The panels 
show data for meclizine, hydroxyzine, and flunarizine as indicated. *,**,*** correspond to p 
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values less than 0.05, 0.001,0.0001 respectively. n = 3 for each group. P value calculated with 
student’s t-test. 

3.2  Two Biophysical assays confirm piperazine interaction with human mTOR 

 In order to better characterize the piperazine compounds and move forward in our 

selection of a top cancer therapeutic candidate, we measured the absolute response of small 

molecules binding to the human mTOR protein with Bio-layer interferometry (BLI). As a further 

confirmation, we plotted the BLI response (pm) against the affinity expressed as the reciprocal 

of the dissociation constant of the same interactions as determined by Field Effect Biosensing 

(FEB).  A linear relationship was observed. Flunarizine yielded the strongest response and 

highest affinity to human mTOR followed by cinnarizine, meclizine, hydroxyzine, and cetirizine 

(Figure 2).  
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Figure 2: Affinity plotted against Binding Response for members of the Piperazine drug class. Y-
axis is esponse measured with Bi-layer Interferometry. Affinity measurements generated with 
Field Effect Biosensing is on the X-axis, as indicated. Line is linear regression. 
 

3.3  Piperazine drugs kill GBMSCs 

 The killing potency of four mTORC1- inhibiting piperazine compounds was tested (Figure 

3). Killing was compared to rapamycin, the classic mTORC1 inhibitor, as well as temozolomide, 

the current standard of care for GBM. All four of the tested piperazine compounds reduced cell 

viability compared to either vehicle control or temozolomide.  Meclizine and flunarizine were 

more toxic than rapamycin (Figure 3). Rapamycin has been used in multiple GBM clinical trials 

(21-24). 

.  

 

Figure 3. Piperazine drugs dose effectively reduce viability in patient derived GBMSC line. 
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viability of three biological replicates normalized to the vehicle control. Error bars are standard 
error of the mean.  *, **: p<.05, p <.001 respectively. Compound names and concentrations are 
indicated. P-values calculated using 2 tailed student t-test. n = 3 for compounds tested. As 
stated above, p values for cinnarizine and hydroxyzine were 0.07, and 0.09 respectively. P 
values for meclizine and flunarizine were .0082 and .0057 respectively. 

3.4   Comparison of GBM cell viability after treatment with meclizine, flunarizine, or 

rapamycin  

 Meclizine, flunarizine and rapamycin, were tested for GBMSC at four doses. Meclizine 

reduced GBMSC viability by nearly 70% at 10µM. Flunarizine reduced GBMSC viability to a 

similar extent (Fig.4).  Both meclizine and flunarizine were significantly more toxic to GBMSCs 

than rapamycin, a drug that has been used in several GBM clinical trials (21-24). The IC50’s for 

meclizine, flunarizine, and rapamycin are 5.3µM, 6.8µM, and 14µM respectively.  
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Figure 4: Meclizine and flunarizine dose-dependently kill patient-derived GBMSC better than 
rapamycin. Experiments completed used Trypan Blue Exclusion. Values are cell viability at 1µM 
(-6.0) and 10µM (-5.0) of rapamycin, meclizine, and flunarizine. Error bars are standard error of 
the mean. Significant difference for meclizine v. rapamycin and flunarizine v. rapamycin at 
10µM p<.05 was observed. P-values were calculated using 2 tailed t-test. Lines are nonlinear 
sigmoidal dose response curves fitted by the three-parameter model. n = 6 for vehicle, n = 4 for 
each concentration rapamycin, n = 6 for each concentration of meclizine, and n = 3 for each 
concentration of flunarizine. The total number of measurements was 6, 8, 12, and 6 for vehicle, 
rapamycin, meclizine, and flunarizine respectively.   
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 Temozolomide is the standard of care chemotherapeutic agent used in GBM (8). 

Temozolomide is used daily for 6 weeks during radiation therapy, and then again after a one-

month break, for a further 6 months, and is given for 5 days per month.  

