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ABSTRACT 12 
 13 
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase 14 
protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from 15 
embryonic development to aging. However, its brain tissue-specific roles remain less explored. 16 
Here, we have identified that the depletion of the mTOR gene in the mice striatum completely 17 
prevented the extrapyramidal motor side-effects (catalepsy) induced by the dopamine 2 receptor 18 
(D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. 19 
Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 20 
receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration 21 
of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal 22 
protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic 23 
approach, we used a pharmacological method and determined that the mTORC1 inhibitor 24 
rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We 25 
consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent 26 
manner) the haloperidol-induced catalepsy in wild-type mice. Collectively, our data indicate that 27 
striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-28 
dependent extrapyramidal motor side-effects of haloperidol in psychiatric illness.   29 
 30 
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 35 
INTRODUCTION 36 
mTOR exists as the mTOR-mLST8-Raptor complex (mTORC1) and mTOR-mLST8-Rictor 37 
complex (mTORC2). It serves as a multifunctional kinase in embryonic development, cancer, 38 
diabetes, aging, and neurodegenerative diseases (Bockaert and Marin, 2015; Laplante and 39 
Sabatini, 2012; Stallone et al., 2019). Its role and regulation in nervous system physiology and 40 
disease, however, is poorly understood (Hoeffer and Klann, 2010). This represents a major 41 
knowledge gap because the malfunction of mTORC1 activity (either by being too high or too low) 42 
has been linked to a variety of brain dysfunctions such as epilepsy, mental retardation, tuberous 43 
sclerosis, Huntington disease (HD), Parkinson’s disease (PD), and Alzheimer’s disease (AD), all 44 
of which affect a specific set of neuronal populations in the brain (Caccamo et al., 2014; 45 
Malagelada et al., 2010; Ravikumar et al., 2004; Troca-Marin et al., 2012; Zeng et al., 2009). A 46 
detailed understanding of how mTOR is regulated and what role it plays in selective brain regions 47 
is important for the development of better intervention strategies. 48 
               The brain’s striatum is composed of more than 95% inhibitory medium spiny neurons 49 
(MSNs) and it plays an important role in motor, cognitive, psychiatric, and reward behaviors 50 
(Grahn et al., 2008). MSNs dysfunctions can lead to the motor abnormalities seen in HD and PD; 51 
however, the molecular mechanisms are unclear. Interestingly, global blocking of mTORC1 52 
signaling with rapamycin affords protection against the pathological and behavioral symptoms 53 
associated with HD and PD in murine models (Crews et al., 2010; Dehay et al., 2010; Fox et al., 54 
2010; Malagelada et al., 2010; Ravikumar et al., 2004; Sarkar et al., 2008). However, the striatal-55 
specific roles of mTOR signaling remains obscure. 56 
               Two major types of functionally distinct MSN are recognized, based on the dopamine 1 57 
receptor (D1R) or dopamine 2 receptor (D2R) expression found in the striatum. In association 58 
with other receptors (e.g., glutamate, serotonin, and adenosine A1 and A2A receptors), dopamine 59 
receptors play critical roles in the processing of sensory, motor, cognitive, and motivational 60 
functions. (Graybiel and Grafton, 2015; Rolls, 1994). Functionally, D1R signaling increases 61 
Gαolf/adenylyl cyclase/cAMP/PKA signaling in the direct pathway of the basal ganglia, whereas 62 
D2R signaling inhibits cAMP/PKA signaling in the indirect pathway (Fernandez-Duenas et al., 63 
2019; Herve, 2011; Kuroiwa et al., 2012; Nishi et al., 2011). Both dopamine D1 and D2 receptor 64 
stimulation promote motor activity. Pharmacological inhibition either of D1R or the D2R 65 
consistently trigger severe motor deficit and extrapyramidal side effects (EPS) (Klemm, 1989). 66 
              Recent studies have indicated that coordinated signaling of both D1R and D2R is 67 
responsible for the initiation and execution of motor activity (Sheng et al., 2019). Importantly, 68 
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mTOR phosphorylation is selectively increased in the striatum during L-DOPA-induced dyskinesia 69 
(Eshraghi et al., 2020) and motor learning (Bergeron et al., 2014). However, the genetic evidence 70 
for the physiological role of mTOR signaling in the striatum (or its role in D1R versus D2R MSNs 71 
signaling) is currently unknown. Using genetic and pharmacological approaches, we investigated 72 
the role of mTOR on striatal-mediated motor behaviors under basal and challenged conditions. 73 
 74 
RESULTS 75 
