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 35 
 36 
ABSTRACT 37 

Rhes (Ras homolog enriched in the striatum) is a multifunctional protein that 38 
orchestrates striatal toxicity, motor behaviors and abnormal movements associated with 39 
dopaminergic signaling, Huntington disease and Parkinson disease signaling in the striatum. 40 
Rhes engineers membranous tunneling nanotube-like structures and promotes intercellular 41 
protein and cargoes transport. Recent study revealed Rhes also regulates mitophagy via the Nix 42 
receptor. Despite these studies, the mechanisms through which Rhes mediates these diverse 43 
functions remains unclear. Rhes belongs to a small GTPase family member and consists of a 44 
unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes the 45 
post-translational modification (PTM) of proteins with SUMO (SUMOylation) by promoting 46 
“cross-SUMOylation” of SUMO enzymes SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). 47 
However, the identity of the SUMO substrates of Rhes remains largely unknown. By combining 48 
high throughput interactome and SUMO proteomics we report that Rhes regulates the 49 
SUMOylation of nuclear proteins that are involved in the regulation of gene transcription. While 50 
Rhes has increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, it had 51 
decreased the SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein 52 
polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is 53 
SUMOylated at 5 different lysine residues (K32, K110, K114, K120, K124 and K245). 54 
Furthermore, we found that Rhes regulates the expression of genes involved in cellular 55 
morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings 56 
thus provide a previously undescribed role for Rhes in regulating SUMOylation of nuclear 57 
targets and in orchestrating striatal gene expression via the SUMOylation. 58 
 59 
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 69 
 70 
INTRODUCTION 71 

Rhes (Ras homolog enriched in the striatum) mRNA is highly expressed in the dopamine 72 
D1 receptor (D1R)- or D2R-expressing medium spiny neurons (MSNs) and cholinergic 73 
interneurons in the striatum; it is also expressed to some extent in other brain regions such as 74 
cortex and hippocampus [1-3]. Rhes is induced by thyroid hormones and can inhibit the 75 
cAMP/PKA pathway and N-type Ca2+ channels (Cav 2.2) [4-7]. We have found several new roles 76 
for Rhes in the striatum. Rhes can directly bind to, and activate, mTOR in a GTP-dependent 77 
manner, promoting L-DOPA-induced dyskinesia (LID) in a pre-clinical model of Parkinson's 78 
disease [8]. Rhes also inhibits striatal motor activity through a ‘Rhesactome”—a protein network 79 
in the striatum—via its guanine nucleotide exchange factor (GEF), RasGRP1 [9], which we 80 
recently found also promotes LID [10]. Rhes affects autophagy via Beclin1, independent of 81 
mTOR signaling [11]. We also demonstrated a critical role for Rhes in Huntington disease (HD). 82 
We found Rhes interacts with mHTT, the genetic risk factor of HD, and makes it more soluble 83 
by virtue of its SUMOylation [9, 12]. Thus, Rhes and mHTT interaction increases cellular 84 
toxicity, a finding which is consistent with independent studies [12-19]. One report indicates 85 
that Rhes overexpression can be protective in HD [20], and so Rhes was tagged on its C-86 
terminal end in this study to promote its mislocalization to the nucleus [12]. Rhes also plays a 87 
critical role in mutant tau-mediated pathology [21]. In addition, a rare, highly conserved de 88 
novo mutation (R57H) in Rhes was detected in twins diagnosed on the autistic spectrum [22].  89 

Recently, tubular or tunneling nanotubes (TNTs), the fragile and inconspicuous 90 
membranous structures ranging from 50-200 nm diameter in size and 5-125 Pm in length 91 
connecting two cells, have been reported in diverse cell types [23-39].  We have discovered that 92 
Rhes promotes TNT-like membranous protrusion called “Rhes tunnel” in multiple cell types, 93 
including primary striatal neurons [40]. Using mutagenesis, we found that the membrane 94 
binding site of Rhes (C263) is critical for Rhes tunnels. Mutagenesis also demonstrated a 95 
distinct role for the GTPase domain (1-171aa) and SUMO E3 ligase domain of Rhes (171-266aa) 96 
[40]. While the GTPase domain is defective in producing TNT-like protrusions, the SUMO E3 97 
ligase domain induces TNTs, but shows diminished potency of cell-to-cell transport [40]. This 98 
data indicates a distinct role for Rhes domain, while SUMO E3 ligase domain promote Rhes 99 
tunnel, the GTPase domain is necessary for entering into the acceptor cell via Rhes tunnel. 100 
Given that Rhes is the first brain-enriched protein shown to promote TNT-like protrusions, a 101 
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further investigation into its mechanisms and roles would improve our understanding of TNT-102 
like communications in brain.    103 

Rhes is capable of executing more than one function, at molecular, cellular, and 104 
organismal levels. Multifunctional proteins like Rhes are not rare in biology. For example, 105 
through network topological information with protein annotations, it was estimated that around 106 
430 of human proteins can be classed as extreme multifunctional proteins [41], including p53 107 
and Cyt C [42, 43]. Despite its multiple functions and molecular complexity, fundamental 108 
knowledge about the mechanisms by which Rhes works or how those mechanisms selectively 109 
impair distinct striatal disorders remains partial. We reported that Rhes physiologically 110 
regulates SUMO modification in vivo and mechanistically Rhes promotes the “cross-111 
SUMOylation” of E1 (Aos1) and E2 (Ubc9) enzymes [44]. However, the identity of SUMO 112 
substrates of Rhes remains largely unknown.  Using biochemical, proteomics and RNA seq tools, 113 
we investigated the SUMO substrates of Rhes and its putative role in the striatal gene 114 
expression.  115 
 116 
RESULTS 117 
Rhes interacts with SUMOylated proteins and enhances SUMOylation in cultured 118 
cells 119 
Like ubiquitin, SUMO (3 paralogues in vertebrates: SUMO1, SUMO2, and SUMO3) is a 120 

