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Abstract

Inference of directed biological networks from observational genomics datasets is a crucial but notori-
ously difficult challenge. Modern population-scale biobanks, containing simultaneous measurements of
traits, biomarkers and genetic variation, offer unprecedented opportunity to study biological networks.
Mendelian randomization (MR) has received attention as a class of methods for inferring causal effects
in observational data that uses genetic variants (SNPs) as instrumental variables, but MR methods
rely on assumptions that limit their application to complex traits at the biobank-scale. Moreover, MR
estimates the total effect of one trait on another, which may be mediated by other factors. Biobanks allow
simultaneous measurement of possible mediators, in principle enabling the conversion of MR estimates
into direct effects representing a causal network. Here, we show that this can be accomplished by a
flexible two stage procedure we call bidirectional mediated Mendelian randomization (bimmer). First,
estimate the effect of every trait on every other. Next, approximately invert the resulting matrix. We
introduce novel methods for both steps and show via extensive simulations that bimmer is able to learn
causal network structures even in the presence of non-causal genetic correlation. We apply bimmer to 405
phenotypes from the UK biobank and demonstrate that learning the network structure is invaluable for
interpreting the results of phenome-wide MR, while lending causal support to several recent observational
studies.

1 Introduction

Recent developments in the understanding of complex-trait genetics have lead to a call for increased study
of directed biological networks, because they are crucial for detecting core genes in the omnigenic model
of complex traits, understanding risk factors for disease and finding pathways that can be targeted for
treatment [1, 2, 3]. However, interrogating the causal structure of networks is notoriously difficult, owing
to factors such as unmeasured confounding and reverse causation [4]. In spite of these challenges, modern
population-scale biobanks offer unprecedented opportunity to study biological networks because they contain
measurements of traits, biomarkers and genetic variation in the same individuals [5, 6]. Current methods for
estimating biological networks from observational data with confounding are severely limited [7, 8, 9, 10] and
have no strategy for integrating genetic data.

Mendelian randomization (MR) has recently received increased attention as a class of methods that can
mitigate issues in causal inference by using genetic variants (SNPs) from genome-wide association studies
(GWAS) as instrumental variables to determine the effect of an exposure (A) on an outcome (B). To estimate
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causal effects, MR methods must make strong assumptions that limit their ability to be applied at the
biobank-scale. Perhaps the most controversial assumption is that the SNP only effects B through A (i.e.
there is no horizontal pleiotropy). Recent methods such as Egger regression and the mode-based-estimator
are able to relax this assumption, instead assuming there is no correlated pleiotropy or modal pleiotopy,
respectively [11, 12]. Another approach, the latent causal variable (LCV) model, is able to detect causality
under arbitrarily-structured pleiotropy [13]. However, the quantity that LCV calculates is not interpretable
as the causal effect size of A on B. Most MR studies also presuppose the direction of effect, specifying one
phenotype as the outcome and the other as the exposure. Pre-specifying the effect direction is sound when
the outcome is clearly biologically downstream of the exposure, but in some cases it is better to learn the
direction of the effect from the data. Some researchers have instead used bidirectional MR [14, 15], which
tests for and effect in each direction, or gwas-pw [16], which infers the effect direction from the data. However,
the utility of these approaches for complex traits, which might contain non-causal genetic correlation, is
questionable [13].

In mimicking a randomized controlled trial, MR estimates the total causal effect (TCE) of A on B [17].
This effect may be mediated by any number of factors. The proliferation of phenome-scale datasets allows
researchers to measure the effects of many possible mediators, in principle enabling the conversion of TCE
estimates into direct causal effect (DCE) estimates, which are not mediated by any other measured factor.
However, methods to enact this conversion are limited, either because they require complex processing
pipelines that limit their scope [18] or because they are computationally intractable for graphs with more
than a few nodes [19]. This raises another disadvantage of approaches such as LCV and gwas-pw. Assuming
that either A causes B or B causes A, but not both, is equivalent to assuming that the underlying causal
network lacks cycles, which are thought to be an important part of real biological networks [20].

Here, we show that directed causal graphs can be estimated from phenome-scale GWAS summary statistics
using a simple two-stage framework. First, calculate the TCE of every phenotype on every other. Next,
approximately invert that matrix to produce a causal graph. We call this framework bi-directional mediated
Mendelian randomization (bimmer), and introduce novel methods for both components. To calculate the
TCE matrix, we use a new weighting scheme for Egger regression that reduces the influence of pleiotropic
SNPs (Figure 1a-b). Then, we convert the TCE estimates into a DCE graph via a novel algorithm for finding
a sparse inverse to a partially-observed matrix that we call inverse sparse regression (inspre, Figure 1b-c).
In extensive simulations, we show that our approach is able to learn causal network structures even in the
presence of non-causal genetic correlation. We apply our method to 405 phenotypes from the UK Biobank,
finding thousands of direct causal effects, complex causal pathways, and densely-connected sub-networks
with correlated downstream effects.

2 Results

Overview of model

We propose a simple regression model that nevertheless accommodates complex, bi-directional relationships.
We assume each phenotype is a linear function of other phenotypes, genetic factors, and environmental
factors. Assume we have N individuals, D phenotypes and M SNPs, with Y the matrix of phenotypes, X
the genotype matrix, β the SNP effect matix and γ a matrix of unknown environmental effects. Let G be the
D ×D matrix of direct causal effects (the causal graph), with Gi,j the DCE of phenotype i on phenotype j.
We assume that phenotypes do not effect themselves (Gi,i = 0), and that the network is sparse (G has many
entries that are 0). Our goal is to estimate G given summary statistics for the association of the genotypes X
with the phenotypes Y . Our trait model is Y = Y G+Xβ + γ. Let R be the matrix of TCE estimates from
MR, with Ri,j the total causal effect of phenotype i on phenotype j and Si,j its standard error. We show in
section 4 that under this model,

G = I −R−1D[1/R−1] (1)

where D is an operator that sets all off-diagonal elements to 0, and / represents element-wise division.
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Figure 1: Overview of the bimmer model. a) Modern biobanks contains measurements of genetic variants
(green squares), biomarkers (orange triangles), complex traits (purple circles) and diseases (pink diamonds).
Genetic variants affect these phenotypes which in turn affect each other. The presence of unmeasured
latent factors (white circle) can induce correlated pleiotropy (maroon arrows), but this effect can be reduced
by down-weighting SNPs that seem to have an overly-strong effect on both phenotypes. b) Bi-directional
Mendelian randomization estimates the total causal effect of the phenotypes on each other (dashed bi-directed
arrows), which includes both direct and indirect effects. c) The direct effects can be found by estimating a
sparse approximate inverse to the matrix of total effects, a process we call inverse sparse regression. This
gives an estimate of the causal network (gray arrows), which can be imperfect. The modular nature of our
approach allows us to use any method for bidirectional Mendelian randomization or approximate matrix
inversion, providing flexibility and naturally accommodating future progress on both tasks.
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In practice, the matrix R need not be well-conditioned or even invertible, leading to challenges when
calculating G via (1). Instead of calculating an exact or psuedo-inverse, we exploit the assumption that the
underlying DCE matrix is sparse. Specifically, we seek matrices U and V such that V U = I, U ≈ R and V is
sparse. We find them by solving the following constrained optimization problem,

min
{U,V :V U=I}

1

2
||W ◦ (R− U)||2F + λ

∑
i 6=j

|Vij | (2)

where W = Wi,j = 1/S2
i,j is a set of per-entry inverse variance weights, and λ is the L1 shrinkage parameter [21,

22]. We refer to U as bimmer shrunk estimates of the TCE, and use V ≈ R−1 to solve (1). Note that in
this method, missing entries in R can be accommodated simply by setting their weights to 0. We use this
property to our advantage in choosing the regularization parameter. Specifically, we use a novel adaptation
of Stability Approach to Regularization Selection (StARS) [23] where we mask entries of the TCE in order to
induce variance in the estimated graph during cross-validation. For complete details, see section 4.

Some intuition for (1) can be gained by considering the problem of estimating a matrix of partial correlations
for a set of observed variables. Analogous to the DCE, the partial correlation measures the degree to which
two variables are correlated while controlling for the effect of all other measured variables. Given a matrix of
observed (standard) correlations, Σ, the matrix of partial correlations is P = −D[Σ−1]−1/2Σ−1D[Σ−1]−1/2.
One of the most common approaches to obtaining a robust estimate of Σ−1, also called the precision matrix,
is the graphical lasso (glasso) [21]. glasso assumes the data come from a multivariate normal distribution
with a sparse precision matrix, and maximizes the likelihood with a L1 penalty on elements of Σ−1.