Striatal mTOR regulates motor behaviors 76 
The role of mTOR signaling in the regulation of striatal motor functions under basal conditions 77 
remains unclear. To address this question, we carried out conditional depletion of mTOR in the 78 
striatum of adult mTORflox/flox mice. We used an AAV1.hSyn.HI.WPRE.SV40 variant expressing 79 
Cre-GFP (AAV-Cre-GFP) under the control of human synapsin promoter to deplete mTOR 80 
preferentially in striatal neuronal cells (Kugler et al., 2003). We stereotaxically injected purified 81 
virus (AAV-Cre-GFP or AAV-GFP) bilaterally into the striatum of 8-week-old mTORflox/flox mice (Fig. 82 
1A, B). Using Ctip2 (a marker for MSNs), we confirmed that in AAV-Cre-GFP-injected mTORflox/flox 83 
mice (mTOR mutant), mTOR is depleted in the striatum 18 weeks after Cre injection, as expected, 84 
but not in AAV-GFP-injected mTORflox/flox mice (control) (Fig. 1C, D, E). To determine the potential 85 
influence of neuronal mTOR depletion on cell survival, we estimated the number of cells and 86 
ventricular size between mTOR mutant and control mice. We found no gross changes in the 87 
number of total cells (Fig. 1E) or the ventricular size of the rostral and caudal striatal regions 88 
between mTOR mutant and control mice (Fig. 1F, G). These results indicate that AAV-Cre-GFP 89 
injection produces mTOR depletion in the MSNs and does not elicit any neurodegenerative-like 90 
phenotype. 91 
                  We next assessed the striatal motor functions in mTOR mutant and control mice two 92 
weeks after AAV-Cre-GFP or AAV-GFP control injections. As Cre-recombinase injection in the 93 
brain may affect behaviors (Rezai Amin et al., 2019), we have included an additional control group 94 
for Cre: WT [C57BL/6]  mice injected with AAV-Cre-GFP (Cre-control) or AAV-GFP (GFP-control) 95 
in all of our longitudinal behavioral analyses.  96 
                 First, we measured locomotor activity using the open-field test (OFT). In the OFT, 97 
mTOR mutant, control, and Cre/GFP-control mice are placed individually in faintly lit open field 98 
chambers for 30 min sessions. The mTOR mutant mice displayed a mild increase in forward 99 
locomotion at 14 weeks that was not significantly different at 10 or 18 weeks of age, compared to 100 
Cre/GFP injected control animals (Fig. 1H).  101 
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                 Second, we investigated whether depletion of striatal mTOR impacts on balance and 102 
motor coordination, which is regulated by the striatum-cerebellar circuitry, using rotarod(Bostan 103 
and Strick, 2018). The mTOR mutant showed a decreased trend of motor coordination on the 104 
rotarod test compared to the control and Cre/GFP-control groups (Fig. 1I).  105 
                 Overall, these results indicate that striatal mTOR plays a modulatory role in locomotion 106 
and motor coordination under basal conditions. 107 
 108 
Striatal mTOR does not influence D1R-mediated motor effects   109 
Dopamine regulates motor functions such as locomotion and motor coordination by stimulating 110 
two main classes of receptors in the striatum (D1R and D2R) (Durieux et al., 2012). Considering 111 
that striatal mTOR depletion produces motor alterations under basal conditions, we questioned 112 
to what extent the D1R signaling-mediated function is affected in mTOR mutant mice. To address 113 
this question, we intraperitoneally (i.p.) injected pharmacological modulators that either activate 114 
D1R-signaling using SKF81297 (2.5 mg/kg, i.p.) or inhibit D1R-signaling using SCH23390 (0.1 115 
mg/kg, i.p.), as described in previous studies (Ghiglieri et al., 2015; Napolitano et al., 2010; Usiello 116 
et al., 2000; Vitucci et al., 2016). Injection of SKF81297 (2.5 mg/kg, i.p.), a selective agonist of 117 
the D1R receptor, produced robust motor stimulation in all animals compared to the saline-118 
administered group. Thus, administration of the D1R agonist induced comparable 119 
hyperlocomotion in AAV-Cre-GFP-injected mTORflox/flox and control groups (mTORflox/flox injected 120 
with AAV-GFP or WT mice injected with AAV-Cre-GFP or AAV-GFP) when tested at 30 and 60 121 
min (Fig. 1J). This result indicates that mTOR depletion does not grossly interfere with D1R-122 
mediated motor stimulation. 123 
                 We next asked whether striatal mTOR plays any role in D1R-mediated catalepsy. 124 
Indeed, it has been well-established that blocking D1R with its antagonist SCH23390 (0.1 mg/kg, 125 
i.p.) elicits cataleptic behavior (i.e., the animal was unable to correct an externally imposed 126 
posture—time spent on the bar) (Morelli and Di Chiara, 1985; Napolitano et al., 2019). Notably, 127 
SCH23390 administration induced a similar cataleptic response in mTOR mutant mice and control 128 
groups (Fig. 1K, L). This result indicates that mTOR depletion has no significant effect on D1R 129 
antagonist-induced EPS.  130 
