RUNX1 marks a luminal castration resistant lineage established 1 at the onset of prostate development 2 3 **AUTHORS** 4 Renaud Mevel¹, Ivana Steiner², Susan Mason³, Laura C.A. Galbraith³, Rahima Patel¹, 5 Muhammad ZH Fadlullah¹, Imran Ahmad^{3,4}, Hing Y. Leung^{3,4}, Pedro Oliveira⁵, Karen Blyth^{3,4}, 6 Esther Baena^{2,6}, Georges Lacaud^{1,7} 7 8 **AFFILIATIONS** 9 10 ¹Cancer Research UK, Stem Cell Biology Group, Cancer Research UK Manchester Institute, The 11 University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK. ² Cancer Research UK, Prostate Oncobiology Group, Cancer Research UK Manchester Institute, 12 13 The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK. ³ Cancer Research UK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK. 14 15 ⁴ Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK. 16 ⁵ Department of Pathology, The Christie NHS Foundation Trust, Manchester, UK. 17 18 ⁶ Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester 19 Institute, The University of Manchester, Alderley Park SK10 4TG, UK. 20 ⁷Correspondence: georges.lacaud@manchester.ac.uk 21 Phone: +44 (0) 161 446 6058, Fax: +44 (0) 161 446 3109

22 ABSTRACT

23	The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to
24	understand its regenerative properties and malignancies. Here, we report that the transcription
25	factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the
26	periurethral region of the developing and adult mouse prostate, and distinct from the
27	previously identified NKX3.1 $^{+}$ luminal castration resistant cells. Using scRNA-seq profiling and
28	genetic lineage tracing, we show that RUNX1 ⁺ PLCs are unaffected by androgen deprivation,
29	and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we
30	demonstrate that a transcriptionally similar RUNX1 ⁺ population emerges at the onset of
31	embryonic prostate specification to populate the proximal region of the ducts. Collectively, our
32	results reveal that RUNX1 ⁺ PLCs is an intrinsic castration-resistant and self-sustained lineage
33	that emerges early during prostate development and provide new insights into the lineage
34	relationships of the prostate epithelium.

35 INTRODUCTION

The prostate is a glandular organ of the mammalian male reproductive system. In mice, 36 37 prostate development starts during embryogenesis at embryonic day (E) 15.5-16.5 with the 38 emergence of the first prostatic buds from the rostral end of the urogenital sinus (UGS) (Bhatia-39 Gaur et al., 1999; Georgas et al., 2015; Keil et al., 2012; Toivanen & Shen, 2017). These initial 40 buds grow into the surrounding mesenchyme to develop postnatally and through puberty into 41 a branched ductal network organized in distinct pairs of lobes, known as the anterior prostate 42 (AP), dorsolateral prostate (DLP) and ventral prostate (VP) (Sugimura et al., 1986a). Each lobe 43 has distinct branching patterns, histopathological characteristics, and is thought to contribute 44 differently to the physiological function of the prostate. The differentiated epithelium of the 45 adult prostate gland is mainly composed of basal and luminal cells, interspersed with rare 46 neuroendocrine cells (Shen & Abate-Shen, 2010; Toivanen & Shen, 2017; Y. Wang et al., 2001). 47 Luminal cells form a layer of polarized tall columnar cells that depend on androgen signaling 48 and produce the prostatic secretions. Basal cells act as a supportive layer located between the 49 luminal cells and the surrounding stroma. 50 Despite being mostly quiescent under homeostatic conditions, the prostate gland 51 encompasses incredible plasticity. In mice, surgical castration-induced prostate involution has

52 proven an invaluable tool to identify progenitor castration-resistant cell populations,

53 characterized by their ability to survive in the absence of androgens, and to fully regenerate an

54 intact adult prostate after re-administration of testosterone (Barros-Silva et al., 2018; Kwon et

55 al., 2016; McAuley et al., 2019; Tsujimura et al., 2002; B. Wang et al., 2015; X. Wang et al.,

56 2009; Yoo et al., 2016). Such plasticity has also been shown in defined experimental conditions

