1	Balanced JAK/STAT signaling is critical to maintain the functional
2	and structural integrity of the Drosophila respiratory epithelium
3	
4	Xiao Niu ¹ , Christine Fink ¹ , Kimberley Kallsen ^{2,4} , Viktoria Mincheva ¹ , Sören Franzenburg ³ ,
5	Ruben Prange ¹ , Judith Bossen ¹ , Holger Heine ^{2, 5} , Thomas Roeder ^{1, 5}
6	
7	¹ Kiel University, Zoology, Dept. of Molecular Physiology, Kiel, Germany
8	² Research Center Borstel, Dept. of Innate Immunity, Borstel, Germany
9	³ Kiel University, IKMB, Kiel, Germany
10	⁴ Current address: Boehringer Ingelheim, Ingelheim, Germany
11	⁵ German Center for Lung Research, Airway Research Center North, Kiel, Germany
12	
13	
14	
15	
16	
17	

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

18 Summary

Signals mediated by the Janus kinase (JAK)/signal transducer and activator of transcription 19 20 (STAT) pathway play a central role in maintaining homeostasis in a multitude of tissues. A 21 large number of studies have shown that this role is particularly prominent in the lungs. 22 Deregulation of the JAK/STAT signaling pathway is causally linked with various, mostly chronic, lung diseases, including lung cancer, asthma, and chronic obstructive pulmonary 23 disease. To elucidate the molecular framework that explains how deregulated JAK/STAT 24 signaling gives rise to pathogenic states, we used the fruit fly Drosophila as a model. While 25 the JAK/STAT pathway is characterized by high structural diversity and complexity in 26 vertebrates, it is relatively simple in Drosophila. The JAK/STAT pathway was active in 27 almost all respiratory epithelial cells of larvae and adult flies. Stressful stimuli, such as 28 29 cigarette smoke, evoked strong and regionalized activation of the JAK/STAT pathway, which was most likely driven by the concurrently induced ligand Unpaired 2. Inhibition of 30 31 JAK/STAT signaling induced apoptotic processes in epithelial cells. The aforementioned chronic lung diseases are associated with increased activity of the JAK/STAT pathway and 32 are treated with specific JAK inhibitors. Therefore, we investigated the effects of increased 33 34 JAK/STAT signaling in the respiratory epithelium of Drosophila. Ectopic activation of the JAK/STAT pathway led to premature death at the larval or pupal stage. Furthermore, it 35 induced major structural changes in epithelial cells, which almost completely lost their 36 37 typical characteristics. These structural changes led to considerable thickening of the

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

38	epithelium, substantial narrowing of the air-conducting space, and disruption of the
39	tracheal epicuticular structure. Pharmacological interference of JAK/STAT signaling
40	reverted this phenotype. Activation of the JAK/STAT pathway also affected vesicle-
41	mediated transport, which led to erroneous trafficking of typical junction proteins. In
42	summary, these results demonstrate that balanced JAK/STAT signaling is essential for the
43	normal functionality of the respiratory epithelium and thus the entire organ. A basal level
44	of JAK/STAT signaling is required for cellular processes such as growth and division.
45	However, chronic overactivation of this signaling leads to massive structural changes that
46	are closely related to pathologies typically seen in chronic inflammatory lung diseases.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

47 Introduction

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling 48 49 system is of central importance for several critical physiological processes including 50 development, tissue homeostasis, and immune responses [1]. Various cytokines, growth factors, and related signaling compounds signal via this evolutionarily conserved system 51 [2]. The JAK/STAT signaling pathway effectively transduces external signals into desired 52 cellular responses despite having relatively few essential components. Signaling via this 53 pathway is therefore straightforward and allows environmental factors to directly 54 influence transcriptional activity in cells, thereby linking important biological processes 55 with environmental cues [3]. Moreover, JAK/STAT signaling is tightly associated with a 56 great variety of immune responses. JAK/STAT signaling acts downstream of a plethora of 57 58 cytokines that transmit immune-related information and is, therefore, a central hub in various immunocompetent cells [4-7]. Deregulation of this signaling pathway is directly 59 60 linked with numerous human diseases, including cancer and inflammatory diseases [5, 8, 9]. 61

Lung diseases are often associated with deregulated JAK/STAT signaling. Such deregulation can arise due to mutations and polymorphisms in genes associated with JAK/STAT signaling. In addition, this signaling is activated by stressors, infections, and injuries. This might cause sustained chronic inflammation of the airways and/or alveoli, which is closely associated with the onset and chronification of various lung diseases.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

Chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis, 67 and lung cancer are causally associated with deregulated JAK/STAT signaling [10]. This 68 signaling is not only of great importance during organ development, but also plays a 69 70 central role in maintaining tissue and immune homeostasis, especially in response to stressors, infection, and damage [11, 12]. Functional JAK/STAT signaling is required to 71 cope with stressful stimuli such as hyperoxia in the airway epithelium [10]. Deregulation 72 73 of this signaling in the airways is associated with pathological states. Specifically, 74 chronically reduced JAK/STAT signaling is associated with impaired repair capacities [11], while increased JAK/STAT signaling leads to cell proliferation that can cause cancer [13]. 75 Despite its simple general organization, the JAK/STAT signaling pathway is characterized 76 77 by multiple redundancies in vertebrates. A multitude of elements function at each level of the JAK/STAT signaling pathway; for example, more than 50 cytokines can activate this 78 pathway [6]. Moreover, deregulation of JAK/STAT signaling in different motile and 79 resident cell types found in the lungs is associated with chronic lung diseases. Therefore, 80 models with a much simpler JAK/STAT pathway and a less complicated cellular 81 composition in the airways should help to elucidate the effects of dysfunctional JAK/STAT 82 83 signaling, especially in airway epithelial cells.

Simple models such as the fruit fly *Drosophila melanogaster* are thus a reasonable alternative to analyze the relevance of JAK/STAT signaling in the airways. While this signaling pathway exhibits broad diversification at all levels in mammals, it involves a

Niu et al.

87	single receptor (Domeless), one JAK (Hopscotch), and one STAT transcription factor
88	(Stat92E) in Drosophila [2, 14]. This low level of redundancy offers a unique advantage to
89	investigate the JAK/STAT pathway in tissues of interest. JAK/STAT signaling is highly
90	important for many processes, including development, in flies. The tracheal system does
91	not form when JAK/STAT signaling is abolished in tracheal primordia [15, 16]. Unpaired
92	(Upd), a major ligand of this pathway, is expressed in tracheal pits and initiates JAK/STAT
93	signaling in this organ primordium [17]. A lack of JAK/STAT signaling during very early
94	phases of tracheal development leads to a lack of expression of developmentally relevant
95	genes such as trachealess (trh), which is essential to instruct important phases of tracheal
96	development including cell movement and elongation, as well as invagination processes
97	that lead to tube formation [15, 18]. This is consistent with the important role of JAK/STAT
98	signaling during lung development in vertebrates [19, 20].

99 The current study aimed to determine the physiological significance of JAK/STAT signaling 100 in a simple, but fully functional, airway system. Therefore, we studied the larval airway 101 system of the fruit fly *D. melanogaster* and evaluated if the JAK/STAT signaling pathway is 102 active in functional airway epithelial cells and if stress signals modify the activity of this 103 pathway. Furthermore, we investigated if deregulation of this pathway leads to disease-104 associated phenotypes in this simple airway system.

105

106 **Results**

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

107	The JAK/STAT pathway is strongly activated in the trachea during embryogenesis and is
108	important for organ development [21]. However, the exact pattern of its activation is
109	unclear. In this study, we used the Stat92E-GFP reporter [21] to monitor activation of the
110	JAK/STAT pathway concurrently with <i>btl>LacZ.nls</i> [22], which specifically labels the trachea.
111	Figure 1A schematically depicts the JAK/STAT pathway in Drosophila. Activation of the
112	Stat92E was enhanced in a central region in the trachea, mainly in the transverse
113	connective area (Fig. 1B–D). To confirm the importance of the JAK/STAT pathway in the
114	development of the Drosophila respiratory system, we manipulated its activity in the
115	trachea by driving expression of a dominant-negative isoform of Domeless (Dome.DN)
116	using btl-Gal4. Although some animals grew to the larval stage, all died before reaching
117	the pupal stage (Fig. 1E). Microscopic analysis of surviving larvae showed that the dorsal
118	trunk (DT) was absent (Fig. 1E"). Time-lapse imaging of trachea-specific Dome.DN
119	expression in embryos revealed that all tracheal segments were fused at stage 15;
120	however, the DT subsequently separated (Fig. 1F and H). Next, we tested the effects of
121	ectopic activation of the JAK/STAT pathway induced by expression of the ligand (Upd3) or
122	the constitutively active JAK-allele (Hop.CA) on tracheal development. These animals died
123	prematurely at the embryo or larval stage (Fig. 1E). Microscopic analysis of larvae and
124	embryos showed that the tracheal segment separated at the larval stage (Fig. $1E'''-E''''$);
125	however, the disconnection of segments was due to failure of their fusion at the beginning
126	of tracheal development (Fig. 1G and H). In contrast with animals that expressed upd3,

Niu et al.

most *Hop.CA*-expressing animals exhibited a full tracheal tree. However, they all died at the first larval stage, which indicates that JAK/STAT signaling influences tracheal development after the first tracheal structures have formed.

