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Genotype-phenotype association studies often combine phenotype data from 
multiple studies to increase power.  Harmonization of the data usually requires 
substantial effort due to heterogeneity in phenotype definitions, study design, 
data collection procedures, and data set organization. Here we describe a 
centralized system for phenotype harmonization that includes input from 
phenotype domain and study experts, quality control, documentation, 
reproducible results, and data sharing mechanisms.  This system was developed 
for the National Heart, Lung and Blood Institute’s Trans-Omics for Precision 
Medicine (TOPMed) program, which is generating genomic and other omics data 
for >80 studies with extensive phenotype data. To date, 63 phenotypes have been 
harmonized across thousands of participants from up to 17 TOPMed studies per 
phenotype.  We discuss the challenges faced in this undertaking and how they 
were addressed.  The harmonized phenotype data and associated documentation 
have been submitted to National Institutes of Health data repositories for 
controlled-access by the scientific community.  We also provide materials to 
facilitate future harmonization efforts by the community, which include (1) the 
code used to generate the 63 harmonized phenotypes, enabling others to 
reproduce, modify or extend these harmonizations to additional studies; and (2) 
results of labeling thousands of phenotype variables with controlled vocabulary 
terms. 
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To increase power in epidemiological analyses, multiple studies are often combined for 
pooled- or meta-analysis.  In both cases, heterogeneities among studies are generally 
addressed by careful selection and harmonization of study data to include in analyses.  
In this report, we describe a system for phenotype harmonization, which was developed 
for the National Heart, Lung and Blood Institute’s (NHLBI) Trans-Omics for Precision 
Medicine (TOPMed) program (https://www.nhlbiwgs.org/).  We define phenotype 
harmonization as the process by which data variables, each representing a specified 
phenotype concept, are selected from multiple studies and transformed as needed so 
that they can be combined and analyzed together. In principle, phenotype 
harmonization can be achieved prospectively when all contributing studies use the 
same protocols, an endeavor facilitated by methodological standards such as those 
developed by the PhenX consortium (1). However, retrospective harmonization is often 
needed in order to use valuable data that have previously been collected by multiple 
studies using different phenotype definitions, study designs, data collection procedures, 
and data structures.  
 
A key goal of the TOPMed program is to identify genetic risk factors for heart, lung, 
blood, and sleep disorders. To date, the program has generated whole genome 
sequence data for over 140,000 participants from over 80 different studies, as well as 
other omics data from many of the same participants.  The participating studies have 
previously gathered extensive phenotype data, including physical measurements, 
clinical chemistry, questionnaires, clinical registries, and medical imaging.  Many of the 
same phenotypes have been collected in multiple studies, which provides the potential 
for combined analyses to increase power for detecting the effects of low frequency and 
rare sequence variants. However, due to substantial heterogeneity in phenotype data 
among studies and within studies over time, harmonization is required for combined 
analyses.  
 
Our system for retrospective harmonization of phenotype data in TOPMed includes a 
collaborative framework, domain expertise, high-quality data inputs, validation of data 
outputs, rigorous documentation, and respect for stakeholders (i.e., features of the 
Maelstrom Research guidelines (2)), as well as reproducibility, updating, and sharing of 
harmonized results derived from controlled-access human data.  We describe these 
features in detail, along with examples of applications to TOPMed study data.  We also 
describe a system for tagging study variables with phenotype concepts for use in future 
harmonization efforts.  
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METHODS 

Overview 
The TOPMed Data Coordinating Center (DCC) developed a centralized system for 
phenotype harmonization, which is outlined in Figure 1.  Although we describe the 
harmonization process as a linear sequence of steps, it was frequently iterative such 
that the results of later steps required going back and modifying earlier steps. Table 1 
provides definitions of terms used here and in the Web Appendix. 
 
The system tracked the harmonization of each phenotype separately, along with the 
age at measurement or biosample collection. Each harmonized phenotype variable is 
assigned a controlled-vocabulary term from the Unified Medical Language System 
(UMLS) (3).  Analysts worked on a group of related phenotype variables at the same 
time (e.g., high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-
C), total cholesterol, triglycerides, fasting status, and lipid-lowering medication use) 
which were generally released together in a single dataset (e.g., “Lipids”) - see Table 2.  
When harmonizing a group of related phenotypes, it is important to use phenotype 
variables that were measured or collected from a participant at the same time point.  
 
Phenotype concepts and harmonization algorithms were developed in collaboration with 
phenotype experts in TOPMed Working Groups (WGs).  Study-specific issues were 
resolved in collaboration with investigators and/or data managers from the relevant 
study.  The harmonization system described here was implemented primarily by DCC 
scientists, with advice from WGs and study experts. This report does not document 
 other harmonization efforts involving TOPMed studies that were performed 
independently of the DCC (e.g., Oelsner et al. (4) or the independent efforts of various 
TOPMed WGs).  
 