                 Collectively, this data indicates that striatal mTOR does not affect pharmacologically 131 
modulated D1R-dependent motor behaviors.  132 
 133 
Striatal mTOR promotes D2R inhibition (Haloperidol)-induced cataleptic behavior 134 
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We then investigated whether mTOR depletion modulates pre-and post-synaptic D2R-signaling-135 
mediated motor behavior. We administered quinpirole (0.5 mg/kg, i.p.), a D2R agonist, that by 136 
activating the presynaptic D2R reduces dopamine concentration in the striatum and in turn exerts  137 
overall dopamine receptor hypo-stimulation coupled to motor depression in mice(Napolitano et 138 
al., 2010; Radl et al., 2018; Usiello et al., 2000). Interestingly, we found that regardless of 139 
genotype, the administration of quinpirole similarly inhibited motor exploration in a novel 140 
environment (Fig. 2A). This data indicates that a lack of mTOR does not affect normal presynaptic 141 
D2R receptor-dependent motor effects in animals.  142 
                      Administration of a typical antipsychotic drug (haloperidol (0.5 mg/kg, i.p.), which 143 
inhibits post-synaptic D2R (Centonze et al., 2004; Radl et al., 2018; Sebel et al., 2017), robustly 144 
induced catalepsy in the control groups (Fig. 2B, C). Conversely, haloperidol administration 145 
completely failed to induce any cataleptic effect in mTOR mutant mice (Fig. 2B, C). Thus, a striking 146 
and complete loss of haloperidol-induced extrapyramidal symptoms was observed in the mTOR 147 
mutant mice (Fig. 2B, C). These results indicate that mTOR depletion interrupts the haloperidol-148 
induced cataleptic effect, suggesting that mTOR signaling selectively controls post-synaptic D2R 149 
signaling in the striatal MSNs. 150 
 151 
mTOR mediates haloperidol-induced pS6 phosphorylation in the striatum 152 
Because haloperidol-induced catalepsy is completely abolished in the mTOR mutant mice, we 153 
hypothesized that haloperidol might promote mTOR signaling in the striatum. We administered 154 
haloperidol to mTOR mutant mice and the control group and isolated striatal tissue after 20 min. 155 
We found a clear upregulation of pS6 (S235/236) by haloperidol only in the AAV-GFP control 156 
group but not in the mTOR mutant mice (Fig. 2D, E). Surprisingly, haloperidol did not induce the 157 
phosphorylation of S6K or the 4EBP1, which are the direct mTORC1 targets. This data is 158 
consistent with a previous report(Valjent et al., 2011). Although the reasons for this are unclear, 159 
it was proposed that the basal S6K activity may be sufficient to induce pS6 because deletion of 160 
S6K abolishes haloperidol-induced pS6 in the striatum(Bonito-Oliva et al., 2013). 161 
Phosphoinositide-3 kinase target pAkt (T308) signaling or mTORC2 target pAkt (S473) was also 162 
unaltered in the striatum of the treatment and control groups (Fig. 2D, E). 163 
                     It is well known that by blocking D2R, haloperidol unmasks the ability of adenosine 164 
A2AR to enhance striatal cAMP/PKA signaling and ultimately increases the phosphorylation 165 
levels of the glutamate receptor subunit GluR1 [pGluR1 (S845)] (Ghiglieri et al., 2015; Valjent et 166 
al., 2011). Interestingly, we found that haloperidol robustly induced pGluR1 (S845) in all 167 
genotypes and that the extent of activation was similar between mTOR mutant and control 168 
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animals (Fig. 2D, E). Thus, mTOR does not mediate haloperidol-induced pGluR1 signaling in the 169 
striatum.  170 
                    As A2AR and D2R knockout mice showed diminished haloperidol-induced catalepsy 171 
(Boulay et al., 2000; El Yacoubi et al., 2001) and because haloperidol acts by blocking of D2R, 172 
we wanted to confirm that striatal expression of these receptors was comparable in the mTOR 173 
mutant mice and control mice. We found similar A2AR levels (but significantly enhanced D2R 174 
levels) in the striatum of the mTOR mutant mice compared to the control (Supplementary Figure 175 
1). Thus, diminished haloperidol-induced catalepsy is not due to diminished A2AR or D2R levels 176 
in the mTOR mutant mice. 177 
 178 
Pharmacological inhibition of mTOR abolishes haloperidol-induced catalepsy  179 
As striatal genetic depletion of mTOR completely abolished the haloperidol-induced catalepsy, 180 
we next asked whether pharmacological inhibition of mTOR would produce a similar phenotype. 181 
To investigate this, we treated 4-month-old C57BL/6 WT mice with mTORC1 inhibitor rapamycin 182 
(5.0 mg/kg., i.p.) for 20 minutes, followed by injection with haloperidol (0.5 mg/kg, i.p.). Haloperidol 183 
promoted a time-dependent cataleptic behavioral response in the vehicle-injected C57BL/6 mice, 184 
as well as in the rapamycin pretreated C57BL/6 WT mice (Fig. 2F). As expected, rapamycin 185 
treatment alone did not elicit a catalepsy response (Fig. 2F). This result indicates that 20 min of 186 
