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ABSTRACT 

 Type IV secreted effectors (T4SEs) can be translocated into the cytosol of host cells via type 

IV secretion system (T4SS) and cause diseases. However, experimental approaches to identify 

T4SEs are time- and resource-consuming, and the existing computational tools based on machine 

learning techniques have some obvious limitations such as the lack of interpretability in the 

prediction models. In this study, we proposed a new model, T4SE-XGB, which uses the eXtreme 

gradient boosting (XGBoost) algorithm for accurate identification of type IV effectors based on 

optimal protein sequence features. After trying 20 different features, the best result achieved when 

all features were fed into XGBoost by the 5-fold cross validation compared with different machine 

learning methods. Then, the ReliefF algorithm was adopted to optimize feature vectors and got final 

1100 features for our dataset which obviously improved the model performance. T4SE-XGB 

exhibited highest predictive performance on the independent test set and clearly outperforms other 

recent prediction tools. What’s more, the SHAP method was used to interpret the contribution of 

features to model predictions. The identification of key features can contribute to an improved 

understanding of multifactorial contributors to host-pathogen interactions and bacterial 

pathogenesis. In addition to type IV effector prediction, we believe that the proposed framework 

composed of model construction and model interpretation can provide more instructive guidance 

for further research of developing novel computational methods and mechanism exploration of 

biological problems. The data and code for this study can be found at 

https://github.com/CT001002/T4SE-XGB. 
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INTRODUCTION 

Different secretion systems have been found in bacteria that secret proteins into the 

extracellular environment. Gram-negative bacterial secretion can be categorized into eight types 

(from type I to type VIII), and the secreted proteins (also called effectors) play a vital role in bacterial 

pathogenesis and bacterium-host interactions. Type IV secretion system (T4SS) are protein 

complexes found in various species that deliver proteins into the cytoplasm of host cell and thus 
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cause infection, such as whooping cough [1], gastritis, peptic ulcer and crown-gall tumor [2]. 

Therefore, the identification of type IV secreted effector proteins (T4SEs) is a fundamental step 

toward understanding of the pathogenic mechanism of T4SS. 

There are a variety of experimental methods for identifying new T4SEs such as immunoblot 

analysis and pull-down assay [3]. However, they are limited by both a priori knowledge about 

biological mechanisms and the sophisticated implementation of molecular experiments [4]. 

Furthermore, these experimental approaches are quite time-consuming and expensive. Instead, a 

large number of computational methods have been developed for the prediction of T4SEs in the last 

decade, which successfully speed up the process in terms of time and efficiency. These 

computational approaches can be categorized into two main groups: the first group of approaches 

infer new effectors based on sequence similarity with currently known effectors [5-10] or 

phylogenetic profiling analysis [11], and the second group of approaches involve learning patterns 

of known secreted effectors that distinguish them from non-secreted proteins based on machine 

learning and deep learning techniques [12-26]. In the latter group of methods, Burstein et al. [24] 

worked on Legionella pneumophila to identify T4SEs from non-effectors and validated 40 novel 

effectors which were predicted by machine learning algorithms. Several features including genomic 

organization, evolutionary based attributes, regulatory network attributes, and attributes specific to 

the L. pneumophila pathogenesis system were applied as input of different machine learning 

algorithms: naïve Bayes, Bayesian networks, support vector machine (SVM), neural network and a 

voting classifier based on these four algorithms. Then, Zou et al. [22] built the tool called T4EffPred 

based on the SVM algorithm with features such as amino acid composition (AAC), dipeptide 

composition (DPC), position specific scoring matrix composition (PSSM), auto covariance 

transformation of PSSM to identify T4SEs. Wang et al. [21] constructed an effective inter-species 

T4SS effector prediction software named T4SEpre, based on SVM by using C-terminal sequential 

and position-specific amino acid compositions, possible motifs and structural features. Later, Xiong 

et al. [17] used the same dataset as that of the previous study [19] and developed a stacked ensemble 

classifier PredT4SE-Stack including various machine learning algorithms, such as SVM, gradient 

boosting machine, and extremely randomized trees. Wang et al. [25] developed an ensemble 

classifier called Bastion4 which serves as an online T4SS effector predictor. They calculated 10 

types of sequence-derived features as the input vectors. And then, Naïve Bayes (NB), K-nearest 

neighbor (KNN), logistic regression (LR), random forest (RF), SVM and multilayer perceptron 

(MLP) were trained and compared. Significantly improved predictive performance arose when they 

used the majority voting process based on the six classifiers where the PSSM-based features were 

used as input vectors. Ashari et al. developed the package called OPT4e [14], which assembled all the 

features used in prior studies for the purpose of predicting a set of candidate effectors for A. 

phagocytophilum. This tool yielded reasonable candidate effector predictions for most T4SS bacteria 

from the Alphaproteobacteria and Gammaproteobacteria classes.  