The information technology supporting phenotype harmonization consisted of a locally-
hosted relational database and associated applications.  A custom R package was used 
to interact with the database and a series of Python and R scripts were run by analysts 
to perform harmonization.  The codebase also allowed addition of new study and 
harmonized data to the database; retrieval of existing study data in their original 
structure; and production of harmonized datasets and documentation for distribution to 
investigators.  A custom web application was used to search the publicly-available 
metadata for relevant study variables.  
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Obtaining and processing study data 
 
All study phenotype data and associated metadata were obtained from the National 
Institutes of Health (NIH) database of Genotypes and Phenotypes (dbGaP; 
https://www.ncbi.nlm.nih.gov/gap/) (5), which provides controlled access for the 
scientific community. Use of dbGaP data provides a mechanism to track the 
provenance of a harmonized phenotype variable using dbGaP accession numbers 
assigned to multiple data entities, including studies, datasets, and individual variables 
within datasets. The harmonization system leverages work already done by dbGaP to 
curate data into a consistent file format, include metadata (e.g., variable descriptions 
and types), and perform some value-checking based on the data type. Use of dbGaP 
data enables reproducibility of harmonized phenotypes, as scientific investigators can 
obtain the same datasets (via controlled access). For each study, the harmonization 
process included all participants with data available on dbGaP, rather than only those 
being sequenced in TOPMed. 
 
After obtaining approval for access to a study’s dbGaP accession, all available 
phenotype data and associated metadata were imported into a relational database. An 
overview of the database is provided in the Web Appendix (section S2).  
 
Studies participating in TOPMed were approved by institutional review boards and 
participants provided informed consent, including information regarding data use 
limitations and guidelines for sharing data on dbGaP. Even though the DCC harmonized 
data for all participants available on dbGaP, the resulting harmonized phenotypes may 
only be analyzed for participants whose dbGaP consent group allows research in that 
area.  
 

Harmonization steps 
 
The following harmonization steps are focused on producing each individual 
harmonized phenotype variable (although, as noted above, several related phenotypes 
may be harmonized in parallel and provided to users within a single dataset). The Web 
Appendix (section S3) provides detailed examples of these steps. 
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Step 1: Define the harmonized phenotype variable. 
The first step was to develop a precise definition of the target harmonized phenotype 
variable, often including references to specific assay or measurement methods, time 
points in longitudinal studies, and other relevant factors.  For example, for LDL-C 
concentration in blood, the definition might specify calculation according to the 
Friedewald equation (6) using high-density lipoprotein cholesterol, total cholesterol, and 
triglycerides measurements, all from the same blood sample drawn at the baseline clinic 
visit.  The initial definition was sometimes modified to accommodate heterogeneities in 
the data available in different studies as they were discovered in subsequent steps.  
  

Step 2: Identify ‘candidate’ phenotype variables across contributing studies.  
The next step was to identify candidate dbGaP study variables that could potentially be 
used for calculating the target harmonized phenotype variable, as well as corresponding 
variables containing age at measurement or biosample collection. Because controlled 
vocabulary usage is limited in dbGaP datasets, this process consisted of searching 
variable names, descriptions, and encoded values.  The tagging project described 
below was implemented to facilitate this process for both DCC harmonization and other 
harmonization efforts by the scientific community. 
 
Once an initial set of candidate variables was identified, the selection was refined by 
assessing compatibility with the definition of the target harmonized phenotype and for 
methodological equivalence across studies. This process often involved selecting 
among different methods of measuring the phenotype and/or choosing the most 
appropriate variable from a set of repeated measurements. Analysts generally 
consulted publicly-available study protocols, phenotype domain experts in the relevant 
WG, and study liaisons, who know the intricacies of their study’s data. 
 
In some cases, a new harmonized variable was constructed from previously 
harmonized component variables (e.g., a harmonized body mass index variable from 
previously harmonized height and weight variables). 
 

Step 3: Perform quality control (QC) on candidate variables.  
QC on selected candidate variables was performed to check whether the observed 
values were consistent with expected ranges, investigate any unexpected distributions, 
and check that the data were internally consistent with other related study variables. 
Batch effects were also evaluated when relevant batching information was available. If 
QC issues were identified for a candidate variable, analysts decided, in consultation 
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with the WG and study liaisons, whether an alternative variable from the same study 
could be used, or whether the study should be excluded from the harmonization for this 
phenotype. Individual data points with impossible values (such as a negative analyte 
concentration) were excluded from the harmonized phenotype variable.  Extreme but 
theoretically possible values were noted in the documentation, but were not excluded 
because (1) the definition of extremity is often difficult and subjective; (2) TOPMed 
whole genome sequencing has discovered millions of rare variants, some of which may 
be causing extreme phenotypic values; and (3) users may prefer to handle extreme 
values differently (e.g., by excluding or winsorizing at different values).  Therefore, the 
decision about how to handle extreme values in analyses was left to downstream users 
of the data. 
 