57	to stimulate regenerative properties of epithelial subpopulations, including transplantations
58	(Barros-Silva et al., 2018; Burger et al., 2005; Lawson et al., 2007; Lukacs et al., 2010;
59	Richardson et al., 2004; X. Wang et al., 2009; Xin et al., 2005; Yoo et al., 2016), injury repair
60	(Centonze et al., 2020; Horton et al., 2019; Kwon et al., 2014; Toivanen et al., 2016), and
61	organoid assays (Chua et al., 2014; Höfner et al., 2015; Karthaus et al., 2014). In addition,
62	several studies have proposed that progenitor populations with distinct physiological roles and
63	regenerative capacity reside at different locations within the prostate (Burger et al., 2005;
64	Crowell et al., 2019; Goldstein et al., 2008; Goto et al., 2006; Kwon et al., 2016; Leong et al.,
65	2008; McNeal, 1981; Tsujimura et al., 2002). However, the precise cellular hierarchy and how it
66	is established during development remains controversial.
67	RUNX transcription factors (TF) are master regulators of lineage commitment and cell
68	fate (Mevel et al., 2019). In particular, RUNX1 is essential for the ontogeny of the hematopoietic
69	system and alterations of RUNX1 have been associated with a broad spectrum of hematological
70	malignancies. Interestingly, increasing evidence implicates RUNX1 in the biology and pathology
71	of hormone-associated epithelia (Lie-A-Ling et al., 2020; Riggio & Blyth, 2017; Scheitz &
72	Tumbar, 2013), including breast (Browne et al., 2015; Chimge et al., 2016; Ferrari et al., 2014;
73	van Bragt et al., 2014), uterine (Planagumà et al., 2004, 2006), ovarian (Keita et al., 2013), and
74	prostate cancers (Banach-Petrosky et al., 2007; Scheitz et al., 2012; Takayama et al., 2015).
75	Despite the documented importance of RUNX TFs and reports of RUNX1 in PCa, its expression
76	in the normal prostate gland during development, homeostasis, and regeneration has not been
77	explored.

- 78 In this study, we found that *Runx1* marks a discrete subset of luminal cells located in the
- 79 proximal region of the prostatic ducts. Using mouse models, combined with lobe-specific single-
- 80 cell transcriptomic profiling of adult, castrated, and developing prostates, we show that RUNX1⁺
- 81 proximal luminal cells represent a distinct lineage established at the onset of prostate
- 82 development, displaying intrinsic castration-resistant and self-sustaining properties.

83 **RESULTS**

84 **RUNX1** marks a subpopulation of prostate proximal luminal cells (PLCs)

85 We initially sought to characterize the expression pattern of *Runx1* in adult mouse 86 prostate. While RUNX1 was detected in basal cells at multiple spatial locations, its expression was specifically high in a subset of luminal cells found in the proximal region of all three lobes, 87 88 also known as periurethral (Figures 1A, B; Figure 1-figure supplement 1A, B). Sections were co-89 stained with NKX3.1, a master regulator of prostate development broadly expressed in luminal 90 cells. Using quantitative image-based cytometry (QBIC), we found that RUNX1 and NKX3.1 had 91 a largely mutually exclusive expression pattern, with a sharp transition from RUNX1⁺ NKX3.1⁻ to 92 RUNX1⁻ NKX3.1⁺ cells in the proximal region (Figures 1A, B; Figure 1–figure supplement 1A, B). 93 These proximal luminal cells had a unique histological profile, with a compact organization, 94 intense nuclear hematoxylin staining, and increased nuclear-to-cytoplasmic ratio (Figure 1-95 figure supplement 1C). In contrast, distal luminal cells had a large cytoplasm with intense pink 96 eosin staining, likely reflecting their secretory function. These observations suggest that RUNX1 97 marks a subset of proximal luminal cells, distinct from the abundant NKX3.1⁺ luminal population 98 lining the rest of the prostate epithelium.

The proximal site of the prostate has been proposed to be enriched in cells with stem/progenitor properties (Goldstein et al., 2008; Kwon et al., 2016; Tsujimura et al., 2002; Yoo et al., 2016). In order to study the regenerative potential of *Runx1* expressing cells *ex vivo*, we took advantage of isoform-specific fluorescent reporter mouse models of *Runx1* (Draper et al., 2018; Sroczynska et al., 2009). *Runx1* expression is controlled by two promoters, P1 and P2, that respectively drive the expression of the *Runx1c* and the *Runx1b* isoform (Mevel et al.,

2019). We found that *Runx1* expression in the prostate was exclusively mediated by the
proximal P2 promoter, in up to 30% of all epithelial EPCAM⁺ prostate cells (Figure 1–figure
supplement 2A-C). Flow-cytometry profiling confirmed the enrichment of P2-*Runx1*:RFP in both
basal (EPCAM⁺ CD49f^{high}) and luminal (EPCAM⁺ CD24^{high}) lineages of the proximal compared to
the distal prostate (Figures 1C, D; Figure 1–figure supplement 2D). Mirroring our QBIC spatial
analysis (Figure 1–figure supplement 1B), P2-*Runx1*:RFP was also detected in a large fraction of
the VP epithelium (Figure 1–figure supplement 2D).