pretreatment with rapamycin does not affect the haloperidol-induced cataleptic response.  187 
                    Interestingly, although the onset of the cataleptic behavioral response was similar 188 
between the groups, there was a trend towards decreased cataleptic behavior in the rapamycin 189 
pretreated animals after 60 and 90 min post haloperidol administration (Fig. 2F, arrow). This 190 
observation prompted us to hypothesize that rapamycin may interfere with a cataleptic response 191 
after 60 min or longer duration following administration. To investigate this hypothesis, we 192 
pretreated C57BL/6 WT mice with rapamycin (5.0 mg/kg., i.p.) for 3 hours before administering 193 
haloperidol (0.5 mg/kg, i.p.). Strikingly, we found a dramatic attenuation of haloperidol-induced 194 
catalepsy in animals that were pretreated with rapamycin for 3 hours (as compared to vehicle-195 
treated groups) (Fig. 2G, H). This result indicates that a more prolonged exposure to rapamycin 196 
[which may be necessary for target (mTOR) engagement] is a prerequisite to block the 197 
haloperidol-induced cataleptic response in mice.   198 
 199 
Pharmacological inhibition of mTOR diminishes haloperidol-induced pS6 but not pGluR1 200 
Next, we investigated how rapamycin pretreatment impacted on haloperidol-induced striatal 201 
signaling in C57BL/6 WT mice. Compared to the vehicle, we found that haloperidol (for 20 min) 202 
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robustly induced striatal pS6 (S235/236) and pGluR1 (S845) signaling in C57BL/6 WT mice (Fig. 203 
2I, J). Haloperidol did not induce p4EBP1 (T37/46) in C57BL/6 WT mice, consistent with genetic 204 
model (Fig. 2D, E). However, a slight but significant increase of pS6K (T389) (Fig. 2I, J) was 205 
observed in haloperidol-injected C57BL/6 WT mice. Rapamycin pretreatment suppressed the 206 
haloperidol-induced pS6K and pS6 as well as diminished the basal pS6K, pS6, and p4EBP1. 207 
Rapamycin did not interfere with pGluR1 signaling, in the striatum (Fig. 2I, J), consistent with the 208 
observation in genetic model (Fig. 2D, E). These results indicate that pharmacological blocking 209 
of mTORC1 by rapamycin prevents the haloperidol-mediated mTORC1 signaling and associated 210 
catalepsy in the striatum.  211 
 212 
DISCUSSION 213 
The data presented here indicate that mTOR signaling in the striatum mediates post-synaptic 214 
D2R-mediated functions, as both genetic depletion of mTOR or pharmacological inhibition of 215 
mTORC1 signaling by rapamycin prevented a haloperidol-induced catalepsy response (Fig. 2K). 216 
Importantly, mTOR regulates specific signaling and behavioral functions in the striatum. The D1R-217 
mediated motor behaviors and the presynaptic D2R signaling are unaffected by the loss of striatal 218 
mTOR. Our data represent, to the best of our knowledge, the first report to use rapamycin to 219 
assess the role of mTOR signaling in haloperidol-induced catalepsy.  220 
                Previous studies showed that haloperidol induces pS6 signaling by enhancement of 221 
adenosine A2A/Golf signaling; however, the functional relevance of this pathway and its role in 222 
cataleptic behaviors were unknown (Bowling et al., 2014; Valjent et al., 2011). PKA signaling that 223 
induces pGluR1 is particularly linked to the generation of haloperidol-induced catalepsy. (Adams 224 
et al., 1997; Roche et al., 1996). Studies in non-neuronal cells showed that PKA acts upstream 225 
of mTOR and can activate or inhibit it (de Joussineau et al., 2014; Jewell et al., 2019; Kim et al., 226 
2010). PKA can directly phosphorylate mTOR and promote the phosphorylation of S6K in adipose 227 
tissue. (Liu et al., 2016). Indeed, it has been demonstrated that PKA activation induces pS6 in 228 
cultured striatal neurons (Valjent et al., 2011). With rapamycin or mTOR depletion, we found that 229 
mTOR signaling in the striatum did not interfere with haloperidol-induced pGluR1 signaling; 230 
however, it altogether abolished haloperidol-induced catalepsy. Thus, our data indicate that 231 
mTOR signaling in the striatum promotes haloperidol-induced catalepsy by acting downstream or 232 
independently of PKA-pGluR1 signaling.  233 
                The results presented here clearly suggest that an acute pretreatment of rapamycin 234 
completely reverses haloperidol-induced catalepsy, further emphasizing the critical role of 235 
mTORC1 in altering D2R signaling to promote extrapyramidal symptoms. Note that short-term 236 
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(20 min) pretreatment with rapamycin had a negligible effect. However, long-term rapamycin 237 
pretreatment (3 hours) abolished haloperidol-induced catalepsy. One possibility for such delayed 238 
action is due to the relatively poor brain penetrability of rapamycin and thus a delayed target 239 