QC results for candidate study variables were used to determine which ones would be 
used as ‘component’ variables in subsequent harmonization steps. The final set of 
component variables was chosen only after QC of the multi-study harmonized variable 
(see Step 5).  
 

Step 4: Construct harmonization algorithms. 
The next step was to specify the algorithms to be used in transforming component 
variables into the harmonized variable. An algorithm was developed for each 
‘harmonization unit’, which consists of a group of participants from a single study with 
component variables that can be harmonized in the same way. Each algorithm was 
implemented as an R function that accepts the component variables as input and 
returns the harmonized values and age at measurement. The algorithm might be as 
simple as giving each component variable a consistent name across studies or 
converting to a common unit of measurement, but often included more complicated 
steps, such as averaging repeated measurements or creating a smoking status variable 
from multiple questionnaire responses. 
 

Step 5: Produce and QC multi-study harmonized phenotype. 
After harmonization algorithms were implemented for each contributing study, the 
harmonized values were calculated and combined across harmonization units and 
studies using in-house R scripts. 
 
This draft of the multi-study harmonized variable was then assessed for homogeneity of 
values among studies and harmonization units within studies. This process included a 
comparison of means and standard deviations of continuous variables or frequencies of 
categorical variables, by study, subcohort, and other relevant subgroups within each 
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study. For continuous variables, we also inspected the distributions of residuals after 
fitting a linear model with age, sex, and harmonized race. If any issues arose in this 
process, analysts evaluated whether the harmonization unit in question should be 
excluded or whether different component variables should be used for harmonization. 
 
When QC checks were complete and the set of contributing studies was finalized, 
analysts summarized the results and any additional information relevant for analysis in a 
free text document referred to as ‘harmonization comments’. This document may 
include notes about the presence of a notable cluster of outliers; differences among 
studies that were not considered important enough for removal of a study from 
harmonization; or variation among studies or subcohorts in assay methodology. These 
notes allow users to flexibly choose how to account for potential effects in analysis. See 
Boxes in the Web Appendix section S3.5 for examples of these comments. 
 
The final multi-study harmonized variable was then added to the DCC’s phenotype 
database. The information added included metadata and data values for the 
harmonized variable, as well as the set of component variables and harmonization 
functions used to generate the harmonized data values. 
 

Distributing harmonization results to the scientific community 
 
The DCC provides a package of datasets and documentation using information stored 
in the database. Each dataset generally includes a group of related harmonized 
variables plus age at measurement for each variable.  The documentation includes files 
in JavaScript Object Notation (JSON) format containing code that allows a user to 
reproduce or modify harmonized variables once they obtain access to the specified 
study data from dbGaP (see Web Appendix section S6 for details).  In addition, the 
harmonized variables described in Table 2 have been submitted to dbGaP and to the 
NHLBI BioData Catalyst repository for distribution to the scientific community via 
application to dbGaP. 
 

Updating harmonized variables 
 
A harmonized phenotype variable often needed to be updated to include additional 
studies and/or to incorporate dbGaP updates to the component study variables from 
previously included studies. These updates were semi-automated because the 
relational database contained all of the information necessary to recreate the 
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harmonized phenotype. Updates of all variables in a dataset were typically made at the 
same time. 
 

Tagging phenotype variables to facilitate future harmonization 
 
While the detailed harmonization process described above produces well-documented, 
reproducible, and updateable harmonized phenotype variables, other investigators may 
want to carry out harmonization differently (e.g., using different component variables; a 
different harmonization algorithm; a different harmonized phenotype definition; or 
additional or different timepoints). They may also need to harmonize a phenotype the 
DCC has not worked on yet. To facilitate identification of candidate variables for 
harmonization, we worked with study and domain experts to label TOPMed dbGaP 
study variables with controlled vocabulary terms to indicate the phenotype concept they 
represent (i.e., ‘variable tagging’).  Study variables were tagged with 65 important 
phenotype concepts from heart, lung, blood, sleep and demographic domains (Web 
Table S7).  Harmonized phenotype variables for 27 of the 65 concepts have been 
constructed already, but many more are possible, even for the same concept.  The 
remaining harmonized variables represent phenotype concepts that were not directly 
included among the 65 originally identified concepts. 
 
Study variable tagging was done via a database-backed web application with built-in 
data validation. The DCC worked with representatives from seven large cohort studies 
to identify all of their studies' dbGaP study variables that fit one or more of the 65 
phenotype concepts, and to label them with the appropriate phenotype concept tag(s) 
and corresponding UMLS term(s). DCC phenotype team members also tagged 
variables for the remaining studies available at the time. We performed careful quality 
review of all tagged variables to ensure consistency and accuracy of the tagging across 
studies. Details of this process are described in the Web Appendix (section S7). 
 