Deep learning is a new technology based on neural network architecture and has been 

successfully applied in various problems in recent years. Some researchers have perceived the 

advantages of deep learning methods and applied them to achieve notable improvements in the field 

of identifying T4SEs. Xue et al. [16] proposed a deep learning method to identify T4SEs from 

primary sequences. The model called DeepT4 utilized a convolutional neural network (CNN) to 

extract T4SEs-related features from 50 N-terminal and 100 C-terminal residues of the proteins. This 

work provided the original idea about using the deep learning method. However, only few 
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information of protein sequences can be extracted, which showed a slightly weaker performance 

compared with the Bastion4. Açıcı et al. [15] developed the CNN architecture based on the 

conversion from protein sequences to images using AAC, DPC and PSSM feature extraction 

methods. Recently, Hong et al. [12] developed the new tool CNN-T4SE based on CNN, which 

integrated three encoding strategies: PSSM, protein secondary structure & solvent accessibility 

(PSSSA) and one-hot encoding scheme (Onehot), respectively. Compared with other machine 

learning methods, CNN-T4SE outperform all other state-of-the-art sequence-based T4SEs 

predictors. However, the less-than-optimal features analysis causes the limited deep learning for 

protein data and it is not straightforward to understand which features extracted from a given protein 

sequence drive the final prediction. 

In this research, we proposed T4SE-XGB, a XGBoost based model using sequence-based features 

from type IV effector and non-effector proteins. To overcome the limitations of existing methods, we 

selectively summarized the features covered in previous studies and added some new features. The main 

strength of our method hinges on two aspects. On the one hand, T4SE-XGB trained with features selected 

by the ReliefF algorithm significantly improved the overall performance on the benchmark dataset. On 

the other hand, T4SE-XGB uses a post-hoc interpretation technique: the SHAP method to demystify and 

explain specific features that led to deeper understanding of “black box” models. 

MATERIALS AND METHODS 

The overall workflow of T4SE-XGB is shown in Figure 1 and summarized to five stages: 

Dataset Collection, Feature Extraction, Feature Selection, Model Construction and Model 

Interpretation. The detailed steps of each stage are described in the following sections. 

Figure 1. Overview workflow of T4SE-XGB. First, the benchmark dataset was collected. Next, 20 types of features were 

used to extract information from original protein sequences. Then, the ReliefF algorithm was employed to select optimal features. 
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Five-fold cross validation test and independent test were set to verify the validation of the model. Finally, we not only used the 

vanilla XGBoost method to get feature importance, but also got SHAP values to realize the model interpretation. 

DATASET 

In our study, type IV secreted effectors and non-effectors were selected as the benchmark 

dataset to construct the machine-learning model for proteins prediction. Our dataset was obtained 

from Wang, J. et al. [27] contained 420 T4SEs and 1262 non-T4SEs. These original proteins were 

already divided into training and independent test datasets. To reduce sequence redundancy, the tool 

named CD-HIT [28] was used to filter all proteins in the dataset having sequence similarity >30%. 

In the end, we got the final training dataset consisted of 365 T4SE and 1106 non-T4SE proteins and 

the independent test dataset including 20 T4SEs and 139 nonT4SEs. 

FEATURE EXTRACTION 

 In this experiment, we took full advantage of features derived from protein sequence of T4SEs 

that former researchers have used and also added some novel features have been used in other large-

scale protein-prediction problems. We utilized the following four aspects of features to characterize 

protein sequences: secondary structure information, peptide sequence encoding, evolutionary 

information and other underlying features. Details about feature extraction are listed in the following: 

 

Secondary structure information.  

(i) First, we used SCRATCH [29] to get predict 3- and 8-state secondary structure (SS) 

information and then mono- (1 state i.e. turn, strand or coil), di- (two consecutive states) and tri-state 

(three consecutive states) frequencies from a given protein sequence were extracted. (ii) The fraction of 

exposed residues (FER) with 20 different relative solvent accessibility (RSA) cutoffs (0% to 95% 

cutoffs at 5% intervals) and the FER by the average hydrophobicity of these exposed residues at different 

RSA cutoffs were calculated. (ii) DISOPRED [30] can achieve predicting precise disordered region with 

annotated protein-binding activity. In the former study, Elbasir et al. [31] used DISOPRED to get 25 

disordered features and 25 features of protein binding sites (PBS) in disordered region. We used the 

same strategy and details are provided in Supplementary Material. 