 Because Meclizine (i.e. one tradename is Dramamine) has a benign safety profile (25-

28), we tested the idea of Meclizine as adjuvant therapy, i.e. the ability of piperazine plus 

temozolomide to kill GBMSCs. As seen on Figure 5, there was a negligible decrease in GBMSC 

viability at all doses of temozolomide. Even at 100µM of temozolomide, the cell viability 

remained above 90%. The four-parameter sigmoidal dose response model used for non-linear 

regression predicted the survival of the cells (Rmin) to be 93.15%. This means that at any 

pharmacologically relevant concentrations of temozolomide treatment alone, there will be no 

more than a 6.85% reduction in viability of the GBMSC. In other words, the maximum killing 

potency of temozolomide alone is 6.85% for the GBMSC. Thus, temozolomide alone is not 

sufficient to combat GBMSC in vitro.  

 Therefore, we tested our top candidates, flunarizine and meclizine, in combination with 

temozolomide, and observed dose-dependent killing (Fig. 5).   The tightest mTOR-binding 

compound, flunarizine, plus temozolomide appeared to be the most potent killing combination. 

The IC50 of flunarizine + temozolomide was 1µM and the maximum cell killing potency in this 

experiment was 82.5%, p = 4.5 x 10-5. For meclizine + temozolomide, the IC50 was 5.7µM and 

the maximum killing potency was 66.7%, R2 = .99, p = 7.5 x 10 -8. Thus, the maximum killing 

potency of meclizine in combination with temozolomide was 66.7%/6.85% = 9.6 times better 

than TMZ alone; the maximum killing potency of flunarizine in combination with temozolomide 

was 82.5%/6.85% = 12 times better than TMZ alone. (Maximum killing potency = 100-Rmin).  
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Figure 5: Meclizine and flunarizine co-administered with temozolomide, the current standard of 
care for GBM. Experiments conducted using Trypan Blue Exclusion. Experimental points are 
average of 3 experiments. Error bars are standard error of the mean. The curve is a 4 -
parameter model sigmoidal dose response curve. X-axis is drug concentration; Y-axis is the % 
viability of GBSC normalized to vehicle control. Best fitting values for the co-administration of 
meclizine and temozolomide were: IC50 = 5.7µM, Rmin = 33.27, R2 = .99, p = 7.5 x 10 -8. Best 
fitting values for flunarizine and temozolomide were: IC50 = 1.0µM, Rmin = 17.50, R2 = .99 p = 
4.5 x 10-5. Values for temozolomide alone: IC50 = 3.2 x 10 -5, Rmin = 93.2, R2 = .71, p-value = 3.5 x 
10 -2. n = 4 for vehicle, 3 for each concentration of temozolomide, 3 for each concentration of 
meclizine + temozolomide, 3 for each concentration flunarizine + temozolomide. The total 
number of measurements are 3, 12,12, and 9 for vehicle, temozolomide, meclizine + 
temozolomide, and flunarizine + temozolomide, respectively.  
 

3.6   Meclizine confers synthetic Lethality on GBM stem cell harboring R132H IDH1 
mutation 

 
 GBM IDH1 mutations change metabolism and drive mTORC1 activity (16), and patients 

with GBMs and the IDH1 mutation have low mTORC1 activity and 10-fold longer survival (15). 

Thus, we tested the idea that mTORC1 inhibition via meclizine might cause synthetic lethality in 
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IDH1 mutant cells. Fig.6 Panel A shows the IDH1 wildtype response to both temozolomide 

(black line) and meclizine + 10µM temozolomide (dashed line). No significant difference in cell 

viability between the vehicle control and highest concentrations of temozolomide was 

observed. At higher concentrations, there was only about 7% cell viability reduction observed in 

temozolomide alone. In experiments with the IDH1 wildtype cells, the co-administration of 

meclizine and temozolomide had a statistically significant decrease in cell viability beginning at 

a 10µM dose of meclizine. As stated above, the killing potency of meclizine in combination with 

temozolomide was about 67%, roughly 10 times better than temozolomide alone. Best fit 

values for meclizine in combination with temozolomide were IC50: 5.7µM, (100-Rmin): 66.7%, R2 