This leaves the problem of producing a reliable estimate for R, which can be particularly challenging
when there is non-causal genetic correlation or differential power across phenotypes. Most MR studies use
the set of genome-wide significant (GWS, p ≤ 5× 10−8) SNPs for a trait as instruments. Instead, we exploit
the observation that in the absence of horizontal pleiotropy, if A causes B and a SNP effects A directly, the
effect of the SNP on B can be no larger than the effect of the SNP on A times the effect of A on B. That
is, the SNP must have its per-variance contribution to B reduced by the network. We use this intuition to
construct a novel weighting scheme for Egger regression. First, we select a p-value threshold pt. For every
phenotype i, we construct a set of marginally associated SNPs at threshold pt. Next, for every ordered pair
of phenotypes i, j, we consider only SNPs that reach signficance level pt in phenotype i but not j. For this
set of SNPs, we calculate a weight based on the Welch test statistic for a two-sample difference in mean with
unequal variances, and the standard inverse-variance weight. If β̂k,i is our estimate of the effect of SNP k on
phenotype i and ŝk,i its standard error, the Welch test statistic is [24]

ti,jk =
|β̂k,i| − |β̂k,j |√
ŝ2k,i + ŝ2k,j

(3)

and our weight is wi,jk = ti,jk /t̄ŝ
2
k,j . We use these SNP weights in the Egger regression of j on i. To avoid

bias, we must use two sets of summary statistics: one set for SNP selection and weight construction, and the
second set for estimating R.

Simulations

Weighted Egger regression improves calibration and power in Mendelian randomization

Our first goal was to assess whether our weighted Egger regression approach had a well-controlled type-I
error rate (FPR) under the two-way null (no causal effect in either direction). To this end we simulated
GWAS summary statistics for two phenotypes with M = 1, 000, 000 independent SNPs, 20% heritability
and N = 100, 000 individuals in both the SNP discovery and effect estimation cohorts. In each simulation,
there were 5, 000 causal SNPs per phenotype. In our first simulation, 1, 000 of these SNPs are pleiotropic,
effecting both phenotypes, but with no correlation of their effects. In our second, these 1, 000 SNPs are again
shared, but with equal effects on both phenotypes for a total genetic correlation of ρg = 0.2. In our final
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simulation under the null, we again have ρg = 0.2, except the phenotypes have very different sample sizes
(N1 = 200, 000, N2 = 50, 000), and shared effects are twice as large on average for the phenotype with fewer
samples. This makes shared SNPs much more likely to have low (significant) p-values in the second cohort.
In each setting, we compared our approach against the standard approach of Egger regression using all SNPs
reaching GWS for the exposure as instruments, as well as an oracle with access to the true effect sizes that
uses only non-pleiotropic SNPs.

In the first setting, uncorrelated pleiotropy, all methods were able to effectively control the FPR at level
α = 0.05 in both directions (Figure 2a, Table S1). In the second setting, correlated pleiotropy, standard
Egger regression produced excess false-positives, but our weighting scheme is able to reduce the false positive
rate substantially (Figure 2b, Table S1). In the most challenging setting, correlated pleiotropy with unequal
power, standard Egger regression produces many excess false positives in both directions, but our weighting
scheme again substantially reduces the error rate, from 0.284 to 0.087 in the A→ B direction and from 0.492
to 0.029 in the B → A direction (Figure 2c, Table S1).

Next, we wanted to asses the power of our approach under the one-way alternate hypothesis for various
true effect sizes. We again conduct three simulations, calculating the power for effect sizes ranging from 0.05
to 0.7. In the first, the cohorts had equal sample sizes (N = 100, 000). In the second, the exposure cohort has
larger sample size (N1 = 200, 000, N2 = 50, 000), and in the third the outcome cohort has a larger sample size
(N1 = 50, 000, N2 = 200, 000). In all settings, our weighted Egger approach shows a substantial gain in power
over standard Egger regression. This is especially notable for smaller effect sizes, and when the outcome
GWAS is larger. In this latter setting, the power of standard Egger regression is only slightly higher than
the FPR for the null hypothesis on the reverse direction, while our weighted Egger regression has very high
power (Figure 2d-f, Table S2). However, both methods suffer from an increase in false positives in the reverse
direction when the effect size in the forward direction is strong. For more on this phenomenon, see section 3.

Finally, we tested the power of our approach under the two-way alternate hypothesis. We tested pairs of
effects ranging from −0.5 to 0.5 in both cohorts. Here we conduct two simulations: one with equal sample
size of N = 100, 000, and one with unequal sample sizes N1 = 200, 000 and N2 = 50, 000. In all settings,
our approach improves power substantially over standard Egger regression (Figure S1a-d). As with the
one-way alternative, this is particularly apparent when the outcome has a larger sample size than the exposure
(Figure S1d). We also observed that both methods had lower power when R12 ≈ −R21 and vice versa,
especially when R12 has large absolute value. Indeed, as R12 → −R21 → 1, the model becomes unidentifiable.
This setting is actually a violation of the faithfulness assumption commonly employed in causal inference [25].

In these simulations, we used a p-value threshold of 5× 10−6 for all weighted Egger regression analyses,
but the conclusions held across a range from 5 × 10−4 to 5 × 10−8. We found that 5 × 10−6 provided a
reasonable balance between increased power under the alternative and control of type-I errors. However,
lower cutoffs will provide better control of the type-I error rate in difficult situations at the expense of reduced
power. Likewise, higher cut-offs yield higher power while reducing control of the type-I error rate (Table S3
and Table S4).

inspre is competitive with glasso while handling missingness and directed graphs

As detailed above, both inspre and glasso can be viewed as methods for finding a sparse, approximate
inverse to a noisily measured matrix. Therefore, we sought to compare these two methods when data are
simulated from an undirected graph with normally-distributed observations (the glasso model). We used the
huge [Zhao2012] package to generate data from a multivariate-normal distribution with a sparse precision
matrix for various graph structures, sample sizes, and numbers of features. We considered three kinds of
graph structures: 1) Erdös-Réyni (random) graphs, where each edge is included with probability p, 2) hub
graphs, where nodes are partitioned into disjoint sets and every node in each set is connected to a central
“hub” vertex, 3) scale-free graphs, where the vertex degree distribution follows a power law. Hub and scale-free
networks are intended to mimic common biological networks [26]. We used the default edge weight in huge
of ≈ 0.3. While it is important to evaluate both the presence of the edge and the accuracy of the inferred
weight, the sparse nature of the problem renders traditional accuracy metrics such as the mean squared error
uninformative. We follow standard convention [Zhao2012, 21, 23] and focus on the precision, the number
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Figure 2: Weighted Egger regression reduces false positives and increases power in bi-directional MR. We
simulated GWAS summary statistics for two phenotypes (A, B) with M = 1, 000, 000 independent SNPs,
20% heritability and N = 100, 000 individuals in both the SNP discovery and effect estimation cohorts. In
each simulation, there were 5, 000 causal SNPs per phenotype. a) Both the effect of A on B and B on A are
null, and 1000 of the SNPs have uncorrelated pleiotropic effects. All methods are well behaved. b) Both
effects are again null, but the 1000 shared SNPs have equal effects on both phenotypes. Egger regression
results in excess false positives which our weighting scheme reduces. c) Both effects are null and the shared
SNPs have an equal effect on both phenotypes, but the shared SNPs have twice as large an effect on B, which
also has a much smaller sample size. Egger regression results in numerous false positives, which our weighting
scheme corrects. d) A has a variable effect on B and the studies have equal sample size. Our weighting
scheme improves power over standard Egger regression. e) A effects B, which has a much lower sample size.
Our weighting scheme improves power, but not as much as in (d). f) A effects B, but A has a much smaller
sample size. Our weighting scheme substantially increases power. We conduced 1000 simulations for each
null experiment (a-c) and 250 simulations per effect size for each alternative experiment (d-f).
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of true edges among all inferred edges, and recall, the proportion of true edges detected. We used these to
calculate the F1 score, the harmonic mean of precision and recall, as a function of the stability of the inferred
graph. For the graphical lasso, we used StARS to evaluate graph stability. For inspre, we used random masks
in the weight matrix as detailed above.

First, we simulated data with 40 features and 800 samples. Our random graphs included each edge
with probability p = 0.04, and our hub graphs had two hubs of 20 features each. In this setting inspre and
glasso performed similarly for all graph types, with glasso performing slightly better on random graphs,
inspre performing slightly better on hub graphs, and both methods having very similar performance for
scale-free graphs (Figure S2a-c). Next, we simulated data with 100 features and 500 samples. Here our
random graphs included each edge with probability p = 0.02 and our hub graphs had 5 hubs. In this setting,
glasso outperformed inspre on random graphs, inspre outperformed glasso on hub graphs, and both methods
again had similar performance on scale-free graphs, with a slight edge towards glasso (Figure S2d-f).