112 We therefore used the P2-Runx1:RFP mouse line to isolate Runx1 positive (RFP⁺) and 113 negative (RFP⁻) epithelial cells from the basal and luminal compartments of all three prostate 114 lobes and evaluated their regenerative potential in organoid culture assays (Drost et al., 2016) 115 (Figure 1E). The proximal and distal regions of the AP were analyzed separately. In line with 116 previous reports, basal cells were more efficient at forming organoids compared to all luminal 117 fractions (Drost et al., 2016, Kwon et al., 2015). Importantly, in the luminal fraction, proximal RFP⁺ luminal cells of the AP consistently displayed higher Organoid Formation Capacity (OFC) 118 119 than the RFP⁻ fraction (Figure 1F). Luminal RFP⁺ sorted cells of the DLP and VP also had a greater 120 OFC than RFP⁻ cells (Figure 1–figure supplement 3A). In contrast, no significant differences in OFC were observed between basal enriched subsets and distal luminal RFP⁺ and RFP⁻ cells. 121 122 Brightfield assessment revealed that virtually all organoids had a 'solid' aspect, except for the 123 predominantly 'hollow' organoids derived from proximal RFP⁺ luminal cells (Figure 1–figure 124 supplement 3B). To further characterize their lineage potential, we classified organoids into 125 three types based on the expression of specific lineage markers: unipotent "basal-like" Keratin 126 5⁺ (K5⁺), unipotent "luminal-like" Keratin 8⁺ (K8⁺), or multipotent K5⁺ K8⁺ (Figures 1G, H; Figure

127 1-figure supplement 3C). Interestingly, AP proximal luminal RFP⁺ derived organoids were 128 predominantly small unipotent K8⁺, while the remainder fraction mainly gave larger unipotent 129 K5⁺ organoids (Figures 1H; Figure 1–figure supplement 3D-E). Few multipotent K5⁺ K8⁺ 130 organoids were also identified in nearly all populations. 131 Together, our results show that RUNX1 marks a specific subset of proximal luminal cells 132 (PLCs), and that its expression in the prostate is mediated by the P2 promoter. RUNX1⁺ PLCs 133 have a particular predisposition to form unipotent K8⁺ hollow organoids, suggesting a lineage 134 bias towards the luminal identity, and highlighting differences within the luminal compartment 135 of proximal and distal regions. 136 Runx1 expressing cells are enriched in the castrated prostate epithelium 137 138 In mice, androgen-deprivation can be modelled by surgical castration which leads to 139 prostate regression and enriches for castration-resistant cells (Toivanen & Shen, 2017; Zhang et al., 2018). This process is accompanied by the death of luminal androgen-dependent cells and a 140 141 small proportion of basal cells (English et al., 1987; Sugimura et al., 1986b). To track changes in 142 *Runx1* expression following and rogen withdrawal, we surgically castrated P2-*Runx1*:RFP mice 143 and harvested tissue \geq 4 weeks post-surgery (Figure 2A). While intact prostates contained 22.8 144 \pm 6.0% RFP⁺ epithelial cells, their frequency increased to 87 \pm 6.0% following castration (Figures 145 2B, C). High RUNX1 levels were no longer restricted to the proximal region, and RFP was 146 detected in virtually all basal cells of the AP, DLP and VP, as well as more than 75% of the 147 luminal castration-resistant cells (Figures 2D; Figure 2–figure supplement 1A). RUNX1 148 expressing cells often co-expressed TROP2 (Figure 2E), known to be widely expressed in

