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Abstract

Cancer treatments can be highly toxic and frequently only a subset of the patient

population will benefit from a given treatment. Tumour genetic makeup plays an

important role in cancer drug sensitivity. We suspect that gene expression markers

could be used as a decision aid for treatment selection or dosage tuning. Using in vitro

cancer cell line dose-response and gene expression data from the Genomics of Drug

Sensitivity in Cancer (GDSC) project, we build a dose-varying regression model. Unlike

existing approaches, this allows us to estimate dosage-dependent associations with gene

expression. We include the transcriptomic profiles as dose-invariant covariates into the

regression model and assume that their effect varies smoothly over the dosage levels. A

two-stage variable selection algorithm (variable screening followed by penalised

regression) is used to identify genetic factors that are associated with drug response over
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the varying dosages. We evaluate the effectiveness of our method using simulation

studies focusing on the choice of tuning parameters and cross-validation for predictive

accuracy assessment. We further apply the model to data from five BRAF targeted

compounds applied to different cancer cell lines under different dosage levels. We

highlight the dosage-dependent dynamics of the associations between the selected genes

and drug response, and we perform pathway enrichment analysis to show that the

selected genes play an important role in pathways related to tumourgenesis and DNA

damage response.

Author Summary

Tumour cell lines allow scientists to test anticancer drugs in a laboratory environment.

Cells are exposed to the drug in increasing concentrations, and the drug response, or

amount of surviving cells, is measured. Generally, drug response is summarized via a

single number such as the concentration at which 50% of the cells have died (IC50). To

avoid relying on such summary measures, we adopted a functional regression approach

that takes the dose-response curves as inputs, and uses them to find biomarkers of drug

response. One major advantage of our approach is that it describes how the effect of a

biomarker on the drug response changes with the drug dosage. This is useful for

determining optimal treatment dosages and predicting drug response curves for unseen

drug-cell line combinations. Our method scales to large numbers of biomarkers by using

regularisation and, in contrast with existing literature, selects the most informative

genes by accounting for responses at untested dosages. We demonstrate its value using

data from the Genomics of Drug Sensitivity in Cancer project to identify genes whose

expression is associated with drug response. We show that the selected genes

recapitulate prior biological knowledge, and belong to known cancer pathways.

Introduction 1

Cancer is a heterogeneous disease, with individual tumours showing sometimes very 2

different mutational and molecular profiles. The genetic makeup of a tumour influences 3

how it reacts to a given anti-cancer drug. However, due to lack of predictive markers of 4
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tumour response, often patients with very different tumour genetic makeup will receive 5

the same therapy, resulting in high rates of treatment failure [1]. Large clinical trials in 6

rapidly lethal diseases are expensive, complex and often lead to failure due to lack of 7

efficacy [2]. Therefore, there is a need for more effective and personalised therapeutic 8

strategies that can improve cancer treatment decisions, and hence patient outcomes. 9

One major issue for some cancer treatments, e.g. chemotherapies, are cytotoxic 10

effects that result in collateral damage of the healthy host tissue [3]. Patient remission 11

depends not only on the selection of the best therapeutic agent but also on the 12

determination of the optimal dosage, especially when drugs with small therapeutic 13

range, high toxicity levels or both are administered. Genetic factors can help fine-tune 14

the dosage for individual patients, so that the minimal effective dosage can be 15

delivered [4]. Previous work has examined the difference in transcriptional response [5] 16

and drug response at the cell population level after administering anticancer drugs in 17

various dosages [6, 7]. 18

Cancer cell line drug screens provide valuable information about biomarkers that are 19

predictive of drug response. During the last decade, there have been several systematic 20

studies aiming to examine pharmacogenomic relationships [8–11]. These studies were 21

conducted on human cancer cells that have been isolated from affected tissues, grown in 22

vitro and treated with anti-cancer inhibitors. By examining the genomic profiles of 23

these cell lines, investigators were able to identify relationships between cancer-driven 24

genetic alterations and drug response. However, these relationships have only been 25

modelled on the aggregate response, and hence little is known about the relationship 26

between drug dosage and genetic factors. Recently, Tansey et al. [12] proposed a 27

method for modelling drug-response curves via Gaussian processes and linking them to 28

biomarkers using a neural network prediction model. The authors did not use their 29

model for dosage-dependent inference of biomarker effects, and the highly non-linear 30

neural network model makes interpretation of biomarker effects challenging. 31

Gene expression profiles can provide valuable functional information on the genetic 32

mechanisms which determine anti-cancer drug response, offering more tailored 33

treatments where common therapies become ineffective. However, statistical analysis for 34

linking transcriptomic profiles with drug response becomes challenging due to the 35

high-dimensional nature of the data. Over the last 20 years, researchers developed 36
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statistical methodologies not only to mitigate the problem of high dimensionality 37

[13–18], but also to detect markers of positive drug response to cancer treatment 38

[19, 20] and predict patient response after drug administration [1, 5, 16,21–25]. While 39

these previous methods have gone some way towards solving the challenges associated 40

with drug response modelling, none of them address all of the issues that arise in 41

personalised medicine, namely: selecting genes associated with drug response, 42

identifying the optimal dosage, characterising gene-dose relationships and predicting 43

response for one or multiple drugs. 44

With regards to the high-dimensional nature of the dataset, it is worth noting that 45

highly-complex data sets with non-stationary trends are not easily amenable to analysis 46

by classic parametric or semi-parametric mixed models. However, the effect of genes on 47

drug response over different drug dosages (dose-varying effect) can be examined using 48

varying coefficient models which allow for the covariate effect to be varying instead of 49

constant [26]. Methods to estimate the covariate (e.g. gene) effect include global and 50

local smoothing e.g. kernel estimators [27,28], basis approximation [29] or penalised 51

splines [30]. The most straightforward and computationally efficient method is through 52

basis approximation where each coefficient function is approximated through some basis 53

functions and the varying coefficient model can be written as a linear regression model. 54