We hypothesized that if the entries in the correlation matrix had variable sample sizes, the ability of inspre
to incorporate weights would improve performance relative to glasso. This represents a common real-world
setting in which some features are measured on many samples, and some are measured on only a few. In
each simulation, we first chose a maximum missingness threshold m uniformly between 50% and 99%. Then
we simulated data with 100 features and 2000 samples. For each feature, we chose a number between 0 and
m uniformly at random and set that proportion of the features samples as missing. We then calculated the
sample correlation matrix using only samples where both features were measured per pair of features. In this
setting, inspre was able to continue producing accurate results even with when the maximum missingness
was high. On the other hand, glasso was not able to produce results at all when there was high missingness.
Instead, the glasso algorithm diverged and the program returned a matrix of NA values (Figure S3).

bimmer robustly recovers direct causal effect networks

Our final goal was to show that bi-directional Mendelian randomization could be combined with inspre to
fit networks of simulated phenotypes from phenome-scale GWAS summary statistics. At the time of this
writing we are not aware of any other methods for this specific problem. However, there are a few approaches
to related problems that could be applied. Specifically, the DCEs between multiple exposures and a single
outcome can be calculated from a multiple regression of SNP effects on the outcome against SNP effects
on the exposures [27]. This approach can be used to find sparse effects by using a LASSO or elastic net
regression (elnet-Egger). A more sophisticated approach, such as MR-Bayesian model averaging (MR-BMA),
could also be applied [28].

First, we simulated summary statistics for 50 phenotypes with 1, 000 shared and 2, 000 private causal effect
SNPs per pair of phenotypes, 125, 000 total SNPs. Each phenotype had 20% heritability. The causal network
underlying the phenotypes came from an Erdös-Réyni random graph with randomly oriented edges. We
found that MR-BMA performed comparably to elnet-Egger, but that they both performed poorly compared
to bimmer. Moreover, MR-BMA took about 20 times longer than bimmer to run with default parameter
settings (Figure S4).

Next, we performed larger-scale simulations with 100 phenotypes and 250, 000 total SNPs. We again
simulated data from Erdös-Réyni, hub, and scale-free networks. In this setting both the graph structure
and the orientation of the graphs edges are important variables to consider. The edge orientation will not
necessarily be random: for example, master regulators would have very high out-degree but low in-degree [23].
For all graph types, we tested three ways of orienting the edges in the graph: 1) randomly set the orientation of
each edge (random), 2) preferentially orient edges towards high-degree nodes (towards), and 3) preferentially
orient edges away from high-degree nodes (away). See Figure 3a-c for examples of different kinds of graphs
with different edge orientations. We excluded MR-BMA from these simulations due to runtime concerns.

We found that bimmer was able to accurately re-construct all graph types and edge orientations considered,
while elnet-Egger consistently had poor performance (Figure 3d-i, Figure S5). For Erdos-Reyni graphs, we
found that edge orientation did not have an effect on the performance of bimmer. This is possibly because the
node degree distribution doesn’t have enough variance to have nodes that consistently pull edges towards or
away from them in the latter scenarios. For scale-free and hub graphs, we found that bimmer performed better
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when high-degree nodes had edges oriented away from them (Figure 7). This is particularly interesting as it
corresponds to the most likely real-world scenario [26]. Indeed, bimmer performed worst in the least realistic
scenario: hub graphs with edges oriented towards the hubs (Figure 3e). However even in this challenging
setting, bimmer is able to accurately infer the causal graph.

Application to 405 traits from the UK Biobank

bimmer identifies thousands of direct causal effects in complex pathways

We obtained summary statistics for sex-split UK Biobank phenotypes from the Neale lab [29]. For ease of
interpretation, we transformed all effect sizes to the per-variance scale. As previously suggested [30, 29], we
used only phenotypes with Z-score above 4 and at least “medium” confidence. We removed one phenotype
from every pair with genetic correlation above 0.9, leaving 423 phenotypes. We clumped the UKBB summary
statistics to p = 5× 10−6 with r2 < 0.05 and distance 500 kilobases using the UKBB European genotypes
as a reference panel. We use male summary statistics for SNP selection and weight estimation, and female
summary statistics for TCE estimation. Finally, we removed phenotypes where at least 50% of the standard
errors of the TCE were above 0.5 as either an exposure or an outcome, resulting in 405 phenotypes (Table
S5). 8, 268 (∼ 5%) of the 163, 620 pairs of traits considered had TCEs significant at FDR 5%.

We applied inspre (2) to the resulting TCE matrix (R) to infer the DCE network (G), using inverse-
variance weights as previously described with one slight modification. To avoid having a very small number
of pairs with very small SE dominate the loss, all entries in the TCE matrix with a standard error below
0.005 were given the same weight. We chose a target stability of 0.025 which gave reliable results across our
various simulations (Figure 3, Figure S2, Figure S5). The resulting DCE graph had 7, 949 edges, which we
pruned to 2, 826 edges by removing DCEs with absolute value less than 0.01.

We were curious to compare estimated genetic correlation, weighted Egger estimated TCE (R), bimmer’s
shrunk TCE (U) and bimmer’s inferred DCE (G). First, we clustered phenotypes by genetic correlation to
determine if the patterns observed are shared in the TCE estimates. While there are some similar patterns
across the two matrices, the structure in the TCE estimates is not as well-defined (Figure S6a-b). Indeed, we
find that while the TCE estimates and genetic correlation estimates are correlated, that correlation is fairly
weak (r = 0.270± 0.005). We actually find a slightly lower correlation between U and R (r = 0.238± 0.005),
but this is driven by TCE entries with high standard error that are consequently ignored by inspre’s weighting
procedure. Restricting our analysis to TCE entries with an SE below 0.05, the correlation of the TCE with the
genetic correlation is smaller than the correlation of the TCE with U (r = 0.666± 0.005 vs r = 0.949± 0.004,
respectively). Moreover, entries in U tend to be close to 0 when the corresponding entry in the TCE has a
large standard error (mean |U | = 0.0003± 0.0003 for entries of the TCE with SE > 0.05). We conclude that
bimmer produces a conservative estimate U ≈ R that accurately captures high confidence entries of R but
performs aggressive shrinkage on edges with weak statistical support.

Most (303/405, ∼ 75%) phenotypes have out-degree 0 in our network, that is they have no downstream
causal effects on the traits we consider. However, there is a path from every node with non-zero out-degree
to every other node in the network. The majority of these connections are indirect and result in small effect
sizes that do not reach statistical significance as TCEs; only 6, 007 of 39, 200 pairs of connected nodes have
FDR-corrected TCE p-value below 0.05. Non-significant connections have an average absolute shrunk TCE
of 0.0036 and a median DCE network path length of 3 nodes, while significant connections have an average
shrunk TCE of 0.029 and median DCE network path length of 2 nodes (Figure 4a-b). Despite this, the
majority (3, 831 connections, 63.7%) of significant TCEs result from indirect paths in the DCE network. The
effect explained by the shortest path between two nodes is often only a small fraction of the total effect;
there are typically multiple paths between two nodes contribute to the TCE (Figure 4c-d). This finding is
especially pronounced when looking at all connections, where the median percentage of TCE explained by
shortest path is 0.35% (Figure 4c) rather than FDR 5%-significant connections, where the median percentage
of TCE explained by shortest path is 0.52% (Figure 4d). Interestingly, the percentage of the TCE explained
by shortest path is sometimes greater than 1, i.e. the effect of the shortest path is greater than the total
effect. This occurs when other causal paths act to cancel out the effect of the shortest path and reduce the