RESULTS 
 

Phenotypes harmonized 
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A total of 63 harmonized variables were constructed across multiple TOPMed studies 
(up to 17 for some variables) belonging to 8 phenotype datasets (Table 2).  Within each 
dataset, the variables generally represent related phenotypes that are analyzed 
together (except for common covariates and demographic variables).  Web Figure S4 
shows histograms of the harmonized variables. 
 

QC issues in harmonization 
 
Four types of issues arose frequently during QC of study and harmonized phenotype 
variables: (1) notable differences among studies/subcohorts in the distributions of 
quantitative measures or frequencies of categorical phenotypes; (2) variation among 
studies/subcohorts in methods for how the same phenotype was assessed or 
measured; (3) extreme (sometimes impossible) values of quantitative measures; and (4) 
inconsistencies in the values of related phenotypes.  In general, the resolution of these 
issues was highly phenotype-dependent and relied on expertise from the WG members 
and study liaisons.  Here we give some examples of how these issues were detected 
and resolved, with more detail and examples in the Web Appendix (sections S3.3 and 
S3.5). 
 
When producing a harmonized variable, we compared distributions across studies and 
subcohorts within studies to identify differences that might be due to errors or unusual 
features of a given study. We show an example of this type of comparison in Figure 2 
for the ever smoker harmonized variable. It is clear that two study/subcohorts, F and 
G1, had a much higher proportion of smokers, while a third study/subcohort, E, had a 
much lower proportion of smokers than the average. In two cases, the proportions can 
be explained by the studies’ recruitment strategies; study/subcohort F targeted smokers 
for enrollment into the study (7), while study/subcohort E included children (8). Because 
these differences can be explained by recruitment strategy, no modification to the 
harmonization was needed. Further exploration of subcohort G1 showed that this high 
proportion was due to an unlabeled missing value code in one of the component 
variables. We corrected the harmonization algorithm to account for this missing code, 
and the differences in the proportions of smokers by subcohort after this correction were 
much smaller. 
 
A second example of harmonized phenotype QC is shown in Figure 3. The final QC for 
interleukin-6 concentration included inspection of the distribution of values by study and 
subcohort as well as the residuals after adjusting for age, sex, and race. The distribution 
for one study was much wider in range and generally had higher values compared with 
the other study/subcohorts (Study E in Figure 3). These differences remained even after 
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adjusting for age, sex, and race. The DCC consulted with study liaisons, and decided to 
remove that study from harmonization because the reason for the unusual distribution 
could not be determined.  
 
There is often a trade-off between the homogeneity of a harmonized variable and 
achieving a large sample size by including many studies (9–11). This issue generally 
arose when studies measured different aspects of a harmonized variable (e.g., 
measurements of the thickness of different carotid artery walls for calculating common 
carotid intima-media thickness) or used different methods to collect a similar 
measurement (e.g., different assay methods for inflammation phenotypes). In these 
cases, WG and study members were involved in decisions about whether to exclude 
studies or modify the definition of the harmonized phenotype. 
 
We sometimes found biologically invalid data points, such as diastolic greater than 
systolic blood pressure for some participants, or unexpected relationships between 
variable values, such as white blood cell subtype counts not adding up to the total 
count. Other inconsistencies were found in participant responses to questionnaires 
(e.g., participants who report that they have never smoked but also report smoking a 
non-zero number of cigarettes per day).  As noted in the Methods section, impossible 
data values were typically not included in the harmonized variable, while the potentially 
valid but extreme values are retained but noted in the harmonization comments. 
 

Reproducibility of harmonized phenotype variables 
 
We have successfully reproduced several of our harmonized variables exactly using 
only the JSON documentation provided in our public GitHub repository 
(https://github.com/UW-GAC/topmed-dcc-harmonized-phenotypes), along with the 
specified study data files from dbGaP (via controlled access).  The repository also 
includes a fully reproducible example using simulated dbGaP data that instructs users 
about how to reproduce the harmonized variables using the documentation.  
 

DCC phenotype tagging results 
 
We tagged dbGaP study variables with UMLS terms representing 65 phenotype 
concepts in 16 domains. Web Table S7 provides descriptions, detailed tagging 
instructions, and UMLS terms for each phenotype concept. A total of 16,671 dbGaP 
study variables from 17 studies were tagged with relevant UMLS phenotype terms. 
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Because some variables were tagged with multiple phenotype terms, there are 17,063 
unique pairings of dbGaP variable and UMLS phenotype term. Table 3 shows the 
number of variables available in each study, the number tagged, and the proportion 
tagged.  The latter varies according to variation among studies in the breadth and depth 
of phenotype domains for which they have collected data. For example, the 
Framingham Heart Study has many variables in domains that are not part of the 65 
phenotype concepts chosen for tagging, such as bone mineral density measurements. 
 