Then, estimation for repeated measurements data (e.g. drug response over different 55

dosages) can be incorporated through minimising a weighted least squares criterion 56

based on a specified weighting scheme (repeated measurements covariance 57

structure) [29]. However, inference becomes impossible as the number of predictors 58

increases and when selecting a smaller number of important variables for inclusion into 59

the model is clinically beneficial. Sparse regression has enabled a more flexible and 60

computationally “inexpensive” way of choosing the best subset of predictors. When 61

combining sparse regression with the varying coefficient model framework, predictors 62

are handled jointly under the assumption that the majority are irrelevant to the 63

outcome variable. Penalties from group versions of the least absolute shrinkage and 64

selection operator (LASSO), smoothly clipped absolute deviation (SCAD), bridge etc. 65

have been used for fitting the varying coefficient model [31]. Because these methods 66

handle all of the predictors jointly, their implementation becomes extremely challenging 67

and impractical when the number of predictors (e.g. thousands) is much larger than the 68
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number of samples (e.g. hundreds). Consequently, attempts to develop prior univariate 69

tests focused on filtering out the unimportant predictors by simply estimating the 70

association of each predictor to the outcome variable separately [32–34]. Often, these 71

screening methods are conservative, and still return many more predictors than those 72

which are truly associated to the response. To overcome this issue, regularisation or 73

alternative variable selection methods have been used after screening to further 74

fine-tune the set of predictors [32,34]. 75

The advantage of using varying coefficient models along with a variable screening 76

algorithm on genomic data sets was first introduced to explore the effect of genetic 77

mutations on lung function [32]. Here, we extended their methodology to a completely 78

different objective of assessing the transcriptomic effect on anti-cancer drug response, 79

where our coefficient functions were allowed to vary with dosage. Note that unlike in 80

Tansey et al. [12], biomarker effects will be a linear function function of dosage, allowing 81

for straight-forward interpretation of the coefficient functions. 82

We developed a functional regression framework to study the effectiveness of 83

multiple anticancer agents applied in different cancer cell lines under different dosage 84

levels, adjusting for the transcriptomic profiles of the cell lines under treatment. We 85

considered a dose-varying coefficient model, along with a two-stage variable selection 86

method in order to detect and evaluate drug-gene relationships. We applied this method 87

to data extracted from the Genomics for Drug Sensitivity in Cancer (GDSC) project [9]. 88

To compare and differentiate similar treatments, we examined the effect of five BRAF 89

targeted compounds under different dosages to almost 1000 cancer cell lines. We used 90

baseline gene expression measurements for the cancer cell lines to investigate gene-drug 91

response relationships for almost 18000 genes. Gene rankings were obtained based on 92

the gene effect on the drug response. Consequently, in contrast to past studies, we 93

managed to model the whole dose-response curve, rather than a summary statistic of 94

drug response (e.g. IC50), which allowed us to identify trends in the gene-drug 95

association at untested dose concentrations. 96
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Materials and Methods 97

The Genomic of Drug Sensitivity in Cancer data 98

Drug sensitivity data and molecular measures derived from 951 cancer cell lines used for 99

the screening of 138 anticancer compounds were downloaded from the GDSC database 100

(https://www.cancerrxgene.org/). We specifically focused on cell lines of cancers of 101

epithelial, mesenchymal and haematopoietic origin treated by five BRAF targeted 102

inhibitors (PLX-4720, Dabrafenib, HG6-64-1, SB590885 and AZ628). The maximum 103

screening concentration for each different drug was: 10.00 uM for PLX-4720 and 104

Dabrafenib, 5.12 uM for HG6-64-1, 5.00 uM for SB590885 and 4.00 uM for AZ628. The 105

drug sensitivity measurement was obtained via fluorescence-based cell viability assays 106

72 hours after drug administration [9]. Approximately 66% of drug sensitivity responses 107

were measured over nine dose concentrations (2-fold dilutions) and 34% were measured 108

over five drug concentrations (4-fold dilutions). In total, we considered 3805 cancer cell 109

line-drug combinations (experimental units). The distribution of different tissues of 110

origin treated were similar across the different drugs tested (for additional information 111

see S2 Fig.). Paired microarray gene expression data (17737 genes) was available 112

together with the drug response dataset 113

(https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html). 114

The dose-response dataset also included a blank response for wells on the 115

experimental plate that have not been seeded with cells or treated with a drug. Blank 116

responses have been used to adjust for the magnitude of the error while measuring the 117

amount of cells in each well. We used an affine transformation to the reported responses 118

in order to normalise them within the drug concentration interval, 0 (0% of the 119

maximum dosage) to 1 (100% of the maximum dosage). In particular, for the 120

normalising procedure, we have used the formula: 121

NRij =
Rij −BRi
CRi −BRi

(1)

where Rij is the response of the ith subject at the jth dosage level, CRi is the response 122

under no drug administration (zero dose, ni = 1), BRi is the blank response of the ith 123

subject as described above and NRij is the new score taken from the transformation, 124
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i = 1, . . . , 3805, j = 1, . . . , ni. 125

A two-stage algorithm for identification of gene-drug 126

associations 127

Let the repeated measures data {(dij , yij , zi, xi) : j = 1, . . . , ni, i = 1, . . . , n}, where 128

yij is the response of the ith experimental unit (corresponds to a drug sensitivity assay 129

of a specific drug on a specific cell line) at the jth drug dosage level dij and zi along 130

with xi are the corresponding vectors of scalar (dose-invariant) covariates. The covariate 131

vector zi = (1, zi1, . . . , zip)
T is a low-dimensional vector of predictors that should be 132

included in the model, whereas xi = (xi1, xi2, . . . , ziG)T is a high-dimensional vector, i.e. 133

17737 gene expression measurements, that needs to be screened. We assumed that only 134

a small number of x-variables (in our case, genes) are truly associated with the response 135

while most of them are expected to be irrelevant; i.e. we make a sparsity assumption. 136

To explore potential dose-varying effects between the covariates and the drug 137

response, we consider the following varying coefficient model: 138

yij =

p∑
k=0

zikβk(dij) +
G∑
g=1

xigγg(dij) + εij (2)

where {βk(·), k = 0, . . . , p} and {γg(·), g = 1, . . . , G} are smooth functions of dosage 139

level d ∈ D , where D is a closed and bounded interval of R. The errors εij were 140

assumed to be independent across subjects and potentially dependent within the same 141

subject with conditional mean equal to zero and variance Var(ε) = σ2(d) = V (d). 142

