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Abstract

Antibodies are prominent therapeutic agents but
costly to develop. Existing approaches to pre-
dict developability depend on structure, which
requires expensive laboratory or computational
work to obtain. To address this issue, we present
a machine learning pipeline to predict developa-
bility from sequence alone using physicochem-
ical and learned embedding features. Our ap-
proach achieves high sensitivity and specificity
on a dataset of 2400 antibodies. These results sug-
gest that sequence is predictive of developability,
enabling more efficient development of antibod-
ies.
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1. Introduction
Since the United States Food and Drug Administration ap-
proved the first monoclonal antibody (mAb) in 1986, thera-
peutic antibodies have exploded in popularity due to their
high specificity and few adverse effects (Lu et al., 2020),
and now have a global market value of US $115.2 billion
(Lu et al., 2020). However, there are significant barriers to
manufacturing mAbs at an industrial scale, and bringing a
therapeutic antibody to market can cost US $1.4 billion and
take up to 12 years (Mestre-Ferrandiz et al., 2012).

To be clinically effective, mAbs must be present in high con-
centrations (Chames et al., 2009). Therefore, candidates for
therapeutic use must retain specificity and safety through-
out development, while maintaining high stability and low
aggregation to be fit for industrial production. A strategy to
minimize failure is to exclude candidates early in the devel-
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opment cycle based on their aggregation propensity. One
such metric, Developability Index (DI), relies on an anti-
body’s hydrophobic and electrostatic interactions as inferred
from its three-dimensional structure (Lauer et al., 2012).

However, researchers often do not have structural data for
newly proposed antibodies. Experimental approaches to de-
termine structure are expensive, costing up to US $100,000
per protein (Yang et al., 2018b), and computational protein
structure prediction through homology modeling (Lauer
et al., 2012) or deep learning (Senior et al., 2020) is error-
prone and time-consuming. These limitations make esti-
mating developability difficult for large collections of candi-
dates or to explore large numbers of potential variants.

Machine learning approaches have successfully replaced the
need for structure in several protein prediction tasks (Long
et al., 2018; Rahman et al., 2016). These approaches often
require only the sequence as input and are thus more widely
applicable than methods that rely on structure.

In this work, we present a machine learning pipeline to pre-
dict DI directly from sequence, thereby bypassing the need
to determine structure experimentally or computationally.
With our sequence-based method, researchers can screen
candidate sequences for therapeutic antibodies in bulk, iden-
tifying those with high potential for industrial development
and production. To validate our approach, we applied it to a
dataset of 2400 antibodies with known sequence and struc-
ture. Our pipeline achieved high sensitivity and specificity,
indicating that sequence is predictive of developability.

2. Methods
We framed our problem as a supervised machine learning
task, with sequence as input and developability index as
output. In this section, we present the main steps in our
pipeline (Figure 1).

2.1. Datasets

We gathered antibody data from the Structural Antibody
Database (SAbDab, Dunbar et al., 2014). From an initial
dataset of 3816 antibodies, we retained 2426 antibodies that
satisfy the following criteria:
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Figure 1. Machine learning pipeline. After collecting data from SAbDab (white), for each antibody, we extract feature vectors from
sequence (blue) and calculate developability index labels from structure (red). We use these together to train several machine learning
models (green), tuning hyperparameters through cross-validation (not shown). Lastly, we evaluate our approach using both standard
machine learning metrics and Pareto optimization (purple). [SAbDab logo from http://opig.stats.ox.ac.uk/webapps/
newsabdab/sabdab/.]

1. have both sequence (FASTA) and Protein Data Bank
(PDB) structure files,

2. contain both a heavy chain and a light chain, and
3. have crystal structures with resolution < 3 Å (Wlo-

dawer et al., 2007).

As only the variable regions of the heavy and light chains
are used to compute DI, we extracted exactly one heavy and
one light chain. We also removed extraneous protein chains
and heteroatoms from the PDB structure files to ensure that
the calculated DI reflects only an antibody’s variable region.