= .99, p = 7.5 x 10 -8 as determined by 4-parameter model. Figure 6 Panel B shows the R132H 

IDH1 mutant response. The IDH1 mutant appeared to be more sensitive to temozolomide alone 

than the IDH1 wild type, IC50 = 3.2 x 10 -6. Rmin = 62.5% R2 = .97, p-value = 6.0 x 10-5; however, 

the maximum killing potency was only (100% – 62.5%) = 38%. While there was a significant 

reduction in cell viability at the two highest concentrations of temozolomide (30µM and 

100µM), temozolomide alone is not very effective for killing GBMSC with the R132H genotype 

as most of the cells will stay alive at any pharmacologically relevant concentration of 

temozolomide alone. However, a significant reduction in cell viability was observed beginning 

at 1µM of meclizine co-administered with 10µM of temozolomide in the IDH1 mutant GBM 

stem cell line. Thus, the R1423 IDH1 mutant GBMSC was effectively and dose-dependently 

killed by the co-administration of meclizine with temozolomide. The IC50 of meclizine in 

combination with temozolomide was 2µM, the maximum killing potency was 95.5%. Therefore, 

the combination with meclizine was (95%/38%) > 2 times more effective at killing the IDH1 
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GBMSC than temozolomide alone. Thus, the combination of meclizine with temozolomide 

might be an effective strategy to combat GBMSC, and especially the R132H mutant cells.  

 
 
Figure 6: Comparison of cell viability reduction by temozolomide and by co-administration of 
meclizine and 10µM temozolomide to the IDH1 wild type (A), and in IDH1 R132H mutant (B) 
GBM patient derived stem cells. The X-axis is the concentration of compounds tested. When 
meclizine, was co-administered, the concentration of temozolomide was fixed at 10µM.  
Experimental points are the average of 3 independent experiments, error bars are standard 
error of the mean. The lines are the 4-parameter model sigmoidal dose response curves. 
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*,**,***,**** p < .05, .01. .001. .0001 respectively. Best fitting values for meclizine + 
temozolomide co-administration in wild type (A) were: IC50 = 5.7µM, Rmin = 33.27, R2 = .99, p = 
7.5 x 10 -8. n = 4 for vehicle, n = 3 for each concentration of meclizine + temozolomide. Best fit 
values for temozolomide alone in wildtype (A) were:  IC50 = 3.2 x 10 -5, Rmin = 93.2, R2 = .71p-
value = 3.5 x 10 -2. n = 4 for vehicle, and 3 for each concentration of temozolomide for a total of 
12 concentrations of temozolomide. Best fit values for meclizine co-administered in mutant (B) 
were: IC50 =1.9uM, Rmin = 4.1%, R2 = .99, p-value = 2.0 x 10-6. n = 10 for vehicle. n = 4 for each 
concentration of meclizine + temozolomide for a total of 16 measurements. Best fit values for 
temozolomide in mutant (B) were: IC50 = 3.3 x 10 -6, Rmin = 62.5%, R2 = .982, p – value = 6.1 x 
10-5. n = 1- for vehicle. n = 6 for each concentration of temozolomide (24 measurements in 
total) 
 

4.    Discussion 

 We recently demonstrated that a series of piperazine compounds are also mTORC1 

inhibitors(18).  mTORC1 activity is a validated clinical target, and the mTORC1 inhibitor 

rapamycin, everolimus, and temsirolimus, have been used in clinical trials of GBM (29-31). 

Rapamycin, the most common mTORC1 specific inhibitor has been approved for numerous 

clinical trials, however rapamycin's side-effect profile may limit its effectiveness. Thus, the 

discovery of a novel class of mTORC1 inhibitors, some such as meclizine with a lower toxicity 

profile than rapamycin, may be a relevant candidate for novel GBM therapy.  