Data availability 
 
The study data used as input for harmonization are available to the scientific community 
from dbGaP via controlled-access.  In a single application, a user can apply for access 
to all dbGaP study accessions provided in the documentation. In addition, the 
harmonized data in Table 2 have been submitted to dbGaP and to a new NHLBI data 
repository, BioData Catalyst (https://biodatacatalyst.nhlbi.nih.gov/). In both cases, 
access will be through application to dbGaP.   
 
We worked with dbGaP scientists to make the tagging results available in dbGaP 
searches and visible on dbGaP variable pages. Detailed information on how to access 
and use this information is available on the TOPMed website 
(https://www.nhlbiwgs.org/dcc-pheno).  
 

DISCUSSION 
 
The TOPMed program was designed to add cutting-edge genomics and other omics 
data to over 80 studies with extensive characterization of heart, lung, blood and sleep 
phenotypes.  Because phenotype data in the contributing studies are quite 
heterogeneous,  retrospective harmonization is critical to achieving the program’s goals.  
The harmonization system described in this report has been used to harmonize 63 
phenotypes for several WGs, members of which are using them in many different 
analyses, primarily genotype-phenotype association studies.  Some of these studies 
have been published (e.g., 12–15) and many others are in preparation. 
 
An important consideration in the design of our harmonization system was the ability to 
share harmonized phenotypes with the broader scientific community.  This goal is 
challenging because the study data, and any individual-level derivations thereof, require 
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controlled access due to human subject privacy and consent restrictions. We addressed 
this problem by obtaining the study data for harmonization from dbGaP, which can be 
accessed by the scientific community; by providing detailed documentation about the 
component variables and algorithms for each variable; and by returning the harmonized 
data to NIH-designated repositories. The consent type for a given participant’s 
harmonized data is inherited from the dbGaP data used as components for the 
harmonization.  
 
Reproducibility of results is difficult to ensure with confidential data (16).  Harmonized 
data produced by our system are fully reproducible because of the availability of study 
data, provenance tracking, harmonization code, and other documentation. However, 
exact reproducibility can only be ensured if a user has access to the same version of 
the data that was used in harmonization, as studies can update or even remove 
variables from their dbGaP accessions. 
 
A limitation of our process for phenotype harmonization is that it was very labor-
intensive and does not scale readily to the thousands of phenotypes available in 
TOPMed and other similar programs. Identification and QC of study and harmonized 
variables are largely manual and would be very difficult to automate, but without 
performing the steps described here, the utility of results may be compromised. 
Because of these scalability issues, we  provide the following materials to help other 
investigators perform their own harmonizations:  
 
(1) Code and documentation sufficient to allow others to reproduce, modify or expand 
upon our harmonizations.  
 
 (2) Detailed examples of the types of QC performed, issues that arose, and how they 
were resolved (see Web Appendix sections S3.3 and S3.5).  We expect this information 
will prove useful to investigators working on a broad range of phenotypes and may also 
be helpful in applications to funding agencies regarding the level of resources required 
for useful harmonization efforts.  
 
(3) Thousands of dbGaP variables tagged with 65 phenotype concepts, which can be 
used directly by other investigators for the largely manual and time-consuming step of 
identifying the study variables needed for harmonization.  The tagging data also provide 
a gold standard, human-curated data set for developing automated approaches to 
identifying variables that fit a specific phenotype concept.  
 
We also suggest the following for future phenotype harmonization efforts: 
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(1) Full documentation of harmonization including code, procedures and input data 
provenance so that others can reproduce and extend their work. Sharing this 
documentation can benefit the scientific community without sharing the actual 
harmonized phenotype values (which requires complicated data-sharing arrangements). 
 
(2) Studies sharing phenotype data with the community (a) structure data tables so that 
each phenotype variable (i.e., table column) contains data corresponding to only one 
phenotype concept and (b) provide controlled vocabulary term(s) from UMLS or its 
component ontologies for each phenotype variable. 
 
(3) Studies currently collecting data consider use of standardized protocols, such as 
developed by the PhenX consortium (1), to reduce the need for retrospective 
harmonization in the future. 
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ABBREVIATIONS 
 
DCC = Data Coordinating Center 
dbGaP = database for Genotypes and Phenotypes 
JSON = JavaScript Object Notation 
LDL-C = Low-density lipoprotein cholesterol 
NHLBI = National Heart, Lung, and Blood Institute 
NIH = National Institutes of Health 
QC = quality control 
TOPMed = Trans-Omics for Precision Medicine 
UMLS = Unified Medical Language System 
WG = Working Group 
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Figures and tables 
 
Table 1. Terminology. 
 
Specific terminology used in this report, in the Supplement and in documentation 
distributed with harmonized phenotype data.   
 

Terms and 
synonyms 

Definitions 

Participant or 
subject 

Studies generally refer to individuals participating in their study as 
a “participant”, while dbGaP uses “subject” as the equivalent term. 