Methods for estimating the coefficient functions in Eq (2) include local and global 143

smoothing methods, such as kernel smoothing, local polynomial smoothing, basis 144

approximation smoothing etc. Due to computational convenience, for this application 145

we used basis approximation smoothing via B-splines. 146

Let the sets of basis functions {Blk(·) : l = 1, . . . , Lk} and {B′lg(·) : l = 1, . . . , Lg} 147

and constants {ζlk : l = 1, . . . , Lk} and {ηlg : l = 1, . . . , Lg} where k = 0, . . . , p and 148

g = 1, . . . , G such that, ∀d ∈ D , βk(d) and γg(d) can be approximated by the expansion 149

βk(·) ≈
Lk∑
l=1

ζlkBlk(·) for k = 0, . . . , p (3)

June 12, 2020 7/39

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2020. ; https://doi.org/10.1101/2020.06.18.158907doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158907
http://creativecommons.org/licenses/by/4.0/


γg(·) ≈
Lg∑
l=1

ηlgB
′
lg(·) for g = 1, . . . , G. (4)

Substituting βk(·) and γg(·) of Eq (2) with Eq (3) and Eq (4), we approximated Eq (2) 150

by 151

yij ≈
p∑
k=0

zik

Lk∑
l=1

ζlkBlk(dij) +
G∑
g=1

xig

Lg∑
l=1

ηlgB
′
lg(dij) + εij (5)

If Bk(·) and B′g(·) are groups of B-spline basis functions of degree qk and qg respectively, 152

and δ0 < δ1 < . . . < δKk < δKk+1 and δ0 < δ1 < . . . < δKg < δKg+1 are the 153

corresponding knots, then Lk = Kk + qk and Lg = Kg + qg. 154

Using the approximation Eq (5), the coefficients ζ = (ζ0, ζ1, . . . , ζp)
T and 155

η = (η1, η2, . . . , ηG)T can be estimated by minimizing the squared error 156

`w((ζ,η)T ) =
n∑
i=1

ni∑
j=1

wij

[
yij −

p∑
k=0

zik

Kk∑
l=1

ζlkBlk(dij)−
G∑
g=1

xig

Lg∑
l=1

ηlgB
′
lg(dij)

]
(6)

where wij are known non-negative weights. 157

In cases where p+G >> n though, minimisation of Eq (6) is infeasible. Our aim 158

was to identify factors of the covariate vector x = (x1,x2, . . . ,xG)T (genes) that are 159

truly associated with the response (cancer cell line sensitivity to the drug). In addition, 160

we wanted to explore potential dose-varying effects on the drug response. 161

We make the following sparsity assumption: any valid solution γ̂(d) will have 162

γ̂g(d) = 0, ∀d ∈ D for the majority of components g. To detect non-zero coefficient 163

functions we applied a two-stage approach which incorporated a variable screening step 164

and a further variable selection step. 165

Screening 166

The sparsity assumption applies only to components of x, the high-dimensional 167

covariate vector in Eq (2). 168
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Let the set of indices 169

M0 = {1 ≤ g ≤ G : ||γg(·)||2 > 0} (7)

where || · ||2 is the L2-norm. In order to rank the different components of x, we fitted 170

the marginal non-parametric regression model for the gth x-predictor: 171

yij ≈
p∑
k=0

zik

Kk∑
l=1

ζ
(g)
lk B

(g)
lk (dij) + xig

Lg∑
l=1

η
(g)
lg B

(g)′
lg (dij) + ε

(g)
ij (8)

where: {B(g)
lk (·) : l = 1, . . . , Lk} and {B(g)′

lg (·) : l = 1, . . . , Lg} are sets of coefficient 172

functions; {ζ(g)lk : l = 1, . . . , Lk} and {η(g)lg : l = 1, . . . , Lg} are constants to be estimated, 173

k = 0, . . . , p; and, ε(g) is the error term similar to Eq (5). We then computed the 174

following weighted mean squared error for each g ∈ {1, . . . , G}, 175

ûg =
1

n

n∑
i=1

(yi − ŷ
(g)
i )TWi(yi − ŷ

(g)
i ) (9)

to quantify the importance of the gth x-variable. Here, 176

W i =
1

ni
V̂
− 1

2

i R−1i (φ̂)V̂
− 1

2

i (10)

where V̂ i is the ni × ni diagonal matrix consisting of the dose-varying variance 177

V̂ i =



V̂ (di1) 0 . . . 0

0 V̂ (di2) . . . 0

...
...

. . .
...

0 0 . . . V̂ (dini)


(11)

and Ri(φ) = (Rjk) the ni × ni working correlation matrix for the ith subject. By φ, we 178

denoted the s× 1 vector that fully characterises the correlation structure. The estimate 179

of φ, φ̂, was obtained by taking the moment estimators for the parameters φ in the 180

correlation structure based on the residuals obtained from fitting the following model 181

yij =

p∑
k=0

zikβk(dij) + εij where i = 1, . . . , n, j = 1, . . . , ni. (12)
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The variance function V (d) in Eq (11) was estimated using techniques similar to [32]. 182

After having obtained {ûg : g = 1, . . . , G}, we sorted gene utilities in an increasing 183

order. That is because smaller ûg values indicate stronger marginal associations. The 184

x-predictors included in the screened submodel are, then, given by 185

M̂τn = {1 ≤ g ≤ G : ûg ranks among the first τn(ν)} (13)

where τn(ν) corresponds to the size of the submodel which is chosen to be smaller than 186

the sample size n. 187

Variable selection using a group SCAD (gSCAD) penalty 188

Screening algorithms aim to discard all unimportant variables but tend to be 189

conservative. In order to preserve only the most important x-predictors in the final 190

model, we considered a model including the first τn(ν) outranked genes and we applied 191

a gSCAD penalty by minimising the following criterion: 192

1

2

n∑
i=1

ni∑
j=1

wij

{
yij −

p∑
k=0

zik

Lk∑
l=1

ζlkBlk(dij)− (14)

193

∑
g∈M̂τn

xig

Lg∑
l=1

ηlgB
′
lg(dij)

}2

+
∑

g∈M̂τn

pλ,α(||ηg||) (15)

where 194

pλ,α(u) =


λu if 0 ≤ u ≤ λ

− (u2−2αλu+λ2)
2(α−1) if λ ≤ u ≤ αλ

(α+1)λ2

2 if u ≥ αλ,

α is a scale parameter, λ controls for the penalty size and || · || is the Euclidean 195

L2-norm. At this point, note that grouping is applied for the coefficients ηg that 196

correspond to the same coefficient function. In addition, in order to reduce the bias 197

introduced when applied a LASSO penalty, we alternatively chose the SCAD, which 198

coincides with the LASSO until u = λ, then transits to a quadratic function until 199
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u = αλ and then it remains constant ∀u > αλ, meaning that retains the penalisation 200

and bias rates of the LASSO for small coefficients but at the same time relaxes the rate 201

of penalisation as the absolute value of the coefficients increases. In Fig 1 the reader can 202

find a brief overview of the employed methodology. 203

MICROARRAY GENE
EXPRESSION

DRUG RESPONSE

DOSE VARYING COEFFICIENTS MODEL
&

TWO STAGE VARIABLE SELECTION ALGORITHM

0 1 2 3 4

GENE RANKINGS for the 
230 selected genes:

DOSE VARYING EFFECT:

APOC1
PBX1

(2) MMP8
TNFRSF10D

ARRDC2
UBTD1

(1) MAP3K12
NSMAF

PLEKHA6
(3) RORC

...