To determine if the JAK/STAT pathway also operates in functional airway epithelium, 130 namely, the larval tracheal system, we used the STAT reporter line mentioned above. STAT 131 signaling was active in all regions of the tracheal system in third instar larvae (Fig. 2A). 132 JAK/STAT activity was reduced in the posterior zone of the trachea, tenth tracheal 133 metamere (Tr10), where cells progressively undergo apoptosis in response to trachea 134 metamorphosis (Fig. 2B). However, JAK/STAT activity was much stronger in regions such 135 as Tr2, spiracular branch (SB) and dorsal branch (DB), where cells re-enter the cell cycle at 136 this developmental stage than in nearby areas containing quiescent cells (Fig. 2C and D). 137 We next evaluated if JAK/STAT activity is observed in airway epithelial cells of adults. The 138 same approach detected substantial reporter activity in airway epithelial cells of fully 139 developed adults (Fig. 2E and E'). Inhibition of JAK/STAT signaling changed the fate and 140 morphology of larval airway epithelial cells (Fig. 2F). This inhibition was achieved by 141 ectopically expressing Dome.DN. These cells gradually lost their typical shape, and 142 143 apoptotic processes were initiated 2 days after induction of ectopic expression. This induction of apoptosis was confirmed by detection of Dcp1 in cells with typical apoptotic 144 features (Fig. 2G and H). Apoptosis was induced to an even greater extent (and faster) in 145 146 stem cells of the larval tracheal system, where Dcp1-positive cells were observed on 1 day

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

147	after induction of ectopic <i>Dome.DN</i> expression (Fig. 2I–K). The JAK/STAT pathway was
148	activated throughout the entire tracheal system. Therefore, we evaluated expression of
149	the three Upd ligands in this system. Experiments using the corresponding enhancer-Gal4
150	lines demonstrated that upd2 was highly expressed in the tracheal system (Fig. S1).
151	To elucidate the effects of JAK/STAT deregulation in the tracheal system initiated at
152	different time points during larval development, we employed the temperature-inducible
153	Gal4/Gal80[ts] system (Fig. 3A). We first tested the effects of inhibition of the tracheal
154	JAK/STAT pathway induced by ectopic expression of Dome.DN on survival and larval
155	structure (Fig. 3B). Ectopic expression was initiated at three time points during larval
156	development (Fig. 3B). Larval mortality was higher, the earlier expression was initiated.
157	No larvae survived to the pupal stage (Fig. 3C). On the other hand, activation of JAK/STAT
158	signaling induced by ectopic expression of upd3 or Hop.CA led to lower levels of larval
159	death. In both cases, no pupae developed into adults. Furthermore, we analyzed the
160	effects of this intervention on tracheal structure. Whereas Dome.DN overexpression
161	elicited only minor effects on tracheal structure, upd3 or Hop.CA overexpression caused
162	substantial epithelial thickening (Fig. 3D–H). Quantitative evaluation revealed that ectopic
163	overexpression of Hop.CA greatly increased epithelial thickness (Fig. 3H). Experiments
164	involving mosaic expression of Hop.CA driven by vvl-FLP, CoinFLP-Gal4, UAS-EGFP (vvl-coin)
165	demonstrated that this effect was cell-autonomous. Cells that expressed Hop.CA were
166	much thicker than neighboring cells that did not (Fig. 3I). Treatment with various JAK

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

inhibitors [23] reversed epithelial thickening induced by ectopic overexpression of *Hop.CA*in the trachea (Fig. 3J–L). Treatment with Baricitinib, Oclacitinib, or Filgotinib reduced
epithelial thickening by more than 60% (Fig. 3L).

To elucidate the mechanisms underlying this structural response, we analyzed the 170 phenotype in more detail. The length of a defined area of the tracheal system (between 171 Tr8 and Tr9), the length-thickness product, and the cell number were quantified (Fig. 4A 172 and B). Length was unaffected by manipulation of JAK/STAT signaling in the trachea, with 173 the exception that it was reduced after 4 days of ectopic *Dome.DN* expression (Fig. 4B). 174 Consequently, the length-thickness product mirrored the findings made when assessing 175 thickness. However, the number of cells in the Tr8-Tr9 region of the trachea with 176 manipulated JAK/STAT signaling was similar to that in matching controls (Fig. 4B"). Hence, 177 the thickening was due to an increase in cell volume, not an increase in cell number. To 178 determine if this thickening is an artifact caused by the isolation method, we directly fixed 179 the trachea in situ or isolated it in cell culture medium with the same osmolarity as 180 hemolymph. The same thickening was observed in both cases (Supplemental Fig. 2). To 181 quantify the time course of this thickening, we subjected the trachea to different 182 183 treatment regimens prior to analysis. At least 2 days of ectopic expression were necessary to induce this phenotype (Fig. 4C–E). 184

After demonstrating that JAK/STAT signaling operates in a fully functional tracheal system and that deregulation of its activation substantially impacts the structure of the airway

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

187	system, we aimed to identify conditions under which JAK/STAT signaling activity is
188	increased. To this end, we subjected flies to two stressful conditions that are related to
189	the airway system, namely, cigarette smoke exposure and hypoxia. Whereas hypoxia did
190	not affect the activities of the JAK/STAT pathway reporter or the corresponding ligands
191	(Upd2 (Fig. 5D–F) and Upd3 (Fig. 5J–L)), smoke exposure induced expression of both <i>upd2</i>
192	and upd3 as well as activation of the JAK/STAT pathway reporter (Fig. 5A–C, F–I, and L).
193	Induced expression was mostly confined to a highly sensitive region close to the spiracles
194	(Tr9 and Tr10) (Fig. 5B, F, H, and L).
195	To investigate the molecular mechanisms underlying the effects of chronic JAK/STAT
196	activation on the airways, we performed RNA-sequencing analysis of tracheal cells
197	expressing Hop.CA in third instar larvae. The validity of this experimental procedure was
198	supported by the induced expression of <i>hopscotch</i> (including <i>Hop.CA</i>) and <i>Socs36E</i> (one
199	of the best-characterized Stat92E target genes) [21], which were upregulated 35-fold and
200	2.7-fold, respectively ($p < 10^{-12}$). Principal component analysis of biological replicates
201	separated control and overexpression samples into different groups (Fig. 6A, middle).
202	Finally, the expression of 2004 genes was statistically significantly regulated, with 1128
203	downregulated genes and 876 upregulated genes ($p < 0.05$). A circular heatmap of 707
204	differentially expressed genes ($p < 0.01$ and fold change > 2) is presented (Fig. 6A).
205	Moreover, we analyzed changes in expression upon ectopic silencing of the JAK/STAT
206	pathway using Dome.DN. A Venn diagram revealed that there was a statistically significant

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

207 overlap in the cohorts of genes regulated by both interventions (Fisher's exact test, p < 0.0001; Fig. 6B).

To further elucidate the molecular mechanisms functioning in the thickened epithelium, 209 we performed promotor scan studies and Gene Ontology (GO) analyses. Genes with the 210 highest rates of induction supported by the lowest p-values were subjected to promoter 211 scanning (Pscan) analysis. Putative genes directly regulated by the JAK/STAT pathway were 212 213 identified (Tables 1 and 2). Among these highly regulated genes, the largest group contained genes that encoded products involved in innate immunity, including seven 214 antimicrobial peptide genes (IM1, IM2, IM4, IM14, CG5791, CG5778, and Drs). All these 215 antimicrobial peptides, except for Drs, contain one or two CXXC regions. These CXXC-216 containing peptides belong to the family of Bomanins, whose expression is highly induced 217 following bacterial or fungal infection, and high levels of the corresponding mature 218 peptides are found in the hemolymph of infected flies [24]. 219

220 Next, we analyzed all significantly regulated genes based on KEGG and GO annotations.

221 Six terms in KEGG pathway analysis and nine categories in GO analysis were enriched

among these genes according to their predicted functions (Table S1 and Fig. 7).

223 One striking feature of the epithelium with chronically activated JAK/STAT signaling was 224 induced expression of genes involved in vesicle-mediated transport (Fig. 7). GO analysis 225 demonstrated that this term was enriched among 32 regulated genes that had been 226 assigned to vesicle-mediated transport. All these genes were upregulated, except for one

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

(CG5946). However, according to a Pscan analysis, these genes did not seem to be direct 227 JAK/STAT targets since a Stat92E promoter binding was not enriched (table S2 and S3). The 228 transcript levels of genes related to epicuticle development were reduced. Fifty-five genes 229 230 relevant to cuticle development were regulated, of which 40 were downregulated. In addition, other biological processes such as muscle cell differentiation, cellular protein-231 containing complex assembly, RNA processing, translation, and detection of chemical 232 233 stimuli were significantly enriched. In the latter three categories, the number of upregulated genes was similar to the number of downregulated genes. A schematic 234 representation of the different biological processes superimposed on a scheme of an 235 epithelial cell is shown (Fig. 7B). One interesting result was that endocytosis and vesicle-236 237 mediated transport were impaired. To analyze this further, we focused on two peripheral membrane-binding proteins, namely, Coracle (Cora), a component of septate junctions 238 and Armadillo (Arm), a component of adherens junctions. Both proteins depend on vesicle 239 transport to reach their destinations [25, 26] (Fig. 8A). Immunofluorescence analysis of 240 Hop.CA-overexpressing animals revealed that Arm and Cora accumulated in the cytoplasm, 241 which is indicative of dysfunctional endosomal transport (Fig. 8B-E). We also observed a 242 243 stenosis phenotype with tube narrowing. This arose when epithelial cells expressed Hop.CA at very high levels, as indicated by strong green fluorescence (Fig. 8F and G and 244 Fig. S2). The lumen narrowing observed here is reminiscent of the phenotype caused by 245

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

mutations of the coatomer protein complex (COP)I or COPII complexes, which are 246 required for the efficient secretion of proteins that drive tube expansion [27, 28] (Fig. 8H). 247 Cuticle development was identified as another regulated biological process based on 248 transcriptome data. This process is dependent on secretion in the larval trachea, and 249 250 chitin-rich structures, called taenidia, are believed to make tubes flexible as well as sufficiently strong in order to avoid collapse [29]. The chitin structure in the trachea was 251 252 unsorted in Hop.CA-expressing animals compared with control tubes (Fig. 9A and B). Chitin staining revealed that the highly organized structure of the chitinous intima was 253 almost completely lost in Hop.CA-expressing animals (Fig. 9C). Mosaic analysis 254 demonstrated that the trachea was structurally disorganized where Hop.CA was expressed 255 (Fig. 9D–F). 256

The effects of activating the JAK/STAT pathway on the epithelium were time-dependent. 257 To determine if a weaker expression of Hop.CA induces similar phenotypes, we used 258 another trachea-specific Gal4-driver, namely, PPK4 (also called nach-Gal4). In the nach-259 Gal4 line, Gal4 is expressed from the late embryo stage, is strongly expressed in the early 260 L1 and late L2 stages, at which point expression is stronger than that driven by *btl-Gal4*, 261 262 but is weakly expressed at other larval stages [30, 31]. Microscopy analysis of the trachea showed that weak expression of Hop.CA in the trachea promoted epithelial thickening (Fig. 263 10A and B). However, epithelial thickening after 4 days of *Hop.CA* induction was slightly 264 lower in nach>Hop.CA than in btl>Hop.CA (Fig. 10D). On the other hand, weakly driven 265

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

upd3 expression in the trachea resulted in identical changes as those observed using *btl-Gal4* (Fig. 10C and E). Finally, we used the same driver to inhibit JAK/STAT signaling in the
 trachea by expressing *Dome.DN*. Animals died prematurely at the larval stage and their
 tracheas were filled with liquid, demonstrating that functionality was impaired (Fig. 10F).