Cohort and 
subcohort 

A sample of study participants enrolled in the study together at a 
given time (or clinic visit). The term ‘subcohort’ refers to a distinct 
group of participants within a study, as defined by that study (e.g. 
different recruitment wave or targeted demographic group). 

Phenotype or trait Observable characteristics of an organism.  “Phenotype” and 
“trait” are used synonymously. 

Phenotype 
concept 

Broad definition of a phenotype such as ‘quantitative measure of 
HDL concentration in blood’ or ‘qualitative indicator of diabetes 
mellitus status’.  

Phenotype 
variable 

A vector of data values representing a measurement or other 
aspect of a phenotype concept element, where each item in the 
vector corresponds to the value for a specific participant and/or 
repeated measure for a participant.  

dbGaP study 
variable 

An unharmonized phenotype variable from a given study’s dbGaP 
accession. 

Candidate 
variable 

A phenotype variable from a given study to be evaluated for use 
as a component phenotype variable. Such evaluation includes 
consideration of factors such as how well it represents the target 
phenotype concept, how well it can be harmonized with candidate 
variables from other studies, and quality of the data.  

Component 
variable 

A phenotype variable selected for inclusion in a single 
harmonization, either because it directly represents the target 
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phenotype (e.g. biomarker concentration) or because it is useful in 
constructing the harmonized variable (e.g. biomarker assay 
quality).   

Harmonized 
variable 

A phenotype variable constructed from a set of component 
variables from different studies, after performing whatever 
harmonization steps are considered to be important for a valid 
pooled or meta-analysis.  

Harmonization 
algorithm and 
function 

The algorithm is a series of steps to be applied to the group of 
component variables to produce harmonized phenotype values for 
a single harmonization unit.  Algorithms are implemented in R 
functions. 

Harmonization 
unit 

A group of subjects from a single study (e.g. subcohort) with the 
same component variables, to which a single harmonization 
algorithm is applied to produce harmonized phenotype values.  A 
harmonized variable is typically constructed by combining multiple 
harmonization units from one or more studies. 

Harmonized data 
set 

A data set consisting of a set of harmonized variables 
representing the elements of a given phenotype concept.  It may 
also contain harmonized variables for multiple related phenotype 
concepts.  For example, the “lipids” data set contains phenotype 
variables for concentrations of each of several lipid compounds 
assayed from the same blood draw, as well as age at blood draw, 
fasting status and lipid-lowering medication use. 
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Table 2. Harmonized Variables Produced by the DCC.  
 
Harmonized variables produced by the DCC. Additional documentation about each 
variable can be found in the GitHub repository (https://github.com/UW-GAC/topmed-
dcc-harmonized-phenotypes). The ‘concept variant number’ at the end of each 
harmonized variable name differentiates among different implementations of 
harmonization for the same basic phenotype concept (e.g. cimt_1 and cimt_2 are 
names for cIMT variables calculated with slightly different harmonization algorithms). 
 

Dataset 
Phenotype 
concept 

Harmonized variable 
name 

Number of 
participants 

Number 
of 
studies 

Atherosclerosis 
Coronary artery 
calcium volume cac_volume_1 11,098 2 

Atherosclerosis 
Coronary artery 
calcium score cac_score_1 15,042 6 

Atherosclerosis 

Common carotid 
intima-media 
thickness cimt_1 35,420 6 

Atherosclerosis 

Common carotid 
intima-media 
thickness cimt_2 30,473 5 

Atherosclerosis Carotid stenosis carotid_stenosis_1 15,098 3 

Atherosclerosis 
Presence of 
carotid plaque carotid_plaque_1 27,344 5 

Baseline 
Common 
Covariates 

Standing body 
height height_baseline_1 230,287 16 

Baseline 
Common 
Covariates Body weight weight_baseline_1 230,657 16 
Baseline 
Common 
Covariates 

Ever smoker 
status ever_smoker_baseline_1 225,271 14 

Baseline 
Common 
Covariates 

Current smoker 
status current_smoker_baseline_1 228,688 16 
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Baseline 
Common 
Covariates Body mass index bmi_baseline_1 230,918 17 

Blood Cell 
Count 

Basophil 
concentration in 
blood basophil_ncnc_bld_1 36,586 7 

Blood Cell 
Count 

Eosinophil 
concentration in 
blood eosinophil_ncnc_bld_1 37,426 7 

Blood Cell 
Count 

Lymphocyte 
concentration in 
blood lymphocyte_ncnc_bld_1 39,702 7 

Blood Cell 
Count 

Hematocrit level 
in blood hematocrit_vfr_bld_1 193,469 9 

Blood Cell 
Count 

Hemoglobin 
concentration in 
blood hemoglobin_mcnc_bld_1 193,367 9 

Blood Cell 
Count 

Monocyte 
concentration in 
blood monocyte_ncnc_bld_1 39,647 7 

Blood Cell 
Count 

Neutrophil 
concentration in 
blood neutrophil_ncnc_bld_1 38,285 7 

Blood Cell 
Count 

Mean corpuscular 
volume in blood mcv_entvol_rbc_1 44,593 7 

Blood Cell 
Count 

Mean corpuscular 
hemoglobin 
concentration in 
blood mchc_mcnc_rbc_1 51,293 8 

Blood Cell 
Count 

Mean corpuscular 
hemoglobin in 
blood mch_entmass_rbc_1 39,649 7 

Blood Cell 
Count 

Platelet 
concentration in 
blood platelet_ncnc_bld_1 190,177 9 

Blood Cell 
Count 

Mean platelet 
volume in blood pmv_entvol_bld_1 13,816 3 
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Blood Cell 
Count 