DRUG RESPONSE PREDICTIONS:

(17,737 GENES)
APOC1
PBX1
MMP8

TNFRSF10D
ARRDC2
UBTD1

MAP3K12
NSMAF

PLEKHA6
RORC

...

Fig 1. The two-stage algorithm for identifying dose-dependent associations
between genes and drugs. Gene expression and drug response data from a
drug screening study (e.g. GDSC) are used to fit our dose-varying
coefficients model to estimate the dose-varying effect between covariates
and drug response. A two-stage variable screening and selection algorithm
is applied to rank gene-drug associations. The selected genes can then be
used to predict dose-dependent response for drugs of interest.
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Tuning parameters selection 204

We used knots placed at the median of the observed data values along with cubic 205

B-splines with 1 interior knot, resulting from calculating the number of interior knots 206

suitable using the formula Nn = [n
1

2p+3 ] proposed and applied by [29,35,36]. Due to the 207

computational burden this would add, we did not apply cross-validation. 208

As for the screening threshold τn, its magnitude could be determined by the fraction 209

ν[ n
log(n) ], ν ∈ {1, 2, 3, . . .}. We conducted a pilot simulation study in order to decide the 210

most appropriate size (for further details see S1 Text). We also considered an 211

automated algorithm for its selection (Greedy Iterative Non-parametric Independence 212

Screening-Greedy INIS, [37]). Finally, the penalty size for the gSCAD step λ was 213

determined using a 5-fold cross-validation. 214

Simulation study 215

Monte Carlo simulations were conducted to examine the ability of our model to detect 216

the genes that are truly associated with the drug response. Responses over different 217

dosage levels were generated based on a subset of genes, the corresponding 218

low-dimensional GDSC data covariates (drug and cancer type) and some specified 219

smooth coefficient functions (see S1 Text). Due to the computational burden associated 220

with a simulation of the same scale as the data set, we conducted a simulation study 221

using smaller random fragments of the original GDSC data set. In particular, we 222

repeatedly sampled without replacement 190 experimental units and 886 genes based on 223

which the simulated responses have been generated. The performance of the employed 224

methodology has been assessed based on 1000 simulations using three screening 225

thresholds (τn(ν) = [ n
log(n) ], τn(ν) = [ 2n

log(n) ] and τn(ν) chosen using the greedy-INIS 226

algorithm [37]) and two estimated covariance structure scenarios (independence and 227

rational quadratic covariance structure). Cubic B-splines and knots placed at the 228

median of the observed data values have been used for estimating the coefficient 229

functions. 230

To evaluate the performance of the proposed procedure we used the following 231

summary measures: TP−number of genes correctly identified as active; FP−number of 232

the genes incorrectly identified as active; TN−number of the genes correctly identified 233
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as inactive; FN−number of the genes incorrectly identified as inactive. 234

Simulation results suggested that our method accurately detects the drug associated 235

genes from the simulated responses under most of the examined scenarios (Fig. A in S1 236

Text). A screening threshold of size [ 2n
log(n) ] and regression weights adjusted for the 237

covariance structure of the data have been identified as the scenario where our method 238

reached its maximum accuracy. Consequently, for the GDSC application, we chose the 239

screening threshold to be the maximum possible, i.e. 923 genes derived from the 240

formula [ 2n
log(n) ], and weights derived by assuming a rational quadratic covariance 241

structure for the repeated measures. 242

Data and software availability 243

The analysis has been conducted using R version 3.6.3. Code for applying the two-stage 244

variable selection algorithm is available online as an R package at 245

https://github.com/koukoulEv/fbioSelect. The data is available online at the 246

Genomics of Drug Sensitivity in Cancer website https://www.cancerrxgene.org/. 247

Results and Discussion 248

Dose-dependent associations with gene expression in a 249

large-scale drug sensitivity assay 250

We applied the two stage variable selection algorithm under the dose-varying coefficient 251

model framework described above. Gene rankings and predicted mean drug effects over 252

different dosage levels were obtained. Our algorithm identified 230 candidate genes 253

associated with drug response. The effect of each of those genes was assessed with 254

respect to: 255

1. the area under the estimated coefficient curve (AUC) and its corresponding 256

standard deviation (estimated using bootstrapping); 257

2. the effect on cell survival (overall positive, overall negative, mixed); 258

3. Spearman correlation between the coefficient function value and the dosage level; 259
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4. the mean fold change of the expression of cell lines carrying BRAF mutations 260

with respect to wild type; and, 261

5. the protein-protein interaction network distance between the BRAF gene and the 262

selected genes using the Omnipath database [38]. 263

The 230 genes were ranked based on the estimated AUC value (S4 Table), and the 264

top 30 genes were highlighted for further analysis (Table 1). The higher the AUC, the 265

larger the effect of the gene on the drug response. The overall effect on cell survival can 266

be either positive, negative or vary over the different dosage levels as determined by the 267

range of the estimated coefficient function. Spearman’s rank correlation was used as an 268

indicator of the coefficient function’s monotonicity by characterising the progress of the 269

genetic effect over different dosage levels. For instance, high expression of the C3orf58 270

gene at baseline has a positive effect on cancer cell survival, which becomes stronger as 271

the dosage increases (Spearman’s correlation=0.922). In other words, high expression of 272

this gene can be an indicator of drug resistant cell lines. On the other hand, the DLC1 273

gene has a decreasing (Spearman’s correlation=-0.928) and negative effect on cancer cell 274

survival which suggested that as the dosage increases, higher baseline expression of this 275

gene can indicate higher drug sensitivity at higher dosage. Elevated expression of DLC1 276

has been observed in melanoma and is a well known tumour suppressor that could be a 277

novel marker of BRAF inhibition [39]. Finally, in cases where the overall effect varies 278