conserved ~10.5kDa protein modification that is covalently attached to lysine residues 121 

on multiple substrate proteins in a dynamic and reversible manner [45]. To identify 122 
SUMO substrates of Rhes, we used mSUMO3 construct in combination with a large scale 123 
unbiased proteomics approach for SUMOylation site identification. mSUMO3 has a mutation in 124 
the C-terminal that can be cleaved by trypsin resulting in a C-terminus penta-peptide, which is 125 
compatible for mass-spectrometry (MS) detection [46, 47]. We employed mSUMO3 in this study 126 
because its transient expression produced more abundant protein that may aid in SUMO 127 
substrate detection in HEK293 cells, compared to mSUMO1 or mSUMO2 (Fig. 1A). First, we 128 
hypothesized that the SUMO proteins that binds to Rhes are the potential SUMO targets of 129 
Rhes. To examine this hypothesis, we co-expressed GST-Rhes or GST (control) with His-tagged 130 
mSUMO3 in HEK293 cells and affinity purified Rhes using GST-glutathione-affinity column. 131 
We found GST-Rhes readily bound to proteins that are modified by mSUMO3 (Fig. 1B). The 132 
GST-Rhes affinity purified samples were subjected to MS analysis to identify and quantify the 133 
interacting partners. We found several proteins that are readily bound to Rhes, including RAC1, 134 
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TSC2, VDAC1, PLEC, DDX3X and mTOR, previously identified interactors of Rhes (Fig. 1C, Data 135 
file S1)[8, 9].  136 

Attempts at identifying SUMOylated interacting partners from the GST pulldown were 137 
futile. Although we found targets such as RPL3 (K399), histone H4 (K6, K9, and K13) and 138 

RANGAP1 (K524) found SUMOylated, the log10 transformed p value for any of the targets did 139 

not reach below 0.05 (Fig. 1D) (Data file S2).  We reasoned that the SUMOylated proteins that 140 
are bound to Rhes are either very few or below the threshold needed for the detection by MS. 141 
Moreover, GST pulldown experiments are conducted under native conditions, under which the 142 
SUMO specific proteases (SENPs) are highly active and could deconjugate the SUMO moiety 143 
from the target proteins[48]. Therefore, we resorted to a denaturing purification protocol to 144 
enrich SUMOylated proteins. We co-expressed myc-Rhes or myc (control) with His-tagged 145 
mSUMO3 in HEK293 cells and lysed the cells in guanidine-hydrochloride/urea denaturing 146 
buffer, followed by purification in Ni-NTA column. We found that the myc-Rhes significantly 147 
enhanced the overall SUMOylation of proteins (Fig. 1E, F) and Rhes was itself  SUMOylated (S* 148 
Rhes, Fig. 1E), consistent with our previous report [12].   149 

Together these results indicate a) Rhes interacts with multiple proteins, and b) Rhes is 150 
SUMOylated, and c) Rhes enhances the SUMOylation of several targets. 151 
 152 
Mass spectrometry reveals nuclear SUMO targets and SUMO modified lysines of 153 
Rhes   154 
To identify the SUMO targets of Rhes, we subjected Ni-NTA enriched myc and myc-Rhes 155 
samples (Fig. 1E) to SUMO peptide immunopurifications using a custom antibody that 156 
recognizes the NQTGG remnant created on the modified lysine residue upon trypsin digestions. 157 
SUMOylation site identification and quantified were obtained by MS analysis. This analysis 158 
revealed numerous SUMOylated proteins and a significant increase of SUMOylation of at least 159 
13 targets in myc-Rhes expressing cells compared to myc control (Fig. 1G, Data file S3).  160 
 161 
Among the high-confidence SUMO substrates, we found Rhes increased the RapGEF5 162 
SUMOylation at the lysine 422 and lysine 428 residues that are part of catalytic domain [49]. 163 
RapGEF5 is a direct target of 3'-5'-cyclic adenosine monophosphate (cAMP) and is involved in 164 
cAMP-mediated signal transduction through activation of the Ras-like small GTPase RAPs: 165 
RAP1A, RAP1B and RAP2A [50]. We found Rhes increased the SUMOylation at lysine 803 of 166 
diacylglycerol kinase eta (DGKH), an enzyme that generate phosphatidic acid (PA) and activates 167 
the Ras/B-Raf/C-Raf/MEK/ERK,  We found Rhes also increased the SUMOylation of CCDC54 168 
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(the coiled coil domain containing protein 54), whose function is unknown, at lysine 318 (Fig. 169 
1H). 170 

Among the low confidence SUMO targets, we found that Rhes promoted the 171 
SUMOylation of the SUMO-3 ligases PIASy (K59) and RanBP2 (K1605), as well as protein 172 
polypbromo-1 (PBRM1, K1398, K1642), heterogenous nuclear ribonucleoprotein M (HNRNPM, 173 
K145, K698), histone-lysine N-methyltransferase (SETDB1, K1032), RNA polymerase II-174 
associated factor 1 homolog (PAF1, K133) and mothers against decapentaplegic homolog 4 175 
(SMAD4, K113) (Fig. 1H).  Interestingly, Rhes is also one among the 4 high-confidence 176 
SUMOylated targets. Rhes was found SUMOylated at six lysine residues 32, 110, 114, 120, 124 177 
and 245 that spanned across the protein. The GTPase domain of Rhes contains 5 SUMO 178 
modification sites and the C-terminal SUMO E3-like region harbors a SUMOylation site (Fig. 179 
1I).  180 

Together this data indicates that a) Rhes modulates SUMOylation of substrates involved 181 
in cellular signaling and nuclear functions and b) Rhes is SUMOylated at multiple lysine 182 
residues. 183 