Peptide sequence encoding.  

(i) Frequencies of 20 amino acids, 400 di-peptides, 8000 tri-peptides were extracted from the 

protein sequences. (ii) The Composition, Transition and Distribution (CTD) feature represents the 

amino acid distribution patterns of a specific structural or physicochemical property in a protein or 

peptide sequence. Different types of physicochemical properties including hydrophobicity, normalized 

Van der Waals Volume, polarity, polarizability, charge, secondary structures and solvent accessibility 

have been used for computing final feature vectors. (iii) The Composition of k-spaced Amino Acid 

Pairs (CKSAAP) feature encoding calculates frequencies of amino acid pairs separated by any k 

residues range from 0 to 5, We use the default maximum value of k which is 5, and got a 2400-

dimensional feature vector for protein sequence. (iv) The Conjoint Triad descriptor (CTriad) considers  

the properties of one amino acid and its vicinal amino acids by regarding any three continuous amino 

acids as a single unit [32]. (v) Pseudo amino acid composition analyses protein sequences about the 

physicochemical properties of constituent amino acids. The final feature vectors include the global or 

long-range sequence order information. Series correlation pseudo amino acid composition (SC-

PseAAC) [33] is a variant of PseAAC, generates protein feature vectors by combining the amino acid 
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composition and global sequence-order effects via series correlation. Parallel correlation pseudo amino 

acid composition (PC-PseAAC) [34], derived from PseACC, incorporating the contiguous local 

sequence-order information and the global sequence-order information into feature vectors of protein 

sequences. 

The iFeature [35] Sever is capable of calculating and extracting different sequences, structural 

and physiochemical features derived from protein sequences. The BioSeq-Analysis2.0 [36] Sever 

was employed to generate modes of pseudo amino acid compositions for protein sequences including 

SC-PseAAC and PC-PseAAC. There are several parameters to set: λ represents the counted rank 

(or tier) of the correlation along a biological sequence; w is the weight factor for the sequence-order 

effects and used to put weight to the additional pseudo components with respect to the conventional 

sequence components; two feature selection methods can be chosen. In brief, we kept the parameters: 

λ=5&w=0.1 for the SC-PseAAC mode while λ=2&w=0.1 for the PC-PseAAC mode, and we 

selected the feature selection method named mutual information for two modes (Supplementary 

Material). 

Evolutionary information.  

(i) Position specific scoring matrix (PSSM) of a protein sequence can be obtained in the form of 

L∗ 20 matrix (amino acid length is L). PSSM represents the evolutionary, residue and sequence 

information features of input proteins. In our study, we got 400 feature vectors from the original PSSM 

profile by summing rows corresponding to the same amino acid residue. (ii) Smoothed-PSSM [37] 

transformed from the standard PSSM encodes the correlation or dependency from surrounding residues 

significantly enhanced the performance of RNA-binding site prediction in proteins. The Smoothed-

PSSM profile considered the first 50 amino acids starting from the protein’s N-terminus to form a vector 

with the dimension 1000. (iii) AAC-PSSM [38] represents the correlation of evolutionary conservation 

of the 20 residues between two positions separated by a predefined distance along the sequence and 

successfully converts a protein into a fixed length feature vector with dimension 20. It reveals the 

possibility of the amino acid residues in the protein being mutated to different types during the evolution 

process. (iv) RPM-PSSM [39] filters all entities with values of less than 0 from the PSSM matrix by 

using the residue probing method, and the negative values were set to 0. For this method, original PSSM 

matrix finally transformed into the 20*20 matrix and can be constructed into a 400-dimensional vector. 

(v) Pse-PSSM [40] developed from PseAAC and encodes the PSSM of proteins with different lengths 

using a uniform length matrix. Pse-PSSM have been proved manually derive sequence-length-

independent features from the sequence-length-dependent features and successfully avoid complete loss 

of the sequence-order information [41-43]. (iv) DP-PSSM [44] , a protein descriptor based on similarity , 

gets the hidden sequential order information by calculating from protein sequence and can avoid 

cancellation of positive or negative terms in the average process. As a result, we obtained a 400-

dimensional vector from each sequence. 