2.2. Label Generation

We calculated the antibody DI values using ‘Calculate
DI’, part of BIOVIA’s Pipeline Pilot (Dassault Systèmes
BIOVIA, 2020). We were unable to calculate DI values
for 17 antibodies because of the presence of non-standard
residues and other unknown errors. Though DI values are
continuous, we decided to frame our task as a classification
problem rather than regression, as classification is an easier
prediction task and it is more robust to noisy data. As a low
DI value corresponds to high developability, we thresholded
DI values, with the bottom 20% as developable and the top
80% as non-developable. Though an 80-20 split creates an
imbalanced dataset, our goal is to create a pool enriched in
candidates with a high chance of being developable. We
treated the binary DI labels as the “ground truth” for our
supervised learning models. Our final dataset contains 2409

antibodies sequences with binary DI labels.

2.3. Feature Extraction and Preprocessing

We extracted two broad types of features for each antibody
sequence: (1) physicochemical properties derived directly
from sequence, and (2) vectors in an embedded space similar
to the popular doc2vec (Le & Mikolov, 2014) model.

2.3.1. PHYSICOCHEMICAL FEATURES

First, we computed a simple feature that measures the per-
centage of each amino acid in the sequence.

Then, based on our knowledge of DI (Lauer et al., 2012), we
selected physicochemical features expected to be relevant.
These features include 9 whole sequence-based properties
(isoelectric point, molecular weight, average residue weight,
charge, molar extinction coefficient, molar extinction coef-
ficient of cystine bridge, extinction coefficient, extinction
coefficient of cystine bridge, and improbability of expres-
sion in inclusion bodies (IEIB)), computed with EMBOSS
(Rice et al., 2000) and Expasy (Gasteiger et al., 2005).

In addition, we computed several physicochemical features
based on amino acid-based properties (Kyte-Doolittle hy-
dropathy, hydrophobic moment, and charge). However,
using amino acid-based properties presents a challenge be-
cause our machine learning models require fixed-length fea-
ture vectors as inputs but the sequence lengths of antibodies

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.159798doi: bioRxiv preprint 

http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
https://doi.org/10.1101/2020.06.18.159798
http://creativecommons.org/licenses/by-nc-nd/4.0/


Antibody Developability

can vary. Therefore, we explored multiple approaches to ob-
tain fixed-length vectors: (1) exclude the amino acid-based
features; (2) pad amino acid-based features with zero; (3)
pad amino acid-based features with the feature’s average
value in the sequence; (4) replace amino acid-based fea-
tures with summary statistics (mean, median, and standard
deviation); and (5) align amino acid-based features using
a multiple sequence alignment (MSA). In the last strategy,
we align the sequences using ClustalW (Thompson et al.,
1994), align amino acid-based features based on the MSA,
then impute gaps by using the average feature value across
all sequences for that position in the MSA.

Lastly, we standardized the features by removing the mean
and scaling to unit variance. In total, we explored six differ-
ent physicochemical feature sets.

2.3.2. LEARNED EMBEDDING FEATURES

Learned embedding features are based on the word2vec
(Mikolov et al., 2013) and doc2vec (Le & Mikolov, 2014)
models, which produce embeddings by mapping words and
documents to vectors of real numbers. Similar word em-
beddings have been proposed for n-grams in biological
sequences, for example, BioVec, ProtVec, and GeneVec
(Asgari & Mofrad, 2015). Such embeddings can infer bi-
ological properties of unseen sequences without requiring
an understanding of the underlying physical or biological
mechanisms.

In this work, we used the embedding models presented in
Yang et al., 2018a. There, the authors divided protein se-
quences into non-overlapping k-mers (1 ≤ k ≤ 5), learned
embeddings that place k-mers that occur in similar contexts
near each other, then considered multiple k-mers in a fixed
window size. We input our antibody sequences into these
pre-trained embedding models to vectorize each sequence.
In total, we explored 149 embedding feature sets.