 184 
Comparison of Rhes interactome and SUMOylation targets to further refine 185 
potential new SUMO targets of Rhes 186 
Although the quantitative SUMO proteomic (Fig. 1) revealed novel putative SUMO targets of 187 
Rhes, the number of SUMO candidates identified are relatively low. Such results are not entirely 188 
unexpected because of the hurdles that are inherent to SUMOylation studies such as the low 189 
abundance of the SUMO modified targets and the highly dynamic nature of SUMOylation. 190 
Indeed, at any given time only <1% of the total protein are modified, further complicating their 191 
identification [51]. Finally, SUMOylation of certain substrates in the native tissues such as 192 
striatum may also be under the strict control of extracellular signaling.  193 

Keeping all these limitations in perspective, we sought to identify the potential SUMO 194 
targets further, using an unbiased approach. So, we applied four different filtering to sort out 195 
SUMO substrates (Fig. 2A). First, we selected the common proteins by comparing Rhes 196 
interactors in HEK293 cells [Fig. 1C, (a)] with all the SUMOylated proteins in Rhes expressing 197 
HEK293 cells [Fig 1G, (b)] to obtain a-1. Second, we compared protein interactors of Rhes from 198 
the striatum [9] (c) with the SUMOylated proteins in Rhes expressing HEK293 cells (b) and 199 
obtained b-1. Third, we compared proteins interactor of Rhes in the striatum (c) with the SUMO 200 
interacting proteins in the brain [52] (d), and obtained c-1. Fourth, we sorted shared protein 201 
from a-1, b-1 and c-1 to obtain d-1. And fifth, we compared the high and low confidence SUMO 202 
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substrates of Rhes (e-1) with proteins identified from (d-1) to obtain f-1 (Data file S4). This 203 
approach has resulted in 27 novel targets that are SUMOylated as well as shown to interact with 204 
Rhes (Fig. 2B). Most of these targets, such as histone deacetylase 1 (HDAC1), protein inhibitor of 205 
activated STAT protein 4 (hPIASy or PIASy), histone-2B, (H2B), heterogeneous nuclear 206 
ribonucleoprotein M (HNRNPM) and polybromo 1 (PBRM1) have roles in gene regulation, 207 
indicating a strong nuclear function for Rhes.  208 
 209 
Rhes regulates SUMOylation of nuclear targets in cells 210 
Next we hypothesized that Rhes can directly modulate the SUMOylation of the targets identified 211 
in Fig 2. To test this hypothesis, we selected certain targets (color coded) based on the already 212 
available cDNA constructs from Addgene (Fig 2B). So, we carried out Ni-NTA denaturing 213 
protocol, (Fig. 3) for these nuclear targets by expressing them in in HEK293 cells.  214 

We found Rhes increased the SUMOylation of HDAC1 (Histone Deacetylase 1) and 215 
histone 2 B, but it did not affect the SUMOylation of histone H2A.1 (Fig. 3A, B). Surprisingly 216 
Rhes decreased the SUMOylation of HNRNPM, PBRM1 and PIASy (PIASy) SUMOylation (Fig. 217 
3B, C).  We could not detect SUMOylation of other targets, nucleophosmin (NPM), DGK, and 218 
ribosomal protein L26 (RPL26) (Supplementary Fig. 1A). As expected, Rhes was readily 219 
SUMOylated under these experimental conditions. Together this data indicates that Rhes 220 
differentially modulates the SUMOylation of substrates that are involved in nuclear functions, 221 
especially in regulation of gene expression.  222 
 223 
Rhes regulate the expression of genes involved in neuronal morphogenesis in the 224 
striatum 225 
As Rhes differentially regulates the SUMOylation of nuclear targets implicated in the gene 226 
expression, we hypothesized that Rhes may alter gene expression in the striatum in vivo. To 227 
investigate this hypothesis, we isolated mRNA from WT and Rhes–/– mice [RNA from 1 male and 228 
1 female mouse was pooled per sample, triplicate for each group (WT or Rhes–/–)] and carried 229 
out high-throughput RNA seq analysis. We found that Rhes significantly altered the gene 230 
expression profile in the striatum (Fig. 4A). Out of ~15,000 genes sequenced, 155 genes are 231 
down-regulated, and 52 genes are up-regulated significantly in the striatum of Rhes–/– mice 232 
compared to WT control (Fig. 4A, Data file S5). Ingenuity pathway analysis (IPA) showed 233 
molecular and cellular functions involved in cell morphology, cellular development, growth and 234 
proliferation, and molecular transport are the major hits (Fig. 4B). For example, genes involved 235 
in cell morphogenesis; for example, early growth response 2 (Egr2), necdin (Ndn), serum- and 236 
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glucocorticoid-regulated kinase 1 (Sgk1) and netrin-1 (Ntn1) are upregulated [53-57], and 237 
neuropilin1 (Nrp1), basic-helix-loop helix 22 (Bhlhe22) and  myocyte enhancer factor 2 (Mef2c) 238 
are downregulated [58-62] (Fig 4A). A large majority of the genes, such as ephrin type-A 239 
receptor 5 (Epha5) and slit guidance ligand 2 (Slit2), are unaffected. Using qPCR, we further 240 
validated selected targets. We confirmed for example, Nrp1, Bhlhe22, Mef2c are downregulated, 241 
Egr2 is upregulated, and exostosin glycosyltransferase 1 (Ext1) showed a decreased trend (P**** 242 
Value) in the striatum of Rhes–/– mice compare to WT striatum in qPCR analysis (Fig. 4C). This 243 
data indicates that Rhes regulates the expression of genes involved in variety of biological 244 
process with a prominent role in cellular morphology in the striatum. 245 
 246 
Rhes regulates a selected gene expression via SUMO   247 
Because Rhes regulates the SUMOylation of proteins such as HDAC1, HNRNPM, PBRM1 and 248 
PIASy that are involved in gene expression, [63-68], we investigated if Rhes alters gene 249 
expression via SUMO. We employed CRISPR/Cas-9 control (WT cells) and CRISPR/Cas-9 250 
SUMO1/2/3 depleted striatal neuronal cells, that show ~60-70% of loss of SUMO (SUMO ' 251 
cells)[40]. To analyze the effect of Rhes on the expression of Ext1, Mef2c, Slit2, Epha5, and 252 