271 **Discussion**

The present study aimed to elucidate the significance of the JAK/STAT signaling pathway 272 in the respiratory epithelium. We used the fruit fly D. melanogaster owing to the 273 experimental advantages of this system and the unique simplicity of the JAK/STAT 274 signaling pathway. JAK/STAT signaling exhibited tonic activity in almost all respiratory 275 276 epithelial cells and its activity was substantially enhanced by exposure to cigarette smoke. Stress-induced induction of the JAK/STAT signaling pathway and the corresponding 277 cytokines is also observed in primary human respiratory epithelial cells, suggesting that 278 279 the activation and mechanism-of-action of JAK/STAT signaling are similar in human and Drosophila respiratory epithelial cells [32]. Our finding that the JAK/STAT signaling 280 pathway operated in airway epithelial cells of embryos, larvae, and adults implies that it 281 282 plays a central role in these cells at all developmental stages. The JAK/STAT pathway was previously reported to be important for embryonic development of the tracheal system 283 [33]. We clarified the sequence of developmental steps in which this signaling pathway 284 285 plays a central role. The JAK/STAT signaling pathway is particularly important for

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

286	development and maintenance of the DT. Tracheal JAK/STAT signaling is required during
287	development of the adult tracheal system at the pupal stage [34]. This is consistent with
288	our finding that the various interventions induced lethality in the pupal stage at the latest.
289	It is a matter of debate whether JAK/STAT signaling is essential for mammalian lung
290	development. However, the prevailing view that JAK/STAT signaling is not essential for
291	embryonic lung development [11] has been challenged by recent studies [20]. Although
292	JAK/STAT signaling is essential for different aspects of tracheal development, the major
293	focus of the current study was on the role of this signaling in maintaining homeostasis in
294	the fully functional airway epithelium. Therefore, we chose Drosophila larvae as a model
295	because they possess fully functional airways that must perform gas exchange for survival
296	and growth of the animal. Respiratory epithelial cells in larvae are terminally
296 297	and growth of the animal. Respiratory epithelial cells in larvae are terminally differentiated and cannot divide, but increase in size as larvae grow. We demonstrated
297	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated
297 298	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated that the JAK/STAT signaling pathway was essential in the larval airway epithelium and that
297 298 299	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated that the JAK/STAT signaling pathway was essential in the larval airway epithelium and that its blockade induced apoptosis. This implies that the JAK/STAT pathway plays a central role
297 298 299 300	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated that the JAK/STAT signaling pathway was essential in the larval airway epithelium and that its blockade induced apoptosis. This implies that the JAK/STAT pathway plays a central role in homeostatic processes in this organ, which also appears to be the case in mammalian
297 298 299 300 301	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated that the JAK/STAT signaling pathway was essential in the larval airway epithelium and that its blockade induced apoptosis. This implies that the JAK/STAT pathway plays a central role in homeostatic processes in this organ, which also appears to be the case in mammalian airway epithelia. Perturbation of JAK/STAT signaling induces apoptosis in cell lines derived
297 298 299 300 301 302	differentiated and cannot divide, but increase in size as larvae grow. We demonstrated that the JAK/STAT signaling pathway was essential in the larval airway epithelium and that its blockade induced apoptosis. This implies that the JAK/STAT pathway plays a central role in homeostatic processes in this organ, which also appears to be the case in mammalian airway epithelia. Perturbation of JAK/STAT signaling induces apoptosis in cell lines derived from airway epithelia [35], and this seems to be particularly relevant for growing tissues

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

306	in part, especially where repair mechanisms are operative. Functional JAK/STAT signaling
307	is also required for regenerative processes after epithelial damage [11, 12], the response
308	to infections [37], and the reaction to hyperoxia [38]. This indicates that JAK/STAT signaling
309	in mammalian airway epithelial cells and the Drosophila trachea is particularly relevant
310	for a protective reaction to stressful stimuli. Consistently, we demonstrated that JAK/STAT
311	signaling was normally active in airway epithelial cells of Drosophila larvae. A basal level
312	of JAK/STAT signaling was observed in these cells and this signaling was further activated
313	in response to very strong stressors such as chronic exposure to smoke particles. There
314	appears to be an organ-autonomous JAK/STAT signaling system, with expression and
315	release of the cytokines Upd2 and Upd3, and activation of a JAK/STAT-dependent response
316	induced in the same regions of the tracheal system. A comparable, stress-induced system
317	has been identified in the intestinal epithelium of flies, where highly stressful insults
318	targeting absorptive enterocytes induce production and release of the cytokine Upd3 [39,
319	40]. In contrast with the intestines, where cytokines produced by stressed enterocytes
320	induce proliferation of stem cells to replenish the enterocyte pool, the typical structure of
321	epithelial cells in the tracheal system is altered without activation of stem cells.
322	Although a threshold level of JAK/STAT signaling is required for the functionality and
323	survival of airway epithelial cells, excessive activation of this signaling is associated with
324	several lung diseases including lung cancer, acute lung injury, asthma, pulmonary fibrosis,
325	and COPD [13, 41-45]. This implies that different facets of this highly complex signaling

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

pathway are critically involved in the development of the majority of chronic lung diseases. 326 Thus, maintaining homeostasis in the airway epithelium, especially with respect to its 327 potential damage and repair, is essential for a healthy life. In this context, the JAK/STAT 328 pathway seems to play a decisive role [11]. To study the imbalance of JAK/STAT signaling 329 that is causally associated with the majority of chronic lung diseases and is responsible for 330 the structural changes typically seen in these diseases, we ectopically activated JAK/STAT 331 332 signaling specifically in the airway epithelium of Drosophila larvae. This activation induced major structural changes in the airway epithelium, mainly to the architecture of tracheal 333 cells. Mosaic analysis demonstrated that this effect was cell-autonomous. These major 334 structural changes of the trachea are reminiscent of those observed in asthma, COPD, 335 acute lung injury, and lung cancer. Structural changes that permit to fulfill the original 336 function of epithelial cells are often observed during the epithelial-to-mesenchymal 337 transition. JAK/STAT signaling is essential for the epithelial-to-mesenchymal transition 338 intrinsic to lung cancer [46]. 339

Ectopic JAK/STAT pathway activation induced complex alterations to the transcriptome in airway epithelial cells. These changes affected immune-relevant genes such as those encoding antimicrobial peptides, mainly from the Bomanin family. JAK/STAT signaling typically regulates antimicrobial responses in the human airway epithelium [41]. However, chronically activated JAK/STAT signaling perturbed secretory processes and the formation of extracellular structures. The extracellular matrix defects caused by *Hop.CA*

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

346	overexpression are reminiscent of the pathophysiology of the aforementioned chronic
347	lung diseases that involve responses to acute or chronic injury [47]. Therefore, attempts
348	to enhance the repair capacities of epithelial cells by inducing structural changes via
349	excessive JAK/STAT signaling would also perturb normal cellular functions, such as the
350	transport of junction proteins to the membrane. This would lead to reduced barrier
351	function of the epithelium, which is a hallmark of chronic lung diseases such as asthma
352	and COPD [48-50]. We also observed epicuticular changes, which considerably influenced
353	the structure of the whole organ. However, it is difficult to identify an equivalent change
354	in vertebrates.

The JAK/STAT pathway is an excellent target for therapeutic intervention in many lung 355 diseases, including asthma, COPD, acute lung injury, idiopathic pulmonary fibrosis, and 356 lung cancer [43, 51-55]. We demonstrated that pharmacological interference of the 357 JAK/STAT signaling pathway reverted the structural phenotype observed upon ectopic 358 activation of this signaling and consequently flies survived. This shows that the Drosophila 359 model is not only suitable to study the structural effects of excessive JAK/STAT signaling 360 and the underlying molecular mechanisms, but also to screen compounds and thereby 361 362 identify novel therapeutic strategies.

It must be remembered that the vertebrate lung and insect trachea are not homologous.
Nevertheless, they share a high degree of similarity in terms of their development,
physiology, innate immunity, and operative signaling systems [56, 57]. Therefore, the fruit

Niu et al.

366	fly is a very valuable tool to study genes associated with a great variety of chronic lung
367	diseases including asthma, COPD, and lung cancer [58-63]. This simple model can be used
368	as part of an experimental toolbox to elucidate the role of JAK/STAT signaling in the
369	airways and the effects of chronic deregulation of this signaling. In addition, it provides a
370	readily accessible experimental system that is amenable to pharmacologic interventions,
371	and allows hypotheses and intervention strategies to be easily tested.
372	
373	Material and Methods
374	Drosophila strains and husbandry
375	Stat92E-GFP was used to monitor the activation of the pathway [21]; the Gal4-UAS system
376	[64] was used to target ectopic expression to the tracheal system. Gal4 drivers used were:
377	btl-Gal4, UAS-GFP on the 3rd chromosome, and btl-Gal4, UAS-GFP on the 2nd
378	chromosome (obtained from the Leptin group, Heidelberg, Germany); upd2-Gal4; upd3-
379	Gal4 [60]; nach-Gal4 [30]. The UAS responders included: UAS-LacZ.nls (BDSC 3956), UAS-
380	dome∆cyt2.1 (UAS-Dome.DN) and UAS-Hop.CA (UAS-hopTumL) were obtained from N.
381	Perrimon [15, 65]. The UAS-upd3 was constructed in our lab. TubP-Gal80[ts] (BDSC 7018)
382	were obtained from the Bloomington stock center. Unless otherwise stated, the flies were
383	raised on standard medium at 25 $^\circ$ C with 50–60% relative humidity under a 12:12 h
204	light/deale and examined examined [CC]

384 light/dark cycle as described earlier [66].

Niu et al. JAK/STAT signaling in the larval trachea of Drosophila

386 Coin-FLP expression system

387	Vvl-FLP/CyO; btl-moe.mRFP (BDSC 64233), tubP-Gal80[ts] and CoinFLP-Gal4, UAS-2xEGFP
388	(BDSC 58751) were used to construct animals for the tracheal mosaic analysis. Ventral
389	veins lacking (vvl) was expressed in larval tracheal clones that covered approximately 30
390	to 80% of the trachea [67, 68]. The genotype of the flies was vvl-FLP, CoinFLP-Gal4, UAS-
391	2xEGFP/CyO (vvl-coin) and vvl-FLP, CoinFLP-Gal4, UAS-2xEGFP/CyO; tub-Gal80[ts] (vvl-
392	coin.ts).
393	Developmental Viability
555	
394	For developmental viability of eggs, the eggs were collected overnight and were not
394	For developmental viability of eggs, the eggs were collected overnight and were not
394 395	For developmental viability of eggs, the eggs were collected overnight and were not physically handled in any way. The number of the hatched eggs and the pupae were
394 395 396	For developmental viability of eggs, the eggs were collected overnight and were not physically handled in any way. The number of the hatched eggs and the pupae were counted starting from two days after the collection. Each group has 4 replicates that

400 medium at 29 °C. In this study, usually 4 replicates were performed with 30 larvae. The

401 stage of larvae was determined via the appearance of anterior spiracles.