engagement (Brandt et al., 2018). Interestingly, a previous study indicated Fyn kinase had a role 240 
in the regulation of haloperidol-induced catalepsy (Hattori et al., 2006). Fyn kinase also promotes 241 
mTORC1 signaling and it is therefore tempting to speculate that Fyn-mTORC1 signaling may 242 
have a role in haloperidol-mediated catalepsy (Hattori et al., 2006; Wang et al., 2015).   243 
                What are the molecular mechanisms underlying haloperidol–mTORC1–cataleptic 244 
behavior? A previous study indicated that haloperidol induced the mTOR-dependent translation 245 
and neuronal morphology in cultured MSNs (Bowling and Santini, 2016). In vivo, haloperidol can 246 
increase or decrease MSN morphology (spine density); in particular, it can decrease the spine 247 
density in D2 MSN (Sebel et al., 2017). Therefore, it is conceivable that mTOR is a critical 248 
regulator of haloperidol-induced molecular changes in the striatum. In addition to protein 249 
synthesis, mTOR signaling also regulates autophagy, purine, and lipid biosynthesis (Ben-Sahra 250 
and Manning, 2017). Based on our study, it is possible that mTOR signaling may translate the 251 
haloperidol-induced signaling into catalepsy by more than one pathway. Further research on the 252 
importance of these mechanistic insights, by dissecting the cell-type-specific role of mTOR, 253 
identification of haloperidol-induced mTOR interactors, and high-throughput comparative 254 
proteomic analysis in mTOR mutant and WT mice, could help unravel D2R-specific mechanisms 255 
of mTOR signaling in extrapyramidal symptoms.  256 
               Haloperidol is a major antipsychotic medication prescribed to diminish psychosis in 257 
schizophrenia patients (Ostinelli et al., 2017). However, its action is limited due to its elicitation of 258 
Parkinsonian-like bradykinesia, which affects a majority of patients and is commonly called 259 
haloperidol-induced EPS (Finucane et al., 2020; Kurz et al., 1995). To date, there are no effective 260 
treatments available for haloperidol-induced EPS. By combining genetic and pharmacological 261 
approaches, our mechanistic models provide a clear insight into the causal role of mTOR 262 
signaling in promoting haloperidol-induced catalepsy in preclinical murine systems (Fig. 2K). Our 263 
study therefore illustrates the translational potential of rapamycin in alleviating striatal D2R-264 
mediated EPS in humans.  265 
 266 
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FIGURE LEGENDS 281 
 282 
Figure 1. Effect of striatal mTOR depletion on motor behaviors. (A) Schematic representation 283 
of the AAV-Cre-GFP or AAV-GFP injected sites at the indicated coordinates targeting dorsal side 284 
of mice striatum. (B) Representative section showing the DAPI (blue) injection in the striatum 285 
using the coordinates in A. (C) Confocal images of the striatal brain sections from the mTORflox/flox 286 
mice injected with AAV-Cre-GFP or AAV-GFP, showing GFP or GFP-Cre (green) expression, 287 
mTOR (blue), and Ctip2 (red) immunohistochemistry, and nuclear stain, DAPI (cyan). (D) High 288 
magnification of confocal images in C, showing that in AAV-GFP injected mTORflox/flox mice, Ctip2-289 
positive medium spiny neurons (MSNs) show GFP expression and mTOR immunostaining (yellow 290 
arrows).  In AAV-Cre-GFP injected mTORflox/flox mice, Ctip2 positive MSNs express GFP (cre) but 291 
are negative for mTOR immunostaining (white arrows). Some Ctip2 positive MSN negative for 292 
GFP (cre) are positive for mTOR staining (pink arrow). (E) Quantification for total number of cells 293 
identified by DAPI staining, % of mTOR, Ctip2 and GFP triple-positive neurons and % of mTOR 294 
and GFP double-positive neurons in striatum of the mTORflox/flox mice injected with AAV-Cre-GFP 295 
or AAV-GFP. Images are representative of five ROIs from 4-5 sections per animal (n= 4 mice per 296 
group). Percentages were determined by considering the number of DAPI stained nuclei as 100%. 297 
All values are mean ± SEM. n.s. not significant, ***P < 0.001, two-tailed Student’s t-test. (F) 298 
Representative hematoxylin/eosin-stained sections for rostral (+1.1 from bregma) and caudal 299 
(+0.5 from bregma) ventriculus in mTORflox/flox mice injected with AAV-Cre-GFP or AAV-GFP. (G) 300 
Quantification of ventricular area from F. n.s. not significant, two-way ANOVA, Bonferroni post-301 
hoc test (four caudal and four rostral sections were quantified for four mice per group). (H, I) Total 302 
distance (cm) at the indicated time points in open-field test (OFT) (H) and latency to fall (sec) in 303 
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rotarod  test (I) for the mTORfoxlflox injected with AAV-GFP (n=13, female =10, male =3), AAV-Cre-304 
GFP (n=13, female =6, male =7) or WT mice injected with AAV-GFP or AAV-Cre-GFP (n=11, 305 
female =5, male =6) at 10, 14 and 18 weeks of age. Data are mean ± SEM. **P < 0.01, ***P < 306 