Bhlhe22 in WT and SUMO ' cells, cells were transfected with GFP or GFP-Rhes and sorted 253 
using flow cytometry to obtain enriched population of cells expressing GFP or GFP-Rhes. While 254 

Rhes increased the expression of Mef2c, Bhlhe22 in WT cells, it failed to do so in the SUMO ' 255 
cells (Fig. 4D). This result indicates that Rhes positively modulates the gene expression of 256 
Bhlhe22 and Mef2c via SUMO. Rhes increased Epha5 and Ext1 in both the control and the 257 
SUMO ' cells, indicating that Rhes promotes Epha5 and Ext1 expression independent of SUMO 258 
(Fig. 4D). Furthermore, while Slit2 is induced by Rhes in control cells, a high basal Slit2 259 
expression was found in SUMO ' cells that was not affected by Rhes expression (Fig. 4D). 260 
Collectively, these results indicate Rhes regulates gene expression via SUMO dependent and 261 
independent mechanisms.   262 
 263 
Rhes is enriched in the perinuclear membrane fractions 264 
As Rhes mostly regulates gene expression of selected nuclear targets, we investigated if Rhes is 265 
localized in the nucleus. Using biochemical tools, we isolated and separated cytoplasmic and 266 
nuclear fractions of the striatum from Rhes+/+ and Rhes–/– mice (Fig. 5A). Using Western 267 
blotting, we confirmed that Rhes is highly enriched in the nuclear fractions that is positive for 268 
histone H3 (Fig. 5A). Rhes is also observed in the cytoplasmic fractions that are enriched for 269 
cytoplasmic markers, mTOR, mitogen-activated protein kinase kinase (MEK) and lactate 270 
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dehydrogenase (LDH) (Fig. 5A). Since biochemically isolated subcellular fractions do not 271 
unmistakably report the distribution of subcellular proteins, we sought to verify the localization 272 
of Rhes using confocal fluorescence microscopy. Imaging analysis revealed that GFP-tagged-273 
Rhes is predominantly associated with perinuclear membranes and it is present at negligible 274 
levels in the nucleus (Fig. 5B, red arrows). In addition to perinuclear localization, Rhes is also 275 
enriched in the plasma membrane (Fig. 5B, yellow arrowhead), and membranous vesicles, as 276 
consistent with our previous reports [40, 69]. Altogether, our result indicates that Rhes is 277 
predominantly localized on the perinuclear membranes. We propose that Rhes may affect 278 
SUMOylation of nuclear targets in the perinuclear location (Fig. 5C).  279 
 280 
DISCUSSION  281 

The data presented here demonstrate that a) Rhes is SUMOylated on multiple lysine 282 
sites; b) Rhes regulates the SUMOylation of nuclear proteins, and c) Rhes regulates gene 283 
expression in the striatum at least partly via SUMO-mediated mechanisms. Importantly, despite 284 
that, it is well known that Rhes is post-translationally modified in vivo [9, 70]; however, the 285 
nature of modification remained unknown. This study indicates that SUMO may contribute to 286 
such in vivo Rhes modification.  287 

Interestingly, the presence of multiple closely spaced SUMO modification sites on Rhes 288 
on  K110, K114, K120, K124  indicates that these residues may act as anchors that can associate 289 
with SUMO-interacting motif (SIM) which are known to be involved in protein-protein 290 
interaction [71, 72]. Such closely spaced SUMOylation events are also found on other SUMO E3 291 
ligases such as PIAS1 lysines K40, K46, K56, and K58 and PIASy lysines K59 and K69, K128 and 292 
K135; and RanBP2 K1596 and K1605, K2513 and K2531, and K2571 and K2592 [73, 74]. Thus, 293 
multiple lysine SUMO modifications appear to be a characteristic feature across many SUMO E-294 
3 like proteins. Identifying the role of each lysine modification, and whether Rhes auto-295 
SUMOylates itself or if other potential SUMO E3 ligases SUMOylate Rhes needs further 296 
investigation. 297 

Intriguingly, we report that Rhes differentially alters the SUMOylation of SUMO E3 298 
ligases. Rhes decreased the overall SUMOylation on PIAS in the cells (Fig. 3B), while promoting 299 
the specific SUMOylation of PIASy on lysine 59 (Fig. 1H). Similarly, MS analysis revealed that 300 
Rhes significantly increases the SUMOylation of RanBP2 on lysine 1605, but not on lysine 2592 301 
(Fig 2A, Data file S5). These results indicate that Rhes may differentially affect the SUMOylation 302 
of SUMO E3 ligase(s) on selected lysine targets. In the future, it will be interesting to test 303 
whether PIASy or RanBP2 can act as SUMO E3 ligase for Rhes. Even though it is known that 304 
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SUMOylation modifies SUMO E3 ligases, the biological significance of such modifications 305 
remains less understood. Previously, we reported that Rhes promoted cross-SUMOylation 306 
between SUMO E1 (Aos/Uba9) and E2 (Ubc9) ligases and predicted such regulation might work 307 
as “symbiotic” regulation between two evolutionarily conserved SUMO E1 and E2 enzymes [44]. 308 
Based on the data presented here, we propose that Rhes may also promote reciprocal and 309 
symbiotic regulations between SUMO E3 ligases through SUMO modification that may have a 310 
significant impact on regulating complex cellular and behavioral functions of the striatum via 311 
protein-protein interactions [9].  312 