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.160176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.160176
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: bimmer accurately infers the causal graph for many graph structures and node orientations. We
simulated summary statistics for 100 phenotypes with 3000 causal effects each, 1000 of which were shared
with uncorrelated effects per pair of phenotypes. We varied the structure and edge orientation of the causal
graph underlying the phenotypes. a) An Erdos-Reyni random graph with randomly oriented edges. Each
edge is included with probability p = 0.05 and then randomly assigned an orientation. b) A hub graph with
edges preferentially oriented towards high degree nodes. The nodes are split into three sets and each node in
each set is assigned to a central hub vertex. c) A scale-free graph with edges preferentially oriented away
from high degree nodes. These graphs have node degrees that follow a power-law distribution. We show the
F1-score of the method against the calculated variability score for d) Erdos-Reyni, e) hub and f) scale-free
graphs. In all cases, we are able to produce accurate results when the variability score is between about 0.01
and 0.05. We also compared the performance against Egger regression with elastic-net shrinkage at a graph
variability score of 0.025. elnet-Egger performs quite poorly compared to bimmer.
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total effect.
Access to the DCE network, rather than just the TCEs, greatly aids data analysis and interpretation. For

example, bimmer is able to impute the existence of some edges that have low statistical support as TCEs,
but are required in order to explain other highly significant effects. Of the 2,826 edges in our network, 571
correspond to FDR-corrected TCE p-values above 0.05. A striking example of this is an effect of “time
spent watching television” (TSWT) on body mass index (BMI). This has no initial statistical support
(R = 0.008± 0.1, p = 0.94) but bimmer infers a strong effect (G = 0.110) in order to explain strong effects
of TSWT on numerous downstream phenotypes such as “usual walking pace” (p < 2× 10−5, U = −0.022),
wheezing in the chest (p < 4×10−5, U = 0.018) and “father’s age at death” (p < 5×10−4, U = −0.010). This
gives evidence of a direct causal effect of a sedentary lifestyle on higher BMI, contradicting an earlier study
using bi-directional Mendelian randomization that found a causal effect of higher BMI on less exercise [15].
We also observed a strong TCE of “age first had sexual intercourse” (AFSI) on a number of surprising
outcomes including knee pain (U = −0.064, p < 3× 10−7), wheezing in the chest (U = −0.067, p < 1× 10−16)
and lower overall health rating (U = −0.058, p < 4× 10−9). These effects are again mediated by a DCE on
BMI, which does not survive correction for multiple testing (R = −0.20± 0.07, U = −0.37, p < 0.07), but
is required by the network to explain observed effects of AFSI on the aforementioned phenotypes. While
this may not represent a literal causal effect, the network structure lends insight into the results and may
lend additional evidence to recent work showing that BMI-associated loci are involved in neuronal pathways
linked to reward [31]. Taken together, we consider this evidence of a complex relationship between BMI and
lifestyle with causal effects likely flowing in both directions.

In contrast, there are highly significant TCEs that are not reflected in the network structure. There is no
path between the nodes in 2, 261 significant TCEs. Compared to connected nodes with significant TCEs,
unconnected nodes tended to have fewer instruments (median instrument count 55 SNPs vs 568 SNPs for
connected nodes), larger initial TCE estimates (median R 0.44 vs 0.07) and larger standard errors (median
0.11 vs 0.01). There are also cases where the nodes are connected, but the network estimated effect is
extremely small. For example, we observe a strong TCE of past tobacco smoking on “ever taken cannabis”
(R = −0.88 ± 0.13, p < 3 × 10−9). Here the path between these nodes flows through BMI, followed by
leukocyte count, resulting in a shrunk TCE of only −0.0002.

bimmer identifies concentrated sub-networks with correlated downstream effects

Our final goal was to identify densely-connected sub-networks with correlated downstream effects. To this
end, we clustered the 102 phenotypes with non-zero out-degree using their outgoing shrunk TCE estimates
(Ui,:) as features. This results in clustering of phenotypes with similar downstream effects. In Figure 5,
we show the genetic correlation (a), weighted-Egger TCE (b), shrunk TCE (c) and inferred DCE (d) for
these 102 phenotypes as exposures and all 405 phenotypes as outcomes. This provides another view into the
patterns of sharing across these matrices. This also allows us to identify several interesting sub-networks with
numerous downstream effects. We selected four for further analysis, corresponding to traits associated with 1)
morphology (Figure 6a), 2) blood-biomarkers (Figure 6b), 3) red blood cells (erythrocyte) (Figure 6c), and 4)
heart-disease (Figure 6d). In all cases, every node within the sub-network is reachable from every other node.
These sub-networks also tend to include traits that are related by definition. In many of these cases, bimmer
puts a bi-directed edge between the two nodes, for example between BMI and weight, between mean sphered
cell volume and mean reticulyte volume, and between sitting height and predicted forced expiratory volume
in one second. While this does not happen universally, bimmer generally succeeds at identifying groups of
traits which could be analyzed jointly.

Part of the heart-disease network, leukocyte count had the highest overall out-degree with 244 DCEs and
177 FDR 5% significant TCEs. The heart disease network includes several well-studied phenomena including
the causal effects of hypertension [32] and high cholesterol [33] on heart disease (G = 0.023, p < 3× 10−5

and G = 0.178, p < 1× 10−16 respectively). There is evidence for both a DCE of leukocyte count on heart
disease (G = 0.023, p < 2× 10−3, [34]) and indirect effects via high cholesterol (G = 0.051, p < 4× 10−7)
and diastolic blood pressure (G = 0.074, p < 7× 10−4), both of which are previously studied pathways [35].
Interestingly, the network has an edge from leukocyte count to both systolic blood pressure and hypertension,
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Figure 4: Applied to 405 phenotypes from the UK Biobank, bimmer identifies indirect effects and paths
explaining a small proportion of the total effect. The distribution of path lengths between connected nodes
for (a) all connected nodes and (b) connected nodes with an FDR 5% significant TCE. Our analysis shows
that there are many long paths between nodes that result in very small effect sizes; closer connections are
much more likely to reach significance after correction for multiple testing. Moreover the shortest path often
explains only a fraction of the total effect for both (c) all connected nodes and (d) connected nodes with an
FDR 5% significant TCE, indicating that there are often numerous ways of getting from one node to another
that add together to form the TCE. We also observe that the shortest path sometimes explains more than
the total effect, indicating that other paths between the nodes act to cancel out the effects of the direct path.
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Figure 5: Clustering by bimmer shrunk TCE reveals groups of nodes with correlated downstream effects in
the UK Biobank. We show (a) the genetic correlation, (b) the weighted Egger TCE, (c) the bimmer shrunk
TCE and (d) the bimmer inferred DCE for the 102 phenotypes with non-zero out-degree (y-axis) against all
405 phenotypes (x-axis), clustered by shrunk TCE. To emphasize the smaller effects in the latter plots, we
use an alternate scale which emphasizes weak positive and negative effects (0.01 to 0.1, light blue and red,
respectively) and strong positive and negative effects (0.1 to 1, dark blue and red, respectively).
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but these do not survive correction for multiple testing as TCEs (p = 0.055 and p = 0.063, respectively). We
consider this evidence of a complex mechanism by which white blood cell traits effect heart disease risk via
multiple causal pathways, warranting further study. One interesting downstream effect of the heart-disease
sub-network is related to choice of pain medication. We detect a positive DCE of high cholesterol on aspirin
use (G = 0.065, p < 3× 10−6) and a negative effect on ibuprofen use (G = −0.025, p < 0.001). This could
reflect common medical advice for patients at risk of heart disease to choose aspirin, which has long been
thought to reduce risk [36], and avoid ibuprofen, which is thought to reduce the effectiveness of aspirin [37].
Another interesting set of traits downstream of this sub-network are related to personality. We find evidence
for a causal effect of leukocyte count on “suffer from nerves” (G = 0.036, p < 1× 10−10), “worrier / anxious
feelings” (G = 0.036, p < 2 × 10−10), neuroticism score (G = 0.042, p < 1 × 10−7) and “tense / highly
strung” (G = 0.035, p < 5× 10−10). This adds to a growing body of literature on the relationship between
inflammatory biomarkers and personality [38, 39].

The blood biomarker sub-network is particularly dense, consisting of 255 direct connections, 236 of which
represent significant TCEs at FDR 5%. The network implies that higher testosterone levels have numerous
health consequences, many of which are related to lung function. For example, higher testosterone protects
against shortness of breath (G = −0.028, p < 4× 10−3) while directly increasing risk of lung cancer (i.e. not
mediated through smoking, G = 0.013, p < 0.02). There is also a direct protective effect of testosterone on
asthma (G = −0.008, p < 0.05) that does not survive our pruning procedure. This lends causal support to
recent observational studies linking increased testosterone to lung cancer risk after controlling for smoking
status [40] and mouse studies linking decreased testosterone to asthma risk [41]. We also observe an effect of
testosterone on loud music exposure frequency (G = 0.018, p < 0.001). bimmer also infers a DCE of lower
urea on “worrier / anxious feelings” that does not survive correction for multiple testing as a TCE (G = 0.011,
p = 0.062). This lends additional evidence urea levels can have psychological consequences [42, 43, 44].