402 Determination of epithelial thickness

The trachea of L2 and L3 Larvae were carefully dissected out from the posterior side of the body in PBS. The isolated trachea was immersed in 50% glycerol and digital images captured within 15 min. L2 Larvae were distinguished from L3 larvae by the appearance

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

406 of anterior spiracles. The relative ages of L3 larvae were inferred from the size of the

animal. 30 larvae were used in each group and specimens were analysed by Image J.

408 Drug application and determination of epithelial thickness

JAK inhibitors (Baricitinib #16707, Oclacitinib #18722, Filgotinib #17669 - Cayman 409 Chemicals, Michigan, USA) were diluted in DMSO [100 mM]. For later application the 410 inhibitors were diluted 1:10 in 100% EtOH. We used 20 µl of each diluted inhibitor for 2 411 412 ml of concentrated medium (5% yeast extract, 5% corn flour, 5% sucrose, 1% low-melt agarose, 1 ml of 10% propionic acid and 3 ml of 10% Nipagin). The eggs of each crossing 413 have been applicated on the modified medium and kept at 20 °C until the larvae reach 414 the L2 stage. Afterwards they were incubated at 30 °C for 2 days to induce the btl-Gal4, 415 UAS-GFP; tub-Gal80[ts] (btl.ts) –driver. The trachea of L3 Larvae were carefully dissected 416 out from the posterior side of the body in the PBS. Isolated trachea was immersed in 50% 417 glycerol and digital images captured in 15 min. 10 larvae were used for each group. 418

419 **Time-lapse microscopy**

All images were acquired using a ZEISS Axio Image Z1 fluorescent microscope. Embryos were dechlorinated in 3% sodium hypochlorite and immersed in Halocarbon oil 700 (Sigma Aldrich, 9002-83-9). Then the embryos were imaged after stage 15 when the tracheal tree formed at 3 hours intervals.

424 Cigarette smoke and hypoxic exposure

Niu et al.

425	All cigarette smoke exposure experiments were carried out in a smoking chamber,
426	attached to a diaphragm pump. Common research 3R4F cigarettes (CTRP, Kentucky
427	University, Lexington, USA) were used for all experiments. The vials containing animals
428	were capped with a monitoring grid to allow the cigarette smoke to diffuse into the vial.
429	For long-time smoke experiments, L2 larvae were exposed to smoke three times a day for
430	30 min each, on two consecutive days. For heavy smoke experiments, L3 larvae were
431	exposed to 2 cigarettes smoke one time for 45 min, which led to about 35-50% mortality.
432	To study the effects of hypoxia on the activity of JAK/STAT signalling pathway, larvae were
433	exposed to long-term hypoxia and short-term hypoxia separately. For long-term hypoxia
434	experiments, L2 larvae were exposed to 5% oxygen three times a day for 30 min each, on
435	two consecutive days. For short-term hypoxia experiments, L3 larvae were exposed to 1%
436	oxygen once for 5 hours.

437 Antibody and tracheal stains

Larvae were dissected by ventral filleting and fixed in 4% paraformaldehyde for 30 min. Embryos were staged according to Campos-Ortega and Hartenstein [69] and fixed in 4% formaldehyde for 30 min. Immunostaining followed standard protocols as described earlier [70, 71]. GFP signals were amplified by immunostaining with polyclonal rabbit anti-GFP (used at 1:500, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany, SAB4301138). 40-1a (used at 1:50, DSHB, Iowa City, USA) was used to detect Beta-galactosidase. Coracle protein was detected with a monoclonal mouse anti-coracle antibody (used at 1:200,

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

445	DSHB, Iowa City, USA, C566.9). Armadillo protein was detected with a monoclonal mouse
446	anti-armadillo antibody (DSHB, US, N2 7A1, used at 1:500). A monoclonal rabbit Cleaved
447	Drosophila Dcp1 (used at 1:200, Cell Signaling, Frankfurt/M, Germany, #9578) was used
448	to detect apoptotic cells. Secondary antibodies used were: Cy3-conjugated goat-anti-
449	mouse, Cy3-conjugated goat-anti-rabbit, Alexa488-conjugated goat-anti-mouse (Jackson
450	Immunoresearch, Dianova, Hamburg, Germany), Alexa488-conjugated goat-anti-rabbit
451	(used at 1:500, Cell signaling, Frankfurt/M, Germany, #9578). Tracheal chitin was stained
452	with 505 star conjugated chitin-binding probe (NEB, Germany, used at 1:300). Nuclei were
453	stained with 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Roth, Karlsruhe,
454	Germany, 6843). Specimens were analyzed and digital images captured either with a
455	confocal (CLSM Leica TCS SP1, Leica, Wetzlar, Germany) or a conventional fluorescence
456	microscope (ZEISS Axio Imager Z1, Zeiss, Oberkochen, Germany), respectively.

457 RNA isolation and RNA sequencing

For the gene expression analysis of 3rd instar larvae trachea, animals were dissected in cold PBS and isolated trachea transferred to RNA Magic (BioBudget, Krefeld, Germany) and processed essentially as described earlier [60] with slight modifications. The tissue was homogenized in a Bead Ruptor 24 (BioLab products, Bebensee, Germany) and the RNA was extracted by using the PureLink RNA Mini Kit (Thermo Fisher, Waltham, MA, USA) for phase separation with the RNA Magic reagent. An additional DNase treatment was

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

464 performed following the on-column PureLink DNase treatment protocol (Thermo Fisher,
465 Waltham, MA, USA).

466	Sequencing libraries were constructed using the TruSeq stranded mRNA kit (Illumina, San					
467	Diego, USA) and 50 bp single-read sequencing was performed on an Illumina HiSeq 4000					
468	with 16 samples per lane. Resulting sequencing reads were trimmed for low-quality bases					
469	and adapters using the fastq Illumina filter					
470	(http://cancan.cshl.edu/labmembers/gordon/fastg_illumina_filter/) and cutadapt					
471	(version 1.8.1) [72]. Transcriptomics analysis including gene expression values and					
472	differential expression analysis was done using CLC Genomics Workbench. The detailed					
473	protocols can be obtained from the CLC Web site (http://www. clcbio.com/products/clc-					
474	genomics-workbench). Drosophila melanogaster reference genome (Release 6) [73] was					
475	used for mapping in this research.					
476	The transcription factor binding site enrichment and the Gene Ontology enrichment					
477	analyses of the differentially expressed genes were carried out using Pscan and Panther,					
478	respectively. Date was visualized through the circos software.					
479						
480	References					
481 482	1 Dowlings IS, Doslor KM, Harrison DA, The IAK/STAT signaling notheray, J. Coll. Col. 2004, 447/04					
402	1. Rawlings JS, Rosler KM, Harrison DA: The JAK/STAT signaling pathway . <i>J Cell Sci</i> 2004, 117 (Pt					

483 8):1281-1283.

484 2. Zeidler MP, Bausek N: The Drosophila JAK-STAT pathway. JAKSTAT 2013, 2(3):e25353.

485 3. Yan R, Small S, Desplan C, Dearolf CR, Darnell JE, Jr.: Identification of a Stat gene that functions in
486 Drosophila development. *Cell* 1996, 84(3):421-430.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

487	4.	Shuai K, Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003,
488	4.	3 (11):900-911.
489	5.	Villarino AV, Kanno Y, Ferdinand JR, O'Shea JJ: Mechanisms of Jak/STAT signaling in immunity
490	5.	and disease. J Immunol 2015, 194 (1):21-27.
491	6.	Villarino AV, Kanno Y, O'Shea JJ: Mechanisms and consequences of Jak-STAT signaling in the
491	0.	
	7	immune system. Nat Immunol 2017, 18 (4):374-384. Agaisse H, Perrimon N: The roles of JAK/STAT signaling in Drosophila immune responses .
493 494	7.	
494 495	0	Immunol Rev 2004, 198 :72-82. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A: The JAK-STAT pathway:
	8.	
496	0	impact on human disease and therapeutic intervention. Annu Rev Med 2015, 66 :311-328.
497	9.	Constantinescu SN, Girardot M, Pecquet C: Mining for JAK-STAT mutations in cancer. Trends
498		Biochem Sci 2008, 33 (3):122-131.
499	10.	Pernis AB, Rothman PB: JAK-STAT signaling in asthma. J Clin Invest 2002, 109(10):1279-1283.
500	11.	Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL: IL-6/STAT3 promotes regeneration of
501		airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014, 111 (35):E3641-3649.
502	12.	Kida H, Mucenski ML, Thitoff AR, Le Cras TD, Park KS, Ikegami M, Muller W, Whitsett JA: GP130-
503		STAT3 regulates epithelial cell migration and is required for repair of the bronchiolar
504		epithelium. Am J Pathol 2008, 172(6):1542-1554.
505	13.	Dutta P, Sabri N, Li J, Li WX: Role of STAT3 in lung cancer. JAKSTAT 2014, 3(4):e999503.
506	14.	Arbouzova NI, Zeidler MP: JAK/STAT signalling in Drosophila: insights into conserved regulatory
507		and cellular functions. Development 2006, 133(14):2605-2616.
508	15.	Brown S, Hu N, Hombria JC: Identification of the first invertebrate interleukin JAK/STAT receptor,
509		the Drosophila gene domeless. Curr Biol 2001, 11(21):1700-1705.
510	16.	Perrimon N, Mahowald AP: I(1)hopscotch, A larval-pupal zygotic lethal with a specific maternal
511		effect on segmentation in Drosophila. Dev Biol 1986, 118(1):28-41.
512	17.	Harrison DA, McCoon PE, Binari R, Gilman M, Perrimon N: Drosophila unpaired encodes a
513		secreted protein that activates the JAK signaling pathway. Genes Dev 1998, 12(20):3252-3263.
514	18.	Isaac DD, Andrew DJ: Tubulogenesis in Drosophila: a requirement for the trachealess gene
515		product. Genes Dev 1996, 10(1):103-117.
516	19.	Nogueira-Silva C, Santos M, Baptista MJ, Moura RS, Correia-Pinto J: IL-6 is constitutively
517		expressed during lung morphogenesis and enhances fetal lung explant branching. Pediatr Res
518		2006, 60 (5):530-536.
519	20.	Piairo P, Moura RS, Baptista MJ, Correia-Pinto J, Nogueira-Silva C: STATs in Lung Development:
520		Distinct Early and Late Expression, Growth Modulation and Signaling Dysregulation in
521		Congenital Diaphragmatic Hernia. Cell Physiol Biochem 2018, 45(1):1-14.
522	21.	Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H, Perrimon N, Baeg GH: GFP reporters
523		detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 2007,
524		7 (3):323-331.
525	22.	Shiga Y, M. TM, Hayashi S: A nuclear GFP/ β - galactosidase fusion protein as a marker for
526		morphogenesis in living Drosophila. Development, Growth & Differentiation 1996, 38 :99-106.