The results presented here clearly indicate that Rhes is involved in the regulation of gene 313 
expression in the striatum, intriguingly, it can both increase and decrease gene expression in the 314 
striatum. A previous independent study also reported that Rhes might inhibit gene expression 315 
by acting as a cis-modulator [75], but the mechanisms were unclear. It is well established that 316 
SUMOylation participates in cis-regulation and is involved in both transcriptional repression as 317 
well as activation functions [51, 76, 77]. As Rhes KO cells show overall diminished SUMOylation 318 
in the striatum [44] and altered gene expressions, we predict that the Rhes-SUMO pathway may 319 
regulate gene expression as cis-modulator, for example via the SUMOylation of transcription 320 
factors. Consistent with this notion, although we did not observe a significance alteration of 321 
HDAC1 SUMOylation on lysine 89 or lysine 476 in our proteomics analysis (Data S3), 322 
presumably due to low stoichiometry, we found that Rhes enhances the SUMOylation of HDAC1 323 
in our biochemical experiments (Fig. 2B).  Thus Rhes may alter HDAC1 activity via 324 
SUMOylation at lysine 89 and lysine 476, a catalytically essential residue involved in the gene 325 
repression [78-80].  326 

Previous studies indicate that SUMOylation of H2B is involved in the repression of gene 327 
expression [81].  Because we found that Rhes increases the SUMOylation of H2B (Fig. 3), which 328 
is SUMOylated at multiple lysine (Data file S4), including previously reported, lysine 6 [81], we 329 
propose that Rhes-SUMO pathway may affect gene expression via more than one nuclear 330 
targets. 331 

The cellular compartment in which Rhes regulates the SUMOylation of nuclear proteins 332 
remains to be elucidated. Since we found that Rhes is enriched on the perinuclear space (Fig. 333 
5B), we predict that this location may serve as the prime site for SUMOylation of proteins (Fig. 334 
5C).  In support of this notion, previous studies showed that SUMO E3 ligase RanBP2 localized 335 
on the perinuclear location [the cytoplasmic side of nuclear pore complex (NPC)], which 336 
regulates import and export of proteins, and mediates global gene expression in cell models [82, 337 
83]. RanBP2 also enhances the SUMOylation of HDAC4 and HNRNPM proteins, which are 338 
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involved in mRNA splicing and transport [84, 85]. Although the localization of Rhes on the NPC 339 
is not currently documented, we found that Rhes coimmunoprecipitates with RanBP2 and 340 
Sec13, two known components of the NPC. Rhes has been shown to interact with NPC associated 341 
proteins during motor stimulation in the striatum, including HNRNP (L1  and H2 isoforms) [9].  342 
Thus, we predict that Rhes may associate with the NPC to regulate the SUMOylation of targets 343 
involved in gene regulation as well as mRNA splicing, a process shown to require SUMOylation 344 
[86]. In addition, Rhes may alter SUMO-independent signaling, such as the modulation of 345 
mTOR and PKA signaling pathways that are linked to gene expression [6, 8, 87-89]. 346 

Our finding demonstrates that Rhes alters the expression of genes involved in cell 347 
morphology and differentiation (Fig. 4) and is a potent inducer of TNT-like cellular protrusions 348 
[40]. We propose that Rhes may mediate TNT-like protrusions and cell-to-cell transport of 349 
cargoes via the regulation of the expression of transcription factors such as Mecf2, Egr2, 350 
Bhlhe22, which are known regulators of neuronal morphology and differentiation in a SUMO 351 
dependent manner. Consistent with this notion, depletion of SUMO diminishes the formation of 352 
TNT-like protrusions [40] and cell-to-cell transport as well as alters Rhes mediates expression 353 
of Mef2c and Bhlhe22-1 9 (Fig. 4). 354 

Collectively, by combining high throughput interactomics, SUMO proteomics, gene 355 
expression analysis, and biochemical tools, we demonstrate that Rhes promotes the 356 
SUMOylation of nuclear substrates that are involved in gene expression. Thus, Rhes may impact 357 
striatal function and dysfunction associated with neurological and neurodegenerative disease via 358 
the SUMO-mediated regulation of gene expression.  359 
 360 
MATERIALS AND METHODS 361 
Reagents, Plasmids and Antibodies  362 
Unless otherwise noted, reagents were obtained from Sigma. Full length Rhes cDNA constructs, 363 
Myc, GST or GFP tagged, were cloned in pCMV vectors (Clontech) [11, 12, 40].. Mass 364 
spectrometry detection compatible His6-mSUMO1, His6-mSUMO2 and His6-mSUMO3 were 365 
cloned as described [90, 91]. p181 pK7-HDAC1 (GFP) (Addgene; 11054) were from Ramesh 366 
Shivdasani. H2B-mCherry (Addgene; 20972) were from Robert Benezra. mH2A1.2-CT-GFP 367 
(Addgene, 45169) were from Brian Chadwick, Hunt Willard. pT7-V5-SBP-C1-HshnRNPM 368 
(Addgene; 64924) were from Elisa Izaurralde. GFP-PBRM1 (Addgene; 65387) were from Kyle 369 
Miller. Flag-hPIASy (Addgene; 15208) were from Ke Shuai. GFP-NPM WT (Addgene; 17578) 370 
were from Xin Wang. DGK beta (Addgene; 35405) were from Robert Lefkowitz and Stephen 371 
Prescott. pCMV-L26-Flag (Addgene; 19972) were from Moshe Oren. 6x-His Tag Antibody (clone 372 
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HIS.H8)  (1:1000, # MA1-21315) was from ThermoFisher Scientific. Antibodies for GST-HRP 373 
(1:5000, #sc-138), and Myc (1:3000, #sc-40) were obtained from Santa Cruz Biotechnology. 374 
mCherry antibody (1:1000, NBP2-25157) was from Novus Biologicals.  Flag antibody (1:1000, 375 
F7425) was obtained from Sigma-Aldrich. HA.11 Epitope Tag Antibody (1:1000, 901513) was 376 
from BioLegend (previously Covance catalog# MMS-101R).  V5-Tag (1:1000, #13202), GFP 377 
(1:1000, #2956), mTOR (1:3000, #2983), Histone H3 (1:10,000, #4499), MEK1/2 (1:1000, 378 
#8727) and LDH (1:5000, #2012) were from Cell Signaling Technology, Inc. Rhes antibody 379 
(1:1000, RHES-101AP) was from Fabgennix.   380 
 381 
Ni-NTA Denaturing Pull Down 382 
Ni-NTA pull down of His-SUMO conjugates was performed as previously described [12, 92]. 383 
Briefly, HEK293 cells (expressing transfected His-SUMO mutant and indicated constructs) were 384 