2.4. Experimental Setup

Using scikit-learn (Pedregosa et al., 2011), we evalu-
ated one baseline (that generates predictions by respecting
the training set’s class distribution) and six (real) models
(Table 1). To train and evaluate our models, we used an
80-20 stratified train-test split. To tune hyperparameters, we
used 10-fold stratified cross-validation. For each model, we
randomly sampled hyperparameters and selected the best set
of hyperparameters based on the mean validation F1 score.

We evaluated model performance using several standard ma-
chine learning metrics, including Area Under the Receiver
Operating Characteristics (AUROC) curve, Area Under the
Precision-Recall (AUPR) curve, F1 score, precision, and
recall. For deployment, we suggest the best model-feature
pair based on F1 score.

model hyperparameters

Stratified
Sampling

–

Gaussian
Bayes

–

Logistic
Regression

regularization ∈ {L2}
C ∈ loguniform(0.001, 1000)

Support
Vector
Machine

C ∈ loguniform(0.001, 100)
kernel ∈ {linear, rbf}
γ ∈ loguniform(0.001, 1)

Random
Forest

# of estimators ∈ {1, 10, . . . , 200}
max depth ∈ {0, 2, . . . , 50}
max fraction features ∈ {0.1, 0.15, . . . , 0.75}

Gradient
Boosting

learning rate ∈ loguniform(0.01, 0.5)
# of estimators ∈ {1, 10, . . . , 200}
max depth ∈ {0, 2, . . . , 20},
max fraction features ∈ {0.1, 0.2, . . . , 0.6}

Multilayer
Perceptron

hidden layer sizes
∈ {(100, ), (50, ), (100, 100)}

Table 1. Machine learning models and hyperparameters.

However, because our results may depend on the metric
used, we also applied Pareto optimization to select models
and feature sets on the Pareto front.1 Such models and
feature sets are optimal in the sense that one metric cannot be
increased without decreasing at least one other metric. Prior
to Pareto optimization, we filtered our models to ensure they
meet a baseline, requiring performance under each metric
of at least 0.4.

3. Results
3.1. Performance across Features and Models

To determine how performance varies across model-feature
set pairs, we generated a heatmap of mean validation F1

scores (Figure 2). Unsurprisingly, using similar feature sets
tends to yield similar performances regardless of model.
Furthermore, features based on embedding models with 1-
mers perform poorly (mean F1 < 0.32). For every other
feature set, every machine learning model outperformed our
baseline model (mean F1: 0.36−0.57), with Support Vector
Machine (mean F1: 0.52− 0.65) and Multilayer Perceptron
(mean F1: 0.50 − 0.64) performing best. Of the feature

1Formally, we measure the performance of each model-feature
set pair using a vector of scores v = 〈 AUPR, AUROC, F1, preci-
sion, recall 〉. Given two vectors v and v′, v is said to be strictly
better than v′ if each entry of v is greater than or equal to the
corresponding entry in v′ and at least one entry of v is greater than
its corresponding entry in v′. Given a set V of vectors, v ∈ V said
to be Pareto-optimal with respect to V if there does not exist any
other v′ ∈ V that is strictly better than v. The Pareto front is the
set of vectors that are all Pareto-optimal.
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Figure 2. Average validation F1 scores of all models trained on
a selection of feature sets. Models and feature sets are clustered
by score similarity. Of the models, Support Vector Machine and
Multilayer Perceptron perform best. Of the feature sets, physic-
ochemical and embedding feature sets perform similarly. The
exception is that embedding feature sets using k-mers of size
k = 1 perform very poorly (not shown). Using k-mers of size
k = 2 and k = 4 perform similarly to k = 3 (not shown). A
description of the feature sets can be found in Table S1.

sets, physicochemical (mean F1 for all non-baseline models:
0.51− 0.60) and learned embeddings with k-mers of sizes
2− 4 (mean F1: 0.50− 0.54) perform best.