BMI has the second-highest out-degree of any phenotype considered with 215 direct effects, and 175 FDR
5% significant TCEs. Many of the strongest downstream effects of BMI are dietary in nature, including
vegetable intake (G = 0.09, p < 1 × 10−16), milk-type (G = 0.15, p < 1 × 10−16), and dietary variation
(G = 0.115, p < 1 × 10−16). These findings lend additional support to the recent literature on BMI the
cause of traits thought to lead to higher BMI (e.g. exercise [15]) and the observation that BMI-increasing
genetic variants tend to be linked to genes with a role in brain function [45, 46, 31]. We consider this further
evidence that causal effects between BMI and lifestyle flow in both directions. Morphology-related traits are
also linked to numerous diseases, perhaps best exemplified by the strong causal effect of BMI on lower overall
health rating (G = 0.100, p < 1× 10−16).

In the red blood cell network, erythrocyte count and haemoglobin concentration (HC) both have high
out-degree, with 117 and 132 direct effects, respectively. Erythrocyte count has numerous health consequences,
for example a direct effect on lower overall health rating (G = 0.03, p < 3× 10−10). Many of the top direct
effects of HC involve platelet structure, for example volume of blood occupied by platelets (plateletcrit,
G = −0.13, p < 3× 10−11) and platelet count (G = −0.15, p < 2× 10−10). Interestingly, our model predicts
a direct effect of HC on bleeding gums (G = 0.036, p < 2× 10−9); that is, one that is not mediated by the
aforementioned effects on platelets. This may reflect a lack of power to detect the direct effect of platelets
on bleeding gums, or the existence of an alternative pathway. Finally, we detect a DCE of HC on cardiac
arrythmia (G = −0.042, p < 5e− 9), lending causal support to a recent population-based study linking HC
and atrial fibrillation [47].

3 Discussion

As biobanks continue to grow in size and scope, new methods that are able to leverage their power while
overcoming common pitfalls are required. These datasets offer unprecedented opportunity to study the
causal relationship between biomarkers, complex traits and diseases. Here, we have introduced bi-directional
mediated Mendelian randomization (bimmer), a novel approach to inferring sparse networks of direct causal
effects from phenome-scale GWAS summary statistics. We have shown through extensive simulations that
bimmer is able to learn many kinds of causal graph structures even in the presence of non-causal genetic
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Figure 6: bimmer identifies densely-connected sub-networks. Clustering by bimmer shrunk TCE reveals
several concentrated sub-networks, including a morphology network (a), blood biomarker network (b), red
blood cell network (c) and heart disease network (d).
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correlation and differential power across phenotypes. We have demonstrated that our method enables analyses
that would otherwise be impossible. For example, we are able to interrogate the complexity of the network
by analyzing the path length distribution and proportion of effect explained by the shortest path. We are
also able to identify densely connected sub-networks with correlated downstream effects. By applying our
method to the UK Biobank, we lend causal support to several recent observational studies.

Generally speaking, causal claims should be backed by thorough analysis resulting from multiple studies
with differing assumptions and input from domain experts. This raises the question of whether phenome-scale
causal inference, where the number of pairs of to be tested renders this unrealistic, is even possible. Instead,
in this setting one should focus on causal network discovery, learning putatively causal structures that can
suggest avenues for further work. We have demonstrated that causal discovery is invaluable for understanding
the results of phenome-wide Mendelian randomization. Simultaneous inference of edges in the causal graph
can prioritize seemingly-insignificant connections that are globally relevant, remove false-positives with
significant TCE p-values that cannot be coherently incorporated into the network, and enables interpretation
of surprising TCEs in the context of the network structure.

Our approach is conceptually simple and can be viewed both as a method and a framework. First, we
calculate a TCE matrix. This is analogous to a correlation matrix, except that it is not symmetric and
its entries represent causal effects rather than correlations. Then, we find a sparse approximate inverse
to this matrix, which represents a causal graph. This is analogous to glasso, except that we produce a
directed graph instead of an undirected one. This means that bimmer can use any MR method that is able
to produce bi-directed effect estimates, allowing researchers to choose the method that best accommodates
the assumptions of the setting they work in. It also allows bimmer to naturally accommodate other potential
approaches to convert the TCE matrix into a causal network. While we are not aware of other methods
for this specific problem, our method contributes to the extensive fields of biological and causal network
discovery. For example, [8] combines a low-rank plus sparse decomposition of the covariance matrix [9,
7] with the algorithm intervention calculus when the DAG is absent [48] to learn directed acyclic causal
graphs. There, the low-rank component is interpreted as a set of latent variables capturing unobserved
confounding, whereas our method uses Mendelian randomization for this task. Because of the modular nature
of our approach, inspre could be easily extended to include a low-rank component which could help capture
residual confounding. Our method is also related to silencing [49]. There, the authors use physical arguments
pertaining to perturbations at equilibrium to derive a formula similar to (1). However, they use an exact
inversion which leads to poor performance in practice [50]. Finally, [51] and [10] model a low rank component
in the observed data to capture population structure and latent gene expression factors, respectively. However
these methods require access to the primary data, learn undirected graphs, and do not scale to biobanks.

Our approach also builds on recent MR literature. In particular, multi-variable Mendelian randomization
methods are able to compute direct causal effects when there are multiple potential exposures and a single
outcome [28, 27]. While these methods work well in that setting, we have shown that they are not well-suited
to the more general network inference problem that we consider here. Another approach, network Mendelian
randomization, calculates the effect of an exposure on an outcome while accounting for the effects of a third
variable [17]. Our method can be thought of as a generalization of this approach to an arbitrary number
of phenotypes without pre-specifying any as exposures or outcomes. To calculate the TCE matrix, we use
a novel approach to bi-directional MR with Egger regression weights that reduce the effect of pleiotropic
SNPs. This is related to several recent methods. In particular, gwas-pc uses asymmetry in the effect size
distributions to choose an effect direction between the two phenotypes. Similarly, LCV uses this asymmetry
to fit a latent variable model, where imbalanced genetic correlation between the phenotypes and latent
variable imply the effect direction. Compared to these methods, our approach offers several advantages. First,
like LCV but unlike gwas-pc, our method controls the type-I error rate when there is non-causal genetic
correlation and differential power. Second, like gwas-pc, but unlike LCV, our method estimates a quantity
that is interpretable as the effect of one phenotype on the other. Finally unlike both, we are able to estimate
both effect directions simultaneously, allowing our model to accommodate graphs with cycles. Our method is
also related to the recently proposed CAUSE [52]. There, the authors model observed SNPs effects as coming
from a mixture of pleiotropic and non-pleiotropic SNPs. Our method can be viewed as a simple and fast
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approximation to this method where SNPs that appear pleiotropic are given a lower regression weight.
However, our approach does have some weaknesses. First, our method requires that we split the initial

cohort into instrument discovery and effect estimation sub-cohorts. This is common in MR methods, but
LCV has the distinct advantage of using all SNPs, which obviates the need for sample splitting and should
improve power. Second, while there are some phenotype pairs where a direct cause makes sense, there are
others where causality is almost certainly better interpreted as the action of a latent variable. Indeed, it is
likely that some of the causal effects we infer actually represent shared causal pathways. Finally, our method
suffers from a modest increase in false positives in the B → A direction when there is a strong effect from
A → B. When there are many causal SNPs and the effect of A on B is strong, some SNPs that directly
effect A can be mistakenly used as instruments for the effect of B on A. While our method reduces the
magnitude of this estimated effect, it can still give some false positives. Our approach also still suffers from
weak instrument bias, generally underestimating the causal effect, which reduces power [53].

The second step of our method involves finding a sparse inverse to a noisily measured matrix, and is
therefore closely related to the graphical lasso. Like glasso, our method has a single regularization parameter
that can be set in a straightforward manner. However, a key advantage of our approach is that we are
able to incorporate observation weights. This is extremely important in our application since the standard
errors of the TCE matrix can vary dramatically. This also allows us to approximately invert matrices with
missing data, implicitly performing matrix completion by leveraging assumed sparsity in the inverse. This
enables stability-based selection of lasso parameter λ without access to the underlying data by using random
masks. There are other approaches to weighted graphical lasso [54, 55], however these weights represent
prior knowledge and not statistical uncertainty. Here again, our method could easily accommodate prior
biological knowledge through a simple modification of the LASSO penalty. We found that for many classes of
graphs, inspre and glasso produced similar results, however there were some settings where glasso clearly
performed better and vice versa. Moreover, our method is substantially slower than glasso. If κ is the number
of iterations required to reach convergence, glasso very roughly requires time O(κD3), whereas inspre requires
time roughly O(κD4) for D phenotypes. We suspect that there may be ways of improving the speed of our
approach, and in spite of these limitations, the novel capabilities of inspre suggest it may find utility outside
the scope of MR.