All PSSM-based algorithms above involved were achieved using the bioinformatics tool called 

POSSUM [45], including the original PSSM profiles, smoothed-PSSM , AAC-PSSM, RPM-PSSM, Pse-

PSSM and DP-PSSM. All PSSM-based feature descriptors used default parameters the website 

provided: smoothing window=7 and sliding window=50 for smoothed-PSSM, ξ=1 for Pse-PSSM, and 

α=5 for DP-PSSM.    

Other underlying features.  

(i) Global properties of the protein were calculated including sequence length, molecular weight, 

total hydropathy et al. and the list is shown in Supplementary Material. (ii) Terminal properties like the 
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frequencies of 20 amino acids length of 50 amino acids at the C-terminus or N-terminus adopted in 

former researches were also calculated [27, 46-48]. And the frequencies of di-peptides at the C-terminus, 

like SS, KE, EE, EK, AA, AG and LL involved in former studies have shown variances between effectors 

and the non-effectors were also calculated [49, 50]. (iii) We also searched for several types of protein 

motifs including nuclear localization signals (NLS), E-Block (EEXXE motif), conserved EPIYA motifs 

(EPIYA_CON), hypothetical EPIYA motifs (EPIYA_HYS) and Prenylation Domain (CaaX motif) that 

have been proposed and extracted before [18, 51-53]. 

Feature normalization 

Normalization is a scaling technique in which values are shifted and rescaled so that they fall into 

the same numeric interval. Distance algorithms and distance-based feature selection methods are mostly 

affected by the range of features. Having features on a similar scale also help the gradient descent 

converge more quickly towards the minima. The following formula can be used to normalize all feature 

values and end up ranging between 0 and 1, which is known as Min-Max scaling: 

𝑋′ = 
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(1) 

 

 Here, 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 are the maximum and the minimum values of the feature respectively. To 

realize this, we imported the MinMaxScalar from the python scikit learn library.   

Extreme gradient boosting 

Extreme gradient boosting also named XGBoost [54] is an optimized distributed gradient 

boosting algorithm designed to be highly efficient, flexible and portable [55]. XGBoost based on 

decision tree ensembles consists of a set of classification and regression trees. It uses the training 

data (with multiple features) 𝑥𝑖 to predict a target variable 𝑦𝑖 . 

To begin with, Chen et al. defined the objective function as: 

𝑜𝑏𝑗 =∑𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡)
)

𝑛

𝑖=1

+∑𝛺(𝑓𝑖)

𝑡

𝑖=1

 (2) 

 

where n is the number of trees, l is the training loss function, Ω is the regularization term. 

Then, the XGBoost takes the Taylor expansion of the loss function up to the second order and 

removes all the constants, so the specific objective at step t becomes: 

𝐿(𝑡) =∑[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]

𝑛

𝑖=1

+  𝛺(𝑓𝑡) (3) 

 

where the 𝑔𝑖 and ℎ𝑖 are defined as 

{
𝑔𝑖 = 𝜕𝑦̂𝑖

(𝑡−1)𝑙 (𝑦𝑖  , 𝑦̂𝑖
(𝑡−1)

)

ℎ𝑖 = 𝜕𝑦̂𝑖
(𝑡−1)
2 𝑙 (𝑦𝑖  , 𝑦̂𝑖

(𝑡−1)
)

(4) 

 

The value of the objective function only depends on 𝑔𝑖 and ℎ𝑖  can optimize every loss 

function, including logistic regression and pairwise ranking. 
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The traditional treatment of tree learning only emphasized improving impurity, while the 

complexity control was left to heuristics. Chen et al. formally defined the complexity of the tree 

𝛺(𝑓) to obtain regularization, and the loss function in the t-th tree finally can be rewritten as: 

𝐿(𝑡) = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆

𝑇

𝑗=1

+  𝛾𝑇 (5) 

 

where the 𝐺𝑗 and 𝐻𝑗 are defined as 

{
 
 

 
 𝐺𝑗 = ∑𝑔𝑖

𝑖∈𝐼𝑗

𝐻𝑗 = ∑ℎ𝑖
𝑖∈𝐼𝑗

 (6) 

𝐼𝑗  is the sample set divided into the j-th leaf node according to the decision rules for a given 

tree. The formula (3) can be used as the score value to evaluate the quality of a tree. They also 

defined the score it gains when a leaf split into two leaves: 

𝐺𝑎𝑖𝑛 =
1

2
[
𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−
(𝐺𝐿 + 𝐺𝑅)

2

𝐻𝐿 +𝐻𝑅 + 𝜆
] − 𝛾 (7) 

 

This formula composed of the score on the new left leaf, the score on the new right leaf, the 

score on the original leaf and regularization on the additional leaf. We can find the best split 

efficiently by the maximum value of 𝐺𝑎𝑖𝑛 through a scan from left to right to get all possible split 

solutions. 

