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Abstract 

Sudden changes in visual scenes often indicate important events for behavior. For 

their quick and reliable detection, the brain must be capable to process these changes as 

independent as possible from its current activation state. In motion-selective area MT, 

neurons respond to instantaneous speed changes with pronounced transients, often far 

exceeding the expected response as derived from their speed tuning profile. We here 

show that this complex, non-linear behavior emerges from the combined temporal 

dynamics of excitation and divisive inhibition, and provide a comprehensive formal 

analysis. A central prediction derived from this investigation is that attention increases 

the steepness of the transient response irrespective of the activation state prior to a 

stimulus change, and irrespective of the sign of the change. Extracellular recordings of 

attention-dependent representation of both speed increments and decrements confirmed 
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this prediction and suggest that improved change detection derives from basic 

computations in a canonical cortical circuitry.  

 

Introduction 

For change detection in behaviorally relevant situations, stimulus-induced, strong 

transient firing rate modulations provide a powerful signal to downstream visuomotor 

areas on short timescales1,2. Such transients are particularly information-rich3,4, and the 

temporal sensitivity of neurons to stimulus changes is suggested to constitute a major 

function of neuronal tuning properties5. Human behavioral performance to detect speed 

changes6 correlates with the size of area MT change transients7 and strongly improves 

with both spatial and feature-directed attention8. Accordingly, both forms of attention 

were found to increase sustained and transient MT firing rates before and after a stimulus 

change9,10, and the transient response after the change also correlates with reaction 

times9.  

This close relation between neuronal transients and behavioral change detection 

performance on the one hand, and the general effect of attention to increase neuronal 

response rates11,12 on the other raises the question how attention exerts its beneficial 

effects under conditions where firing rate increases seem to impede the formation of 

pronounced transients and counteract behavioral performance. For example, because 

attention-dependent enhancement of firing rates brings a neuron closer to its maximum 

activity, a stimulus-induced transient firing rate increase under attention might be 

smaller than without attention. Furthermore, a negative transient would start from a 

larger pre-change activation level and is presumably having a smaller absolute negative 

peak than under conditions of no or remote attention. Absolute firing rates of the 

transient, therefore, may only poorly allow to predict attention-dependent improvements 

of behavioral change detection. As a consequence, the neuronal circuit processing the 

change is supposed to rely on some form of normalization to compensate for differences 

in absolute activity, and, to facilitate change detection, attentional modulation of the 

circuit should induce a consistent effect on neuronal transients that is independent from 

the stimulus-induced activation level before the change.  It is unclear presently, which 

feature of a change-transient can be most consistently modulated by attention 

independent of the specific stimulus condition, and which neuronal mechanism might 

underlie its corresponding dynamics. 

To investigate this issue, we set up and formally analyze a biologically plausible, 

canonical circuit providing divisive inhibition to an excitatory unit, and apply the model 

to a wide range of different stimulus conditions under passive viewing conditions7. By 

introducing an input response gain to simulate top-down modulation of change detection 

by visual attention, the model circuit predicts a main effect on response rise times not 
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only for positive transients but also for the case of negative transients, i.e. rapid rate 

decreases in a population of neurons. To test this prediction experimentally, we recorded 

single neurons from area MT while monkeys were engaged in a change detection task for 

both speed increments and decrements, eliciting large positive and negative population 

transients, respectively. We show that MT activity is exactly following the prediction of 

the model, having steeper response slopes irrespective of the sign of the transient. Thus, 

the model circuit provides a consistent neuronal mechanism to explain change detection 

under passive and attended conditions by a rather simple computational unit realized in 

the canonical circuitry of the cortex. 

 

Results 

Transient neural responses in area MT. Neurons in area MT are well-activated by 

moving stimuli such as localized drifting Gabor patches presented inside their receptive 

fields (RFs). Neural responses are tuned to the direction of movement, exhibiting maximal 

activity when the stimulus is moving in the cell's preferred direction13. The additional 

preference of MT neurons for a particular stimulus speed can be approached by a 

Gaussian function in log-velocity space14,15. Rapid changes in the input to these neurons 

result in pronounced, transient changes of their activation. An example from previous 

work7 is showing the population response of an ensemble of MT neurons to a range of 

sudden stimulus accelerations and decelerations (Fig. 1a). Transients show up as fast 

increases (or decreases) in firing rate, followed by a slower decrease (or increase) in firing 

rate back to a sustained level of activation. Such transients are visible in response to any 

instantaneous change in stimulation (black arrows in Fig. 1a): stimulus onset, motion 

onset, speed change, motion offset, and stimulus offset. Due to their causal relation to 

visual perception and change detection16, we aimed to study their properties and non-

linear dynamics in a theoretical framework providing access to a comprehensive formal 

analysis, and to experimentally test predictions derived from it. 

Model for transient activation in area MT. For modeling transient responses, we 

consider a circuit where an input I activates an excitatory and an inhibitory unit, with 

output 𝐴𝑖  of the inhibitory unit providing divisive inhibition onto the excitatory unit (Fig. 

1b). The dynamics of the circuit is given by the following differential equations: 

(1) 𝜏𝑒
𝑑𝐴𝑒(𝑡)

𝑑𝑡
= −𝐴𝑒(𝑡) + 𝑔𝑒 (

𝐼(𝑡)

𝐴𝑖(𝑡)+𝜎
),  

(2) 𝜏𝑖
𝑑𝐴𝑖(𝑡)

𝑑𝑡
= −𝐴𝑖(𝑡) + 𝑔𝑖(𝐼(𝑡)),  

where output 𝐴𝑒(𝑡) of the excitatory unit represents the instantaneous firing rate 𝐴𝑒 of a 

neuron in MT at time 𝑡, with I being the external input provided by the visual stimulus. 

Terms 𝜏𝑒 , 𝜏𝑖 denote time constants, 𝜎 is a constant positive offset, and 𝑔𝑒, 𝑔𝑖 represent 
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gain functions realized by threshold-linear rectification, with 𝑚𝑒 , 𝑚𝑖 indicating gain 

factors, and 𝜃𝑒 , 𝜃𝑖  indicating thresholds: 

(3) 𝑔𝑒(𝐼) = 𝑚𝑒(𝐼 − 𝜃𝑒)  for I > 𝜃𝑒 , and 0 otherwise 

(4) 𝑔𝑖(𝐼) = 𝑚𝑖(𝐼 − 𝜃𝑖)  for I > 𝜃𝑖 , and 0 otherwise. 

With constant suprathreshold input 𝐼0, the steady-state solution 

(5) 𝐴𝑒
𝑠𝑡𝑒𝑎𝑑𝑦

= 𝐴𝑒(𝑡 → ∞) = 𝑚𝑒 (
𝐼𝑜

𝑚𝑖(𝐼0−𝜃𝑖)+𝜎
− 𝜃𝑒)  

for equation (1) is equivalent to a standard divisive normalization model17,18, where 𝐴𝑖  

represents feedback from co-activated neighboring MT columns. As such, our model can 

be interpreted as a dynamical reformulation of static divisive normalization. Its advantage 

is the explicit representation of transients, allowing activation 𝐴𝑒 to quickly follow 

changes in I on a fast time scale 𝜏𝑒 , while divisive inhibition is acting on a longer time scale 

𝑡𝑖, bringing the output towards a sustained, steady-state level of activation (Fig. 1c). 