Importantly, bimmer only requires GWAS summary statistics. This allows us to apply our method to the
realistic setting where each phenotype is only measured on a subset of individuals. While the UK BioBank
primary genotypes and phenotypes are readily available, this is not the case for many cohorts. Summary
statistics are both legally and practically easier to share, and faster to work with when the primary data is
large [56]. They also enable researchers to work with data from a standardized analysis pipeline, such as [29].
Strictly speaking, our method does not even require summary statistics. If MR analysis results are already
available for every pair of a set of phenotypes, one can use them to construct the matrix R and then infer G
with inspre. In this setting, it is of paramount importance that the researcher verify the underlying studies
were conducted in a way to minimize the effect of horizontal pleiotropy.

In this work we have begun to elucidate the connection between Mendelian randomization and the
omnigenic model [1]. The effects of genetic variants can be used to find and orient edges in the DCE graph
underlying trait variation, and long-range effects can be modeled as paths in this sparse graph resulting
in ubiquitous but small effects. Our method can be applied well beyond the scope considered here. We
are particularly interested in the application to datasets of molecular phenotypes. These datasets generally
have much smaller sample sizes, but molecular phenotypes also tend to have larger, localized SNP effect
sizes [57], which improves the efficiency of MR. Inverse sparse regression could also be applied to datasets
from high-throughput CRISPR-based genetic perturbation experiments to separate out direct effects from
mediated regulatory relationships. We look forward to pursuing these avenues in future work.
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4 Methods

4.1 Trait model

Our goal is to estimate a sparse graph of direct causal effects (DCE), G, from summary association statistics
between genotypes X and phenotypes Y . We model the SNP effects β and the causal graph as fixed effects,
and assume that the genotypes X are sampled independently from a population. For convenience, we assume
that SNPs and phenotypes have been normalized to have mean 0 and variance 1. We also assume that SNPs
are uncorrelated (no linkage disequilibrium, LD) and use LD-pruned variants in all analyses of real data. Our
model is

Y = Y G+Xβ + γ (4)

where γ represents unmeasured factors. Let R be the D ×D matrix of estimated TCEs from MR. Our goal
is to show that under this model G = I −R−1D[1/R−1]. If I −G is invertible, (4) can be re-written

Y = (Xβ + γ)(I −G)−1 (5)

For the purposes of this derivation, we consider solving (5) using two-stage least-squares with X as instruments,
but in practice any MR method can be used. For now, we assume each SNP acts only on one phenotype
(there is no pleiotropy) and that we know which phenotype it is. First we regress each instrument on its
phenotype and use these effect estimates to calculate a set of phenotype scores for each individual. Next, we
regress each phenotype score on the observed values of the other phenotypes, creating a matrix containing
estimates of the total causal effect (TCE) of each phenotype on every other. This gives the estimated effect

matrix β̂. Using (5), we can find E[β̂],

β̂ij =

{
1
NX

>
:,iY:,j |βi,j | > 0

0 otherwise

E[β̂] = β(I −G)−1 ◦ 1[|β| > 0]

where 1 is an indicator function and ◦ is the Hadamard matrix product. Using (4), the TCE matrix is

R̂ =
1

N
(Xβ̂)>Y

=
1

N
(Xβ̂)>Y G+

1

N
(Xβ̂)>Xβ +

1

N
(Xβ̂)>γ

Taking expectations and assuming that the environment random effect γ has 0 mean we obtain,

E[R̂] = E[R̂]G+D[β(I −G)−1],

where the diagonal operator D[X]i,j =

{
Xi,j i = j
0 i 6= j

sets off-diagonal elements of a matrix to 0. Since

E[R̂] = R, this tells us that R satisfies the recurrence R = RG off the diagonal, from which it follows that [50],

G = I −R−1D[1/R−1] (6)

where / indicates elementwise division.
In practice we don’t know which SNP effects which phenotype, and there can be correlated pleiotropic

effects. Consider a pair of phenotypes i and j where phenotype i has a direct causal effect of Gi,j on phenotype
j. If SNP k has a direct effect on phenotype i of size βk,i, but no direct effect on phenotype j (i.e. no
pleiotropy) then the observed effect of SNP k on phenotype j is

βk,j ≈ βk,iGi,j (7)

This SNP therefore contributes β2
k,iG

2
i,j to the variance of Yj , whereas pleiotropic SNPs will contribute

β2
k,iG

2
i,j + α2 for some pleiotropic effect size α. Therefore, SNPs that appear to have a larger absolute effect
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on the exposure relative to the outcome in a discovery cohort are more likely to satisfy (7). First, we split
the samples into two sets and generate two sets of summary statistics, one for SNP discovery and weight
estimation (the discovery set) and one for TCE estimation (the estimation set). Using the discovery set,
we identify the set of SNPs marginally associated at p-value threshold p for each phenotype i. Call this set
Ii = {k : p̂k,i < p}. For every SNP k ∈ Ii and every phenotype j, we calculate the Welch test statistic for a
two sample difference in mean with unequal variances [24]

ti,jk =
|β̂k,i| − |β̂k,j |√
ŝ2k,i + ŝ2k,j

(8)

and use this to construct a weight wi,jk = ti,jk /t̄ŝ
2
k,j .

4.2 Inverse sparse regression

If we knew R exactly, we could simply invert it and plug the inverse into (6). However, we only have access
to the noisy estimate R̂, which is not necessarily well-conditioned or even invertible. Instead, we assume that
the underlying directed graph of DCE is sparse. We observe that in (6), G is sparse if and only if R̂−1 is
sparse, and so we can think of solving (6) as finding a sparse matrix inverse. Let A be an arbitrary D ×D
matrix (R̂ in bimmer). We seek matrices U , V with V U = I that minimize the loss,

1

2
||W ◦ (A− U)||2F + λ

∑
i 6=j

|Vij | (9)

We minimize this loss using alternating direction method of multipliers (ADMM) [58]. Let Θk be a matrix of
Lagrange multipliers. The updates for Uk, V k and Θk are

V k+1 ← arg min
V

∣∣∣∣∣∣∣∣ 1
√
ρ

(
I − θk

>
)
−√ρUk

>
V

∣∣∣∣∣∣∣∣2
F

+ λ
∑
i 6=j

|Vij | (10)

Uk+1
:,d ←

(
ρV k+1>V k+1 +D[W:,d]

)−1(
ρV k+1>

:,d −
(
V k+1>θ

)
:,d

+ (W ◦A):,d

)
(11)

θk+1 ← θk + ρ(Vk+1Uk+1 − I) (12)

where ρ is the penalty parameter [58]. The update for V k+1 is a straightforward LASSO regression. For the
update for U we use the biconjugate gradient stabilized method implemented in the Rlinsolve package to
solve the linear system rather than explicitly computing the inverse [59]. We always start from the initial
condition U0 = V0 = I. For the derivation of these equations including the specifics of how we tune the
penalty parameter see the Supplemental note.

4.3 Setting the LASSO penalty using stability selection

We use an adaptation of the Stability Approach to Regularization Selection (StARS, [23]) to select the
regularization parameter. StARS leverages the intuition that smaller values of λ yield graphs that are more
stable under random re-samplings of the input data to construct an interperatable quantity representing
the average probability that each edge is included in the graph for each value of λ in (9). Let φλ be a
D×D matrix where entry i, j is the probability that each edge i, j is included in the graph for regularization
parameter λ. Our goal is to estimate φλ for many choices of λ and turn this into a graph instability measure
Dλ. Let W k

i,j = Wi,j with probability p and W k
i,j = 0 with probability 1 − p. Let V kλ be the approximate

inverse of A resulting from fitting (9) for regularization setting λ and weight set W k. Let ψkλ = 1[|V kλ | > 0].
Then φλ can be estimated as

φ̂λ =
1

K

K∑
k=1

ψkλ (13)
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using K independent random masks. The instability measure Dλ is estimated as [23]

D̂λ =
1

D(D − 1)

∑
i,j

2φ̂i,jλ (1− φ̂i,jλ ) (14)

Clearly, D = 0 for very large values of λ, where V kλ = I for every mask k. As λ becomes smaller, D rises, but

as λ approaches 0, D → 0 as V kλ → A+. Following [23], we first normalize D̂λ by setting it to D̄λ = supl≤λ D̂l

and then choose the smallest value of λ with stability below a cut point b, λ̂ = sup{λ : D̄λ ≤ b}.