XGBoost with many optimization techniques is able to solve problems using far fewer 

resources. It is simple to parallel and can greatly enhance the program efficiency with a fast model 

exploration. More details about XGBoost are given in [54]. 

Performance evaluation 

In this work, confusion matrix obtained after prediction contains four cells: true positive (TP), 

false positive (FP), false negative (FN) and true negative (TN). In order to evaluate the overall 

predictive performance of different classification models, we used metrics including Sensitivity 

(SE), Specificity (SP), Precision (PRE), Accuracy (ACC), F-score and Matthew’s correlation 

coefficient (MCC) to achieve the comparison [56, 57]. These metrics take values between 0 and 1 

have been widely used in former studies, with a higher value indicating assessing better 

performances. The performance metrics can be defined as follows: 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

 𝑀𝐶𝐶 = 
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

 (8) 

 

 

RESULTS AND DISCUSSION 

Performance evaluation using 5-fold cross validation method 

In this section, the extracted vectors of each feature were firstly classified by XGBoost 

classifier, the prediction result was evaluated by 5-fold cross validation method. For each of the 20 

types of feature encodings, the training data set was randomly divided into five subsets. XGBoost 

were trained by four subsets and the remaining one was validated to estimate the performance of 

the model. All steps were repeated five times. The average performance like ACC, SE et.al of the 

training set were calculated and the results are shown in Table 1. It can be seen that some single 

feature classes based on PSSM have higher overall prediction power on the training data set. This 

observation indicates that encodings based on PSSM have a slightly upper hand in the prediction of 

T4SE when compared with other encodings. 

The combination of different features could depict protein sequences in a more comprehensive 

manner [58]. As illustrated in Table 1, using combined features gave the ACC of 93.95% and the 

MCC of 0.8346, that are both higher than other PSSM-based methods. In summary, compared with 

single feature-based models, the combination of all features achieved consistently better 

performance.  

 

Table 1. Prediction results of the training data set by 21 feature extraction methods 

 5-validation result 

Feature name ACC (%) SE (%) PRE (%) F-score MCC 

ss3 79.94  43.84  64.52  0.5209  0.4125  

ss8 81.44  48.77  68.57  0.5640  0.4650  

RSA 84.23  58.90  72.80  0.6497  0.5556  

Diso 79.81  35.62  68.16  0.4650  0.3856  

PBS 79.47  36.16  65.74  0.4643  0.3760  

Mono-Freq 85.18  60.00  75.54  0.6669  0.5809  

Di-Freq 84.36  53.97  76.16  0.6302  0.5486  

Tri-Freq 80.01  30.41  73.85  0.4301  0.3822  

PSSM 92.11  78.08  88.99  0.8305  0.7833  

smoothed-PSSM 88.51  70.14  81.03  0.7512  0.6806  
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Performance evaluation of feature selection methods by 5-fold cross 

validation 

The high-dimensional features would be time consuming for training model classification, and 

potentially biased toward model prediction performance among feature vectors. It is indispensable 

to reduce dimensionality so that we can reserve the important one. 

In this study, three feature selection methods: gain ratio algorithm [59], maximum relevance–

maximum distance (MRMD) [60] and ReliefF algorithm [61], were used to reduce the number of 

features. The ACC of different dimensions were obtained and compared under different algorithms 

to select most useful features. As shown in Table 2, when the MRMD algorithm was used for 

dimensionality reduction on the training data set, the highest ACC value was 92.93%. The gain ratio 

algorithm achieved ACC of 93.81% on the training data set. By comparing the prediction accuracy 

of three methods in different dimensions, we can find the ReliefF algorithm achieved the highest 

ACC value, 94.42% when the dimension was 1000, obviously better than models trained using all 

original features. 

Thereby, the ReliefF algorithm can effectively eliminate redundant variables and improve 

prediction accuracy. In the following sections, the ReliefF algorithm was used for dimensionality 

reduction. To avoid overfitting, we selected 1100 as the final optimal dimension on the benchmark 

dataset. 

 

Table 2. The training data set select the prediction results of ACC (%) obtained by three algorithms 

in different dimensions. 