Niu et al.	JAK/STAT signaling in the larval trachea of Drosophila
------------	--

527	23.	Roskoski R, Jr.: Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic
528	201	diseases. Pharmacol Res 2016, 111 :784-803.
529	24.	Lindsay SA, Lin SJH, Wasserman SA: Short-Form Bomanins Mediate Humoral Immunity in
530		Drosophila. J Innate Immun 2018, 10 (4):306-314.
531	25.	Lock JG, Stow JL: Rab11 in recycling endosomes regulates the sorting and basolateral transport
532	-	of E-cadherin. <i>Mol Biol Cell</i> 2005, 16 (4):1744-1755.
533	26.	Oshima K, Fehon RG: Analysis of protein dynamics within the septate junction reveals a highly
534		stable core protein complex that does not include the basolateral polarity protein Discs large.
535		<i>Cell Sci</i> 2011, 124 (Pt 16):2861-2871.
536	27.	Jayaram SA, Senti KA, Tiklova K, Tsarouhas V, Hemphala J, Samakovlis C: COPI vesicle transport is
537		a common requirement for tube expansion in Drosophila. PLoS One 2008, 3(4):e1964.
538	28.	Tsarouhas V, Senti KA, Jayaram SA, Tiklova K, Hemphala J, Adler J, Samakovlis C: Sequential pulses
539		of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell
540		2007, 13 (2):214-225.
541	29.	Glasheen BM, Robbins RM, Piette C, Beitel GJ, Page-McCaw A: A matrix metalloproteinase
542		mediates airway remodeling in Drosophila. Dev Biol 2010, 344(2):772-783.
543	30.	Liu L, Johnson WA, Welsh MJ: Drosophila DEG/ENaC pickpocket genes are expressed in the
544		tracheal system, where they may be involved in liquid clearance. Proc Natl Acad Sci U S A 2003,
545		100 (4):2128-2133.
546	31.	Wagner C, Isermann K, Roeder T: Infection induces a survival program and local remodeling in
547		the airway epithelium of the fly. Faseb J 2009, 23 (7):2045-2054.
548	32.	Kode A, Yang SR, Rahman I: Differential effects of cigarette smoke on oxidative stress and
549		proinflammatory cytokine release in primary human airway epithelial cells and in a variety of
550		transformed alveolar epithelial cells. Respir Res 2006, 7:132.
551	33.	Hombria JC, Sotillos S: JAK-STAT pathway in Drosophila morphogenesis: From organ selector to
552		cell behavior regulator. JAKSTAT 2013, 2(3):e26089.
553	34.	Powers N, Srivastava A: JAK/STAT signaling is involved in air sac primordium development of
554		Drosophila melanogaster. FEBS Lett 2019, 593(7):658-669.
555	35.	Zheng XJ, Yang ZX, Dong YJ, Zhang GY, Sun MF, An XK, Pan LH, Zhang SL: Downregulation of leptin
556		inhibits growth and induces apoptosis of lung cancer cells via the Notch and JAK/STAT3
557		signaling pathways. Biol Open 2016, 5(6):794-800.
558	36.	Quinton LJ, Mizgerd JP: NF-kappaB and STAT3 signaling hubs for lung innate immunity. Cell
559		Tissue Res 2011, 343 (1):153-165.
560	37.	Matsuzaki Y, Xu Y, Ikegami M, Besnard V, Park KS, Hull WM, Wert SE, Whitsett JA: Stat3 is required
561		for cytoprotection of the respiratory epithelium during adenoviral infection. J Immunol 2006,
562		177 (1):527-537.
563	38.	Hokuto I, Ikegami M, Yoshida M, Takeda K, Akira S, Perl AK, Hull WM, Wert SE, Whitsett JA: Stat-3
564		is required for pulmonary homeostasis during hyperoxia. J Clin Invest 2004, 113 (1):28-37.
565	39.	Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA: Cytokine/Jak/Stat signaling
566		mediates regeneration and homeostasis in the Drosophila midgut. Cell 2009, 137(7):1343-1355.

Niu et al.	JAK/STAT signaling in the larval trachea of Drosophila

567	40.	Miguel-Aliaga I, Jasper H, Lemaitre B: Anatomy and Physiology of the Digestive Tract of
568		Drosophila melanogaster. Genetics 2018, 210 (2):357-396.
569	41.	Simeone-Penney MC, Severgnini M, Tu P, Homer RJ, Mariani TJ, Cohn L, Simon AR: Airway
570		epithelial STAT3 is required for allergic inflammation in a murine model of asthma. <i>J Immunol</i>
571		2007, 178 (10):6191-6199.
572	42.	Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT, Paladino D, Zhao J, Chen Y, Gunning PT <i>et al</i> :
573		Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human
574		breast and lung cancer xenografts. Proc Natl Acad Sci U S A 2012, 109 (24):9623-9628.
575	43.	Yew-Booth L, Birrell MA, Lau MS, Baker K, Jones V, Kilty I, Belvisi MG: JAK-STAT pathway
576	101	activation in COPD. Eur Respir J 2015, 46 (3):843-845.
577	44.	Prele CM, Yao E, O'Donoghue RJ, Mutsaers SE, Knight DA: STAT3: a central mediator of
578		pulmonary fibrosis? Proc Am Thorac Soc 2012, 9 (3):177-182.
579	45.	Gao H, Guo RF, Speyer CL, Reuben J, Neff TA, Hoesel LM, Riedemann NC, McClintock SD, Sarma JV,
580	45.	Van Rooijen N <i>et al</i> : Stat3 activation in acute lung injury . <i>J Immunol</i> 2004, 172 (12):7703-7712.
581	46.	Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT: JAK/STAT3 signaling is required for
582	40.	TGF-beta-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol 2014,
583		44 (5):1643-1651.
584	47.	Fahy JV, Dickey BF: Airway mucus function and dysfunction. N Engl J Med 2010, 363(23):2233-
585	.,.	2247.
586	48.	Georas SN, Rezaee F: Epithelial barrier function: at the front line of asthma immunology and
587		allergic airway inflammation. J Allergy Clin Immunol 2014, 134 (3):509-520.
588	49.	Gon Y, Hashimoto S: Role of airway epithelial barrier dysfunction in pathogenesis of asthma.
589		Allergol Int 2018, 67 (1):12-17.
590	50.	Heijink IH, Brandenburg SM, Postma DS, van Oosterhout AJ: Cigarette smoke impairs airway
591		epithelial barrier function and cell-cell contact recovery. Eur Respir J 2012, 39 (2):419-428.
592	51.	Milara J, Ballester B, Morell A, Ortiz JL, Escriva J, Fernandez E, Perez-Vizcaino F, Cogolludo A,
593		Pastor E, Artigues E et al: JAK2 mediates lung fibrosis, pulmonary vascular remodelling and
594		hypertension in idiopathic pulmonary fibrosis: an experimental study. <i>Thorax</i> 2018, 73 (6):519-
595		529.
596	52.	Athari SS: Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019, 4:45.
597	53.	Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY: Signal Transducer and Activator of
598		Transcription (STATs) Proteins in Cancer and Inflammation: Functions and Therapeutic
599		Implication. Front Oncol 2019, 9:48.
600	54.	Severgnini M, Takahashi S, Rozo LM, Homer RJ, Kuhn C, Jhung JW, Perides G, Steer M, Hassoun
601		PM, Fanburg BL et al: Activation of the STAT pathway in acute lung injury. Am J Physiol Lung Cell
602		Mol Physiol 2004, 286 (6):L1282-1292.
603	55.	Song L, Rawal B, Nemeth JA, Haura EB: JAK1 activates STAT3 activity in non-small-cell lung
604		cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther
605		2011, 10 (3):481-494.
606	56.	Andrew DJ, Ewald AJ: Morphogenesis of epithelial tubes: Insights into tube formation,
607		elongation, and elaboration. Dev Biol 2010, 341(1):34-55.

Niu et al.	JAK/STAT signaling in the larval trachea of Drosophila
------------	--

608	57.	Bergman P, Seyedoleslami Esfahani S, Engstrom Y: Drosophila as a Model for Human Diseases-
609		Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017, 121:29-81.
610	58.	Bossen J, Uliczka K, Steen L, Pfefferkorn R, Mai MM, Burkhardt L, Spohn M, Bruchhaus I, Fink C,
611		Heine H et al: An EGFR-Induced Drosophila Lung Tumor Model Identifies Alternative
612		Combination Treatments. Mol Cancer Ther 2019, 18(9):1659-1668.
613	59.	Levine BD, Cagan RL: Drosophila Lung Cancer Models Identify Trametinib plus Statin as
614		Candidate Therapeutic. Cell Rep 2016, 14(6):1477-1487.
615	60.	Prange R, Thiedmann M, Bhandari A, Mishra N, Sinha A, Hasler R, Rosenstiel P, Uliczka K, Wagner
616		C, Yildirim AO et al: A Drosophila model of cigarette smoke induced COPD identifies Nrf2
617		signaling as an expedient target for intervention. Aging (Albany NY) 2018, 10(8):2122-2135.
618	61.	Kallsen K, Zehethofer N, Abdelsadik A, Lindner B, Kabesch M, Heine H, Roeder T: ORMDL
619		deregulation increases stress responses and modulates repair pathways in Drosophila airways.
620		J Allergy Clin Immunol 2015, 136 (4):1105-1108.
621	62.	Roeder T, Isermann K, Kabesch M: Drosophila in asthma research. Am J Respir Crit Care Med
622		2009, 179 (11):979-983.
623	63.	Roeder T, Isermann K, Kallsen K, Uliczka K, Wagner C: A Drosophila asthma model - what the fly
624		tells us about inflammatory diseases of the lung. Adv Exp Med Biol 2012, 710:37-47.
625	64.	Brand AH, Perrimon N: Targeted gene expression as a means of altering cell fates and generating
626		dominant phenotypes. Development 1993, 118(2):401-415.
627	65.	Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N: Activation of a Drosophila Janus
628		kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 1995,
629		14 (12):2857-2865.
630	66.	Fink C, Hoffmann J, Knop M, Li Y, Isermann K, Roeder T: Intestinal FoxO signaling is required to
631		survive oral infection in Drosophila. Mucosal Immunol 2016, 9(4):927-936.
632	67.	Bosch JA, Tran NH, Hariharan IK: CoinFLP: a system for efficient mosaic screening and for
633		visualizing clonal boundaries in Drosophila. Development 2015, 142(3):597-606.
634	68.	Chen F, Krasnow MA: Progenitor outgrowth from the niche in Drosophila trachea is guided by
635		FGF from decaying branches. Science 2014, 343(6167):186-189.
636	69.	Campos-Ortega JA, Hartenstein V: The Embryonic Development of Drosophila melanogaster:
637		Springer-Verlag Berlin Heidelberg; 1997.
638	70.	Jeon M, Nguyen H, Bahri S, Zinn K: Redundancy and compensation in axon guidance: genetic
639		analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Dev
640		2008, 3 :3.
641	71.	Levi BP, Ghabrial AS, Krasnow MA: Drosophila talin and integrin genes are required for
642		maintenance of tracheal terminal branches and luminal organization. Development 2006,
643		133 (12):2383-2393.
644	72.	Martin M: Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads.
645		EMBnetjournal 2011, 17 :10-12.
646	73.	Hoskins RA, Carlson JW, Wan KH, Park S, Mendez I, Galle SE, Booth BW, Pfeiffer BD, George RA,
647		Svirskas R et al: The Release 6 reference sequence of the Drosophila melanogaster genome.
648		Genome Res 2015, 25 (3):445-458.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

649

Table 1 Genes that were most strongly upregulated in response to Hop.CA

651 overexpression.