149	castrated prostate epithelium (Goldstein et al., 2008; XD. Wang et al., 2007). Several
150	castration-resistant luminal populations have been identified in mice (Barros-Silva et al., 2018;
151	Kwon et al., 2016; McAuley et al., 2019; Tsujimura et al., 2002; B. Wang et al., 2015; X. Wang et
152	al., 2009; Yoo et al., 2016), including rare castration-resistant <i>Nkx3-1</i> expressing cells (CARNs).
153	Accordingly, we observed low, but detectable, levels of NKX3.1 in some luminal cells, but only
154	occasional RUNX1 ⁺ NKX3.1 ⁺ luminal cells in the distal regions of the castrated prostate (Figures
155	2D; Figure 2–figure supplement 1B, C). Importantly, the clear transition from RUNX1 $^+$ to
156	NKX3.1 ⁺ cells identified in the proximal luminal layer of intact mice was conserved after
157	castration (Figure 2D, ii).
158	Together, these results show that RUNX1 is expressed in the majority of the castration-
159	resistant cells. The RUNX1 ⁺ NKX3.1 ⁻ subset identified in the proximal luminal epithelium of the
160	intact prostate remain NKX3.1 ⁻ following castration, supporting the notion that RUNX1 ⁺ PLCs
161	constitute a distinct lineage from distal NKX3.1 ⁺ cells.
162	
163	scRNA-seq profiling of <i>Runx1</i> ⁺ and <i>Runx1</i> ⁻ cells in individual lobes of the intact and castrated
164	prostate
165	To further characterize the RUNX1 ⁺ and RUNX1 ⁻ fractions residing at different
166	anatomical locations of the prostate, we performed droplet-based single cell (sc)RNA-seq. We
167	sorted EPCAM ⁺ RFP ⁺ and RFP ⁻ cells from individually dissected lobes of intact and castrated
168	prostates isolated from P2-Runx1:RFP reporter mice (Figure 3A). Sorted populations were
169	multiplexed using MULTI-seq lipid-tagged indices to minimize technical confounders such as
170	doublets and batch effects (McGinnis, Patterson, et al., 2019). We retrieved a total of 3,825

171	prostate epithelial cells from all sorted populations, with a median of 2,846 genes per cell (see
172	Methods; Figure 3–figure supplement 1, 2A-G). We identified 9 in silico computed clusters
173	expressing canonical epithelial, basal, and luminal markers (Figure 3–figure supplement 2H-J). A
174	large population of basal cells was annotated by merging 3 tightly connected subclusters
175	broadly expressing Krt5, Krt14, and Trp63 (Figures 3B-D; Figure 3–figure supplement 2E, J).
176	Luminal populations expressed surprisingly heterogeneous levels of canonical luminal markers
177	such as Cd26/Dpp4, Cd24a, Krt8, and Krt18 (Figure 3–figure supplement 2I). We annotated
178	those distinct clusters as Luminal-A (Lum-A), Lum-B, Lum-C, Lum-D, Lum-E and Lum-F (Figure
179	3B). Differential gene expression analysis revealed genes strongly associated with each luminal
180	subpopulation (Figures 3C, 3D; Figure 3–figure supplement 3A; Supplementary file 2).
181	Initially, we sought to evaluate the effect of androgen withdrawal on lobe-specific
182	cellular heterogeneity. Lum-A/B/C/D were largely enriched in luminal cells originating from
183	intact prostates, whereas Lum-E/F contained mainly castrated luminal cells (Figures 3E; Figure
184	3–figure supplement 3B). Interestingly, Lum-A/C/F mainly contained VP cells, while Lum-B/D/E
185	had a majority of AP and DLP cells, indicating that the lobular identity of luminal cells in the
186	intact prostate is conserved following castration (Figures 3F; Figure 3–figure supplement 3C).
187	These results suggest that a subset of intact Lum-A/C might undergo partial reprogramming
188	during castration-induced regression and gives rise to the Lum-F cluster. Similarly, surviving
189	Lum-B/D may predominantly reprogram into Lum-E cells upon castration. Alternatively, the
190	small fraction of intact cells observed in Lum-E and Lum-F clusters might give rise to the
191	expanded Lum-E/F clusters upon castration. In contrast to luminal cells, castrated basal cells
192	were minimally affected by androgen-deprivation and clustered together with intact basal cells

193 (Figure 3E). Overall, these results highlight the dramatic changes occurring upon androgen

deprivation in the representation of distinct luminal subpopulations.