 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

GainRatio 92.79  92.73  93.34  93.34  93.41  93.47  93.34  93.54  93.60  93.41  93.81  

MRMD 92.18  92.45  92.32  92.52  92.18  92.66  92.39  92.93  92.86  92.25  92.93  

ReliefF 93.74  93.95  93.61  93.74  94.36  94.42  94.22  94.09  93.95  94.02  94.08  

 

AAC-PSSM 90.69  74.52  86.27  0.7976  0.7425  

RPM-PSSM 91.98  77.26  89.32  0.8262  0.7797  

Pse-PSSM 92.59  81.37  88.13  0.8446  0.7984  

DP-PSSM 92.79  81.37  88.95  0.8486  0.8039  

CKSAAP 84.02  51.78  76.31  0.6153  0.5359  

CTD 87.70  67.12  80.24  0.7296  0.6562  

CTraid 82.53  49.86  71.04  0.5816  0.4909  

SC-PseAAC 85.66  61.92  75.96  0.6811  0.5958  

PC-PseAAC 85.52  61.10  76.05  0.6769  0.5913  

Other features 84.09  54.52  74.62  0.6288  0.5422  

All 93.95  81.92  93.04  0.8698  0.8346  
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Performance evaluation of different classification algorithms by 5-fold 

cross validation 

In order to objectively evaluate the predictions of the XGBoost method, we compared the 

results of this algorithm with other methods. Based on the same features selected, other classifiers, 

which like Random Forests (RF) [56], Gaussian Naive Bayes (NB), Logistic Regression (LR), 

Gradient Boost (GDBT), support vector machine (SVM), K-nearest neighbor (KNN), 

Extremely randomized trees (ERT) and Multi-layer Perceptron (MLP) were all applied. Tuning 

the hyperparameter combination help achieve better performance on both training data set and 

independent data set. The grid search method was employed in this work to optimize 

hyperparameters for each classifier [62], all search ranges are shown in Supplementary Table S2. 

For each ML classifier, we obtained the best hyper-parameter combination based on the highest 

accuracy (ACC) by the 5-fold cross validation. The optimal combination of parameters on two are 

shown in Supplementary Tables S3. Table 3 compares the performances of XGBoost with other 

prediction methods on the training data set assessed by 5-fold cross validation.  

As shown, the ACCs under different classifiers were within the range from 90.89% to 94.42%, 

and their MCCs were from 0.76 to 0.84 on the training data set. The results of 10 annotation models 

showed XGBoost achieved the best performance, obtained ACC, F-score and MCC significantly 

higher than the other classifiers. All in all, the XGBoost algorithm found to be capable of performing 

better than the other machine learning methods when applied on the training data set. 

 

Table 3. Prediction results of the training data set under nine classifiers. 

 

 ACC (%) SE (%) PRE (%) F-score MCC 

NB 90.89 84.11 80.76 0.8207 0.7631 

ML 92.32 82.47 86.10 0.8409 0.7920 

LR 93.00 83.01 88.28 0.8539 0.8101 

KNN 93.20 80.82 91.20 0.8544 0.8148 

RF 93.27 80.27 91.94 0.8554 0.8163 

ERT 93.54 80.55 92.76 0.8604 0.8235 

GDBT 93.81 84.11 90.55 0.8710 0.8323 

SVM 94.36 83.56 93.28 0.8794 0.8466 

XGB 94.42 83.01 94.02 0.8803 0.8481 

 

Comparison with different classification algorithms and other existing 

state-of-the-art methods using the independent test. 

 

 To further validate the performance of the proposed model, we measured the performance of 

our T4SE-XGB model by comparing with other classification algorithms and other existing state-

of-the-art methods on the independent data set. The performance results of these methods are 

provided in Table 4. To make a fair comparison, the same independent data set composes of 20 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2020. ; https://doi.org/10.1101/2020.06.18.158253doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158253


T4SEs and 139 non-T4SEs were used for all models. 

Among these machine-learning methods, Performance comparisons showed that our T4SE-

XGB model achieved the overall best performance with an ACC of 97.48%, F-value of 90.48% and 

MCC of 0.8916, followed by the state-of-the-art annotation machine-learning model called Bastion4 

[27], which achieved 96.23% on ACC, 86.96% on F-value and 0.8579 on MCC. While achieving a 

better performance than Bastion4, the T4SE-XGB trained by fewer training samples also get a more 

stable prediction than the deep-learning method named CNN-T4SE (VOTE 2/3) considers two 

votes of the three identified best-performing convolutional neural network-based models (CNN-

PSSM, CNNPSSSA and CNN-Onehot). In all models, the CNN-PSSM, a deep-learning model 

based on PSSM features, achieved the best results, compared with our model gets two less false 

positive. 