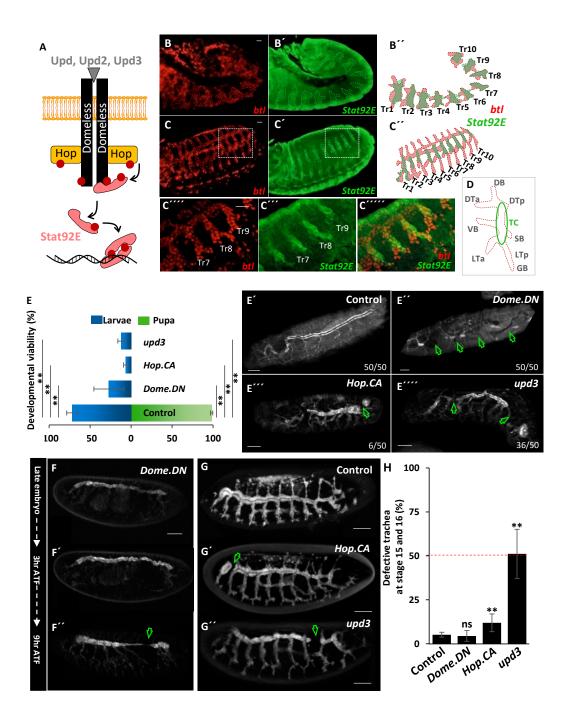
Name	Maximum group mean	Fold change	FDR p-value
CG16772	11.85472435	135.4356918	0
hop	286.0640796	35.42957686	0
CG14570	42.20996514	35.3698493	0
CG14147	55.30940549	32.87679686	0
Hsp70Bb	161.511126	29.98530152	0
Ubx	200.4588187	23.51089416	0
pre-mod(mdg4)-I	1.124681971	18.66759173	2.22648E-06
IM14	11.45782606	15.13546529	3.80132E-07
IM4	26.42664387	14.97315552	1.74645E-12
CG14569	1576.880077	14.72575164	0
IM2	7.261319979	14.4714161	2.01792E-06
CG5791	1.786460103	13.80267454	2.90502E-05
CG9121	3.412245019	11.53962271	0
IM1	7.159415315	10.97306621	7.52122E-05
CG11413	35.69960698	10.63636792	3.44242E-07
CG16710	2.132413445	10.32026533	1.72352E-07
CG31960	267.2645814	10.04792875	0
CG16789	1.452007625	9.460811492	5.58576E-09
CG6034	6.915088882	8.468387575	4.7943E-11
Ace	2.056513226	8.187696842	0
CG13059	9.898481009	7.578675956	1.33893E-06
CG31809	8.642528741	7.388263435	0
CG7203	9.406607055	7.213889526	8.66989E-09
Vha14-2	2.510881225	7.050881817	2.31024E-07
wb	7.35456153	6.689915209	0
Drs	8166.473129	6.635790672	0
CG5778	3.202417196	6.607038471	0.000294835
CG3457	2.693960701	6.337465056	2.38755E-06
Lcp65Ad	9.932204556	5.792567795	2.58249E-08
lectin-22C	29.06148461	5.674130819	6.88538E-06
fuss	3.973734058	5.673577323	0

Niu et al.	JAK/STAT signaling in the larval trachea of Drosophila			
CG43333	2.390923691	5.632143859	1.48392E-09	
CG18336	2.963052606	5.485479621	5.52167E-05	
CG32563	3.062298877	5.352654098	0.000696584	
FASN2	1.651227873	5.340581227	2.95545E-10	
Cyp4d21	45.69613978	5.308508635	0	
Obp57d	1.797549513	5.276761495	0.000102926	
CG17560	2.313559171	5.218521032	0.000766701	
CG5888	68.16302548	5.201444372	0	

652

 $p < 1 \times 10^{-4}$, fold change > 5, maximum group mean > 1. The list is restricted to 39 genes.

653


Table 2 Transcription factor-binding site motifs enriched in 41 highly upregulated genes. 654

Matrix ID	Matrix name	P-value
MA0023.1	dl (var.2)	0.000443261
MA0022.1	dl	0.00407113
MA0532.1	Stat92E	0.00794732
MA0450.1	hkb	0.00811969
MA0197.2	nub	0.0154201
MA0242.1	Bgb::run	0.0371696
MA0204.1	Six4	0.0443521
MA0444.1	CG34031	0.0488169

A total of 133 transcription factor profiles were used. 655

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

657

Figure 1: Effects of JAK/STAT signaling in the airway development in *Drosophila* embryos. (A) shows a model of JAK/STAT signaling pathway in *Drosophila* comprising all major components. Three ligands (Upd, Upd2 and Upd3) bind to a single receptor, Domeless (Dome), which transmits this information via a single JAK (Hopscotch (Hop)) to a single STAT transcription factor (Stat92E). (B-D) Fluorescence micrographs of *btl-Gal4*; *Stat92E-GFP*; *UAS-LacZ.nls* embryos stained for GFP (green, JAK/STAT pathway activated zones), Beta-galactosidase (red, tracheal metamere), respectively. The JAK/STAT signaling pathway is activated in the whole trachea metamere (Tr). The activation of JAK/STAT pathway in the

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

terminal regions is weaker than that in the central regions before (B) and after the fuse of tracheal 665 666 invaginations of all segments (C). (D) shows the pattern of activation of JAK/STAT signaling in the 667 trachea metamere of embryos. DB, dorsal branch; DTa, dorsal trunk anterior; DTp, dorsal trunk posterior; VB, visceral branch; LTa, lateral trunk anterior; LTp, lateral trunk posterior; and GB, ganglionic 668 branch; SB, spiracular branch; transverse connective, TC. The stronger signal in the central regions 669 670 mainly belongs to TC. Scale bar: 20 µm. (E) Ectopic blocking or activation of JAK/STAT signaling in the 671 trachea was done by expressing of Dome.DN or Hop.CA (or upd3), respectively under the control of btl-Gal4. The percentage of embryos that hatched and the percentage of larva that developed into 672 pupa is shown at the left side. Right (E'-E''''): Micrographs surviving larvae. Bt/ driving the expression 673 674 of upd3 and Dome.DN inhibited the formation of an intact tracheal tree. Btl driving the expression of 675 Hop.CA in the trachea showed more intact trachea trees compared to expressing upd3 and Dome.DN in the trachea. X/XX: broken trachea/intact trachea; 50 animals were observed in each group. (F) Time-676 677 lapse imaging the trachea of *btl>Dome.DN* embryo continuously for 9 hours after the trachea formed 678 (9hr ATF). 40 specimens were investigated. (G-H) Activation of the JAK/STAT pathway in the trachea led 679 to incompleted tracheal development during tracheal morphogenesis. Fluorescence micrographs of btl>Hop.CA (or >upd3) embryos (G), and numbers of the trachea which had no fused Tr. (H) 680 Quantification of the numbers of defect tracheal branches in response to the different treatments. 681 682 Each group contains 3 replicates and each replicate contains 30 embryos in G and H. Arrows mark the broken sites in the trachea. ns means not significant, * p < 0.05, ** p < 0.01 by Student's t-test. Scale 683 bar: 20 μm in B-D; 50 μm in E-G. 684

685

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

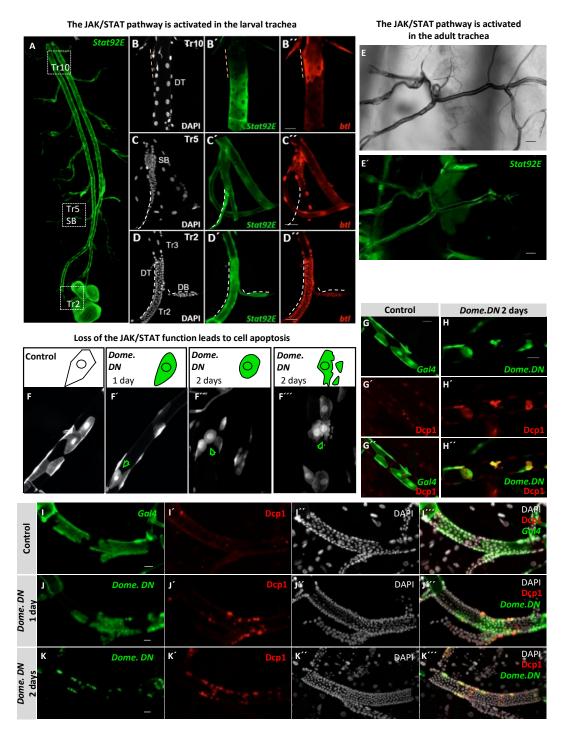


Figure 2: Inhibition of JAK/STAT signaling pathway induced cell apoptosis. (A-D) Fluorescence micrographs of *btl-Gal4; Stat92E-GFP; UAS-LacZ.nls* larvae. The activation of JAK/STAT signaling was detected by using the *Stat92E-GFP* reporter. In general, JAK/STAT signaling was induced in the whole trachea of the larvae. The region in the posterior region of the trachea (orange dash line in B) that is going to degenerate will lose JAK/STAT signaling. Conversely, some regions like Tr2, DB (C), and SB (D)

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

693 where the cell re-enter into cell cycle (white dash line) exhibited stronger JAK/STAT signaling compared

694 to the cell quiescent areas close to them. (E) Fluorescence micrographs of *btl-Gal4; Stat92E-GFP; UAS-*