Model fit to transients from experimental data. To investigate how well the 

model explains experimental data, 𝐴𝑒(𝑡) was fitted to MT stimulus onset transients. 

 

Figure 1. Transient responses in area MT and model circuit. (a) Population response of MT 

neurons exhibiting large transients (black arrows) in response to stimulus onset (at t = 0.25 s), 

movement onset (at t = 0.5 s), speed change (at t = 1.25 s), movement offset (at t = 2.0 s) and 

stimulus offset (at t = 2.25 s). Color scale indicates sign and magnitude of the speed change (blue 

for decelerations, red for accelerations). Modified from Ref. [7]. (b) Model circuit providing 

divisive inhibition 𝐴𝑖  to an MT neuron with activation 𝐴𝑒 . 𝜏𝑒 and 𝜏𝑖 denote time constants and 𝑚𝑒 

and 𝑚𝑖 denote gains of the corresponding units. (c) Example response of the model circuit (upper 

graph) to a positive input change at time 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 (lower graph). Starting from activation level 

𝐴𝑒
𝑝𝑟𝑒

= 50 spikes/s, the circuit exhibits a fast transient increase in activation reaching a peak 

response 𝐴𝑒
𝑝𝑒𝑎𝑘

 before decreasing more slowly to a post-change, sustained activation level 𝐴𝑒
𝑝𝑜𝑠𝑡

=

100 spikes/s (with parameters: 𝜏𝑒 = 10 ms, 𝜏𝑖 = 40 ms, 𝐴𝑒
𝑚𝑎𝑥 = 120 spikes/s).  
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Because MT neurons exhibit spontaneous activity with low firing rates even in absence of 

a visual stimulus, we assume 𝜃𝑒 = 𝜃𝑖 = 0  and 𝐼(𝑡) > 0, which allows to replace equations 

(3) and (4) by linear gain functions to simplify the analysis. By modeling stimulus onset 
as an instantaneous change in external input at 𝑡 = 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 from 𝐼𝑝𝑟𝑒 to 𝐼𝑝𝑜𝑠𝑡, equation (2) 

can be explicitly solved, assuming that for 𝑡 < 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 the system is in its steady state for 

a constant input 𝐼𝑝𝑟𝑒. The result can be rewritten in terms of the sustained activation 𝐴𝑒
𝑝𝑟𝑒 

before stimulus onset, and sustained activation 𝐴𝑒
𝑝𝑜𝑠𝑡 after decay of the transient 

response, to account for the fact that experimental access is given to the output of the 

neuron rather than to its input:  

(6) 𝜏𝑒
𝑑𝐴𝑒

𝑑𝑡
= −𝐴𝑒 + 𝐴𝑒

𝑚𝑎𝑥 [

1

𝐴𝑒
𝑝𝑜𝑠𝑡 − 

1

𝐴𝑒
𝑝𝑟𝑒

1

𝐴𝑒
𝑝𝑟𝑒 − 

1

𝐴𝑒
𝑚𝑎𝑥

 exp (−
𝑡−𝑡𝑐ℎ𝑎𝑛𝑔𝑒

𝜏𝑖
) +

𝐴𝑒
𝑚𝑎𝑥

𝐴𝑒
𝑝𝑜𝑠𝑡]

−1

 

The ratio of the two gain factors 𝐴𝑒
𝑚𝑎𝑥 =  𝑚𝑒/𝑚𝑖 designates the theoretical 

maximum sustained activation of the circuit. We used a grid search to find the remaining 

free parameters 𝜏𝑒 , 𝜏𝑖, and 𝐴𝑒
𝑚𝑎𝑥  to minimize the average quadratic error between model 

activation and recorded MT firing rate during the transient response (cf. Methods). 

This structurally very simple model allowed for a close approximation of transient 

and sustained MT responses to motion onsets, despite the significant differences in their 

 

Figure 2. Model fits to stimulus onset transients. (a – c) Activity of three example units (thin 

lines) and corresponding model fit (solid lines). Gray shading indicates standard error over trial 

repetitions, light gray box indicates fitting interval. Time axis is shown relative to neural response 

onset. (d) Model goodness-of-fit ratio distributions of the recorded units for two monkeys (M1, 

black; M2, gray). (e) Scatter plot for fitted time scales 𝜏𝑒 versus 𝜏𝑖 (M1, crosses; M2, open circles). 
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shape, caused by, among other things, the different tuning of individual neurons to actual 

stimulus speeds. Three examples of multi-unit responses and corresponding model fits 

are given in Fig. 2a-c, and the goodness-of-fit distributions for the total of 88 (monkey 1 

(M1)) and 55 (M2) units are shown in Figure 2d. The goodness-of-fit ratio G was close to 

1 for most units, indicating that fits were estimating the mean response as good as the 

experimental data (cf. Methods for more details). Excitatory time scales were much faster 

than inhibitory ones, as to be expected for the dynamics of transients (Fig. 2e). For M1, 

mean 𝜏𝑒 was 18 ± 16 ms SD, mean 𝜏𝑖 was 67 ± 38 ms, average ratio 𝜏𝑖/𝜏𝑒 was 6.65 with 

SD 8.56, and average 𝐴𝑒
𝑚𝑎𝑥  was 70 ± 45 spikes/s. For M2, mean 𝜏𝑒 was 20 ± 10 ms, mean 

𝜏𝑖 was 78 ± 34 ms, average ratio 𝜏𝑖/𝜏𝑒 was 5.6 with SD 5.64, and average 𝐴𝑒
𝑚𝑎𝑥  was 128 ± 

102 spikes/s.  

Transient response characteristics to stimulus changes. After the model had 

been calibrated to motion onset transients, we were next interested to investigate 

whether it is capable to predict and explain the complex non-linear scaling of transients 

in response to changes in speed, which depend on the sign and magnitude of the physical 

speed change and the individual neurons' tuning characteristics7. Because time scales 𝜏𝑒 

were shorter than 𝜏𝑖, one can consider an idealized version of the model by assuming that 

the excitatory unit reacts infinitely fast to input changes. With this approximation, it is 

possible to solve equation (6) explicitly for 𝜏𝑖 > 0 and obtain the peak of the transient 
shortly after 𝑡 = 𝑡𝑐ℎ𝑎𝑛𝑔𝑒  analytically (cf. equations (12) & (13) in Methods). 

Peak amplitudes obtained from the model in this manner reproduced an important 

and so far unexplained characteristic of MT change transients. In MT, peak amplitudes in 

response to speed changes exceed those expected from the neuron’s speed tuning profile 

 

Figure 3. Transient/sustained rate changes following stimulus speed changes. 

Experimentally observed transient (black) and sustained (gray) rate changes in response to 

positive and negative speed changes (dashed lines) of different magnitude, and corresponding 

predictions from model analysis (solid lines). Base speed before the change was located either on 

(a) the ascending flank, or (b) the descending flank of the cells' speed tuning curves.
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significantly if the speed before the change is away from the neuron’s preferred speed. 