 In summary, there is a consistent observation (with results obtained from the 5-fold cross 

validation test) that our T4SE-XGB model achieved great performance in terms of sensitivity, 

specificity, accuracy and MCC on the training data set and independent data set successively. 

 

Table 4. Comparison among different classification algorithms and other existing state-of-the-art 

methods based on the independent data set. 

 

Model interpretation 

Computing feature-importance estimates 

As a tree-based non-linear machine learning technique, XGBoost can exploit the interactions 

between the engineered features. In contrast to black-box modeling techniques like SVM, ANN, 

CNN, we can easily obtain feature importance scores for all input features. XGboost can also obtain 

the importance quickly and efficiently based on the frequency of a feature is used to split data or 

according to the average gain a feature brings when used during node splitting across all trees 

established. For the 1100 features constructed on the benchmark dataset, the importance of each 

feature during training is available in Supplementary Material, which is the sum of information 

Model Independent test results 

 TP FN TN FP ACC (%) SE (%) SP (%) PRE (%) F-score MCC 

SVM 19 1 134 5 96.23 95.00 96.40 79.17 0.8636 0.8467 

LR 19 1 131 8 94.34 95.00 94.24 70.37 0.8085 0.7882 

NB 19 1 126 13 91.19 95.00 90.65 59.38 0.7308 0.7084 

GDBT 19 1 131 8 94.34 95.00 94.24 70.37 0.8085 0.7882 

RF 19 1 132 7 94.97 94.96 95.68 73.08 0.8261 0.8066 

ERT 19 1 134 5 96.23 95.00 96.40 79.17 0.8636 0.8467 

KNN 20 0 128 11 93.08 100.0 92.09 64.52 0.7843 0.7708 

ML 18 2 129 10 92.45 90.0 92.81 64.29 0.7500 0.7209 

Bastion4 20 0 133 6 96.23 100.0 95.68 76.92 0.8696 0.8579 

CNNT4SE(PSSSA) 14 6 138 1 95.60 70.00 99.28 93.33 0.8000 0.7860 

CNNT4SE(Onehot) 14 6 139 0 96.23 70.00 100.0 100.0 0.8235 0.8192 

CNNT4SE(PSSM) 19 1 138 1 98.74 95.00 99.28 95.00 0.9500 0.9428 

CNNT4SE(VOTE 2/3) 16 4 139 0 97.48 80.00 100.0 100.0 0.8889 0.8818 

T4SE-XGB 19 1 136 3 97.48 95.00 97.84 86.36 0.9048 0.8916 
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gained when used for splits (tree branching). 

The total feature importance contribution of all features according to their feature types are 

shown in Table 5 and Figure 2. We can see that the DP-PSSM feature gets the maximum value of 

importance scores which is 0.3758. This may mean that the DP-PSSM feature is more important 

and has a wide range of effectiveness. Besides, the PSSM feature incorporated evolutionary 

information contributing the importance of 0.1199, followed by other features based on the 

transformation of the standard PSSM profile, which like RPM-PSSM and Smoothed-PSSM. And 

there are also other features showing high importance. Next, CTD accounts for 6.46% of all feature 

importance score. SS8 makes up 5.84% of the total variable importance.  

 

Table 9. Importance percentages grouped by feature classes for the T4SE-XGB model. 

 

 

 

Feature name Importance score 

DP-PSSM 0.3758  

PSSM 0.1199  

RPM-PSSM 0.0764  

Smoothed-PSSM 0.0690  

CTD 0.0646  

SS8 0.0584  

Pse-PSSM 0.0532  

CKSAAP 0.0449  

AAC-PSSM 0.0411  

RSA 0.0394  

Other features 0.0158  

PC-PseAAC 0.0143  

Di-Freq 0.0075  

CTraid 0.0057  

SS3 0.0053  

SC-PseAAC 0.0038  

Tri-Freq 0.0032  

PBS 0.0015  

Diso 0  

Mono-Freq 0  
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Figure 2. Comparison of importance percentages grouped by feature classes for the T4SE-XGB model. 

 

Computing SHAP values and get summaries of entire model and individual features 

SHAP (SHapley Additive exPlanations), a unified framework for interpreting predictions, 

assigns each feature an importance value for a particular prediction[63] and have improved the 

interpretability of tree-based models such as random forests, decision trees, and gradient boosted 

trees[64, 65]. The SHAP method has the ability to provide interpretable predictions and also 

overcomes limitation that the feature importance scores obtained from XGBoost model lack of 

directivity, unable to correspond with specific eigenvalues. 
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Figure 3. SHAP analysis results for T4SE-XGB. 