pretreated with MG132 (25 PM, 4 hr), rinsed in PBS, scraped from 10cm2 dishes, and 385 
centrifuged at 750 x g for 5 min. Cell pellets were then directly lysed in Pull Down Buffer [6 M 386 
Guanidine hydrochloride, 10 mM Tris, 100 mM sodium phosphate, 40 mM imidazole, 5 mM β-387 
mercaptoethanol (β-ME), pH 8.0] and sonicated. Lysates were then clarified by centrifugation at 388 
3,000 x g for 15 minutes. All subsequent wash steps were performed with 10 resin volumes of 389 
buffer followed by centrifugation at 800 x g for 2 min. Ni-NTA Agarose beads (#30210; Qiagen) 390 
were pre-equilibrated by washing three times with Pull Down Buffer. After equilibration, beads 391 
were resuspended in Pull Down Buffer as a 50% slurry of beads to buffer. After protein 392 
quantification of cell lysates, 1 mg of lysate was added to 40 µL of Ni-NTA bead slurry to a total 393 
volume of 1 mL in microcentrifuge tubes. Beads were then incubated overnight at 4°C mixing 394 
end over end. The following day, beads were centrifuged and underwent washing once in Pull 395 
Down Buffer, once in pH 8.0 Urea Buffer (8 M Urea, 10 mM Tris, 100 mM sodium phosphate, 396 
0.1% Triton X-100, 20 mM imidazole, 5 mM β-ME, pH 8.0), and three additional times in pH 397 
6.3 Urea Buffer (8 M Urea, 10 mM Tris, 100 mM sodium phosphate, 0.1% Triton-X100, 20 mM 398 
imidazole, 5 mM β-ME, pH 6.3). Elution was performed using 20 µL of Elution Buffer (pH 8.0 399 
Urea Buffer containing 200 mM imidazole, 4X NuPAGE LDS loading dye, 720 mM β-ME). 400 
Samples were then heated at 100°C for 5 minutes and directly used for Western Blotting. Inputs 401 
were loaded as 1% of the total cell lysate. The SUMOylation is quantified by normalizing the 402 
intensity of SUMOylation bands to the respective unmodified bands using Image-J. 403 
 404 
GFP-Rhes localization studies  405 
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Approximately 75,000 STHdhQ111/Q111 cells were seeded on 35mm glass bottom dishes. After 24h 406 
the cells were transfected with indicated plasmids. Cells were imaged live using a Zeiss 880 407 
confocal microscope at 63X oil immersion Plan- apochromat objective (1.4 NA). 408 
 409 
Purification of SUMOylated Rhes interacting proteins  410 
Proteins extracts from GST + mSUMO3, and GST-Rhes + mSUMO3 expressing HEK298 cells 411 
were purified with glutathione beads to recover global Rhes interacting partners. The resulting 412 
purified material was subjected to denaturing Ni-NTA purification step to enrich for the 413 
SUMOylated interacting parteners. The Ni-NTA bound material was digested with trypsin, 414 
desalted on C-18 and analyzed by LC-MS, as described before [47, 93, 94]. 415 
SUMO peptide enrichment and MS detection  416 
SUMOylated proteins were enriched from myc + mSUMO3 or myc-Rhes + mSUMO3 expressing 417 
HEK293 cells using Ni-NTA. The solid support bound material was digested on the Ni-NTA 418 
beads with trypsin and the resulting peptides desalted on C-18 cartridges. SUMOylated peptides 419 
were immunopurified with the anti-NQTGG antibody that recognizes the NQTGG remnant 420 
exposed on the SUMOylated lysine upon tryptic digestion. SUMO site quantification and 421 
quantification was carried out with MaxQuant, as described before [46, 94, 95].  422 
 423 
SUMO1/2/3 Knockout in striatal Cells. Striatal cells deleted for SUMO1, 2 and 3 is using 424 
CRISPR/Cas9 SUMO gRNAs as described [40].  425 
 426 
Mice. For fractionation experiments, we used Rhes KO (Rhes–/–) mice, and C57BL/6J mice. 427 
Rhes KO mice were obtained from Alessandro Usiello and were backcrossed with C57BL/6J 428 
mice at least 8 generations; homozygous Rhes KO were used for all of the experiments [9, 13]. 429 
WT mice (C57BL/6) were obtained from Jackson Laboratory and maintained in our animal 430 
facility according to Institutional Animal Care and Use Committee at The Scripps Research 431 
Institute.  432 
 433 
Nuclear and Cytoplasmic Separation from striatum 434 
Striatum from C57BL/6J and Rhes KO mice was fractionated using the nuclear/cytosol 435 
fractionation kit according to the manufacturer’s instructions with minor modifications 436 
(BioVision). Briefly, striatum from C57BL/6J and Rhes KO mice was rapidly dissected out and 437 
homogenized in CEB (cytosolic extraction buffer)-A with DTT and protease inhibitor, and 438 
incubating for 10 min on ice prior to addition of CEB-B. The lysates were vortexed for 5 sec and 439 
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incubated on ice for 1 min. The lysates were then centrifuged at 4°C for 5 min at 16,000 x g in a 440 
microcentrifuge. And the supernatants were kept as the cytoplasmic fraction. The nuclear pellet 441 
was resuspended in NEB (nuclear extraction buffer). And vortexed the lysates for 15 sec. This 442 
step was repeated 5 times every 10 min. The nuclear pellet was centrifuged at 4°C for 10 min at 443 
16,000 x g in a microcentrifuge. And the supernatants were kept as the nuclear fraction. The 444 
protein concentration was determined in the cytoplasmic and nuclear fractions using the BCA 445 
Protein Assay Kit (Pierce, Rockford, IL, USA). Equivalent amounts of protein samples (50 µg) 446 
were resolved by SDS-PAGE followed by immunoblotting as described below. 447 
 448 
Western blotting 449 
Equal amounts of protein (20-50 µg) were loaded and were separated by electrophoresis in 4 to 450 
12% Bis-Tris Gel (Thermo Fisher Scientific), transferred to polyvinylidene difluoride 451 
membranes, and probed with the indicated antibodies. HRP-conjugated secondary antibodies 452 
(Jackson ImmunoResearch Inc.) were probed to detect bound primary IgG with a 453 
chemiluminescence imager (Alpha Innotech) using enhanced chemiluminescence from 454 
WesternBright Quantum (Advansta).  Where indicated the membranes were stained for 455 
ponceau.  456 
 457 
Global mRNA-seq from WT and Rhes KO striatum 458 
WTor Rhes KO mice striatum [1 male and 1 female (pooled), in triplicate were lysed in Trizol 459 
reagent. RNA was extracted from miRNeasy kit from Qiagen (cat. No. 217004) and mRNA-seq 460 
was performed as described before [96].  461 
 462 
qPCR validation of targets 463 
Striatum of mice (WT or Rhes KO) lysed in Trizol reagent. 250 ng RNA was used to prepare 464 