(changes between positive and negative), the effect of gene expression on the drug 279

response depends on the drug dosage. In particular, the effect of DLX6 increases and 280

then decreases at higher dosages (Fig 2). Given the biological and technical variation in 281

drug screens, we should treat the mean effect estimates with caution and consider the 282

confidence intervals of the coefficient functions in order to derive conclusions about the 283

exact effect of the selected genes on the dose response (Fig 2). 284

Coefficient function estimates provide a lot of information about the dosage, cancer 285

type and genetic effects on drug response. Fig 2 illustrates the estimated coefficient 286

functions for different drugs, cancer types and three genes in relation to the model’s 287

intercept, Dabrafenib response in BRAF mutant cell lines originating from the skin 288

(melanoma). Except from HG6-64-1, all other BRAF inhibitors (AZ628, SB590885 and 289

PLX4720) showed no addition effect compared to this intercept. Similar patterns can be 290
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Table 1. Top 30 gene rankings based on the estimated area under the coefficient function curve.

Gene Name Area SD Sign
Spearman’s
Correlation

Mean fold change
in BRAF mutant

vs wild-type cell lines

Protein-protein
interaction network
distance to BRAF

KIR3DL1 0.370 0.107 - -0.874 0.978 3
CHST11 0.257 0.092 - -0.817 0.899 NI
APOC1P1 0.247 0.09 - -0.918 1.190 NI
PLEKHA6 0.239 0.086 - -0.908 1.037 3
PPM1F 0.223 0.068 + 0.910 0.883 3
BFSP1 0.222 0.074 - -0.800 1.217 NI
PPP1R3A 0.217 0.082 + 0.774 1.078 3
C16orf87 0.207 0.087 + 0.851 0.977 NI
PARVA 0.203 0.081 + 0.890 0.984 2
SLC39A13 0.202 0.079 - -0.461 1.055 NI
UCN2 0.198 0.07 - -0.928 0.979 NI
STMN3 0.198 0.087 + 0.834 1.201 2
RNF130 0.197 0.083 - -0.927 1.153 NI
C3orf58 0.196 0.076 + 0.922 1.133 NI
CXXC4 0.188 0.079 + 0.866 0.995 NI
THBD 0.179 0.093 0 -0.967 1.231 4
SIRT3 0.173 0.066 - -0.760 1.013 3
PLAT 0.172 0.092 - -0.878 1.322 4
MPPED1 0.168 0.066 + 0.430 0.978 NI
INSL3 0.162 0.068 - -0.973 0.965 NI
FAM163A 0.159 0.078 - -0.983 1.106 NI
CNIH3 0.153 0.08 - -0.918 0.938 NI
GJA3 0.153 0.067 0 -0.940 0.933 NI
BTG2 0.152 0.078 + 0.959 1.035 2
DLX6 0.152 0.059 0 0.686 0.987 NI
DLC1 0.151 0.053 - -0.928 0.974 3
GAPDHS 0.150 0.077 + 0.886 1.232 NI
JAG2 0.149 0.069 - -0.994 0.981 3
SMOX 0.146 0.057 0 0.816 1.070 NI
ZMYND8 0.145 0.091 + 0.907 1.020 3

Gene rankings of the top 30 selected genes based on the magnitude of the genetic effect on drug response. A positive (+) sign
translates to a positive effect on cells survival after drug administration, a negative (-) sign translates to a negative effect on cells
survival and a mixed (0) effect translates to a varying effect on cells survival which depends on drug dosage. Spearman’s correlation
is calculated between drug dosage and gene estimated coefficient function values as an indicator of the magnitude change of the gene
effect over the increasing dosage. Area corresponds to the area under the estimated coefficient curve and the SD corresponds to the
standard deviation of the area based on bootstrapping. Mean fold change is calculated between the selected gene expression values of
the cell lines carrying BRAF mutations with respect to wild type. Protein-protein interaction network distance is computed based on
the shortest interaction path between the BRAF gene and each of the selected genes. Here, NI denotes absence of any interaction.

observed for cancer cell lines coming from most of the tissues examined. This result 291

indicates that the examined drugs may have similar or worse behaviour over the 292

different dosages for most of the examined cancer types. Interestingly, we observed 293

greater efficacy (negative values of the coefficient function) for cell lines originating from 294

the endocrine system, autonomic ganglia and heamatopoietic and lymphoid tissues at 295
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Fig 2. Estimated coefficient functions for the low-dimensional predictors
and three of the selected genes. Estimated coefficient functions for intercept,
different drugs, tissue of origin and three of the selected genes along with 95% bootstrap
confidence intervals. Baseline corresponds to BRAF mutant cell lines treated with
Dabrafenib in skin tumours.

lower dosages. The observed effect in endocrine system cell lines reflects the Dabrafenib 296

responses observed in anaplastic thyroid cancer patients [40]. Interestingly, the drug, 297

Trametinib, taken in combination with Dabrafenib is a MEK inhibitor, and genes 298

interacting with MEK (MAP2K1 ) were selected features from our model (Fig 3). 299

Together these results provide important insights into the effectiveness of the five 300
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BRAF targeted drugs examined on different cancer types, highlighting the potential for 301

effective treatment of a wide range of cancers given cancers’ genetic characteristics. 302

Fig 3. Protein-protein interaction network for the genes selected from the
two-stage variable selection algorithm. (A) Undirected protein-protein interaction
network between the 230 selected (blue) and the BRAF (red) genes (full scale analysis).
(B) Undirected protein-protein interaction network between the 65 genes selected from
the two-stage variable selection algorithm for the cell lines resistant to BRAF inhibitors
(blue) and the BRAF (red) gene. In both panels genes depicted with black are the
interaction mediators. Common mediators include the HRAS, MAPK1, MAP2K1 and
BAD genes.