 

Figure 3B is the standard bar-chart based on the average magnitude of the SHAP values over 

all training instances. Higher values indicate higher feature importance. It can be seen that DP-

PSSM has the largest number of features, accounting for 7, among the 30 most important features. 

Meanwhile, other features based on PSSM also form the majority. Among them, the 

hydrophobicity_PONP930101.G1 came from the feature unit of CTD can be obviously identified 

as the most important. Hydrophobicity_PONP930101 is one physicochemical attribute based on the 

main clusters of the amino acid indices of Tomii and Kanehisa [66]. The 

hydrophobicity_PONP930101.G1={ N(r)/N, r ∈ {KPDESNQT}} represents the global 

compositions (percentage) of polar residues of the protein under the hydrophobicity_PONP930101 

attribute [35]. Several studies have suggested that type IV effector proteins exhibited some 

specificities in regard to amino acid frequency before. Zou et al.[49] computed the ACC and the 

variance in their dataset called T4_1472. They found that Asn (N), Glu (E) and Lys (K) have higher 

compositions in type IVB effectors than non-effectors, and Ala (A), Glu (E) and Ser (S) have higher 

compositions in type IVA effectors than non-effectors. Some polar amino acids, such as Asp (D), 
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Cys (C) and His (H), have small differences between secreted proteins and non-secreted proteins. 

Similarly, The Mann–Whitney U-test and the permutation test on amino acid frequencies were 

conducted by Yi et al. [67] , it showed that Ala (A), Gly (G), Met (M), Arg (R), Val (V), occurred 

less frequently in type IV effectors than in cytoplasmic proteins, meanwhile, Phe (F), Ile (I), Lys 

(K), Asn (N), Ser (S), Tyr (Y) ,Thr (T)occurred more frequently in type IV effectors than in 

cytoplasmic proteins. Nevertheless, because of different benchmark datasets were selected, the final 

results are debatable and incomplete. However, this is the first time to pay attention on the feature 

named hydrophobicity_PONP930101.G1, which not only according to the amino acid frequency, 

but also represents the corresponding hydrophilicity. SHAP summary plots from TreeExplainer [65] 

succinctly display the magnitude, prevalence, and direction of a feature’s effect. Each dot in Figure 

3B corresponds to a protein sample in the study. The position of the dot on the x-axis is the impact 

that feature has on the model’s prediction for that protein. For example, higher values on 

hydrophobicity_PONP930101.G1 having a higher contribution on predicting a protein being an 

effector. In contrast, when the values of top features such as CS_Freq_SS8 and 

normwaalsvolume.1.residue0 are high, the corresponding Shapley values are negative driving the 

model prediction towards non-effector class. Besides, there are many long tails mean features with 

a low global importance can yet be extremely important for specific samples. All in all, from the 

analysis above, it is necessary and effective to consider many characteristics at the same time. 

Conclusion 

In this study, we have presented T4SE-XGB, a predictor developed for accurate identification 

of T4SE proteins based on the XGBoost algorithm. Especially, we have achieved the state-of-the-

art performance compared with previous predictors on the benchmark dataset. There are three major 

conclusions can be drawn. First, compared with different algorithm, the XGBoost algorithm gives 

more stable and accurate prediction performance for T4SEs. Second, the feature selection method 

called ReliefF was presented to optimize feature vectors, which extracted significant features from 

large scale data and improved the model performance distinctly. Furthermore, unlike other 

sequence-based T4SEs predictors, T4SE-XGB can provide meaningful explanation based on 

samples provided using the feature importance and the SHAP method. It gives us the details 

about how some features, such as DP-PSSM features and hydrophobicity_PONP930101.G1 

from CTD contributed to the final direction of prediction. Meanwhile, it explains the reason 

why it is essential to pay attention to some certain identities, and also consider a variety of 

features at the same time.  

The final result showed that T4SE-XGB achieved a satisfying and promising performance 

which is stable and credible. However, the model is still constrained by the quantity of T4SE 

proteins which needs to be further improved and the characteristics of T4SEs need to be 

discovered. Besides, some potential relationships between features need to be explored. In the 

future, we plan to find and extract as many features as possible from a large amount of collected 

data to discriminate type IV secreted effectors from non-effectors.  
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