 Cinnarizine and flunarizine were 2 of the tightest binders to mTORC1, and were toxic to 

GBMSCs in our assays, they have been shown by others to kill lymphomas and myeloma cells as 

well (32, 33). However, cinnarizine and flunarizine both have a chemical liability in that after 

prolonged exposure they can cause iatrogenic parkinsonism (32-34)--and thus are less likely to 

win FDA approval, even for a very severe cancer.  So, we tested the potency of 2 of our tightest 

mTORC1-binders with milder side-effect profiles, meclizine and flunarizine to kill GBMSCs. Both 

meclizine and flunarizine performed better than rapamycin.  
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 If a clinical trial were ever to be carried out using meclizine in GBM, ethical 

considerations would require it be co-administered alongside the standard-of-care drug 

temozolomide, as has been done with other mTORC1 clinical trials (23, 35). Meclizine and 

flunarizine when co-administered with temozolomide greatly increased cytotoxicity, suggesting 

them as possible adjuvant therapies with a low side effect profile.   

 Meclizine is an antihistamine prescribed to treat nausea and motion sickness; flunarizine 

was previously prescribed to treat vertigo and migraines (36) (37). Due to meclizine’s mild 

safety profile, precedence in human dosing, and similar potency in reducing cell viability when 

compared to flunarizine and rapamycin, we propose meclizine as a potential GBM therapeutic 

agent. Additionally, meclizine has been well documented to cross the blood brain barrier, an 

essential characteristic for treating GBM (38). Nonetheless, we do not diminish the potential of 

flunarizine as a potential therapeutic agent as well. Further experiments in mouse models of 

GBM are necessary before implementing meclizine, or any other piperazine compound, as a 

cancer therapeutic. However, since safety and pharmacological studies have been extensively 

conducted, the timeline to clinical trial should be more straight forward than it would for a new 

chemical entity.  

 Additionally, we observed synthetic lethality when comparing the cell viability response 

of IDH1 wildtype GBMSCs and those bearing the R132H IDH1 mutation. Mutant cells have more 

2-hydroxyglutarate, which mediates energy depletion and activated AMPK, which in turn 

represses mTOR activity (39). Seeing as alpha-ketoglutarate levels are reduced indicating lower 

nutrient levels, a further decrease in mTORC1 through direct inhibition may be sufficient to 

remarkably reduce cell viability and proliferation when compared to IDH1 wildtype GBM stem 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.157735doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

cells. Elevated 2-HG levels also inhibit the DNA repair enzyme ALKBH and the DNA damage 

response proteins KDM4A/B  (40, 41). Temozolomide, the standard of care chemotherapeutic 

agent for treating GBM is a DNA alkylating agent, meaning that it targets GBM tumors by 

damaging DNA (42). Clinically, IDH1 mutations are associated with a better response to 

temozolomide treatment, a fact supported by our temozolomide dose response experiment in 

IDH1 mutant GBM cells (Figure 6,B)  (39, 43). The combination of an increased sensitivity to 

temozolomide and compound inhibition of mTORC1 by two means provide a molecular basis 

for IDH1 R132H synthetic lethality to the described treatment. 
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Figure Legends 

Figure 1. Piperazine drugs dose dependently inhibit mTORC1 downstream target S6Kinase. The 
amount of phosphorylated S6Kinase relative to total S6Kinase was measured by ELISA. The bars 
are the fold change over the vehicle control. Error bars are 1 Standard Deviation.  The panels 
show data for meclizine, hydroxyzine, and flunarizine as indicated. *,**,*** correspond to p 
values less than 0.05, 0.001,0.0001 respectively. n = 3 for each group. P value calculated with 
student’s t-test. 
 
Figure 2: Affinity plotted against Binding Response for members of the Piperazine drug class. Y-
axis is esponse measured with Bi-layer Interferometry. Affinity measurements generated with 
Field Effect Biosensing is on the X-axis, as indicated. Line is linear regression. 
 
Figure 3. Piperazine drugs dose effectively reduce viability in patient derived GBMSC line. 
Experiments completed used Trypan blue Exclusion. The columns are the average percent 
viability of three biological replicates normalized to the vehicle control. Error bars are standard 
error of the mean.  *, **: p<.05, p <.001 respectively. Compound names and concentrations are 
indicated. P-values calculated using 2 tailed student t-test. n = 3 for compounds tested. As 
stated above, p values for cinnarizine and hydroxyzine were 0.07, and 0.09 respectively. P 
values for meclizine and flunarizine were .0082 and .0057 respectively.  
 