Red blood cell 
concentration in 
blood rbc_ncnc_bld_1 39,710 7 

Blood Cell 
Count 

Red cell 
distribution width rdw_ratio_rbc_1 28,034 4 

Blood Cell 
Count 

White blood cell 
concentration in 
blood wbc_ncnc_bld_1 192,346 9 

Blood Pressure 
Systolic blood 
pressure bp_systolic_1 225,934 14 

Blood Pressure 
Diastolic blood 
pressure bp_diastolic_1 225,934 14 

Blood Pressure 
Antihypertensive 
medication use antihypertensive_meds_1 207,130 12 

Demographic 
Hispanic 
subgroup hispanic_subgroup_1 18,612 4 

Demographic 
Subcohort 
identifier subcohort_1 218,747 15 

Demographic Reported race race_1 230,994 17 
Demographic Reported sex annotated_sex_1 233,030 17 

Demographic 

Reported 
Hispanic/Latino 
indicator ethnicity_1 188,905 11 

Demographic 
Geographic 
recruitment site geographic_site_1 212,529 12 

Inflammation 

CD40 protein 
concentration in 
blood cd40_1 4,238 2 

Inflammation 

CRP 
concentration in 
blood crp_1 49,536 10 

Inflammation 

E-selectin 
concentration in 
blood eselectin_1 1,215 1 
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Inflammation 

ICAM1 
concentration in 
blood icam1_1 15,876 5 

Inflammation 

IL1β 
concentration in 
blood il1_beta_1 708 1 

Inflammation 
IL6 concentration 
in blood il6_1 20,390 5 

Inflammation 

IL10 
concentration in 
blood il10_1 3,455 2 

Inflammation 

IL18 
concentration in 
blood il18_1 3,159 1 

Inflammation 

Isoprostane 8-epi-
PGF2ɑ 
concentration in 
urine isoprostane_8_epi_pgf2a_1 7,523 1 

Inflammation 
Activity of LP-
PLA2 in blood lppla2_act_1 18,117 3 

Inflammation 
Mass of LP-PLA2 
in blood lppla2_mass_1 18,049 3 

Inflammation 

MCP1 
concentration in 
blood mcp1_1 7,557 1 

Inflammation 

MMP9 
concentration in 
blood mmp9_1 964 1 

Inflammation 

MPO 
concentration in 
blood mpo_1 3,162 1 

Inflammation 

OPG 
concentration in 
blood opg_1 7,648 1 

Inflammation 

P-selectin 
concentration in 
blood pselectin_1 8,037 1 
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Inflammation 

TNFɑ 
concentration in 
blood tnfa_1 5,075 3 

Inflammation 

TNFɑ receptor 1 
concentration in 
blood tnfa_r1_1 2,802 1 

Inflammation 

TNF receptor 2 
concentration in 
blood tnfr2_1 7,962 1 

Lipids Fasting status fasting_lipids_1 64,895 11 

Lipids 

High density 
lipoprotein 
concentration in 
blood hdl_1 65,676 11 

Lipids 

Total cholesterol 
concentration in 
blood total_cholesterol_1 65,707 11 

Lipids 

Triglyceride 
concentration in 
blood triglycerides_1 65,706 11 

Lipids 

Low density 
lipoprotein 
concentration in 
blood ldl_1 64,715 11 

Lipids 
Lipid-lowering 
medication use lipid_lowering_medication_1 58,962 9 

VTE 
Age at beginning 
of followup vte_followup_start_age_1 61,692 4 

VTE 

Prior history of 
venous 
thromboembolism vte_prior_history_1 62,445 5 

VTE 

Venous 
thromboembolism 
case status vte_case_status_1 63,092 6 

Footnote:  
Cluster of differentiation 40 (CD40); C-reactive protein (CRP); Intercellular adhesion 
molecule 1 (ICAM1); Interleukin 1 beta (IL1β); Interleukin 6 (IL6); Interleukin 10 (IL10); 
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Interleukin 18 (IL18); Lipoprotein-associated phospholipase A2 (LP-PLA2); Monocyte 
chemoattractant protein-1 (MCP1); Matrix metalloproteinase 9 (MMP9); 
Myeloperoxidase (MPO); Osteoprotegerin (OPG); Tumor necrosis factor (TNF); 8-epi-
prostaglandin F2ɑ (8-epi-PGF2ɑ) 
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Figure 1. 
 