Neurons that are well tuned to the pre-change speed are very poor change detectors, 

while neurons for which the pre-change speed is on the flank of their tuning curve have a 

strong impact on the population response7. This tuning-dependent, non-linear 

relationship between pre-change stimulus speed and individual neuronal tuning profiles 

is well captured by the model. Simulated speed changes, realized by step functions applied 
to the circuit’s input at time 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 (Fig. 1c), predict speed change transients very closely 

matching the experimental data with regard to sign and amplitude of the peak for both 

changes occurring on the ascending and the descending flank of the tuning curve (Fig. 3). 

Thus, the model reproduces the full dynamics of physiological change transients, 

including the over- and undershooting of peak amplitudes.  

Model predictions for attention-dependent modulation of change transients. 

Because transients signal stimulus changes in a rapid and pronounced manner, they were 

previously suggested as a possible target for attentional modulation and a neuronal 

mechanism to speed up reaction times9,19,20.  In area MT, using speed changes of 100% 

magnitude, attention was found to modulate both the peak amplitude and latency of a 

change transient9,10. Modulations due to other magnitudes of change, including negative 

changes, have not been investigated yet. Therefore, in our model, we next studied the 

 

Figure 4. Model predictions for attention-induced changes in slope, peak, and sustained 

responses. (a) Attention is included into the model by a simple multiplicative gain change of the 

input (top left schematic). Ideally, attention should elicit a consistent modulation of the neuronal 

change response, as e.g. enhancing a neural response feature for positive input changes (above 

diagonal, red shading), and suppressing it for negative input changes (below diagonal, blue 

shading) irrespective of the particular pre-change activation level. (b) Predicted attention-

dependent changes in slope ∆𝐹𝑟𝑖𝑠𝑒 (top left, indicating consistent modulation by attention), 

sustained activation ∆𝐹𝑠𝑢𝑠 (top right, indicating inconsistent, pre-change activation-dependent 

modulation by attention), and relative peak height ∆𝐹𝑝𝑒𝑎𝑘 (bottom plots). Relative peak height 

critically depends on 𝜏 and becomes similar to ∆𝐹𝑟𝑖𝑠𝑒 for 𝜏 → 0 and similar to ∆𝐹𝑠𝑢𝑠 for 𝜏 → ∞. 

Color scale for bottom plots is the same as for top plots. 
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dynamical effects of attention on transients for speed changes of arbitrary magnitude. We 

included attention by simply assuming a multiplicative scaling11 of the input I by a factor 

𝛼 > 1, 𝐼 → 𝛼𝐼 (Fig. 4a, top left).  

Ideally, to improve computation and, ultimately, perception, the effect of attention 

should be consistent across the entire dynamical range of the circuit. In particular, for 

attention to be effective, any change in the external input I causing a positive (or negative) 

transient (as e.g. the traces for the ± 100% changes in Fig. 1a) should be associated with 

attention-dependent modulations preserving the sign of the transient independent from 

the neuron’s pre-change activation, as e.g. a consistent increase (or decrease) in the 

transient’s peak amplitude. If, however, peak amplitude is only increased for low pre-

change activation levels, but decreased for high pre-change activation levels for otherwise 

identical stimulus conditions, the effect of attention would be inconsistent. Figure 4a 

(bottom right) exemplifies a consistent pattern of attentional modulation for stimulus-

change responses associated with positive and negative rate changes, normalized to a 

dynamic range between 0 (lowest level) and 1 (highest level). The colored surface 

illustrates a consistent (i.e. pre-change activity independent) positive modulation by 

attention for stimulus-induced rate increases (above diagonal), and a corresponding 

negative modulation by attention for stimulus-induced rate decreases (below diagonal).  

The model was used to investigate three different change-response features 

regarding their dependence from attention and pre-change activity: the initial slope 

𝐹𝑟𝑖𝑠𝑒of the transient (i.e. rise/decay time), the maximal amplitude 𝐹𝑝𝑒𝑎𝑘 of the transient, 

and the sustained activation 𝐹𝑠𝑢𝑠 following the transient. For analysis, pre- and post-

change activities 𝐴𝑒
𝑝𝑟𝑒 and 𝐴𝑒

𝑝𝑜𝑠𝑡 were normalized from absolute values to activations 

𝑎𝑒
𝑝𝑟𝑒 =  𝐴𝑒

𝑝𝑟𝑒/𝐴𝑒
𝑚𝑎𝑥  ∈  [0,1] and 𝑎𝑒

𝑝𝑜𝑠𝑡 =  𝐴𝑒
𝑝𝑜𝑠𝑡/𝐴𝑒

𝑚𝑎𝑥  ∈  [0,1] relative to the hypothetical 

maximum response 𝐴𝑒
𝑚𝑎𝑥 . Peak and sustained responses were quantified relative to pre-

change activation, assuming that any plausible change detection circuit needs to base its 

computation on the number of spikes exceeding or falling below this level. The initial 

slope becomes  

(7) 𝐹𝑟𝑖𝑠𝑒(𝑎𝑒
𝑝𝑟𝑒 , 𝑎𝑒

𝑝𝑜𝑠𝑡, 𝛼) =  
𝑑𝐴𝑒

𝑑𝑡
|

𝑡=𝑡𝑐ℎ𝑎𝑛𝑔𝑒

=  
1

𝜏𝑒
 
𝑎𝑒

𝑝𝑜𝑠𝑡
− 𝑎𝑒

𝑝𝑟𝑒

1− 𝑎𝑒
𝑝𝑟𝑒  

𝛼

𝑎𝑒
𝑝𝑟𝑒(𝛼−1)+1

  

and its attention-induced change Δ𝐹𝑟𝑖𝑠𝑒 is visualized in Fig. 4b (left). Similarly, the 

sustained activation level 𝐹𝑠𝑢𝑠 is given by 

(8) 𝐹𝑠𝑢𝑠(𝑎𝑒
𝑝𝑟𝑒, 𝑎𝑒

𝑝𝑜𝑠𝑡, 𝛼) =  
𝛼

𝛼−1+(𝑎𝑒
𝑝𝑜𝑠𝑡

)
−1 −  

𝛼

𝛼−1+(𝑎𝑒
𝑝𝑟𝑒

)
−1, 

and its attention-induced change Δ𝐹𝑠𝑢𝑠 relative to the pre-change activity is plotted in Fig. 

4b (right). Finally, the relative change in maximal amplitude Δ𝐹𝑝𝑒𝑎𝑘 depends on the 

specific ratio of the excitatory and inhibitory time constants 𝜏 =  𝜏𝑒/𝜏𝑖. Numerical 
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evaluations for different values of 𝜏 reveal that for 𝜏 → 0,  Δ𝐹𝑝𝑒𝑎𝑘 approaches Δ𝐹𝑟𝑖𝑠𝑒,  

 

Figure 5. Experimental speed change detection paradigm and example PSTHs. (a) Monkeys 

were detecting positive and negative speed changes (presented block-wise) at pre-cued locations. 