195

196 Runx1 expressing luminal cells are transcriptionally similar to castration-resistant cells

197 We next specifically focused our attention on RUNX1⁺ luminal cells. The Lum-D cluster 198 predominantly consisted of AP derived RFP⁺ cells, as well as a small number of RFP⁺ DLP and VP 199 cells (Figure 3F, H; Figure 3–figure supplements 2E, 3B, 3C). High Runx1 expression in Lum-D 200 correlated with higher levels of Tacstd2/Trop2, Ly6 family members as well as Runx2 (Figures 201 3D, G; Figure 3–figure supplements 3D, E). In contrast, Runx1 was barely detected in clusters 202 Lum-B/C which expressed high levels of Nkx3-1 while Lum-A cells expressed low levels of both 203 *Runx1* and *Nkx3-1*. These results suggest that the Lum-D cluster corresponds to the distinct 204 RUNX1⁺ luminal cells identified in the proximal region of all three prostate lobes (Figure 1). 205 To further characterize the specificities of those populations, we performed gene 206 ontology analysis. In line with the secretory role of distal luminal cells, clusters Lum-A/B/C were 207 enriched in enzymatic activity and protein synthesis functions. In contrast, the Lum-D cluster 208 was enriched in terms related to epithelial developmental processes, similar to Lum-E/F (Figure 209 3-figure supplements 4A-I). This was supported by partition-based graph abstraction (Wolf et 210 al., 2019), which uncovered a strong degree of connectivity between the mainly intact Lum-D 211 and castrated Lum-E population (Figure 3B). Additionally, the Lum-D cluster contained a small, 212 but defined, subpopulation of castrated epithelial cells, suggesting the preservation of its 213 identity upon androgen deprivation (Figures 3E, F). In this population, we found very few genes 214 significantly differentially expressed between intact and castrated cells (n=103; Supplementary

215	file 3). As expected, androgen-regulated genes including <i>Psca</i> and <i>Tspan1</i> were downregulated
216	in the castrated subset, while strong contributors of the Lum-D identity such as Tacstd2/Trop2,
217	Krt4 and Runx1 did not vary (Figure 3–figure supplement 4J). These observations further
218	support the hypothesis that Lum-D/RUNX1 ⁺ PLCs maintain their identity following androgen-
219	deprivation.
220	Overall, our single-cell transcriptomic analysis highlighted a vast degree of
221	heterogeneity within and between the luminal compartments of both intact and castrated
222	mouse prostates. The tight transcriptional relationship observed between high Runx1
223	expressing clusters Lum-D and Lum-E/F suggest that the Lum-D population, which corresponds
224	to PLCs, may contain intrinsically castration-resistant luminal cells
225	
226	Lineage-tracing of <i>Runx1</i> expressing cells establishes the intrinsic castration resistant
226 227	Lineage-tracing of <i>Runx1</i> expressing cells establishes the intrinsic castration resistant properties of the proximal luminal lineage
227	properties of the proximal luminal lineage
227 228	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined
227 228 229	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined prostate regression-regeneration assays with genetic lineage-tracing using <i>Runx1</i> ^{mER-CRE-mER}
227 228 229 230	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined prostate regression-regeneration assays with genetic lineage-tracing using <i>Runx1^{mER-CRE-mER}</i> <i>Rosa</i> ^{flox-stop-flox-tdRFP} mice (Luche et al., 2007; Samokhvalov et al., 2007), henceforth <i>Runx1^{CreER}</i>
227 228 229 230 231	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined prostate regression-regeneration assays with genetic lineage-tracing using <i>Runx1^{mER-CRE-mER}</i> <i>Rosa^{flox-stop-flox-tdRFP}</i> mice (Luche et al., 2007; Samokhvalov et al., 2007), henceforth <i>Runx1^{CreER}</i> <i>Rosa26^{LSL-RFP}</i> (Figure 4A). Using this model, we could genetically label an average of 4.70 ± 2.8%
227 228 229 230 231 232	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined prostate regression-regeneration assays with genetic lineage-tracing using <i>Runx1^{mER-CRE-mER}</i> <i>Rosa^{flox-stop-flox-tdRFP}</i> mice (Luche et al., 2007; Samokhvalov et al., 2007), henceforth <i>Runx1^{CreER}</i> <i>Rosa26^{LSL-RFP}</i> (Figure 4A). Using this model, we could genetically label an average of 4.70 ± 2.8% prostate epithelial <i>Runx1</i> expressing cells with RFP upon tamoxifen injection (Figures 4B, C;
227 228 229 230 231 232 233	properties of the proximal luminal lineage To determine if RUNX1 ⁺ PLCs were enriched in castration-resistant cells, we combined prostate regression-regeneration assays with genetic lineage-tracing using <i>Runx1^{mER-CRE-mER}</i> <i>Rosa^{flox-stop-flox-tdRFP}</i> mice (Luche et al., 2007; Samokhvalov et al., 2007), henceforth <i>Runx1^{CreER}</i> <i>Rosa26^{LSL-RFP}</i> (Figure 4A). Using this model, we could genetically label an average of 4.70 ± 2.8% prostate epithelial <i>Runx1</i> expressing cells with RFP upon tamoxifen injection (Figures 4B, C; Figure 4–figure supplement 1A). This corresponded to 0.54 ± 0.2‰ of the total epithelium