Since the BRAF gene is the target of the drugs, mean fold change and 303

protein-protein interaction network distance were used to examine whether and how the 304

selected genes are related to inhibitors’ target. From the selected genes, 120 genes had a 305

mean fold change greater than 1 whereas the rest had a mean fold change between 1 306

and 0.792. Some of the genes with the highest mean fold change of BRAF mutation 307

were PSMC3IP, KIF3C, UBE2Q2, SERPIND1 and PLAT, however only PLAT is 308

displayed in Table 1. From the genes identified through the two-stage algorithm, 35% of 309

them encode proteins interacting with the BRAF gene, though none of them directly. 310

Most of the selected genes interact with the BRAF gene via pathways mediated by 311

HRAS, MAPK1 (ERK ), MAP2K1 (MEK ) and BAD (Fig 3). 312

Since HRAS mutations are frequent in patients receiving BRAF targeted 313

therapies [41], we examined the mean estimated trajectory over different dosages under 314
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treatment with BRAF inhibitors tested in six cancer cell lines with and without BRAF 315

and HRAS mutations (Fig 4). As stated previously, we observed that in most cases 316

HG6-64-1 seems to be the most effective drug. The estimated coefficient functions 317

facilitate drug examination and response prediction under the different dosages. In 318

some instances, we observed different drugs having similar behaviour for lower drug 319

dosages and larger divergence for higher dosages. In most cases, regardless of the cell 320

line origin, our method successfully estimates the expected survival rates of the cancer 321

cell lines for the different drugs given their gene expression information. 322

Fig 4. Estimated mean drug response trajectories for four cancer cell lines
with BRAF and HRAS mutations. Observed responses (points) and estimated
mean trajectory (lines) of cells’ concentration for cancer cell lines with and without
BRAF and HRAS mutations after treatment with the five anticancer compounds
examined.
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Variable selection algorithm identifies cancer pathways 323

associated with BRAF inhibitor response 324

Using our functional regression approach, we identified 230 genes that were selected via 325

the SCAD step (observed gene set). We used the Enrichr [42,43] and WikiPathways [44] 326

databases to see if the selected genes can be grouped into common functional classes or 327

pathways. In total, 183 pathways identified, from which 11 were statistically significant 328

at 5% level, including apoptosis modulation, NOTCH1 regulation, and MAPK signaling 329

(S6 Table). The model identified genes (IKBKB, RASGRF1, DUSP16, DUSP8, DUSP6, 330

MAPT and IL1R2 ) downstream of the MAPK signaling pathway targeted by BRAF 331

inhibitors. 332

Previous studies of these pathways have found associations with tumourgenesis and 333

cancer treatment [45–48]. Genes in more than one of these pathways include IKBKB, 334

PLAT, IL1R2 and PDPK1. The IKB kinase composed of IKBKB had previously been 335

suggested as a marker of sensitivity for combination therapy with BRAF inhibitors [49]. 336

Taken together, these results suggest that the identified associations between the drug 337

response and the observed genes may reveal new predictive markers of tumour response 338

to the examined BRAF inhibitors. 339

In addition to the pathway enrichment analysis, we used the Molecular Signatures 340

Database (MSigDB database v7.0 updated August 2019: [50]) to compute overlaps 341

between the observed gene set and known oncogenic gene sets. Fig 5 displays the 29 342

overlaps found. Interestingly, we identified three instances where the observed gene set 343

significantly overlapped with gene sets over-expressing an oncogenic form of the KRAS 344

gene. 345

Identifying dose-dependent genes in drug-resistance conditions 346

Acquired resistance to BRAF inhibitors is often observed in the clinic [52]. To further 347

examine the utility of the employed methodology, we applied the variable selection 348

algorithm to a data subset containing only cell lines with mutations activating resistant 349

mechanisms to BRAF inhibitors [53]. Out of the 951 cell lines in the data, 191 had 350

some mutation in any of the following: RAC1 gene, NRAS gene, cnaPANCAN44 or 351

cnaPANCAN315. We identified 65 genes associated with dose-response, though none of 352
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Fig 5. Overlaps between the observed gene set and oncogenic signatures in
the Molecular Signatures Database (full data analysis); signalling pathways
enriched for genes predictive of BRAF inhibitor response (resistant cell
lines). (A) Full gene set names can be found in S8 Table. Overlaps have been detected
using gene set enrichment analysis performed using a hypergeometric distribution. The
false discovery rate analog of the hypergeometric p-value is displayed after correction for
multiple hypothesis testing according to Benjamini and Hochberg [51]. (B) Top 20
enriched signalling pathways along with the adjusted p-values and the number of
overlapping genes obtained after pathway enrichment analysis to the resistant cell line
analysis results (for full list of the pathways identified see S7 Table).

them were directly associated with the MAPK/ERK pathway. However, from these, 25 353

genes have been found to indirectly interact with the BRAF gene (Fig 3) and 21 to 354

overlap with three oncogenic gene sets in the Molecular Signatures Database (genes 355

down-regulated in NCI-60 panel of cell lines with mutated TP53 ; genes up-regulated in 356

Sez-4 cells (T lymphocyte) that were first starved of IL2 and then stimulated with IL21, 357

and; genes down-regulated in mouse fibroblasts over-expressing E2F1 gene; S9 Table). 358

Finally, we found 34 pathways enriched for genes predicting drug response of the 359
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mutated cell lines to the examined BRAF inhibitors, of which the top 20 are depicted in 360

Fig 5(B). 361

Table 2 presents gene rankings based on the AUC and the overall coefficient function 362

effect (sign) for the 42 genes in either the enriched pathways, the three oncogenic gene 363

sets discussed above or the protein-protein interaction network with the BRAF gene 364

(full list available in S5 Table). Eight of the selected genes in the current 365

implementation were also selected from the algorithm implemented on the full data: 366

ASB9, PRSS33, GJA3, PLAT, KLF9, BFSP1, MTARC1 and UCN2. 367

Predictive performance of dose-dependent models 368

As discussed above, the employed methodology gives a good overview of the baseline 369

genetic effect on drug response. We assessed the overall predictive performance of our 370

method using 10-fold cross validation under two different scenarios. For the first, we 371

split the data into training and test set holding out the experimental units (cancer cell 372

line-drug combinations) and for the second, holding out cancer cell lines. The absolute 373

mean error for both cases was around 0.12. Our analysis shows robust cross-validated 374

performance when it comes to predicting sensitivity to the administered drugs (see S3 375

Fig. which shows the correlation between predicted and true response). Predictive 376

accuracy was evaluated under four different sub-scenarios: prediction of the most 377

effective drug-dosage combination for the 951 cell lines in the data set; prediction of the 378

most effective drug given a cell line; prediction of the most effective dosage given 379

treatment with a particular drug and prediction of the most effective dosage range given 380

treatment with a drug (Table 3). The proposed model performs really well when it 381

comes to predicting the most effective drug or dosage range (≈79% in both scenarios). 382

Results are less reliable when it comes to prediction of the exact dosage or drug-dosage 383

combination (≈48-49% and ≈57-58% in both scenarios) but this can be due to either 384

the large variability observed in the observed responses or due to the small number of 385

cell lines for some predictor level combinations. Results were similar for both 386

cross-validation scenarios (differences range from 0 to <2%, Table 3), meaning that as 387

long as a cell line has similar genetic characteristics to those observed, the model can be 388

reliable in predicting the outcome after anticancer drug administration. 389
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Table 2. Rankings of the genes identified from the pathway and oncogenic gene set enrichment analysis.