Each trial started with a cue indicating the hemifield of the rewarded stimulus (small gray box, 

left or right of the central, red fixation spot). After monkeys properly fixated and pressed a lever, 

two moving gratings appeared, one of which was placed inside the RF of the recorded neuron 

(dashed white circle), while the other was placed in the opposite hemifield, mirrored across the 

fixation spot. Following a pseudo-randomized delay of 0.66 to 5.5 s, the RF-stimulus rapidly 

increased (top row) or decreased speed (bottom row). Any speed change of the stimulus in the 

uncued hemifield had to be ignored. Keeping fixation and releasing the lever within 750 ms after 

the speed change was rewarded with some drops of water of diluted grape juice. Depending on 

the cued stimulus location, the RF stimulus was either attended or non-attended, giving rise to 

four experimental conditions (right plots, color-coded). (b) PSTHs for two example multi-unit 

sites (one from each monkey), illustrating rapid firing rate adjustments in response to speed 

changes. Note that because negative speed changes result in a decrease of the firing rate, the 

stimulus-induced modulation of the firing rate is opposite to the attention-induced modulation 

before the change. Insets show spike counts and variances assessed in time intervals of 25ms from 

-400ms to +200ms relative to stimulus change for all units. Color coding of the different 

attentional conditions is indicated in panel (a). 
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while for 𝜏 → ∞, it approaches Δ𝐹𝑠𝑢𝑠 (Fig. 4b, bottom panels). These computations reveal  

two main insights: First, the slope and the sustained response indicate the two extremes 

of the analysis. The slope is subject to a strong and consistent pattern of attentional 

modulation, which is independent of both the overall activity and the sign of the rate 

change, indicating generally faster transients with attention for both speed increments 

and decrements. In contrast, the sustained response exhibits an inconsistent pattern of 

attentional modulation, with the sign of the modulation depending on the overall 

activation of the neuron before the change. Second, as a function of the specific ratio of 

excitatory and inhibitory time constants, the modulation of the peak amplitude shifts 

between these extremes. Attentional modulation becomes stronger and more consistent 

the smaller the ratio 𝜏 =  𝜏𝑒/𝜏𝑖, but is attenuated (and, theoretically, even inconsistent) 

for larger values of 𝜏. Thus, the model makes the explicit prediction that, like positive 

transients, negative transients (i.e. rapid decreases in firing rate) will have a steeper rise 

time, i.e. shorter latencies, under the influence of attention as well as higher relative peaks, 

assuming 𝜏 being in the previously estimated range (Fig. 2e). 

Experimental investigation of model predictions. Because attention is generally 

found to facilitate the response of visual neurons to the initial stimulus, any decrease in 

the population firing induced by a corresponding change of the behaviorally relevant 

stimulus would be antagonized by the opposite effect of attention, in terms of absolute 

firing. For this problem, the model's prediction of generally faster rise times and 

potentially more pronounced relative peak firing rate changes as a result of attention 

offers a particularly attractive solution for effective detection of stimulus changes. 

Changes in rise time (and, under appropriate conditions, relative peak firing rate 

changes), provide a mechanism independent of absolute firing to transmit attentionally 

selected information to downstream areas of the visuomotor pathway.  

To test the model predictions, we recorded neuronal responses from motion-

sensitive area MT of two macaques (M3: N = 45 units, M4: N = 25 units). Monkeys 

performed a speed-change detection task requiring them to either attend towards or 

away from the recorded unit’s RF and to detect increments or decrements of the target’s 

speed (Fig. 5a). Peri-stimulus time histograms (PSTHs) aligned to the speed change of the 

stimulus displayed higher pre-change firing rates when the stimulus inside the RF was 

attended, and strong, transient increases and decreases of the firing rate in response to 

increments (accelerations) and decrements (decelerations) of motion speed, respectively 

(Fig. 5b). Interestingly, attentional modulation before the change did not differ between 

blocks of speed increments and decrements (two-sided Wilcoxon signed rank test on the 

attentional modulation index 𝐴𝐼 = (𝐴𝑒
𝑝𝑟𝑒,𝐴 − 𝐴𝑒

𝑝𝑟𝑒,𝑁)/(𝐴𝑒
𝑝𝑟𝑒,𝐴 + 𝐴𝑒

𝑝𝑟𝑒,𝑁), W = 276, P = 0.10, 

N = 43 for M3 and W = 23, P = 0.70, N = 21 for M4), indicating that it was independent 

from the sign of the speed change to be detected. Spike counts for all attentional 

conditions and all 25 ms time intervals between 400ms before and 200ms after a speed 

change exhibited a variance close to their mean (Fig. 5b, insets), compatible with the 

statistical properties of a Poisson process (used below for assessing significance of spike 
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count differences).  

To analyze these transients according to model predictions, we assessed first, 

response slopes and second, relative firing rate changes during the transient time period 

of 50 to 200 ms following the speed change. First, for analyzing slopes, we calculated 

 

Figure 6. Quantification of attention-induced rate changes. (a) Population average of speed 

change-induced rate modulations for the four attentional conditions. Data taken from M3. (b) 

Corresponding excess cumulative spike counts relative to the pre-change firing rate. (c) 

Attention-induced differences in excess cumulative spike count, separately for accelerations (red) 

and decelerations (blue). Differences are significantly larger than 0 (𝑝 < 0.01) outside shaded 

regions. (d) Histogram of attention-induced differences in excess cumulative spike count over 

individual sites, separately for acceleration and deceleration conditions. Dark colors indicate 

samples with values being significantly different from zero. Samples were taken at 95 ms after 

stimulus change. (e) Percentage of significantly modulated individual units for which cumulative 

counts were significantly larger with attention in the speed-up condition or significantly smaller 

with attention in the speed-down condition. Black line, M3; gray line, M4. Dashed line indicates 

the time for which the samples for the histogram in panel (d) were taken. (f) Percentage of 

significantly modulated units for which spike count differences between activities before and 

after the stimulus change were significantly larger in the speed-up condition or significantly lower 

in the speed-down condition, separately for successive time intervals of 25 ms length. Black bars, 

M3; gray bars, M4.    
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excess cumulative spike counts representing the number of spikes over- or undershooting 

the mean firing rate before the speed change as a proxy for the initial slope. Because rates 

increase or decrease almost linearly for the first 40 ms following the population transient 

onset, a larger (smaller) cumulative count is equivalent to a steeper positive (negative) 

slope. In contrast to estimating slopes directly from the PSTHs, the cumulative measure 

has two advantages. First, because accumulation is based on integration, noise does not 

become amplified but attenuated. Second, accumulation does not need smoothing of data 

to more reliably calculate specific response parameters, which is problematic if transients 

are faster than the width of the PSTH filter kernel used. Consistent with the prediction of 

the model, the excess cumulative spike count was found to rise more steeply for positive 

transients, and to decay more rapidly for negative transients when attention was directed 

to the stimulus (Fig 6a, b). Onset of the population transient was around 55 ms after the 

stimulus change, which is well in the range of typical MT response latencies21,22. 

Attention-dependent differences in excess cumulative spike counts become significantly 

different from 0 already shortly after response onset (Fig. 6c). We also tested this result 

at the level of individual units (Figs. 6 d, e). Of all units, 60% displayed significantly 

different cumulative spike counts during the onset of the transient following speed 

increments, and of those, 85% confirmed the predictions of the model. Likewise, for speed 

decrements, 46% of all units were displaying significantly different spike counts, and 76% 

of those were confirming the model’s prediction of steeper slopes. This result was found 

for both monkeys, with 84% (M3) and 72% (M4) of all significantly modulated units being 

in accordance with the model prediction. 