0.001, repeated measures two-way ANOVA followed by Bonferroni post-hoc test.  (J)  D1R 307 
agonist (SKF81297, 2.5 mg/Kg, i.p.)-induced activity in OFT in AAV-Cre-GFP or AAV-GFP 308 
injected mTORfoxlflox and AAV-Cre-GFP/GFP injected WT mice. Bar graphs indicates % of change 309 
in total activity after habituation. Data are mean ± SEM, n = 11-13 per group, *P<0.05, **P < 0.01, 310 
***P < 0.001, repeated measures two-way ANOVA followed by Bonferroni post-hoc test. (K) 311 
Quantification of the catalepsy (time on the bar, sec)-induced by D1R antagonist SCH23390 (0.1 312 
mg/Kg, i.p.) in indicated mice groups. Data are mean ± SEM, n = 11-13 per group, repeated 313 
measures two-way ANOVA followed by Bonferroni post-hoc test. (L) Representative image of 314 
catalepsy in AAV-Cre-GFP or AAV-GFP injected mTORfoxlflox mice treated with SCH23390.  315 
 316 
Figure 2. mTOR depletion abolishes D2R antagonist haloperidol-induced catalepsy. (A) 317 
D2R agonist quinpirole (0.5 mg/Kg, i.p.)-induced open field activity, in AAV-Cre-GFP or AAV-GFP 318 
injected mTORfoxlflox mice and WT control mice. Data are mean ± SEM, n = 11-13 per group, 319 
repeated measures two-way ANOVA followed by Bonferroni post-hoc test. (B) Catalepsy (as 320 
measured by time on the bar)-induced by D2R antagonist haloperidol (0.5 mg/Kg, i.p.) in AAV-321 
Cre-GFP or AAV-GFP injected mTORfloxlflox and WT control mice. Data are mean ± SEM, n = 11-322 
13 per group, *P<0.05, **P < 0.01, ***P < 0.001, repeated measures two-way ANOVA followed 323 
by Bonferroni post-hoc test. (C) Representative image of AAV-Cre-GFP or AAV-GFP injected 324 
mTORflox/flox mice treated with haloperidol. (D) Western blot analysis of indicated proteins from 325 
striatum of indicated mice after 20 minutes of haloperidol (0.5 mg/Kg, i.p.) or saline injection. (E) 326 
Bar graph indicates quantification of the indicated proteins from C. Data are mean ± SEM, n = 4-327 
5 per group, *P<0.05, **P<0.01, ***P< 0.001, two-way ANOVA, Bonferroni post-hoc test. (F, G) 328 
Quantification of catalepsy induced by D2R antagonist haloperidol (0.5 mg/Kg, i.p.) in vehicle or 329 
pretreated with rapamycin (5 mg/Kg, i.p.) for 20 minutes (F) or 3 hours (G) in C57BL/6 WT mice. 330 
Data are mean ± SEM, n = 5 per group, ***P< 0.001. Repeated measures two-way ANOVA, 331 
Bonferroni post-hoc test. (H) Representative image of haloperidol induced catalepsy in WT mice 332 
pretreated with rapamycin or vehicle. (I, J) Western blot analysis (I) and quantification (J) of 333 
indicated targets from the striatal tissue after 20 minutes of haloperidol and rapamycin 334 
pretreatment (3 hours). Data are mean ± SEM, n = 5 per group, *P<0.05, **P<0.01, ***P< 0.001. 335 
two-way ANOVA, Bonferroni post-hoc test. (K) Model shows mTOR mediates D2R inhibitory 336 
signals to induce catalepsy linked to extrapyramidal side effects in humans.   337 
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 338 
Supplementary Figure 1. A2AR and D2R expression in mTOR mutant mice. (A) Western blot 339 
analysis of indicated proteins from striatum of AAV-GFP and AAV-Cre-GFP injected mTORflox/flox 340 
mice. (B) Bar graph indicates quantification of the indicated proteins from A. Data are mean ± 341 
SEM, n = 4-5 per group, ***P< 0.001. two-way ANOVA, Bonferroni post-hoc test. 342 
 343 
MATERIALS AND METHODS 344 
Chemicals and Antibodies  345 
The majority of the chemicals used were purchased from Sigma, unless mentioned otherwise. 346 
Antibodies against - mTOR (#2983) pS6K T389 (#9234), S6K (#9202), pS6 S235/236 (#4858), 347 
S6 (#2217), p4EBP1 T37/46 (#2855), 4EBP1 (#9644), pAkt S473 (#4060), pAkt T308 (#13038), 348 
and Akt (#4691) were from Cell Signaling Technology. Antibodies for actin (sc-47778), GFP (sc-349 
33673), A2AR (sc-32261), and D2R (sc-5303) were from Santa-Cruz Biotechnology. Ctip2 350 
(ab18465) antibody was from Abcam. (+/-)-Quinpirole dihydrochloride, (Q111), Haloperidol 351 
(H1512), and R(+)-SCH-23390 hydrochloride (D054) were purchased from MilliporeSigma. SKF 352 
81297 hydrobromide was from R&D systems. Rapamycin was purchased from LC laboratories 353 
(R-5000). Haloperidol was initially dissolved in glacial acetic acid, then its pH was adjusted close 354 
to 7 with NaOH, and final dilution was made in saline solution (0.9 %). Rapamycin was dissolved 355 
in 5% dimethyl sulfoxide (DMSO), 15% PEG-400 (polyethylene glycol, molecular weight 400), 356 
and 5% Tween-20, and finally dissolved in saline solution for injection. SCH23390, SKF81297, 357 
and Quinpirole were dissolved in saline solution. All the drugs were administrated by 358 
intraperitoneally (i.p.) injection. 359 
 360 
Animals 361 
mTORflox/flox mice that harbor loxP sites flanking exons 1-5 of the mTOR locus (The Jackson 362 
Laboratory, strain B6.129S4-mTORtm1.2Koz/J, Stock No: 011009) and C57BL/6J (wild type, WT) 363 
were used for adeno-associated virus micro-injections. Mice were housed in groups of two or 364 