Gene Name Area SD Sign
Spearman’s
Correlation

Mean fold change
in BRAF mutant

vs wild-type cell lines

Protein-protein
interaction network
distance to BRAF

MYO5A 0.531 0.261 + 0.955 1.358 4
S100A1 0.488 0.189 + 0.812 1.263 NI
GPNMB 0.424 0.196 + 1 1.169 3
ACP5 0.359 0.149 - -0.998 1.039 NI
FCGR2A 0.341 0.158 - -0.588 1.25 3
CITED1 0.28 0.348 0 -0.603 1.63 3
SPRY4 0.274 0.127 - -0.611 1.228 2
CD44 0.239 0.164 + 0.868 1.413 3
RAP2B 0.236 0.179 0 0.927 1.254 NI
KCNJ13 0.205 0.094 0 -0.604 1.101 3
ALX1 0.202 0.099 - -1 1.104 NI
PLAT 0.201 0.121 - -0.405 1.312 4
RETSAT 0.201 0.142 0 0.689 1.127 NI
GSN 0.196 0.109 + 0.588 1.079 4
CDH19 0.185 0.102 0 0.943 0.933 NI
ATP1B3 0.178 0.115 - -1 1.063 NI
BAZ1A 0.173 0.105 + -0.29 1.109 4
SLC16A4 0.166 0.117 - -0.298 1.234 NI
ST6GALNAC2 0.164 0.102 0 -0.815 1.264 NI
MFSD12 0.16 0.148 0 -0.788 1.13 NI
GJA3 0.157 0.075 0 -0.85 1.071 NI
CYP27A1 0.156 0.09 - -0.743 1.373 NI
EGLN1 0.15 0.119 - -0.442 1.053 3
TRPV2 0.147 0.118 0 0.769 1.074 NI
MITF 0.146 0.106 + 1 0.743 2
TBC1D7 0.146 0.118 0 -0.603 1.304 NI
SLC6A8 0.144 0.111 0 -0.263 0.941 NI
PTPRZ1 0.139 0.138 - -0.808 1.074 4
PLOD3 0.132 0.135 0 0.696 1.166 NI
ANKRD7 0.131 0.12 + 0.92 1.241 NI
KANK1 0.107 0.113 0 -0.493 1.345 NI
GYPC 0.105 0.092 + -0.3 1.072 NI
TYR 0.1 0.098 - 0.467 1.11 4
TYRP1 0.1 0.097 0 0.457 1.326 3
IGSF8 0.09 0.129 0 -0.668 1.313 5
SPRED1 0.067 0.116 0 -0.556 1.239 4
ITGA9 0.056 0.111 0 0.785 1.154 4
KREMEN1 0.053 0.086 0 -0.555 1.123 4
LAMA4 0.038 0.083 - 0.344 1.151 4
MLANA 0.037 0.097 0 0.534 1.147 NI
KLF9 0.011 0.074 0 0.932 1.064 NI

Table notes rankings of the genes found to have some biological importance. A positive (+) sign translates to a positive effect on
cells survival after drug administration, a negative (-) sign translates to a negative effect on cells survival and a neutral (0) effect
translates to a varying effect on cells survival which depends on drug dosage. Spearman’s correlation is calculated between drug
dosage and gene estimated coefficient function values as an indicator of the magnitude change of the gene effect over the increasing
dosage. Area corresponds to the area under the estimated coefficient curve and the SD corresponds to the standard deviation of the
area based on bootstrapping. Pearson’s correlation is calculated between the selected gene microarray expression values and the
BRAF expression across all the cell lines. Protein-protein interaction network distance is computed based on the shortest interaction
path between the BRAF gene and each of the selected genes. Here, NI denotes absence of interaction.
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Table 3. Predictive performance of the employed model (mean absolute error=0.121).

Scenario Accuracy EU Accuracy CL

Model predicts the more effective drug-dosage combination 57.85% 57.42%
Model predicts the more effective drug given a cell-line 78.21% 78.21%
Model predicts the more effective dosage given a drug 48.44% 48.65%
Model predicts the most effective dosage range (> or ≤ 31.25% of the maximum dosage) 79.47% 79.28%

Table notes the predictive performance of the model based on the percentages of correctly identifying the most effective drug,
dosage or drug-dosage combinations. Results obtained based on 10-fold cross-validation of the final model (based on holding
out either experimental units−EU− or cancer cell lines−CL−).

Conclusion 390

Genetic alternations and gene expression in tumours are known to affect disease 391

progression and response to treatment. Here, we studied dosage-dependent associations 392

between gene expression and drug response, using a functional regression approach 393

which adjusts for genetic factors. We analysed data from the Genomics of Drug 394

Sensitivity in Cancer project relating to drug effectiveness for suspending cancer cell 395

proliferation under different dosages, and examined five BRAF targeted inhibitors, each 396

applied in a number of common and rare types of cancer cell lines. Our implementation 397

of a two-stage screening algorithm revealed a number of genes that are potentially 398

associated with drug response. Gene, drug and cancer type trajectories have been 399

modelled using a varying coefficient modelling framework. The proposed methodology 400

allows for dose-dependent analysis of genetic associations with drug response data. It 401

enables us to study the effect of different drugs simultaneously, which results in high 402

accuracy of drug response prediction. Drug comparisons using the proposed 403

methodology could support drug repositioning, especially in disease indications where 404

existing treatment options are limited. In addition, our methodology can help to reveal 405

unknown potential relationships between genetic characteristics and drug efficacy. 406