Harmonization system overview.  (a) Existing study data in diverse formats are 
curated by dbGaP, including accessioning and conversion to a consistent file 
format.  (b) Formatted data and associated metadata (e.g. variable descriptions) are 
stored in a TOPMed DCC relational database. (c) The harmonized phenotype variable 
is defined, and metadata for multiple studies are searched to identify candidate 
phenotypic variables that potentially can be harmonized together to produce the desired 
harmonized variable (harmonization steps 1 and 2).  (d) Analytical tools that interact 
with the DCC database are used for quality control of study variables, implementation of 
harmonization algorithms, and documentation; harmonized results are added to the 
same DCC database shown in step b (harmonization steps 3-5).  (e) Files containing a 
multi-study, harmonized data set and associated documentation are produced. (f) Data, 
metadata and documentation are submitted to an NIH repository for controlled access 
by the scientific community, while JSON-formatted documentation files containing code 
and provenance tracking are submitted to a publicly available GitHub repository. 
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Figure 2. 
 
Proportion of ever smokers from the harmonized ever_smoker_baseline_1 variable by 
(anonymized) study subcohort. In both plots, different studies are labeled by a letter 
(e.g., B), and different subcohorts within each study (if applicable) are labeled by 
appending a number to the study letter (e.g., B1 and B2). A) Proportion of smokers by 
study/subcohort after initial harmonization. Three study/subcohorts (E, F, and G1) have 
much smaller or larger proportions compared to the majority of other studies. B) 
Proportion of smokers by study/subcohort after correcting study/subcohort G1 (shown in 
black) for an unlabeled missing value code.  
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Figure 3. 
 
Distribution of harmonized IL-6 values by study/subcohort. In both plots, different 
studies are labeled by a single letter (e.g., D), and different subcohorts within each 
study (if applicable) are labeled by appending a number to the study letter (e.g., D1 and 
D2).  A) Harmonized IL-6 values. The interquartile range for Study E is much larger than 
the other study/subcohorts. B) Residuals of a linear model (il6 ~ age + sex + race) by 
study/subcohort. The large differences between Study E and the other study/subcohorts 
remain after adjusting the values for age, sex, and race. 
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Table 3. Variables Tagged With Controlled Vocabulary Phenotype Concepts. 
 
The number and proportion of variables tagged with controlled vocabulary phenotype 
concepts for each study. Study names marked with an asterisk indicate that initial 
tagging was completed by study data experts; those without an asterisk were tagged by 
DCC analysts.  
 

Study dbGaP accession 
N dbGaP 
variables 

N tagged 
variables 

Proportion 
tagged 

Amish phs000956.v2.p1 53 40 0.75 
ARIC* phs000280.v3.p1 14,430 1,713 0.12 
CARDIA* phs000285.v3.p2 9,036 1,608 0.18 
CFS phs000284.v1.p1 2,325 371 0.16 
CHS* phs000287.v6.p1 14,657 2,175 0.15 
COPDGene phs000179.v5.p2 332 103 0.31 
CRA phs000988.v2.p1 15 13 0.87 
FHS* phs000007.v29.p10 61,195 6,579 0.11 
GENOA phs001238.v1.p1 1,072 441 0.41 
GOLDN phs000741.v2.p1 107 9 0.08 
HCHS_SOL phs000810.v1.p1 274 132 0.48 
HVH phs001013.v2.p2 23 20 0.87 
JHS* phs000286.v5.p1 4,084 745 0.18 
Mayo_VTE phs000289.v2.p1 41 17 0.41 
MESA* phs000209.v13.p3 22,044 1,943 0.09 
Samoan phs000914.v1.p1 167 48 0.29 
WHI* phs000200.v11.p3 6,117 1,106 0.18 
Footnote: 
Genetics of Cardiometabolic Health in the Amish (Amish); Atherosclerosis Risk in 
Communities Study (ARIC); Coronary Artery Risk Development in Young Adults 
(CARDIA); Cleveland Family Study (CFS); Cardiovascular Health Study (CHS); Genetic 
Epidemiology of COPD Study (COPDGene); The Genetic Epidemiology of Asthma in 
Costa Rica (CRA); Framingham Heart Study (FHS); Genetic Epidemiology Network of 
Arteriopathy (GENOA); Genetics of Lipid Lowering Drugs and Diet Network (GOLDN); 
Hispanic Community Health Study - Study of Latinos (HCHS_SOL); Heart and Vascular 
Health Study (HVH); Jackson Heart Study (JHS); Mayo Clinic Venous 
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Thromboembolism Study (Mayo_VTE); Multi-Ethnic Study of Atherosclerosis (MESA); 
Samoan Adiposity Study (Samoan); Women's Health Initiative (WHI) 
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