three on a 12:12 h light–dark cycle and were provided food and water ad libitum. All protocols 365 
were approved by Institutional Animal Care and Use Committee at The Scripps Research 366 
Institute, Florida, 367 
 368 
Stereotaxic surgeries 369 
For all surgical procedures, eight-week old mice were anesthetized through the constant delivery 370 
of isoflurane while mounted in a stereotaxic frame (David Kopf Instruments). AAV-Cre-GFP 371 
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(AAV1.hSyn.HI.eGFP-Cre.WPRE.SV40) or AAV-GFP (green fluorescent protein, 372 
AAV1.hSyn.eGFP.WPRE.bGH) (Vector Core, University of Pennsylvania) were injected 373 
bilaterally into the striatum at the following coordinates: ML = ± 1.6, AP = +1.1; DV = –3.9/-3.5 374 
and ML = ± 2.5; AP = +0.5; and DV = -4.2/-3.6 from bregma. Virus was injected in 0.5 μl volumes 375 
(5.9X1012 gc/mL) per injection site in each animal (4 μl total). Animals recovered for two weeks 376 
before behavioral testing. The efficacy of the viral injections was determined by GFP expression 377 
in the striatum. 378 
 379 
Behavioral Analysis 380 
Longitudinal behavioral testing was performed for AAV-Cre-GFP or AAV-GFP-injected 381 
mTORflox/flox mice, and wild type (WT) mice. All behavioral testing was performed as described in 382 
our previous work(Pryor et al., 2014; Swarnkar et al., 2015) during the light phase of the light-dark 383 
cycle between 8:00 am and 12:00 pm. For each week/month of behavioral testing, the following 384 
measures were assessed with the rotarod test on the first four days and an open-field test on the 385 
fifth. Rotarod testing was performed using a linear accelerating rotation paradigm (Med 386 
Associates Inc.) for three trials separated by 20 min for four consecutive days each month. The 387 
mice were placed on the apparatus at 4 rpm and were subjected to increasing rpm, accelerating 388 
to 40 rpm over the course of a maximum of five minutes. The overall latency to fall for each mouse 389 
was calculated as the average of the three trials across four days for each month. The latency of 390 
falling from the rod was scored as an index of motor coordination, while improvement in 391 
performance across training days, as measured by increasing latency to fall from the rotarod, 392 
indicates motor learning. Open-field activity was assessed in a single 30-minute session using 393 
EthoVision XT software (Noldus Information Technology). Each mouse was placed individually in 394 
the center of each square enclosure, and movement was quantified automatically. Single cohort 395 
of mice with mixed sex ratio were used for the behavior testing of AAV injected mTORflox/flox mice: 396 
mTORflox/flox-AAV-GFP (n = 13, male 3 and female 10) and mTORflox/flox-AAV-Cre-GFP (n = 13, 397 
male 7 and female 6). Single cohort of mice were used for behavior testing of AAV injected WT 398 
mice: WT- AAV-GFP (n = 5, female 2, male 3) and WT- AAV-Cre-GFP (n = 6, female 3, male 3). 399 
As there were no differences in the behaviors of WT-GFP and WT-Cre-GFP injected mice, they 400 
were combined for the group analysis. 401 
 402 
Quinpirole and SKF81297 evaluation 403 
Pharmacological effect of D2R agonist Quinpirole and D1R agonist SKF81297 was made using 404 
the same Open-field system and the EthoVision XT software (Noldus Information Technology). 405 
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Each mouse was placed individually in the center of a plastic box (11x 14 inches) with fresh 406 
bedding. For SKF81297 evaluation, mice were placed in the boxes for 30 minutes, as basal 407 
activity and habituation, then the drug was injected (2.5 mg/Kg, i.p.) and the total activity was 408 
recorded for 90 minutes. Results were plotted in a bar-graph showing the % change in the total 409 
activity after habituation at 0, 30 and 60 minutes. For Quinpirole experiment, mice were placed in 410 
the center of the plastic box with fresh bedding after the drug injection (0.5 mg/Kg, i.p.), then the 411 
total distance traveled (cm) was measured each 5 min during the next 30 min. Before each 412 
protocol, animals were kept in a waiting room for at least 30 minutes. Each control group was 413 
treated with the vehicle according to the drug. 414 
 415 
Haloperidol and SCH23390 evaluation 416 
Behavioral evaluation for D2R antagonist Haloperidol (0.5 mg/Kg, i.p.) and D1R antagonist 417 
SCH23390 (0.1 mg/Kg, i.p.) was made by measuring the catalepsy-induced effect using the bar 418 
test. Catalepsy was determinate placing each mouse with its forelegs on the bar in a kangaroo 419 
posture (Figure1L and Figure 2C, H), latency to change the corporal posture was recorded for 420 
three trials, and average of them was used for group analysis. After drug injection mice were 421 
evaluated on the bar at 15, 30, 60, 90 for SCH23390, and at 0, 30, 60, 90, 120, 180, 240, 300, 422 