Hence, the good predictive performance of our method could be due to the fact that 407

some genes may act as proxies for unmeasured phenotypes that are directly relevant to 408

drug sensitivity. 409

Our work relies on two major assumptions. First, that out of tens of thousands 410

genes regulating protein composition only a small proportion is actually associated with 411

cancer cells survival in a dosage-dependent manner. In other words, transcriptomic 412

profiles exert influence on disease progress after drug administration in a sparse and 413

dynamic way. However, if a large number of genes are associated with the drug response, 414
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our method may produce biased results, and some important information about the 415

biological mechanisms can be lost. Secondly, we assume that the different drugs are 416

comparable on the scale of maximum dosage percentage level for our joint model. 417

However, we acknowledge that different drugs have different chemical structure and 418

maximum screening concentrations. Our focus is to identify genetic components that 419

could be informative for dose response given drugs that belong to a particular family, 420

for example BRAF targeted therapies. However, our methodology is flexible enough to 421

allow each drug to be examined separately if it appears to be clinically appropriate. 422

Drug response prediction from gene expression data has been widely studied in the 423

literature. Sparse regression methods, gene selection algorithms such as the Ping-pong 424

algorithm [25], or a combination of network analysis and penalised regression, e.g. the 425

sparse network-regularized partial least squares method [17], have all been employed to 426

simultaneously predict drug response and select genetic factors that seem to be 427

associated with the drug response. However, none of these methods are able to quantify 428

the effect of drug dosage on the response. Employing the proposed dose-varying model 429

gives a detailed picture of different drugs effect and can be extremely valuable in 430

predicting drug response for agents with small therapeutic range and high toxicity levels. 431

In addition, the method can be easily extended for different cell lines-drug combinations 432

as well as different types of molecular data (e.g. RNA-seq gene expression, methylation 433

or mutational profiles). Finally, due to the structure of our model, enrichment with 434

additional low-dimensional covariates, such as drug chemical information, is 435

straightforward. 436
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Supporting information captions 592

S1 Text. Accurate detection of drug associated genes from simulated 593

responses. Simulated responses have been generated to examine the accuracy of the 594

employed method in detecting the genes that are truly associated to drug response. 595

Three screening thresholds, three active gene sets and two covariance structure scenarios 596

for the repeated measurements simulation have been considered. This text includes all 597

the details of the simulation study that we conducted. 598

S2 Fig. Distribution of tissue of origin across the five BRAF compounds 599

used for cell line screening in the Genomics of Drug Sensitivity in Cancer 600

data. Overall, similar proportion of cell lines have been treated with all of the 601

compounds examined with smaller number of cell lines been treated with AZ628, 602

Dabrafenib and PLX-4720. Larger number of cell lines in the data set were originated 603

from the lungs, the gastrointestinal tract and the haematopoietic and lymphoid tissues. 604

S3 Fig. Prediction accuracy for each different drug and scenario. Pearson 605

correlation was estimated across observed and predicted AUC values. AUC values have 606

been computed by calculating the area under the coefficient function curve (both 607

observed and predicted). Training and test sets have been considered based on either 608

the experimental units or on cancer cell lines only. 609

S4 Table. Full gene rankings based on the estimated area under the 610
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coefficient function curve (analysis on the full data set). Gene rankings of all 611

selected genes based on the magnitude of the genetic effect on drug response. A positive 612

(+) sign translates to a positive effect on cells survival after drug administration, a 613

negative (-) sign translates to a negative effect on cells survival and a mixed (0) effect 614

translates to a varying effect on cells survival which depends on drug dosage. 615

Spearman’s correlation is calculated between drug dosage and gene estimated coefficient 616

function values as an indicator of the magnitude change of the gene effect over the 617

increasing dosage. Area corresponds to the area under the estimated coefficient curve 618

and the SD corresponds to the standard deviation of the area based on bootstrapping. 619

Mean fold change is calculated between the selected gene expression values of the cell 620

lines carrying BRAF mutations with respect to wild type. Protein-protein interaction 621

network distance is computed based on the shortest interaction path between the BRAF 622

gene and each of the selected genes. Here, NI denotes absence of any interaction. 623

S5 Table. Full gene rankings based on the estimated area under the 624

coefficient function curve (analysis on resistant cell lines). Gene rankings of all 625

selected genes based on the magnitude of the genetic effect on drug response. A positive 626

(+) sign translates to a positive effect on cells survival after drug administration, a 627

negative (-) sign translates to a negative effect on cells survival and a mixed (0) effect 628

translates to a varying effect on cells survival which depends on drug dosage. 629

Spearman’s correlation is calculated between drug dosage and gene estimated coefficient 630

function values as an indicator of the magnitude change of the gene effect over the 631

increasing dosage. Area corresponds to the area under the estimated coefficient curve 632

and the SD corresponds to the standard deviation of the area based on bootstrapping. 633

Mean fold change is calculated between the selected gene expression values of the cell 634

lines carrying BRAF mutations with respect to wild type. Protein-protein interaction 635

network distance is computed based on the shortest interaction path between the BRAF 636

gene and each of the selected genes. Here, NI denotes absence of any interaction. 637

S6 Table. Signalling pathways linked to genes predictive of BRAF inhibitor 638

response (analysis on the full data set). Signalling pathways along with the 639

adjusted p-values and the number of overlapping genes obtained after pathway 640

enrichment analysis to the full scale analysis results. 641

S7 Table. Signalling pathways linked to genes predictive of BRAF inhibitor 642
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response (analysis on resistant cell lines). Signalling pathways along with the 643

adjusted p-values and the number of overlapping genes obtained after pathway 644

enrichment analysis to the resistant cell line analysis results. S8 Table. Overlaps 645

between the observed gene set and oncogenic signatures in the Molecular 646

Signatures Database (analysis on the full data set). Overlaps have been 647

detected using gene set enrichment analysis performed using a hypergeometric 648

distribution. The false discovery rate analog of the hypergeometric p-value is displayed 649

after correction for multiple hypothesis testing according to Benjamini and Hochberg. 650

S9 Table. Overlaps between the observed gene set and oncogenic signatures 651

in the Molecular Signatures Database (resistant cell lines analysis). Overlaps 652

have been detected using gene set enrichment analysis performed using a hypergeometric 653

distribution. The false discovery rate analog of the hypergeometric p-value is displayed 654

after correction for multiple hypothesis testing according to Benjamini and Hochberg. 655
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