237	Following surgical castration, we found that the absolute number of RFP $^{\scriptscriptstyle +}$ marked cells
238	remained stable (Figure 4–figure supplements 1C, D). However, the frequency of RFP $^+$ cells in
239	the epithelial compartment increased by \sim 4.3 fold (Figures 4E; Figure 4–figure supplement 1B)
240	indicating that <i>Runx1</i> expressing cells have an enhanced capacity to survive castration
241	compared to <i>Runx1</i> negative cells. Next, we investigated whether these intrinsically castration-
242	resistant <i>Runx1</i> expressing cells were involved in epithelial regeneration upon testosterone
243	addback (Figure 4B, bottom). Surprisingly, only 0.71 \pm 0.2‰ RFP $^+$ epithelial cells were found in
244	the regenerated prostate, which was comparable to the intact state (Figures 4E; Figure 4–figure
245	supplements 1B-D). Although the majority of RFP ⁺ clones consisted of single cells, we did
246	observe a minor ~2-fold increase in the frequency of larger clones (2-4 cells) after regeneration,
247	highlighting a modest contribution of RFP labeled cells during prostate regeneration (Figures 4F,
248	G). We found that most RFP marked cells were luminal $K8^+$ in intact, castrated, and regenerated
249	prostates (Figures 4F, H), with only a few basal K5 ⁺ RFP ⁺ cells detected in distal areas (Figure
250	4F). Strikingly, more than 90% of all RFP ⁺ cells remained negative for NKX3.1 in all experimental
251	arms (Figure 4I).
252	Thus, these results indicate that RFP^+ cells, including PLCs, are mostly unaffected by
253	fluctuations in androgen levels during regression-regeneration assays. RUNX1 expression marks
254	intrinsically castration-resistant luminal cells that do not contribute substantially to the

255 expansion of luminal NKX3.1⁺ cells during prostate regeneration.

256

257 Runx1 marks proximal cells during prostate development

258 Given the singular identity of proximal luminal *Runx1* expressing cells in the adult 259 prostate, we then asked if this luminal lineage was already emerging during prostate 260 development. At E18.5, once the first prostate buds have emerged, RUNX1 was mainly found in the K8^{high} inner layers of the stratified urogenital epithelium (UGE) (Figure 5A). Interestingly, 261 262 these cells also co-expressed K4 (Figure 5–figure supplement 1A), previously found in the Lum D 263 population (Figure 3D), as well as LY6D, recently shown to mark a subset of adult luminal 264 progenitors (Barros-Silva et al., 2018) (Figure 5–figure supplement 1B). In contrast, RUNX1 265 expression was low in p63⁺ and K5⁺ cells, either lining the outer UGE or found in the tips of 266 premature NKX3.1⁺ prostate buds (Figures 5A-C). At postnatal day 14 (P14), a prepubescent 267 stage when most of the initial branching events have already occurred (Sugimura et al., 1986a; 268 Tika et al., 2019), RUNX1 was broadly expressed in the proximal region (Figure 5D), mainly in 269 $K4^+$ luminal cells and in some $K5^+$ or p63⁺ cells (Figure 5–figure supplement 1C-E). Conversely, 270 NKX3.1⁺ cells were found in distal locations, largely distinct from RUNX1⁺ cells. The specific 271 spatial expression pattern of RUNX1 in proximal luminal cells, largely mutually exclusive with 272 NKX3.1, suggests that these two transcription factors already mark distinct cellular lineages 273 during embryonic prostate organogenesis.

To study the dynamic emergence of RUNX1⁺ cells during prostate development, we utilized an explant culture system (Berman et al., 2004; Doles et al., 2005; Kruithof-de Julio et al., 2013; Lopes et al., 1996). Dissected E15.5 UGS were cultured for up to 7 days in the presence of dihydrotestosterone (Figures 5E, F). Bud formation was initiated within 2 days of culture (Figure 5G) and composed of a double positive K5⁺ K8⁺ stratified epithelium, partially diversifying by day 7 (Figure 5–figure supplement 2A, B). On day 0 (E15.5), RUNX1 was detected