Second, for analyzing the transient’s peak in response to the stimulus change, the 

firing rate was calculated in consecutive bins of 25 ms width. For both speed increments 

and decrements, up to more than 90 % of units were found to have significantly higher 

and lower rates, respectively, in the attend-in condition during the time intervals of 50 to 

100 ms post-change (Fig. 6f). Yet, because this ratio decreased rapidly for later bins of the 

transient, consistent attentional modulation was limited to a brief period immediately 

following the stimulus change. 

Taken together, the experimental data confirmed the model predictions for both the 

effect of attention onto the slope of positive and negative transients and, for the initial 

part of the transient, onto the modulation of relative peak responses for time constant 

ratios of 𝜏𝑖/𝜏𝑒 ≫ 1, as found in the response onset fits (Fig. 2e). As a novel physiological 

result, they provide evidence that attention modulates the same features of a negative 

transient than it does for positive transients, suggesting that processing of visual 

information, and its perception, can rely on information contained in reductions of firing 

rates.  

Discussion 

The ability to detect rapid changes in complex, ever-changing environments is 
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fundamental for both animal and human behavior. Neuronal responses to fast stimulus 

transitions usually come as brief episodes of increased or decreased neuronal activity, 

followed by a steady-state level of lower absolute amplitude. Pronounced transient 

changes in neuronal activation were observed in the brain of many different species, 

spanning the range from invertebrates to primates23-25, suggesting that they represent a 

basic principle in neuronal network dynamics. We here show that such a canonical 

computation can be realized by a very simple circuitry, essentially built of only one 

excitatory and one inhibitory unit, in which the excitatory unit’s output time course is 

normalized through divisive inhibition. The circuitry can be expressed by a set of 

equations with only three free parameters, obtained by fitting the model to each neuron’s 

onset response (to cover the individual unit’s kinetics). The simplicity of the model 

allowed for the comprehensive formal analysis of neuronal response dynamics and to 

reproduce and predict physiological transients to a significant range of stimulus 

transitions, including the interesting case of attentional modulation of rate-decreasing 

events.  

Non-stationary normalization by divisive inhibition. A key element of the model 

is normalization of the circuitry’s output by divisive inhibition. Normalization by divisive 

(shunting) inhibition was initially suggested as a means to explain nonlinearities in the 

response of neurons in visual cortex17. It consists of dividing the response of a given 

neuron, or group of neurons, by the average response of a pool of normalizing units, either 

within the same cortical area or between areas26-30. Since its introduction, the concept 

was successfully used to explain neural response characteristics in a range of different 

contexts and neural systems, both with and without attention (cf. Refs. [18],[31] for 

overview).  Most work, however, has focused on static divisive normalization to describe 

modulations of sustained neuronal responses, while the circuitry we here introduce 

explicitly addresses the temporal response dynamics. Static normalization in our model 

emerges as the fixed point of the activation dynamics for a constant input. Static models 

may be capable to reproduce MT responses to dynamic stimuli to some extent32, but they 

have limits to capture fast neural responses and they are inappropriate to explain non-

monotonic transient responses to sudden input changes. Temporal low-pass filtering was 

previously suggested to circumvent these limitations and allowed modelling the time 

course of MT responses during pursuit eye movements33. Because low-pass filtering 

converts an instant input change to an exponentially saturating input current, divisive 

inhibition is delayed with respect to excitation and thus enabled generation of transient 

responses that successfully fitted the experimental data. The relaxation differential 

equations in our model have exactly the same effect - low-pass filtering the input drive, 

and delaying inhibition by assuming a larger time constant for the rise of the divisive term. 

However, the earlier model has a large number of free parameters and multiple functional 

modules for allowing detailed fits of neural responses to pursuit eye movements of 

different velocity33, while the model we here introduce has its focus on structural 

simplicity. This property enables thorough formal analysis for a large variety of stimulus 
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conditions, with and without the effects induced by attention, and allowed to predict 

neuronal response dynamics under so far untested experimental conditions.  

Relation between transients and information processing, perception, and 

behavior. Biologically relevant signals usually occur on very short time scales, and the 

brains of both vertebrates and invertebrates generate rapid visual percepts, decisions, 

and motor behaviors. Flies, for instance, track and chase other flies with response times 

as short as 30 ms34, carnivorous vertebrates possess extremely fast sensorimotor 

programs for visually guided pursuit predation35, and primates, both human and non-

human, categorize objects and perform appropriate motor responses within tens of 

milliseconds36-38. These findings imply that, while different behaviors in different species 

may involve different neuronal substrates and mechanisms, the brain strongly relies on 

fast neuronal codes to account for the strong temporal variability of sensory input during 

eye movements, self- and object-motion. Transient firing rate changes of small groups of 

neurons in response to sudden changes in sensory input are likely part of this code. 

Accordingly, such transients not only participate in detection of objects and events but 

carry detailed information about stimulus properties. In monkey temporal cortex, 

transients were shown to exhibit specificity for different head views within 25 ms 

following onset of the population response, and to contain more information than later 

epochs of the response39,40. A corresponding pattern was found in primary visual cortex 

V1, reaching a peak for detectability and discriminability of oriented gratings within 150 

ms of the onset response, and in area MT, where most information on motion direction is 

available within the first 100 to 200 ms after stimulus onset3,4,41. This higher information 

content of onset transients is likely due to a larger gain and smaller variance as compared 

to steady-state activation levels during continuous stimulation41,42. Accordingly, because 

brief episodes of coherent motion or rapid speed changes were found to induce firing rate 

changes significantly correlating with behavioral choices, transients were linked to 

perceptual judgments9,43-45. The results of the current study show that the simple circuitry 

we used to implement rapid firing changes in response to input changes is fully 

reproducing the experimentally observed MT responses, including the over- and 

undershooting during change transients in comparison to firing rate changes expected 

from steady-state tuning properites7. Because thresholding of transients allowed for 

read-out of information in full accordance with human behavioral performance6, both for 

rate increments and decrements7, they provide a mechanistic explanation for 

computations within sensory cortex underlying the perceptual process of change 

detection and discrimination, basically realizable by non-stationary divisive inhibition 

within a simple cortical circuitry. 