5 Code Availability

All code used in the production of this manuscript is available at https://github.com/brielin/bimmer

and https://github.com/brielin/inspre. The full data analysis results are available at https://zenodo.
org/record/3895125.
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Supplemental Note

Alternating direction method of multipliers

First, consider the unweighted optimization problem

1

2
||A− U ||2F + λ

∑
i 6=j

|Vij | (15)

The augmented Lagrangian is,

L =
1

2
||A− U ||2F + λ

∑
i 6=j

|Vij |+ Tr(θ(V U − I)) +
1

2
ρ||V U − I||2F

The update for V can be found by noticing that minimizing L is equivalent to solving a lasso regression with
design matrix

√
ρU> and response 1√

ρ (I − θ>),

L ∝Tr(θ(V U − I)) +
1

2
ρ||V U − I||2F + λ

∑
i 6=j

|Vij |

= || 1
√
ρ

(I − θ>)−√ρU>V ||2F + λ
∑
i 6=j

|Vij |

The update for U can be found by taking the gradient OUL and setting it to 0,

OUL = A− U + V >θ + ρV >(V U − I)

U = (I + ρV >V )−1(A+ ρV > − V >θ)

ADMM gives the update for θ [58],
θ ← θ + ρ(V U − I) (16)

Now we consider the weighted version. Assume that in addition to the matrix A, we also have a matrix of
standard errors of the entries of A, SA. Let W = 1/S2

A be a matrix of inverse variance weights. We now seek
matrices U , V with V U = I that minimize the loss,

1

2
||W ◦ (A− U)||2F + λ

∑
i 6=j

|Vij | (17)
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This does not effect the update for V , however the gradient of the augmented Lagrangian with respect to U
is now,

OUL = −W ◦ (A− U) + V >θ + ρV >V U − ρV >

which separates over columns of U , giving the update

U:,d = (ρV >V +D[W:,d])
−1(ρV >:,d − (V >θ):,d + (W ◦A):,d) (18)

where here the D operator creates a matrix with W:,d on the diagonal and 0 elsewhere.
ADMM also requires that we set the parameter ρ, which controls the balance in the objective between the

primal and dual constraints [58]. We follow standard practice of setting rho to an initial value and increasing
or decreasing it according to the ratio of the solution to the primal and dual feasibility constraints. The
primal residual at iteration k + 1 is given by rk+1 = V k+1Uk+1 − I. The dual residual is found by setting
OULk = 0 and evaluating it at Uk+1

OUL
k = A− Uk+1 + V k

>
θk + ρV k

>
(V kUk+1 − I)

= A− Uk+1 + V k
>
θk + ρV k

>
rk+1 + ρV k

>
(V kUk+1 − V k+1Uk+1)

= A− Uk+1 + V k+1>θk+1 + ρV k
>

(V k − V k+1)Uk+1

Therefore the dual residual is [58]

dk = ρV k
>

(V k − V k+1)Uk+1

and we can adjust ρ as follows,

ρk+1 =

 τρk if ||rk||2 > µ||dk||2
ρk/τ if ||dk||2 > µ||rk||2
ρk otherwise

which reduces the impact of the initial choice of ρ. While this may appear to be a lot of parameters, they
effect the convergence of the algorithm substantially more than the solution obtained. We always use the
default values ρ = 10, µ = 10, τ = 2.
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Figure S1: Weighted Egger regression improves power under the two-way alt. We simulated GWAS
summary statistics for two phenotypes (A, B) with M = 1, 000, 000 independent SNPs, 20% heritability and
N = 100, 000 individuals in both the SNP discovery and effect estimation cohorts. In each simulation, there
were 5, 000 causal SNPs per phenotype of which 1, 000 were shared with uncorrelated effect sizes. a) Power
to detect the effect of A on B when the studies have equal sample sizes. Our weighting scheme increases
power of standard Egger regression, but both methods struggle to detect when the traits cancel each other
out. b) Power to detect the effect of B on A. Our approach improves power and the cancellation pattern is
transposed. c) Power to detect the effect of A on B when A has a larger sample size. Our approach improves
power, though both do well. d) Power to detect the effect of B on A when A has a larger sample size. Our
approach improves power substantially over standard Egger regression, which struggles to detect the effect.
Results are the average of 250 simulations per pair of effects.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.160176doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.160176
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2: inspre performs similarly to glasso on data from gaussian graphical models. We simulated data from
a multivariate normal distribution with a sparse precision matrix for various sample sizes, dimensionalities
and graph structures. Then we evaluated the relationship between F1-score and graph stability for both inspre
and glasso. a) inspre and glasso perform similarly for Erdos-Reyni graphs, b) hub graphs and c) scale-free
graphs with 40 dimensions and 800 samples. d) At 100 features and 500 samples, glasso outperforms inspre
on Erdos-Reyni graphs, but the opposite is true for hub graphs (e). f) glasso also slightly outperforms inspre
on scale-free graphs in this setting.
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Figure S3: inspre is able to produce results when there is differential sample size across features while glasso
diverges. We simulated data from a gaussian graphical model with 100 features and samples sizes ranging
from 20 − 2000 per feature. inspre continues to produce results when some features have only 20 − 400
samples, while glasso needs at least 400 for a) Erdos-Reyni, b) hub and c) scale-free graphs.
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Figure S4: bimmer accurately infers small random graphs much faster than MR-BMA. We simulated Summary
statistics for 40 phenotypes with 3000 causal effects each, 1000 of which were shared with uncorrelated effects
per pair of phenotypes. a) inspre outperforms both elnet-Egger and MR-BMA, which takes about 20 times
longer to run than inspre (b).
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Figure S5: bimmer accurately infers the causal graph for many graph structures and node orientations. We
simulated summary statistics for 100 phenotypes with 3000 causal effects each, 1000 of which were shared
with uncorrelated effects per pair of phenotypes. We varied the structure and edge orientation of the causal
graph underlying the phenotypes. We show the F1-score of the method against the stability score for a) Erdos
Reyni graphs with randomly oriented edges, b) Erdos-Reyni graphs with edges oriented towards high-degree
nodes , c) Erdos-Reyni graphs with edges oriented away from high-degree nodes, d) hub graphs with randomly
oriented edges, e) hub graphs with edges oriented towards high-degree nodes, f) hub graphs with edges
oriented away from high-degree nodes, g) scale-free graphs with randomly oriented edges, h) scale-free graphs
with edges oriented towards high-degree nodes, i) scale-free graphs with edges oriented away from high-degree
nodes.
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Figure S6: bimmer shrunk total causal effects are only weakly correlated with genetic correlation. a) Genetic
correlation between all pairs of phenotypes, clustered by absolute correlation. b) Weighted Egger TCE
estimates using the same clustering scheme reveals some similar patterns, but lacks the well-defined structure
of the genetic correlation estimates. The bimmer shrunk TCE (c) and DCE (d) reveal a banded structure
where few nodes have high out-degree with many downstream effects, but most nodes have no downstream
effects (empty rows).
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Method FPRA SEA FPRB SEB MAEA SEA MAEB SEB

Null: Uncorrelated pleiotropy
Oracle 0.041 0.006 0.054 0.007 0.009 0.000 0.009 0.000
W-Egger 0.053 0.007 0.058 0.007 0.042 0.001 0.042 0.001
Egger 0.053 0.007 0.053 0.007 0.091 0.002 0.090 0.002

Null: Correlated pleiotropy
Oracle 0.043 0.006 0.038 0.006 0.009 0.000 0.009 0.000
W-Egger 0.051 0.007 0.068 0.008 0.044 0.001 0.047 0.001
Egger 0.095 0.009 0.084 0.009 0.172 0.004 0.166 0.004

Null: Correlated pleiotropy, unequal power
Oracle 0.052 0.007 0.036 0.006 0.014 0.000 0.006 0.000
W-Egger 0.087 0.009 0.029 0.005 0.053 0.001 0.080 0.002
Egger 0.284 0.014 0.492 0.016 0.178 0.003 0.648 0.010

Table S1: Weighted Egger regression reduces false positives in bi-directional MR under the two way null. We
simulated GWAS summary statistics for two phenotypes (A, B) with M = 1, 000, 000 independent SNPs,
20% heritability and N = 100, 000 individuals in both the SNP discovery and effect estimation cohorts. In
each simulation, there were 5, 000 causal SNPs per phenotype and neither phenotype had an effect on the
other. In the first setting pleiotropic effects are uncorrelated and all methods are well behaved. In the next
setting the 1000 shared SNPs have equal effects on both phenotypes. Here Egger regression results in excess
false positives which our weighting scheme reduces. In the last setting shared SNPs again have equal effects
on both phenotype, but shared SNPs explain a larger proportion of the variance in the second cohort, which
also has a smaller sample size. Here Egger regression results in numerous false positives, which our weighting
scheme corrects. Values reflect averages over 1, 000 simulations.
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Method PWRA SEA FPRB SEB MAEA SEA MAEB SEB