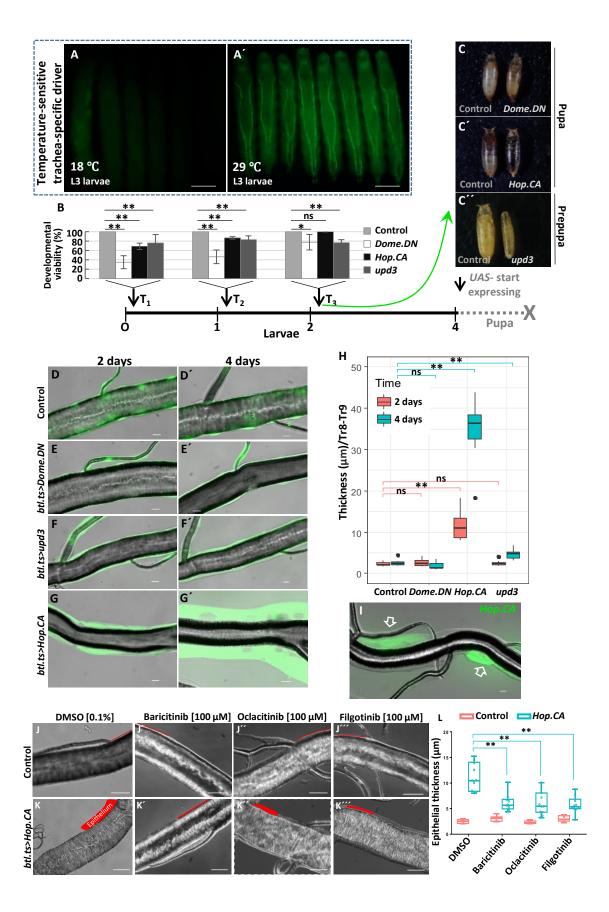
695 LacZ.nls adult. JAK/STAT signaling was induced in the trachea of the adult. (F) Fluorescence micrographs

696 of the mutant clones in the trachea of vvl-FLP, CoinFLP-Gal4, UAS-EGFP; tub-Gal80[ts] (vvl-

697 coin.ts)>UAS-Dome.DN larvae. Negative regulation of JAK/STAT pathway by expressing Dome.DN in the

698 trachea led to the loss of cell shape and disintegration afterward (green arrows). (G-K) Fluorescence

699 micrographs of the trachea of vvl-coin.ts larvae (G), and the trachea of vvl-coin.ts>UAS-Dome.DN larvae


700 (H) stained for cleaved Dcp1 (red). Modified stem cells (J and K) could be stained by cleaved Dcp1

701 earlier than the mutant somatic cells. Inhibition of JAK/STAT signaling induced blockade of cell division

702 (I and K). 50 specimens were used in each assay.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

704 Figure 3: Ectopic activation of epithelial JAK/STAT signaling induces cell thickening. (A) btl-Gal4, UAS-705 GFP; tub-Gal80[ts] (btl.ts) larvae were reared at 18 °C (nonpermissive, A) and 29 °C (permissive, A'). 706 respectively. Using the Gal4/UAS system, comprising the temperature-sensitive repressor Gal80[ts]. 707 were used to time ectopic gene expression. (B) Developmental viability of larvae with different 708 genotypes (including Dome.DN, Hop.CA, and upd3 expression in the trachea driven by btl.ts) and 709 different start points of expression (indicated by black arrows). Statistical analysis of survival times is 710 included. In this experiment, 4 replicates were performed with 30 larvae in B. (C) In general, none of these manipulations allowed survival up to adults. (D-G) Micrographs of Tr8-Tr9 of btl.ts L3 larvae (D, 711 712 Control); btl.ts>Dome.DN L3 larvae (E); btl.ts>Hop.CA L3 larvae (F) and btl.ts>upd3 L3 larvae (G) that 713 were raised at 29 °C for 2 and 4 days, respectively. (H) Statistical analysis of the epithelial thicknesses 714 in Tr8-Tr9 of the corresponding larvae. The thickness of 30 trachea per group were measured in H. (I) 715 Micrographs of Tr8 of vvl-FLP, CoinFLP-Gal4, UAS-EGFP (vvl-coin)>UAS-Hop.CA larvae. The thickening 716 of the tracheal epithelium is observed in those cells that express Hop.CA. Changes in epithelial 717 thickness could be rescued by application of specific JAK inhibitors (J-L). (J-K) Microscopy of the tracheal epithelium (L3 larvae). Control crossings $btl.ts > w^{1118}$ (J) compared to JAK/STAT activated crossings 718 btl.ts>UAS-Hop.CA (K). (L) Illustration and quantification of epithelial thickness (highlighted in red) of 719 720 the JAK inhibitors (Baricitinib, Oclacitinib, Filgotinib) compared to DMSO control. The thickness of 10 trachea per group were measured in J,K. ns means no significant, * p < 0.05, ** p < 0.01 by Student's 721 722 t-test. Scale bar: 500 µm in A; 20 µm in D-G; 50 µm J-K.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

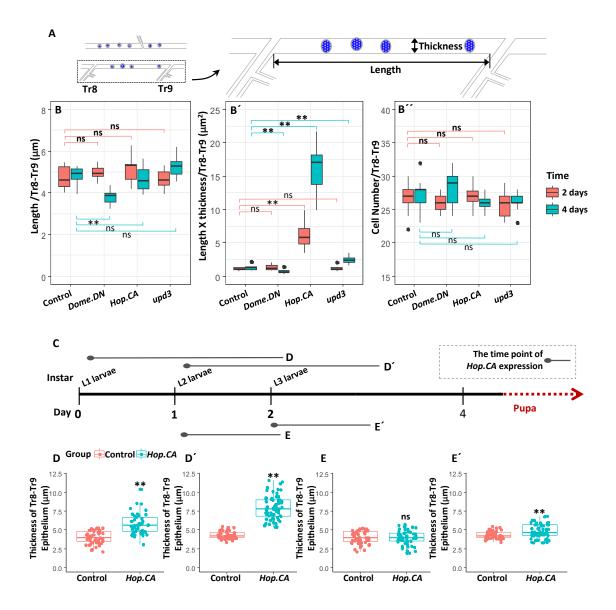
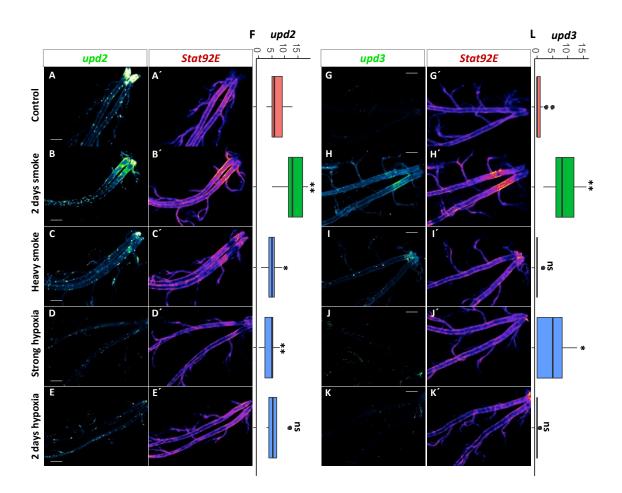
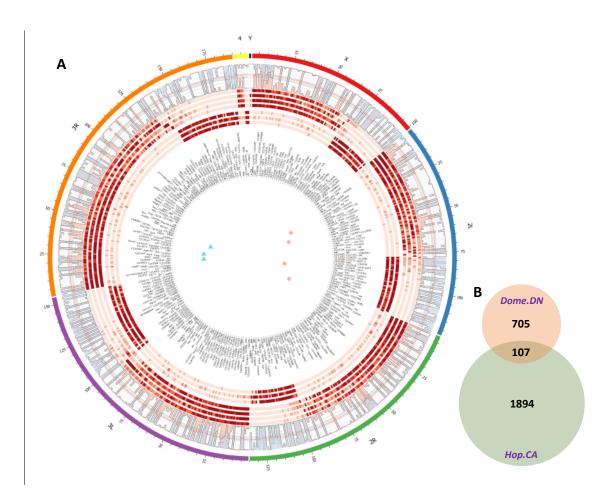



Figure 4: Changes in epithelial thickness could be attributed to the increase in cell volume and is time-724 725 dependent. (A-B) Illustration and quantification of the length, length X thickness, and the cell number 726 of the Tr8-Tr9 region of larvae with different types of ectopic manipulation (including Dome.DN, 727 Hop.CA and upd3 expression in the trachea driven by btl.ts) for 2 or 4 days, respectively. 30 trachea were analysed in each group. (C-E) Illustration of the time point and period of activation of Hop.CA 728 729 expression by using the btl.ts (C) and quantification of the thickness of the Tr8-Tr9 region of control 730 larvae (btl.ts line) and those experiencing ectopic manipulation (btl.ts>Hop.CA line). Quantitative 731 analyses of the thicknesses (D). 1-day expression of Hop.CA starting at L2 larvae (E), but that started at 732 the early L3 stage promotes epithelial thickening (E'). Each group contains 50 replicates in D-E. ns 733 means not significant, * p < 0.05, **p < 0.01 by Student's t-test.

Niu et al.

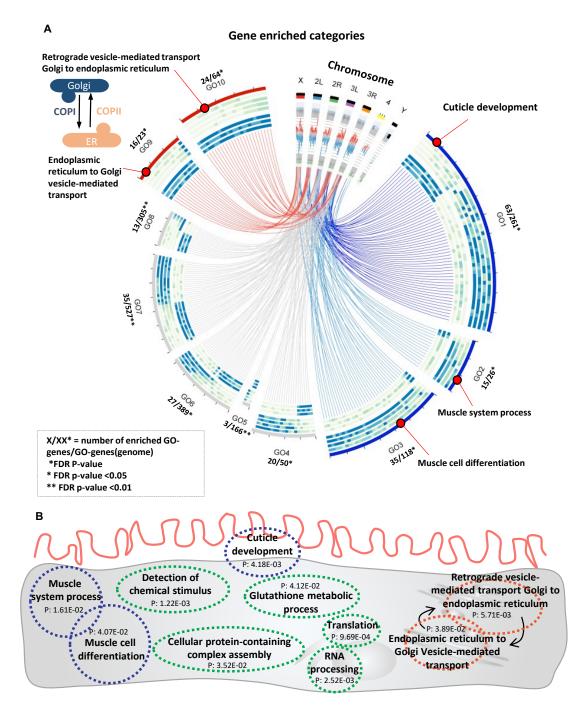
JAK/STAT signaling in the larval trachea of Drosophila