cDNA using Takara primescript kit (Cat no. 6110A) using random hexamers. The qRT-PCR of 465 

genes was performed with SYBR green (Takara RR420A) reagents. Primers for all the genes 466 

were designed based on sequences available from the Harvard qPCR primer bank. The primer 467 

sequences are as follows:  468 

Gapdh mouse (Forward primer) 5’ primer AGGTCGGTGTGAACGGATTTG  469 

                          (Reverse primer) 3’ primer TGTAGACCATGTAGTTGAGGTCA  470 

Nrp1 mouse (Forward primer) 5’ primer GACAAATGTGGCGGGACCATA  471 

                       (Reverse primer) 3’ primer TGGATTAGCCATTCACACTTCTC  472 
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Bhlhe22 mouse (Forward primer) 5’ primer TGAACGACGCTCTGGATGAG  473 

                             (Reverse primer) 3’ primer GGTTGAGGTAGGCGACTAAGC  474 

Slit2 mouse (Forward primer) 5’ primer GGCAGACACTGTCCCTATCG  475 

                      (Reverse primer) 3’ primer GTGTTGCGGGGGATATTCCT  476 

Epha5 mouse (Forward primer) 5’ primer AAGGAACCCTGTGGCTATTGG  477 

                         (Reverse primer) 3’ primer GCAAACATGCCCGTTTTAGAGAA 478 

Dcx mouse (Forward primer) 5’ primer CATTTTGACGAACGAGACAAAGC  479 

                    (Reverse primer) 3’ primer TGGAAGTCCATTCATCCGTGA 480 

Ext1 mouse (Forward primer) 5’ primer TGGAGGCGTGCAGTTTAGG  481 

                      (Reverse primer) 3’ primer GAAGCGGGGCCAGAAATGA 482 

Egr2 mouse (Forward primer) 5’ primer GCCAAGGCCGTAGACAAAATC  483 

                      (Reverse primer) 3’ primer CCACTCCGTTCATCTGGTCA 484 

Mef2c mouse (Forward primer) 5’ primer ATCCCGATGCAGACGATTCAG  485 

                         (Reverse primer) 3’ primer AACAGCACACAATCTTTGCCT 486 

Plxna1 mouse (Forward primer) 5’ primer GGGTGTGTGGATAGCCATCAG 487 

                         (Reverse primer) 3’ primer GCCAACATATACCTCTCCTGTCT 488 

Met mouse (Forward primer) 5’ primer GTGAACATGAAGTATCAGCTCCC 489 

                     (Reverse primer) 3’ primer TGTAGTTTGTGGCTCCGAGAT 490 

Efna5 mouse (Forward primer) 5’ primer ACACGTCCAAAGGGTTCAAGA  491 

                         (Reverse primer) 3’ primer GTACGGTGTCATTTGTTGGTCT 492 

 493 

Bioinformatics and statistical analysis of data analysis of proteomics  494 
Normalized gene counts were averaged and log10 transformed for WT and Rhes KO samples 495 
and were plotted against each other where Rhes Ko log10 mean values were on x-axis and WT 496 
log10 mean values were on y-axis.  Differentially regulated genes were identified using padj 497 
<0.05 cut off and up (higher in Rhes KO) and down (higher in WT) regulated genes were 498 
marked with green and red respectively. The graph was generated using JMP®, Version 13.2.1. 499 
SAS Institute Inc., Cary, NC. 500 
 501 
Statistical Analysis  502 
Data were expressed as means ± SEM. All of the experiments were performed at least in 503 
triplicate and repeated twice at minimum. Statistical analysis was performed using Student's t 504 
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test or one-Way ANOVA followed by Newman-Keuls multiple comparison test (GraphPad Prism 505 
7). 506 
 507 
Data availability  508 
Sequencing data have been submitted to the Gene Expression Omnibus (GEO) data repository, 509 
under the accession number GSE150990. 510 
 511 
LEGENDS 512 
Fig 1. Interactome and SUMO proteome identifies putative SUMO substrates of 513 
Rhes (A) Western blot of HEK293 cells expressing His-SUMO 1m, His-SUMO 2m, or His-514 
SUMO 3m. (B) Western blot for indicated proteins after glutathione-affinity pulldown in 515 
HEK293 cells expressing GST + His-mSUMO3 (control) or GST-Rhes + His-mSUMO3 and 516 
corresponding input (5%) for the indicated proteins. (C) Volcano plot of proteins bound to 517 
affinity purified GST-Rhes (Rhes) co-expressing mSUMO3, compared to affinity purified GST 518 
co-expressing mSUMO3 (control), identified by LC-MS/MS in biological triplicate. (D) Volcano 519 
plot of SUMOylated proteins that are bound to glutathione enriched GST-Rhes (Rhes)+ His-520 
mSUMO3, compared to glutathione enriched GST + His-mSUMO3 (control) vs. GST-Rhes co-521 
expressing mSUMO3, identified by LC-MS/MS in biological triplicate. (E) Western blot of His-522 
tagged SUMO enrichment using Ni-NTA TALON beads in HEK293 cells expressing myc + His- 523 
mSUMO3 or myc-Rhes + His- mSUMO3. S*Rhes represents SUMOylated Rhes. (F) 524 