Alt: Equal sample sizes, R=0.2
Oracle 1.000 0.000 0.062 0.016 0.040 0.001 0.010 0.000
W-Egger 0.683 0.030 0.050 0.014 0.075 0.003 0.046 0.002
Egger 0.183 0.025 0.046 0.014 0.114 0.005 0.099 0.005

Alt: Equal sample sizes, R=0.5
Oracle 1.000 0.000 0.042 0.013 0.095 0.001 0.010 0.000
W-Egger 0.988 0.007 0.175 0.025 0.189 0.004 0.086 0.004
Egger 0.662 0.031 0.150 0.023 0.229 0.007 0.215 0.010

Alt: Larger sample 1, R=0.2
Oracle 1.000 0.000 0.038 0.012 0.024 0.001 0.006 0.000
W-Egger 0.675 0.030 0.050 0.014 0.070 0.003 0.054 0.003
Egger 0.354 0.031 0.071 0.017 0.083 0.004 0.190 0.013

Alt: Larger sample 1, R=0.5
Oracle 1.000 0.000 0.050 0.014 0.055 0.001 0.007 0.000
W-Egger 0.992 0.006 0.075 0.017 0.148 0.005 0.086 0.004
Egger 0.988 0.007 0.160 0.024 0.166 0.005 0.520 0.032

Alt: Larger sample 2, R=0.2
Oracle 1.000 0.000 0.058 0.015 0.065 0.001 0.015 0.001
W-Egger 0.500 0.032 0.079 0.017 0.077 0.004 0.052 0.003
Egger 0.079 0.017 0.092 0.019 0.237 0.017 0.068 0.004

Alt: Larger sample 2, R=0.5
Oracle 1.000 0.000 0.042 0.013 0.161 0.001 0.015 0.001
W-Egger 0.938 0.016 0.217 0.027 0.161 0.006 0.097 0.004
Egger 0.212 0.026 0.117 0.021 0.319 0.015 0.116 0.006

Table S2: Weighted Egger regression improves power and reduces false positives under the one-way alternate
hypothesis. We simulated GWAS summary statistics for two phenotypes (A, B) with M = 1, 000, 000
independent SNPs, 20% heritability and N = 100, 000 individuals in both the SNP discovery and effect
estimation cohorts. In each simulation, there were 5, 000 causal SNPs per phenotype and A has a variable
effect on B. When the cohorts have the same sample size, weighted Egger regression improves power in the
alt direction while reducing the magnitude of the effect inferred in the null direction for both. This continues
to hold when cohort A is larger and when cohort B is larger.
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pt FPRA SEA FPRB SEB MAEA SEA MAEB SEB

Null: Uncorrelated pleiotropy
5e-04 0.070 0.008 0.073 0.008 0.016 0.000 0.016 0.000
5e-05 0.051 0.007 0.060 0.008 0.026 0.001 0.028 0.001
5e-06 0.053 0.007 0.058 0.007 0.042 0.001 0.042 0.001
5e-07 0.055 0.007 0.072 0.008 0.059 0.001 0.061 0.001
5e-08 0.059 0.007 0.059 0.007 0.081 0.002 0.077 0.002

Null: Correlated pleiotropy
5e-04 0.075 0.008 0.074 0.008 0.017 0.000 0.017 0.000
5e-05 0.042 0.006 0.051 0.007 0.027 0.001 0.027 0.001
5e-06 0.051 0.007 0.068 0.008 0.044 0.001 0.047 0.001
5e-07 0.041 0.006 0.064 0.008 0.065 0.002 0.066 0.002
5e-08 0.039 0.006 0.058 0.007 0.088 0.002 0.088 0.002

Null: Correlated pleiotropy, unequal power
5e-04 0.078 0.008 0.366 0.015 0.039 0.001 0.033 0.001
5e-05 0.086 0.009 0.144 0.011 0.045 0.001 0.050 0.001
5e-06 0.087 0.009 0.029 0.005 0.053 0.001 0.080 0.002
5e-07 0.073 0.008 0.049 0.007 0.060 0.001 0.187 0.006
5e-08 0.067 0.008 0.075 0.008 0.067 0.002 0.373 0.013

Table S3: Weighted Egger regression controls the false positive rate for various pt choices. We simulated GWAS
summary statistics for two phenotypes (A, B) with M = 1, 000, 000 independent SNPs, 20% heritability and
N = 100, 000 individuals in both the SNP discovery and effect estimation cohorts. In each simulation, there
were 5, 000 causal SNPs per phenotype and neither phenotype had an effect on the other. When pleiotropic
effects are uncorrelated, pt = 5× 10−4 shows a mild increase in FPR and all others control the FPR at level
α = 0.05. The same is true when pleiotropic effects are correlated. When pleiotropic effects are correlated
but there is unequal power, all cutoffs display a modest increase in the FPR for the A→ B direction, and all
cutoffs at or below 5× 10−6 control the FPR in the B → A direction.
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pt PWRA SEA FPRB SEB MAEA SEA MAEB SEB

Alt: Equal sample sizes, R=0.2
5e-04 1.000 0.000 0.150 0.023 0.023 0.001 0.020 0.001
5e-05 0.988 0.007 0.079 0.017 0.048 0.002 0.031 0.001
5e-06 0.683 0.030 0.050 0.014 0.075 0.003 0.046 0.002
5e-07 0.375 0.031 0.042 0.013 0.089 0.004 0.064 0.003
5e-08 0.246 0.028 0.033 0.012 0.102 0.005 0.083 0.004

Alt: Equal sample sizes, R=0.5
5e-04 1.000 0.000 0.596 0.032 0.058 0.002 0.051 0.002
5e-05 1.000 0.000 0.288 0.029 0.108 0.003 0.065 0.002
5e-06 0.988 0.007 0.175 0.025 0.189 0.004 0.086 0.004
5e-07 0.850 0.023 0.142 0.023 0.229 0.006 0.120 0.006
5e-08 0.612 0.032 0.079 0.017 0.239 0.008 0.155 0.007

Alt: Larger sample 1, R=0.2
5e-04 0.929 0.017 0.133 0.022 0.050 0.002 0.018 0.001
5e-05 0.812 0.025 0.058 0.015 0.060 0.003 0.028 0.001
5e-06 0.675 0.030 0.050 0.014 0.070 0.003 0.054 0.003
5e-07 0.467 0.032 0.046 0.014 0.078 0.004 0.107 0.006
5e-08 0.358 0.031 0.062 0.016 0.087 0.004 0.161 0.010

Alt: Larger sample 1, R=0.5
5e-04 1.000 0.000 0.433 0.032 0.095 0.003 0.037 0.001
5e-05 1.000 0.000 0.242 0.028 0.118 0.004 0.055 0.002
5e-06 0.992 0.006 0.075 0.017 0.148 0.005 0.086 0.004
5e-07 0.958 0.013 0.085 0.018 0.157 0.005 0.185 0.010
5e-08 0.896 0.020 0.104 0.020 0.165 0.006 0.334 0.018

Alt: Larger sample 2, R=0.2
5e-04 1.000 0.000 0.092 0.019 0.039 0.001 0.041 0.002
5e-05 1.000 0.000 0.088 0.018 0.043 0.002 0.045 0.002
5e-06 0.500 0.032 0.079 0.017 0.077 0.004 0.052 0.003
5e-07 0.162 0.024 0.096 0.019 0.135 0.006 0.058 0.003
5e-08 0.080 0.018 0.088 0.018 0.216 0.012 0.066 0.003

Alt: Larger sample 2, R=0.5
5e-04 1.000 0.000 0.246 0.028 0.146 0.002 0.072 0.003
5e-05 1.000 0.000 0.212 0.026 0.098 0.003 0.078 0.003
5e-06 0.938 0.016 0.217 0.027 0.161 0.006 0.097 0.004
5e-07 0.435 0.032 0.183 0.025 0.259 0.011 0.106 0.005
5e-08 0.150 0.023 0.146 0.023 0.343 0.016 0.118 0.006

Table S4: Higher pt thresholds improve power in the alt direction but increase false positives in the null
direction. We simulated GWAS summary statistics for two phenotypes (A, B) with M = 1, 000, 000
independent SNPs, 20% heritability and N = 100, 000 individuals in both the SNP discovery and effect
estimation cohorts. In each simulation, there were 5, 000 causal SNPs per phenotype and A has a variable
effect on B. We find that in all settings higher pt thresholds improve power in the alt direction but increase
false positives in the null direction. We conclude that pt = 5× 10−6 greatly improves power over the standard
pt = 5× 10−8 with only a modest increase in false positives, and an overall reduction in magnitude of the
effect inferred in the reverse direction.
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