735 Figure 5: JAK/STAT signaling in airway epithelial cells is activated by long term cigarette smoke exposure. 736 Fluorescence micrographs of the trachea of upd2 (A-E) or upd3 (G-K)-Gal4; Stat92E-GFP; UAS-LacZ.nls larvae that were exposed for 2 days smoke (B and H), heavy smoke (C and I), strong hypoxia (D and J), 737 738 and 2 days of hypoxia (E and K). Trachea were stained for GFP (red, JAK/STAT pathway activated zones), 739 Beta-galactosidase (green, cells that expressed upd2 and upd3), respectively. (F and L) The numbers 740 of cells that expressed upd2 and upd3 were counted under these different conditions. 40 trachea in 741 each group were assayed. ns means not significant, * *p* < 0.05, ** *p* < 0.01 by Student's t-test. Scale bar: 742 200 µm.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila


743

744

745 Figure 6: Changes at the transcript level in the airway epithelium of JAK/STAT mutants. Altered gene 746 expression levels in the trachea caused by 16 hours persistent expression of Hop.CA driven by btl.ts. In 747 total, 2004 genes were regulated significantly (p < 0.05), in which 707 genes of (fold change > 2, p <748 0.01) showing even higher levels of significance. (A) These 707 genes were used to visualize the 749 differences of the transcript levels between Hop.CA expressed trachea and control trachea. From the 750 outside to the inside, a histogram for expression mean values (red, control; blue, Hop.CA group), a 751 heatmap for controls, a heatmap for *Hop.CA* overexpression, gene names, and PCA analysis, are shown. 752 According to transcriptome analysis of the tracheal epithelium 1128 genes (p < 0.05) were down-753 regulated, 876 genes (p < 0.05) were up-regulated. The changes in the gene expression total value were 754 not significant in the ectopic expression trachea compared to the controls. (B) The inhibition of the 755 JAK/STAT signaling by ectopic expressing Dome.DN for 18 hours affects the transcription of 814 genes, however, which only 102 genes were regulated in both types of airways; with ectopically activated and 756 757 inhibited JAK/STAT signaling.

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

758

Figure 7: Gene Ontology (GO) enrichment analysis of the 2004 annotated differentially expressed genes in *Hop.CA* overexpressing airways vs controls. (A) Gene ontology analysis showed 10 biological processes that were enriched in *Hop.CA* overexpressing airways compared with matching controls. Most regulated genes in the GO1, GO2, and GO3 groups were down-regulated. Most regulated genes that involved in the COPI-and COPII-mediated vasicular transport between endoplasmic reticulum and Golgi (GO9 and GO10) were up-regulated. GO1, cuticle development; GO2, muscle system process; GO3, muscle cell differentiation; GO4, glutathione metabolic process; GO5, detection of chemical

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

stimulus; GO6, cellular protein-containing complex assembly; GO7, RNA processing; GO8, translation;

767 GO9, endoplasmic reticulum to Golgi vesicle-mediated transport; GO10, retrograde vesicle-mediated

768 transport Golgi to the endoplasmic reticulum. (B) Enriched biological processes were superimposed on

a sketch depicting a tracheal epithelial cell, with the corresponding *p*-value added. Blue indicates

processes where genes were mainly down-regulated; red indicates processes where genes were mainly

vp-regulated; green indicates processes where genes were both down-regulated and up-regulated at

similar extents. See also table S10 for annotation of genes involved in each process. All processes

shown displayed p < 0.05 (Fisher's exact test).

Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

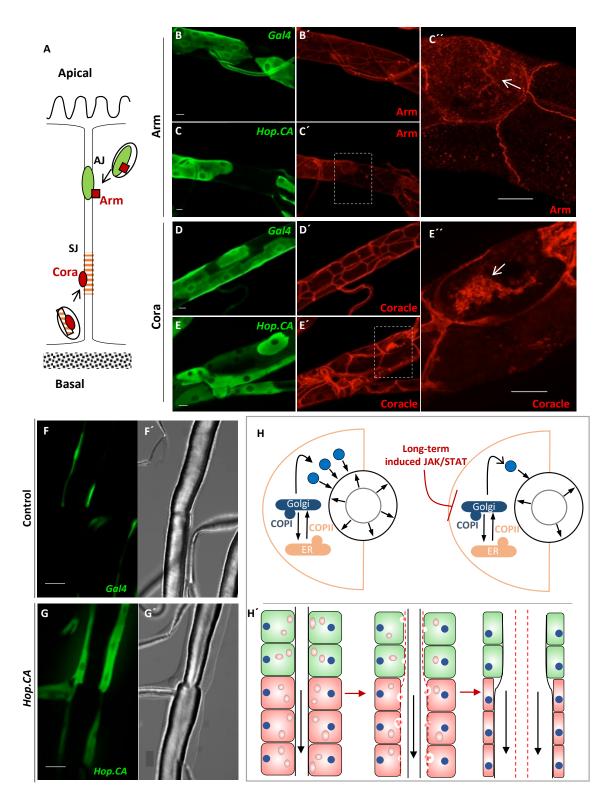
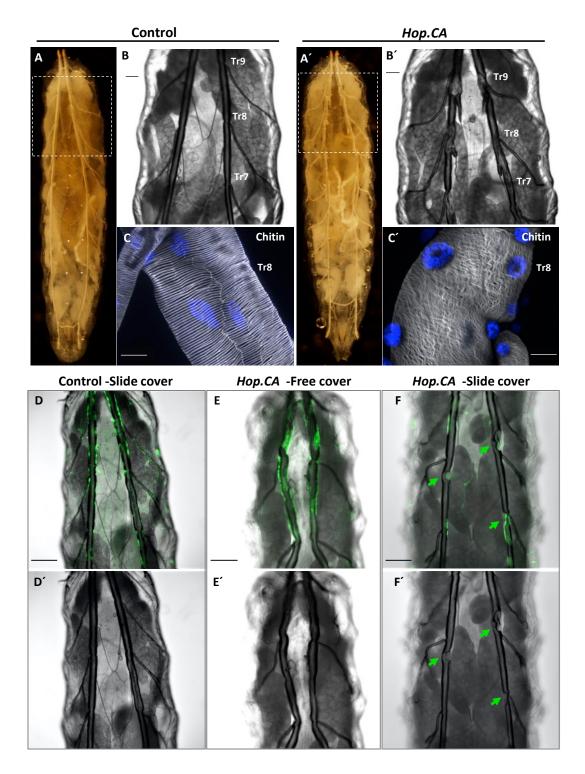


Figure 8: Activation of airway epithelial JAK/STAT signaling affects vesicle-mediated transport of proteins. (A-E) Coracle (Cora) and Armadillo (Arm) localization in airway epithelial cells. (A) shows the schematic orientation of Arm and Cora only at the contact zone between two airway epithelial cells.


Niu et al.

JAK/STAT signaling in the larval trachea of Drosophila

Adherens junction (AJ), Septate junction (SJ). Trachea of vvl-coin larvae (control; B and D) and vvl-778 779 coin>Hop.CA larvae (treatment; C and E) stained for GFP (green, Gal4 positive cells), Arm or Cora (red), 780 respectively. 30 specimens were investigated in each group. (F-G) Micrographs of the trachea of vvl-781 coin larvae (control; F) and vvl-coin>Hop.CA larvae (treatment; G). White are places where tracheal 782 stenosis took place in the regions with cells expressing Hop.CA to a high degree. Scale bar: 20 µm in A-783 E; 50 μm in F-G. (H) Schematic illustration of the thickening of the epithelium and narrowing of the 784 tube. In the control epithelium, a secretory burst of luminal proteins drives the diametric expansion of the tubes and this process depends on vesicle-mediated transport. COPI-and COPII-mediated vesicular 785 786 transport plays a central role in this process, mutation members in the process underly the tube size 787 defect in previous reports [27, 28]. However, long-term induced JAK/STAT activation impedes vesicle-788 mediated transport that can be reflected by the deregulation of massive genes involved in COPI-and 789 COPII-mediated vesicular transport. This dysfunction of transport led to the appearance of tube size 790 defect such as the increase in the cell volume and narrowing the tube size.

Niu et al.

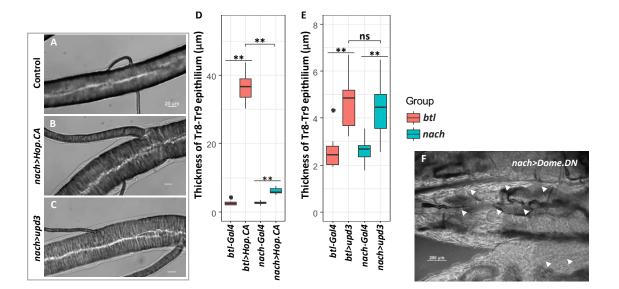
JAK/STAT signaling in the larval trachea of Drosophila

792

Figure 9: Activation of JAK/STAT signaling in airway epithelial cells affects the development of the epicuticle. (A-C) Activation of JAK/STAT signaling in airway epithelia observed in whole larvae by expressing *UAS-Hop.CA* under the control of the *btl.ts*. Controls (A-C) and induction of expression by shifting the temperature to 29 °C causes the defects in the tracheal epicuticle (A'-C'). 50 control larvae

Niu et al.

and *btl.ts>Hop.CA* larvae were investigated in A-C. (A, A') Overview of the whole larvae showing the


798 whole tracheal system. In (B, B') the region containing Tr7-Tr9 is shown. (C, C') Chitin staining of isolated

799 airways (at the Tr8 region). (D-F) Micrographs of the trachea of vvl-coin larvae under different

800 conditions. In D, D' the control is shown, in E, E', the undisturbed larval of animals experiencing *Hop.CA*

801 overexpression are displayed. F, F' similar animals as in E, E', but the animals covered with a slide,

- inducing a certain degree of compression. The arrows show the collapsed sites in the tracheal tube.
- 30 larvae in each group were investigated in D-F. Scale bar: 50 μ m in B; 20 μ m in C; 200 μ m in D-F.

804

805 Figure 10: Mild activation of epithelial JAK/STAT signaling mitigated the thickening phenotype. (A-C) Micrographs of the Tr8-Tr9 regions of nach-Gal4 larvae (control, A), nach>Hop.CA (treatment, B), and 806 807 nach>upd3 larvae (treatment, C). (D-E) Quantification of the epithelial thickness of the Tr8-Tr9 region 808 of those larvae whose JAK/STAT signaling were activated by expressing Hop.CA or upd3 under the 809 control of nach-Gal4 and btl-Gal4. (F) Micrographs of nach>Dome.DN larvae experiencing suppression 810 of the JAK/STAT pathway make trachea translucent and filled with fluids (arrows); triangle indicates the 811 tracheal position. 30 larvae in each group were used to quatify the thickness. ns means not significant, 812 * *p* < 0.05, ** *p* < 0.01 by Student's t-test. Scale bar: 20 μm in A-C; 200 μm in F.

- 813
- 814
- 815
- 816