and 360 minutes for Haloperidol in the mTORflox/flox and WT mice injected with AAV-GFP or AAV-423 
Cre-GFP viruses. For Rapamycin and Haloperidol experiments in C57BL/6 WT mice, animals 424 
were injected with Rapamycin (5 mg/Kg) as pretreatment at 20 minutes or 3 hours before 425 
Haloperidol (0.5 mg/Kg). After Haloperidol injection mice were tested on the bar at 15, 30, 45, 60, 426 
90, and 120 minutes. Before each protocol, each mouse was kept in single cage in the procedure 427 
room for at least 30 minutes. Each control group was treated with the vehicle according to the 428 
drug. 429 
 430 
Western blot analysis 431 
Twenty minutes after haloperidol injection, mice were euthanized by decapitation and brains were 432 
rapidly dissected and the striatum was quickly removed and snap-frozen in liquid nitrogen. Tissue 433 
was homogenized in RIPA buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1.0% Triton X-100, 434 
0.5% sodium deoxycholate, 0.1% SDS,) with a protease inhibitor cocktail (Roche, Sigma) and 435 
phosphatase inhibitors (PhosSTOP, Roche, Sigma). Protein concentration was measured using 436 
BCA protein assay reagent (Pierce). Protein lysates were loaded and separated by 4-12% Bis-437 
Tris Gel (Invitrogen), transferred to PVDF membranes, and probed with the indicated antibodies. 438 
Secondary antibodies were HRP-conjugated (Jackson Immuno Research, Inc). 439 
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Chemiluminescence was detected using WesternBright Quantum (Advansta) ECL reagent using 440 
a chemiluminescence imager (Alpha Innotech). Western blotting experiment was carried out as 441 
described previously(Pryor et al., 2014; Shahani et al., 2017; Shahani et al., 2014; Shahani et al., 442 
2016; Swarnkar et al., 2015). Relative levels of all the proteins were normalized to actin and 443 
quantified using Image J. Relative levels of phosphorylated proteins were normalized to 444 
respective normalized total proteins and quantified. 445 
 446 
Immunohistochemistry and analysis  447 
Immunostaining was performed as previously described (Chen et al., 2015; Shahani et al., 2017; 448 
Swarnkar et al., 2015). Briefly, mouse brains were fixed in 4% paraformaldehyde for overnight, 449 
cryoprotected in a sucrose/PBS gradient at 4 °C (10, 20 and 30%), and embedded in Tissue-Tek 450 
OCT compound (Sakura). Coronal sections (20μm) were collected on Superfrost/Plus slides and 451 
immunostained after heat-induced antigen retrieval [10 min in boiling citrate buffer (pH 6.0), 452 
MilliporeSigma, C9999]. Primary antibodies used in this study were anti-Ctip2 (1:500, Abcam, 453 
ab18465), anti-mTOR (1:250, Cell Signaling, #2983), and anti-GFP (Santa Cruz, SC33673). 454 
Alexa Fluor 488, 594, and 647 conjugated secondary antibodies (Thermo Fisher Scientific) were 455 
used in this study. Immunofluorescent brain sections were counterstained with DAPI and mounted 456 
using Fluoromount-G mounting medium (Thermo Fisher Scientific). Images were obtained with 457 
the Zeiss LSM 880 microscope and processed using the ZEN software (Zeiss).  458 
 459 
For cell quantification, five regions of interest (ROIs) of 100 μm2 were defined in immunostained 460 
sections (four to five sections for each mouse, n= 4 mice per group) of the medial striatum from 461 
mTORflox/flox injected with AAV-GFP or AAV-Cre viruses. Total number of cells were calculated by 462 
counting the DAPI stained nuclei. AAV-Infected neurons were identifying by expression of the 463 
GFP. GFP expression was observed in the soma of the AAV-GFP infected neurons while AAV-464 
Cre infected neurons expressed GFP in the nucleus. Percentage of the Ctip2, mTOR and GFP 465 
triple-positive neurons were determined considering DAPI stained cells as 100%. Ventricular area 466 
was determinate in hematoxylin/eosin-stained sections, from the same animals, four rostral (+1.1 467 
from Bregma) and caudal (+0.5 from Bregma) sections from each animal (n=4 mice per group) 468 
were taken using the Leica DM5500B microscope. The ventricular area was calculated by 469 
analyzing the images using the ImageJ software.   470 
 471 
Statistical Analysis 472 
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Data are presented as mean ± SEM as indicated. Statistical analysis was performed with a 473 
Student’s t-test or two-way ANOVA followed by Bonferroni post-hoc test or repeated measure 474 
two-way ANOVA followed by Bonferroni post-hoc test as indicated in the figure legends. Repeated 475 
measures two-way analysis of variance (ANOVA) where time was the repeated measure and 476 
treatment/genotype group was the fixed effect. Post hoc Bonferroni multiple comparison tests 477 
were used to identify statistically significant differences between treatment/genotype groups at 478 
each time point. Significance was set at P < 0.05. All statistical tests were performed using Prism 479 
7.0 (GraphPad software). 480 
 481 
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