280	at the rostral end of the UGE, particularly within the inner layers of the stratified epithelium.
281	After 1 day in culture, NKX3.1 expression emerged in RUNX1 ⁺ cells located in the outer layers of
282	the UGE, while defined budding was yet to be observed. On day 2, NKX3.1 $^{\scriptscriptstyle +}$ prostate buds were
283	evident and had reduced or absent RUNX1 expression. This pattern was conserved in the
284	mature explant, in which distal tips were mainly NKX3.1 ⁺ , whereas the proximal area remained
285	RUNX1 ⁺ (Figures 5G, H), and co-expressed LY6D and K4 (Figure 5–figure supplements 2C, D).
286	Cellular proliferation marked by Ki67 was more substantial in distal regions, suggesting that
287	most of the expansion did not take place in the RUNX1 ⁺ compartment (Figure 5–figure
288	supplement 2E).
289	These results suggest that prostate budding originates from a subset of cells located in
290	the outer layers of the stratified UGE, transiently marked by RUNX1 and NKX3.1. During
291	embryonic prostate development, Runx1 expression is already primarily confined to the
292	proximal region of the prostatic ducts, in a distinct compartment from NKX3.1 ⁺ cells.
293	
294	scRNA-seq of explant cultures reveals the specification of the proximal luminal lineage during
295	embryonic prostate development
296	The characterization by immunostainings of continuous developmental processes is
297	generally constrained to a small number of markers at a time. To further study the specification
298	of RUNX1 and NKX3.1 lineages, we performed scRNA-seq on UGS explant cultures collected at
299	successive time points: E15.5 (D0), day 1 (D1), day 3 (D3), and day 6 (D6) (Figure 6A). After data
300	processing, 3,937 developing prostatic cells were retained, with a median of 3,608 genes per
301	cell (see Methods; Figure 6–figure supplement 1).

302	Visualization of the dataset using a force-directed layout highlighted the progressive
303	cellular diversification taking place from D0 to D6 (Figure 6B). Cellular populations were divided
304	into 9 clusters, annotated C0 to C8 (Figures 6C-E). C0/C1 contained the majority of D0 and D1
305	derived cells, while C2-C8 emerged and expanded at later time points. Due to the primitive
306	nature of the UGE at these time points, the classical basal and luminal lineages were not fully
307	established yet (Figures 6F; Figure 6–figure supplements 2A-E; Supplementary file 4).
308	Nevertheless, C4-C6 had a more pronounced 'basal' identity compared to the other clusters.
309	Krt5/Krt14 marked mainly C4, and additional basal markers including Trp63, Dcn, Apoe, or Vcan
310	were higher in C5/C6. Overall, known regulators of prostate development (Toivanen & Shen,
311	2017) displayed a variable expression pattern across the different clusters. For example, <i>Foxa1</i>
312	and Shh were strongly expressed in CO/C1, Notch1 was higher in C3, and Sox9 in C7 (Figure 6–
313	figure supplement 2C), highlighting the potential of this dataset to interrogate specific features
314	of prostate development.
315	Consistent with our previous results, <i>Runx1</i> was highly expressed in clusters having
316	lower Nkx3-1 levels, including C0, C1, C2 and C4 (Figure 6G). To determine how these clusters
317	relate to differentiated prostate lineages, we interrogated population-specific gene signatures
318	previously identified in the adult (Figure 3). The 'Basal' signature was enriched across all
319	clusters, especially in C4/C6 (Figures 6I; Figure 6–figure supplement 2F, G). Strikingly, the 'Lum-
320	D' derived signature was highly enriched in C2 compared to all the other adult luminal
321	population signatures, suggesting that the 'Lum-D' fate is determined early during prostate
322	development. The singular identity of C2 was characterized by genes previously found highly

323 expressed in the adult 'Lum-D' population, including *Tacstd2/Trop2*, *Krt4*, *Psca*, as well as *Ly6d*

and *Nupr1* (Figure 6H; Figure 6–figure supplement 2A).

325 Collectively, our scRNA-seq analysis show that adult 'Lum-D'/PLCs share strong 326 similarities with the unique C2 population identified in embryonic explant cultures. This 327 suggests that the distinct proximal luminal lineage is established at the very onset of prostate 328 specification.

329

330 **RUNX1⁺ cells contribute to the establishment of the proximal luminal lineage during**

331 embryonic prostate development

332 To trace the fate of RUNX1⁺ cells during embryonic prostate specification, we cultured UGS explants isolated from the Runx1^{CreER} Rosa26^{LSL-RFP} lineage tracing model. We performed 2 333 334 pulses of tamoxifen treatment on day 0 and 1 of culture and analyzed the explants on day 2 and 335 day 7 (Figure 7A). The majority of the RFP labeled cells were in the most proximal RUNX1⁺ 336 subset and rarely found in the distal area of the branches, where RUNX1⁻ cells reside (Figures 337 7B, C). Accordingly, the proportion of RFP⁺ RUNX1⁺ cells remained stable between day 2 and 7 338 (Figure 7D). Also, the fraction of RFP⁺ cells co-expressing p63 remained unchanged throughout 339 the culture (Figure 7–figure supplements 1A-C), while a small fraction diversified into either K5⁺ 340 or K8⁺ cells (Figure 7–figure supplements 1D, E). The scattered RFP⁺ RUNX1⁻ cells detected in 341 distal branches by day 7 often co-expressed NKX3.1 (Figures 7E, F). Overall, this indicates that 342 *Runx1* expressing cells only marginally contribute to the expansion of the NKX3.1 compartment (Figure 7G). Finally, we wondered whether RUNX1⁺ cells contributed to the establishment of 343 344 the proximal luminal lineage. We evaluated the proportion of RFP labelled cells co-expressing