Modulation of change transients by selective attention. Due to the close relation 

between transient firing rate patterns and perceptual judgments on the one hand, and the 

influence of selective attention on neuronal processing and behavioral performance on 

the other, transients are likely targets for attentional modulation. Recent monkey 

neurophysiological studies reported attention-dependent modulation of amplitudes, 
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latencies, and gamma coherence during stimulus onset or stimulus change responses in 

various visual areas9,19,45-49, and a close relation between reaction times to attended speed 

increments and the latency of the change transient9. All of these results, however, were 

obtained by investigating stimulus events eliciting an increase in firing rate. If specific 

parameters of transient firing rate changes indeed underlie perceptual performance, the 

question arises how attention influences a population of neurons for stimuli inducing a 

decrease in mean activation. The formal analysis of our model dynamics predicted - not 

without surprise – that negative transients would basically be modulated by attention in 

the same way as positive ones, with the slope and the relative peak height being the 

response features to allow for consistent attentional modulation independent of the pre-

change activation level of the neuron, and independent of the sign of the transient. The 

experimental confirmation of this prediction provides new physiological insights for 

understanding change detection and its modulation by attention. As an important result, 

they indicate a relevant constrain of task-dependent modulation. Because attention was 

implemented as a positive gain to the input of the circuitry in the model, firing rates during 

the pre-change epoch were always larger with attention than without, regardless of the 

type of change occurring later. The new physiological results reported here show that, 

albeit speed increments and decrements were presented block-wise and allowed the 

animals to make correct predictions on the sign of the upcoming change, attention 

consistently increased neuronal responses during the pre-change epoch by about the 

same factor. These results strongly suggest that attention-dependent modulation in early 

visual cortex is generally associated with a positive gain of neuronal responses, as 

opposed to a mechanism modulating responses in the same direction as the sensory 

event. Moreover, regardless of an always positive gain modulation during the pre-change 

period, the model predicted steeper response slopes with attention for both stimulus 

changes inducing an increase and a decrease in neuronal firing. This prediction was a 

direct consequence of the model’s inherent dynamics, since apart from input gain no other 

parameter of the model was changed to implement attention. In line with this prediction, 

the physiological experiments show a significant influence of spatial attention on both the 

rise and the decay time of the change transient, being steeper with attention than without, 

i.e. attentional modulation was independent of whether the stimuli induced an increase 

or a decrease in the firing of neurons. Based on the model’s temporal dynamics, a 

mechanistic explanation of this effect is that the stronger drive of both the excitatory and 

inhibitory unit allows a faster effect of divisive normalization with attention. Because 

normalization is acting in the direction of the input change, it is affecting the slope of both 

positive and negative transients likewise. Both the computational and the physiological 

data suggests that not only rapid positive changes in firing rate, but also rapid negative 

changes provide important information to downstream areas that are used for 

subsequent visual processing.  
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Methods 

Electrophysiological data. MT data used to develop the model were recorded in 

the context of previously published studies7,10. Additional data to test model predictions 

were recorded using non-human primate standard behavioral and neurophysiological 

procedures. Housing of animals, experimental and surgical procedures were all in 

accordance with the Directive 2010/63 issued by the European Commission and the 

Regulation for the Welfare of Experimental Animals issued by the Federal Government of 

Germany, and were approved by the local authorities. Data were acquired from two male 

macaque monkeys, six and eight years old. Recordings were performed using tungsten 

microelectrodes (2–5 MOhm, 125 mm shank diameter; Frederic Haer, Bowdoin, ME) and 

standard electrophysiological equipment. The pre-amplified signal was filtered between 

0.7 and 5 KHz and sampled with a frequency of 25 KHz. Spikes were detected online by 

thresholding the signal. All spike data were then subjected to offline semiautomatic spike 

sorting using Klustakwik50, followed by manual adjustment of spike clusters using a 

custom-made algorithm for spike form and spike parameter illustration51. Visual 

stimulation, control, and documentation of behavioral data was performed using custom-

made Matlab scripts and in-house software. Eye movements were controlled by a custom-

made video-oculography system with 0.2 degree resolution.  

Visual stimulation and behavioral paradigm. Monkeys were tested in a 

behavioral task requiring detection of a rapid change in the speed of a moving stimulus, 

either an acceleration (speed change by a factor of ~2), or a deceleration (speed change 

by a factor of ~0.5), presented block-wise. The basic task design was the same as in 

previous studies9,10. Each trial started with appearance of a small red fixation spot (0.14 

degree side length) at the center of the screen (22 inch cathode ray tube monitor, 

resolution 1,280 x 1,024 pixel, 100 Hz refresh rate). Monkeys initiated the trial by gazing 

at the fixation point, pressing a lever, and keeping it hold. Following a delay of 250 ms, a 

spatial cue appeared for 700 ms to indicate the location of the upcoming target stimulus, 

followed by another delay of 200 ms and subsequent appearance of two static Gabor 

stimuli (sine wave spatial frequency: 2 cycles/degree, Gaussian envelope: σ = 0.75 degree 

at half height), one centered above the RF of the recorded neuron and the other one 

mirrored across the fixation spot. Mean Gabor luminance was identical to background 

luminance (10 cd/m2). Gabors started to intrinsically move (speed: 2.17 degree/sec) 200 

ms after onset, with motion direction adjusted to the preferred direction of the recoded 

neuron, as described elsewhere9. In about 40% – 50% of the trials, the uncued stimulus 

changed speed before the target stimulus, which had to be ignored by the monkeys. 

Following the speed change of the target, monkeys had to keep fixation for another 300 

ms (to avoid contamination of the neuronal post-change response by eye movements) and 

to release the lever within a response window of 150-750 ms. Speed changes occurred 

within 0.66 and 5.5 sec after motion onset. Subsequent trials were separated by an 

intertrial interval of 3 – 4 sec. Releasing the lever outside the response window and eye 

movements of more than one degree from the fixation point caused immediate 
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termination of a trial. Monkeys were rewarded with a few drops of water or diluted fruit 

juice for each correctly performed trial.  

Model steady-state activation and response to step functions. The model 

consists of two units driven by external input 𝐼, with one unit providing divisive inhibition 

on the other unit (Fig. 1b). Their dynamics are described by the differential equations (1)-

(2) and threshold-linear gain functions (3)-(4), with the steady-state activation resulting 

from a constant, suprathreshold input 𝐼0 given by 

(9) 𝐴𝑒
𝑠𝑡𝑒𝑎𝑑𝑦

= 𝐴𝑒(𝑡 → ∞) = 𝑚𝑒 (
𝐼0

𝐴
𝑖
𝑠𝑡𝑒𝑎𝑑𝑦

+𝜎
− 𝜃𝑒), 

(10) 𝐴𝑖
𝑠𝑡𝑒𝑎𝑑𝑦

= 𝐴𝑖(𝑡 → ∞) = 𝑚𝑖(𝐼0 − 𝜃𝑖) 

Inserting (10) into (9) provides equation (5). Assuming zero thresholds 𝜃𝑒 = 𝜃𝑖 =

0 and a suprathreshold input 𝐼(𝑡) > 0 allows to replace (3)-(4) by linear gain functions, 

simplifying further analysis. Instantaneous stimulus changes are considered as step 
functions providing a change in constant external input from 𝐼𝑝𝑟𝑒 to 𝐼𝑝𝑜𝑠𝑡 at 𝑡 = 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 . 

Assuming that the model is in its steady state for 𝑡 < 𝑡𝑐ℎ𝑎𝑛𝑔𝑒, equation (2) can be explicitly 

solved and equation (1) for post-change activation (𝑡 ≥ 𝑡𝑐ℎ𝑎𝑛𝑔𝑒) can be written as: 

(11) 𝜏𝑒
𝑑𝐴𝑒

𝑑𝑡
= −𝐴𝑒 + 𝑚𝑒 (

𝐼𝑝𝑜𝑠𝑡

𝑚𝑖(𝐼𝑝𝑜𝑠𝑡+(𝐼𝑝𝑜𝑠𝑡−𝐼𝑝𝑜𝑠𝑡) exp(−(𝑡−𝑡𝑐ℎ𝑎𝑛𝑔𝑒)/𝜏𝑖))+𝜎
).  