Quantification of overall SUMOylation in Ni-NTA enriched, myc + His- mSUMO3 or myc-Rhes 525 
+ His-mSUMO3. Data represents means ± SEM, (n =3), ***P < 0.001, Student’s t test. (G) 526 
Volcano plot of SUMOylation site changes in myc-Rhes + His-mSUMO3 compared to myc + 527 
His-mSUMO3 (control), identified by LC-MS/MS in biological triplicate. (H) High and low 528 
confidence SUMO substrates of Rhes identified in (G). (I) Representation of Rhes domains with 529 
mapping of the SUMO sites identified. 530 

Fig 2. Flow chart to identify potential SUMOylated proteins. (A) Proteins that interacts 531 
with Rhes in His-mSUMO3 overexpression (a) are compared with all the SUMOylated proteins 532 
(b) and obtained (a-1). Rhes interactors in the striatum, Shahani, 2016[9] (c) are compared with 533 
(b) to obtain (b-1). Then, (a) is compared with SUMOylated proteins in the brain, Matsuzaki, 534 
2015[52], (d) to obtain (c-1). Later, a-1, b-1 and c-1 are compared to obtain d-1. (B) Finally, the 535 
high and low confidence SUMO substrates of Rhes (e-1) were compared to d-1 to generate a list 536 
of the top 27 putative SUMO substrates of Rhes (f-1). 537 
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Fig 3. Rhes regulates the SUMOylation of nuclear targets. (A) Western blot of Ni-NTA 538 
enrichment of SUMOylated proteins (S*) from the lysates obtained from HEK293 cells 539 
expressing myc + His-mSUMO3 or myc-Rhes + His-mSUMO3 constructs either with GFP-540 
HDAC1, m-cherry H2B or GFP-H2A1.2. (B). Bar graphs indicates quantification of 541 
SUMOylation (%) from (A). Data represents mean ± SEM, (n =3), *P < 0.05, **P < 0.01, 542 
Student’s t test. n.s: not significant. (C) Western blot of Ni-NTA enrichment of SUMOylated 543 
proteins from the lysates obtained from HEK293 cells expressing myc + His-mSUMO3 or myc-544 
Rhes + His-mSUMO3 constructs either with V5-HNRNPM1, GFP-PBRM1 or Flag-PIASy. (D). 545 
Bar graphs indicates quantification of SUMOylation (%) from (C). Data represents mean ± SEM, 546 
(n =3), **P < 0.01, ****P < 0.0001, Student’s t test. 547 

Fig 4. Rhes regulates genes involved in cellular differentiation and morphogenesis 548 
via SUMOylation. (A) Mean normalized counts of gene expression based on RNA seq data 549 
from Rhes KO vs. WT mice striatum. (B) IPA analysis of the molecular and cellular functions 550 
altered in striatum of Rhes KO mice compared to WT mice from (A). (C) Expression of indicated 551 
genes (normalized to Gapdh), involved in cell morphology and cellular development were 552 
validated by qPCR in Rhes KO vs. WT mice striatum. Error bar represents mean ± SEM, (n =3), 553 
*P < 0.05, **p<0.01 by Student-t test. (D) Gene expression data for the indicated genes 554 
(normalized to Gapdh) in WT or SUMO1,2,3 KO (') cells to assess the effect of SUMOylation in 555 
presence of GFP or GFP-Rhes. Error bar represents mean ± SEM, (n =3), *P < 0.05, **P < 0.01 556 

compared to GFP in WT. ##P < 0.01 between Rhes in WT and Rhes in SUMO1,2,3 ' cells by One-557 
Way ANOVA followed by Newman-Keuls multiple comparison test.  558 

Fig 5. Rhes is preferentially localized around the perinuclear membrane. (A) 559 
Subcellular localization of Rhes was assessed in cytosolic and nuclear fractions from Rhes KO 560 
(Rhes-/-) vs. WT (Rhes+/+) mice striatum. The cytosolic markers MEK and LDH and the nuclear 561 
marker Histone H3 were probed to validate proper cellular fractionation. (B) Representative 562 
confocal and brightfield (DIC) image of striatal neuronal cell expressing GFP-Rhes, indicating 563 
the localization of Rhes on nuclear membrane and perinuclear space. Inset shows the boxed area 564 
at higher magnification. White arrows indicate perinuclear localization of Rhes, and yellow 565 
arrowhead indicates the localization of Rhes on plasma membrane. (C) Model depicting that 566 
Rhes can SUMOylate its targets, including HDAC1, in the cytoplasm and promotes its entry into 567 
the nucleus to regulate gene expression.      568 
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Supplementary Figure 1. Western blot of Ni-NTA enrichment of SUMOylated proteins from 569 
lysates obtained from HEK293 cells expressing myc + His- mSUMO3 or myc-Rhes + His- 570 

mSUMO3 constructs either with GFP-NPM, HA-DGK-E or Flag-L26. 571 
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