Figure 4: Meclizine and flunarizine dose-dependently kill patient-derived GBMSC better than 
rapamycin. Experiments completed used Trypan Blue Exclusion. Values are cell viability at 1µM 
(-6.0) and 10µM (-5.0) of rapamycin, meclizine, and flunarizine. Error bars are standard error of 
the mean. Significant difference for meclizine v. rapamycin and flunarizine v. rapamycin at 
10µM p<.05 was observed. P-values were calculated using 2 tailed t-test. Lines are nonlinear 
sigmoidal dose response curves fitted by the three-parameter model. n = 6 for vehicle, n = 4 for 
each concentration rapamycin, n = 6 for each concentration of meclizine, and n = 3 for each 
concentration of flunarizine. The total number of measurements was 6, 8, 12, and 6 for vehicle, 
rapamycin, meclizine, and flunarizine respectively.   
   
Figure 5: Meclizine and flunarizine co-administered with temozolomide, the current standard of 
care for GBM. Experiments conducted using Trypan Blue Exclusion. Experimental points are 
average of 3 experiments. Error bars are standard error of the mean. The curve is a 4 -
parameter model sigmoidal dose response curve. X-axis is drug concentration; Y-axis is the % 
viability of GBSC normalized to vehicle control. Best fitting values for the co-administration of 
meclizine and temozolomide were: IC50 = 5.7µM, Rmin = 33.27, R2 = .99, p = 7.5 x 10 -8. Best 
fitting values for flunarizine and temozolomide were: IC50 = 1.0µM, Rmin = 17.50, R2 = .99 p = 
4.5 x 10-5. Values for temozolomide alone: IC50 = 3.2 x 10 -5, Rmin = 93.2, R2 = .71, p-value = 3.5 x 
10 -2. n = 4 for vehicle, 3 for each concentration of temozolomide, 3 for each concentration of 
meclizine + temozolomide, 3 for each concentration flunarizine + temozolomide. The total 
number of measurements are 3, 12,12, and 9 for vehicle, temozolomide, meclizine + 
temozolomide, and flunarizine + temozolomide, respectively.  
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Figure 6: Comparison of cell viability reduction by temozolomide and by co-administration of 
meclizine and 10µM temozolomide to the IDH1 wild type (A), and in IDH1 R132H mutant (B) 
GBM patient derived stem cells. The X-axis is the concentration of compounds tested. When 
meclizine, was co-administered, the concentration of temozolomide was fixed at 10µM.  
Experimental points are the average of 3 independent experiments, error bars are standard 
error of the mean. The lines are the 4-parameter model sigmoidal dose response curves. 
*,**,***,**** p < .05, .01. .001. .0001 respectively. Best fitting values for meclizine + 
temozolomide co-administration in wild type (A) were: IC50 = 5.7µM, Rmin = 33.27, R2 = .99, p = 
7.5 x 10 -8. n = 4 for vehicle, n = 3 for each concentration of meclizine + temozolomide. Best fit 
values for temozolomide alone in wildtype (A) were:  IC50 = 3.2 x 10 -5, Rmin = 93.2, R2 = .71p-
value = 3.5 x 10 -2. n = 4 for vehicle, and 3 for each concentration of temozolomide for a total of 
12 concentrations of temozolomide. Best fit values for meclizine co-administered in mutant (B) 
were: IC50 =1.9uM, Rmin = 4.1%, R2 = .99, p-value = 2.0 x 10-6. n = 10 for vehicle. n = 4 for each 
concentration of meclizine + temozolomide for a total of 16 measurements. Best fit values for 
temozolomide in mutant (B) were: IC50 = 3.3 x 10 -6, Rmin = 62.5%, R2 = .982, p – value = 6.1 x 
10-5. n = 1- for vehicle. n = 6 for each concentration of temozolomide (24 measurements in 
total) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.17.157735doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.17.157735
http://creativecommons.org/licenses/by-nc-nd/4.0/