Using equation (5), 𝐼𝑝𝑟𝑒 and 𝐼𝑝𝑜𝑠𝑡, which are unknown in an experiment, can be 

expressed as functions of their corresponding steady-state (sustained) activations 𝐴𝑒
𝑝𝑟𝑒 

and 𝐴𝑒
𝑝𝑜𝑠𝑡 via equation (6). 

Model fit to physiological data. 88 recordings from M1 and 54 recordings from M2 

(single- and multi-units) were used to fit the model to stimulus onset transients. 

Transients were caused by the appearance of a grating inside a neuron's RF, moving into 

its preferred direction while monkeys performed a simple fixation paradigm (Ref. [7] for 

experimental details). While the model responds immediately to a change in its input at 
time 𝑡𝑐ℎ𝑎𝑛𝑔𝑒, the physiological change response is delayed by the processing time between 

retina and area MT. To account for this, response onset delay ∆𝜏 relative to stimulus onset 

was estimated by visual inspection of the PSTHs binned at different temporal resolutions, 

individually for each unit (averages: M1: 31ms +/- 12ms SD, M2: 32 +/- 10ms). Sustained 

responses 𝐴𝑒
𝑝𝑟𝑒 and 𝐴𝑒

𝑝𝑜𝑠𝑡 before and after stimulus change were determined by 

computing the average spike rate over all trials in the intervals [-100ms, 0ms] and 

[200ms, 500ms], respectively (time denoted relative to stimulus onset). 𝐴𝑒
𝑝𝑟𝑒 and 𝐴𝑒

𝑝𝑜𝑠𝑡 

allow to numerically solve equation (6) and compare it directly to the delay-compensated, 

trial-averaged physiological response by computing the quadratic error 𝐸2 =  〈∥ 𝐴𝑒(𝑡) −

𝐴𝑒
exp

(𝑡 − ∆𝜏) ∥2〉, averaged over a 200ms interval after response onset. Experimental 

𝐴𝑒
exp

 was sampled within 5 ms time bins and the model's response was downsampled to 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.19.161414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.161414
http://creativecommons.org/licenses/by-nc-nd/4.0/


- 18 - 

 

the same temporal resolution for comparison. Parameters 𝜏𝑒 , 𝜏𝑖, and 𝐴𝑒
𝑚𝑎𝑥  for explaining 

physiological dynamics were determined by an iterative grid search for minimizing 𝐸2. 

Because 𝐴𝑒
𝑚𝑎𝑥  must be at least the value of 𝐴𝑒

𝑝𝑜𝑠𝑡, and values higher than 3 𝐴𝑒
𝑝𝑜𝑠𝑡 were 

never reached by the optimization procedure, initial grid search ranges for 𝐴𝑒
𝑚𝑎𝑥  were set 

to [1.03 𝐴𝑒
𝑝𝑜𝑠𝑡, 3 𝐴𝑒

𝑝𝑜𝑠𝑡]. Ranges for 𝜏𝑒 and 𝜏𝑖 were set to [1 ms, 100 ms] and [1 ms, 500 ms], 

respectively, with the upper limits being well above the observed rise/decay times of the 

PSTHs. The resolution of the search grid was 40 bins for 𝐴𝑒
𝑚𝑎𝑥 , and 15 bins for the two 

time constants. Four iterations with subsequently refined grids resulted in a precision of 

0.01 % for the parameter estimates within the initially chosen range. Goodness-of-fit was 

determined as the ratio 𝐺 = √𝐸2/𝑆𝐸𝑀𝑒𝑥𝑝 of the error √𝐸2 between model and trial-

averaged physiological responses used in the fit (see above) to the standard error of the 
mean 𝑆𝐸𝑀𝑒𝑥𝑝 (averaged over the time interval used for fitting). 

Calculation of transient and sustained activation changes. Under the condition 

𝜏𝑒 ≪  𝜏𝑖 (separation of time scales), the peak response during the transient can be 

approximated by: 

(12) 𝐴𝑒
𝑝𝑒𝑎𝑘 ≈ 𝐴𝑒

𝑝𝑜𝑠𝑡  
𝐴𝑒

𝑚𝑎𝑥− 𝐴𝑒
𝑝𝑟𝑒

𝐴𝑒
𝑚𝑎𝑥− 𝐴𝑒

𝑝𝑜𝑠𝑡. 

Under assumption of a log-Gaussian velocity tuning14,15, sustained activation can be 

expressed in terms of the stimulus velocity 𝑣: 

(13) 𝐴𝑒
𝑠𝑡𝑒𝑎𝑑𝑦(𝑣) = 𝐴0 + 𝐴𝑒

𝑝𝑟𝑒𝑓
exp (−

(log(𝑣𝑝𝑟𝑒𝑓)−log(𝑣))
2

2𝜎𝑣
2 ), 

with spontaneous activity 𝐴0, tuning width 𝜎𝑣 and maximum response amplitude 

𝐴𝑒
𝑝𝑟𝑒𝑓

 for preferred speed 𝑣𝑝𝑟𝑒𝑓. Computing 𝐴𝑒
𝑠𝑡𝑒𝑎𝑑𝑦

 for stimulus velocities 𝑣𝑝𝑟𝑒 and 𝑣𝑝𝑜𝑠𝑡 

before and after the speed change, respectively, provides 𝐴𝑒
𝑝𝑟𝑒 =  𝐴𝑒

𝑠𝑡𝑒𝑎𝑑𝑦
(𝑣𝑝𝑟𝑒) and 

𝐴𝑒
𝑝𝑜𝑠𝑡 =  𝐴𝑒

𝑠𝑡𝑒𝑎𝑑𝑦
(𝑣𝑝𝑜𝑠𝑡) for equation (14), to obtain analytical expressions for 𝐴𝑒

𝑝𝑒𝑎𝑘/𝐴𝑒
𝑝𝑟𝑒 

and 𝐴𝑒
𝑝𝑜𝑠𝑡/𝐴𝑒

𝑝𝑒𝑎𝑘 for arbitrary acceleration/deceleration ratios 𝑣𝑝𝑟𝑒/𝑣𝑝𝑜𝑠𝑡 (Fig. 3). For 

evaluating 𝐴𝑒
𝑝𝑒𝑎𝑘/𝐴𝑒

𝑝𝑟𝑒 and 𝐴𝑒
𝑝𝑜𝑠𝑡/𝐴𝑒

𝑝𝑒𝑎𝑘 in comparison to experimental data (Fig. 3), we 

chose 𝐴0 = 0, a tuning half-width of 2.5 octaves (𝜎𝑣 = log(22.5) ≈ 1.73) and 𝐴𝑒
𝑚𝑎𝑥 =

1.4 𝐴𝑒
𝑝𝑟𝑒𝑓

. 