Given that physicochemical and embeddings feature sets
perform similarly, we would prefer to use physicochemical
features as they are more easily interpretable. Overall, the
best combination of model type and feature set was the Sup-
port Vector Machine trained on physicochemical features
with multiple sequence alignment.

3.2. Performance of Various Models using the Best
Feature Set

Next, we used the best feature set (physicochemical fea-
tures with multiple sequence alignment) and investigated
the performance of the various models (Figure S1). Though
Gaussian Bayes performs poorly, all other non-baseline
models achieve high training performance. However, these
models also generalize poorly, indicating overfitting.

3.3. Performance of Various Feature Sets using the
Best Model

Similarly, we used the best model (Support Vector Machine)
and investigated the performance of the various feature sets
(Figure S2). The top two physicochemical feature sets and
the top two embedding feature sets show similar perfor-
mance, and again, there is evidence of overfitting.

3.4. Model and Feature Selection by Pareto Optimality

Finally, rather than optimizing on only one metric, F1 score,
we looked at the Pareto front, which simultaneously consid-
ers five metrics (AUPR, AUROC, F1, precision, and recall).
A model or feature set that occurs frequently in the Pareto
front indicates that it performs well under several metrics.
The Pareto front contains 148 combinations of model - fea-
ture - hyperparameter set. Feature sets that appear the most
frequently are physicochemical features and embedding
features with 3-mers. Model types that appear the most
frequently are Support Vector Machine and Random Forest.
Importantly, these results are consistent with our analysis of
performance based solely on F1 score.

4. Discussion
In this manuscript, we have presented a machine learning
pipeline that extracts features derived from antibody se-
quence data to predict its developability. By using only
sequence-based features, we remove the need to experi-
mentally determine or computationally predict antibody
structures.

While our results demonstrate that an antibody’s developa-
bility index is predictable using machine learning, we must
be wary of using DI as a measure of an antibody’s true po-
tential. Because DI is computationally determined based on
aggregation propensity, it may ignore other indicators of de-
velopability. Further investigation using a curated database
is needed to determine how well aggregation propensity
correlates with actual developability.

Furthermore, our analysis of performance is based on a rela-
tively small dataset of antibodies. This limitation resulted in
our models overfitting to the training data and generalizing
poorly. Future work could augment the dataset with simu-
lations that introduce point mutations into sequences and
computationally predict the associated structure. While this
approach would introduce artifacts from structural predic-
tion, it would also enable more complex regression or deep
learning models. Recent work has shown that deep learn-
ing models using convolutional neural networks or long
short-term memory models can predict protein function
from primary sequence (Bileschi et al., 2019; Kulmanov &
Hoehndorf, 2020).
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As with any machine learning approach, our pipeline is
flexible and can be retrained on a larger dataset with
experimentally-validated labels to potentially achieve a
model with greater accuracy and predictive power.
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feature description

AAcomposition percentage of each amino acid in sequence

pc stats PP summary statistics of amino acid-based physicochemical features with sequence-based physicochem-
ical features provided by EMBOSS

protparam amino-acid composition and sequence-based physicochemical features provided by Expasy Pro-
teomics Server (Gasteiger et al., 2005)

pc train zeropad sequence- and amino acid-based physicochemical features provided by EMBOSS, with zero padding

pc avg pad sequence- and amino acid-based physicochemical features provided by EMBOSS, with average
padding

msa avg sequence- and amino acid-based physicochemical features provided by EMBOSS, with aligned
sequences and gaps imputed using average value

original X Y embedding features with k-mer size X (1 <= X <= 5) and window size Y (1 <= Y <= 7)

Table S1. Feature sets.

aupr auroc f1 precision recall
metric

0.0
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Figure S1. Training set (left) and test set (right) performance of all models trained on the top physicochemical feature set. Error bars
represent the standard deviation across 10 bootstraps.
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Figure S2. Training set (left) and test set (right) performance of Support Vector Machines trained on the top two embedding features
(original 3 7 and original 3 5) and the top two physicochemical features (msa avg and protparam).
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