Modulation by attention. Attention is modeled by multiplicative modulation of 

input  𝐼 by a factor 𝛼 > 1, 𝐼 →  𝛼𝐼 (Fig. 4a). Expressing absolute activation 𝐴𝑒 relative to 

𝐴𝑒
𝑚𝑎𝑥 , 𝑎𝑒 ≔  𝐴𝑒/𝐴𝑒

𝑚𝑎𝑥  provides scaled pre- and post-change sustained activities 𝑎𝑒
𝑝𝑟𝑒 =

 𝐴𝑒
𝑝𝑟𝑒/𝐴𝑒

𝑚𝑎𝑥 and 𝑎𝑒
𝑝𝑜𝑠𝑡 =  𝐴𝑒

𝑝𝑜𝑠𝑡/𝐴𝑒
𝑚𝑎𝑥 ranging in the interval [0, 1]. The initial slope 𝐹𝛼

𝑟𝑖𝑠𝑒 

of the transient response as a function of 𝑎𝑒
𝑝𝑟𝑒 and 𝑎𝑒

𝑝𝑜𝑠𝑡 in dependence on 𝛼 yields: 

(14) 𝐹𝛼
𝑟𝑖𝑠𝑒(𝑎𝑒

𝑝𝑟𝑒 , 𝑎𝑒
𝑝𝑜𝑠𝑡)  ∶=  

𝑑𝑎𝑒

𝑑𝑡
|

𝑡=0
=  

1

𝜏𝑒
 
𝑎𝑒

𝑝𝑜𝑠𝑡
−𝑎𝑒

𝑝𝑟𝑒

1−𝑎𝑒
𝑝𝑜𝑠𝑡  

𝛼

𝑎𝑒
𝑝𝑟𝑒(𝛼−1)+1

 , 
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and the change in sustained activation level 𝐹𝛼
𝑠𝑢𝑠 relative to the pre-change level becomes: 

(15) 𝐹𝛼
𝑠𝑢𝑠(𝑎𝑒

𝑝𝑟𝑒 , 𝑎𝑒
𝑝𝑜𝑠𝑡)  ∶=  

𝛼

𝛼−1+(𝑎𝑒
𝑝𝑜𝑠𝑡

)
−1  −  

𝛼

𝛼−1+(𝑎𝑒
𝑝𝑟𝑒

)
−1. 

For assessing the attention-induced modulation in these quantities (Fig. 4b), we 

computed Δ𝐹𝛼
𝑟𝑖𝑠𝑒 =  𝐹𝛼

𝑟𝑖𝑠𝑒 −  𝐹1
𝑟𝑖𝑠𝑒 and Δ𝐹𝛼

𝑠𝑢𝑠 =  𝐹𝛼
𝑠𝑢𝑠 −  𝐹1

𝑠𝑢𝑠. Peak activation 𝐹𝛼
𝑝𝑒𝑎𝑘 during 

transient responses must be computed numerically, thus  Δ𝐹𝛼
𝑝𝑒𝑎𝑘 =  𝐹𝛼

𝑝𝑒𝑎𝑘 −  𝐹1
𝑝𝑒𝑎𝑘 was 

obtained by solving equation (6) explicitly in dependence on the chosen time constants 

𝜏𝑒 and 𝜏𝑖. 

Calculation and comparison of physiological response parameters. In total, 

𝑁 = 45 sites were recorded in M3 and 𝑁 = 25 sites in M4. For inclusion to data analysis, 

we required the speed-up condition to be associated with a significant firing rate increase 

in the attend-out condition (assessed in the time interval 140 to 160 ms after stimulus 

change, one-tailed test on Poissonian distribution around mean firing rate before stimulus 
change, p<0.05), which was given for 𝑁𝑢𝑝 = 36 sites in M3 and 𝑁𝑢𝑝 = 19 sites in M4. 

Similarly, the speed-down condition was required to be associated with a significant firing 

rate decrease in the attend-out condition, which was fulfilled for 𝑁𝑑𝑜𝑤𝑛 = 42 sites in M3 

and 𝑁𝑑𝑜𝑤𝑛 = 21 sites in M4. Rise times and relative spike counts of the experimentally 

observed transients (Fig. 5) were calculated to compare physiological data against model 

predictions for Δ𝐹𝑟𝑖𝑠𝑒 and Δ𝐹𝑝𝑒𝑎𝑘. First, rise times of physiological transients were 

assessed by determining excess cumulative spike counts following the stimulus change, 

defined as the number of spikes exceeding the spike count of a neuron continuing to fire 

with its observed pre-change rate. By visual inspection, we estimated an average response 
delay of 𝑡𝑐ℎ𝑎𝑛𝑔𝑒 = 55 ms for both monkeys. For estimating pre-change activity, we 

computed the summed firing rate 𝐹𝑝𝑟𝑒 over all trials of a given attention condition in the 
time window [-400ms, 𝑡𝑐ℎ𝑎𝑛𝑔𝑒]. Excess cumulative spike count 𝑒𝑐(𝑡) was then defined for 

𝑡 >  𝑡𝑐ℎ𝑎𝑛𝑔𝑒 by: 

(16) 𝑒𝑐(𝑡) = −𝐹𝑝𝑟𝑒(𝑡 − 𝑡𝑐ℎ𝑎𝑛𝑔𝑒) +  ∫ 𝛿(𝑡′ − 𝑡𝑘)𝑑𝑡′
𝑡

𝑡𝑐ℎ𝑎𝑛𝑔𝑒
, 

where  𝑡𝑘 denote the times of 𝐾 spikes 𝑘 = 1, … , 𝐾,  considering all trials of the respective 

condition. For comparing the initial slopes of two attention conditions 𝑁 and  𝐴, we first 

computed their cumulative excess responses  𝑒𝑐𝑁(𝑡)  and 𝑒𝑐𝐴(𝑡). We then evaluated the 

difference Δe𝑐𝐴𝑁(𝑡) =  𝑒𝑐𝐴(𝑡) −  𝑒𝑐𝑁(𝑡) and tested statistically whether Δe𝑐𝐴𝑁(𝑡) was 

significantly deviating from zero. The transient of condition 𝐴 was considered to rise 

significantly faster (or slower) than the transient of condition 𝑁, if Δ𝑒𝑐𝐴𝑁(𝑡) was above 

(or below) a time-dependent threshold. Thresholds were set to 

±𝑧√(𝐹𝐴
𝑝𝑟𝑒 + 𝐹𝑁

𝑝𝑟𝑒)(𝑡 − 𝑡𝑐ℎ𝑎𝑛𝑔𝑒), where 𝑧 = 2.32 was chosen to yield a significance level 

of 𝑝 < 0.01. 

Second, spike counts for individual attention conditions and during different 
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periods of the transient were calculated as the difference Δ𝑎𝑐 between the absolute spike 

count before and after the speed change, Δ𝑎𝑐(𝑖𝑡𝑣) = 𝑎𝑐𝑝𝑜𝑠𝑡(𝑖𝑡𝑣) − 𝑎𝑐𝑝𝑟𝑒, where 𝑖𝑡𝑣 

denotes intervals of 25 ms length, taken between 50 ms and 200 ms following the speed 

change for the transient. The steady-state response before the change was estimated 

during the period from -400 ms to 𝑡𝑜𝑛𝑠𝑒𝑡. The difference between two relative spike counts 

was considered significantly different from zero when it exceeded 

𝑧√νar𝐴
𝑝𝑟𝑒 + νar𝐴

𝑝𝑜𝑠𝑡 + νar𝑁
𝑝𝑟𝑒 + νar𝑁

𝑝𝑜𝑠𝑡  , where var designates the spike count variance in 

the corresponding attentional condition pre- or post-stimulus change. 
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