345	K4, previously identified as a marker of the developing C2 and adult Lum-D populations (Figures
346	3D and 6H). Interestingly, the fraction of K4 $^{\scriptscriptstyle +}$ RFP labeled cells increased from 56.9 ± 10.6% to
347	74.1 \pm 3.0% between day 2 and 7 (Figures 7F, G). There was also an increase of RFP ⁺ cells
348	expressing Nupr1, another marker of the C2 cluster (Figure 7–figure supplements 1F-H). Taken
349	together, these results show that only a small subset of <i>Runx1</i> expressing cells contributes to
350	the expansion of NKX3.1 ⁺ lineage, found in the distal region of the developing prostatic buds.
351	Instead, the majority of <i>Runx1</i> expressing cells preferentially remain in the proximal region of

352 the premature buds, where the proximal luminal lineage is established.

353 **DISCUSSION**

354	In this study, we identified RUNX1 as a new marker of a luminal population enriched in
355	the proximal region of the prostatic ducts. By combining scRNA-seq profiling and genetic
356	lineage tracing of <i>Runx1</i> expressing cells, we show that RUNX1 ⁺ PLCs present in the intact
357	prostate constitute a developmentally distinct and intrinsically castration-resistant luminal
358	lineage. We propose that proximal and distal lineages are separate luminal entities from the
359	earliest stages of prostate development. As such, our study provides novel insights into the
360	cellular composition and developmental hierarchy of the mouse prostate epithelium.
361	
362	Until the recent advances in single-cell technologies, the prostate epithelial hierarchy
363	was mainly defined based on anatomical features of the basal and luminal layers, their
364	histological characteristics and the expression of a small subset of markers (Shen & Abate-Shen,
365	2010; Toivanen & Shen, 2017). Here we present two comprehensive scRNA-seq dataset
366	covering both the adult and the developing prostate. To our knowledge, this constitutes the
367	first comprehensive single-cell atlas covering both intact and castrated adult mouse prostates,
368	annotated by their lobe of origin. These datasets can be browsed interactively at
369	http://shiny.cruk.manchester.ac.uk/pscapp/. In particular, our adult scRNA-seq dataset
370	highlighted an extensive degree of cellular heterogeneity, in particular within the luminal
371	epithelia. Several studies recently made similar observations either focusing on the AP
372	(Karthaus et al., 2020), the intact prostate (Crowley et al., 2020; Joseph et al., 2020), or both the
373	intact and castrated prostates (Guo et al., 2020). Integration of these multiple datasets will
374	provide a more global view of the transcriptional landscape of the prostate epithelium.

375 Although mainly known as a master regulator of hematopoiesis, RUNX1 is increasingly 376 implicated in hormone-associated epithelia including malignant conditions such as prostate 377 cancer (Banach-Petrosky et al., 2007; Lie-A-Ling et al., 2020; Scheitz et al., 2012; Takayama et 378 al., 2015). Here, we identified a subset of RUNX1⁺ luminal cells located in the proximal region of 379 the developing and adult prostate, referred to as RUNX1⁺ PLCs, and corresponding to the Lum-D 380 cluster identified in our adult scRNA-seq dataset. Of note, this subset appears to be the 381 equivalent of the 'L2' (Karthaus et al., 2020) or 'LumP' (Crowley et al., 2020), or 'Lum-C' (Guo et 382 al., 2020) clusters identified in recent studies. In light of the extensive contribution of RUNX 383 transcription factors to developmental processes (Mevel et al., 2019), our study suggests that 384 *Runx1*, but also *Runx2*, may be involved in the development and maintenance of specific 385 subpopulations of the prostate epithelium. Future work should therefore aim at characterizing 386 the functional role played by RUNX factors in the prostate, in particular in PLCs. 387 We demonstrate that these RUNX1⁺ PLCs exhibit a greater organoid forming potential 388 compared to the remaining luminal fraction, consistent with previous reports isolating similar 389 proximal populations using different markers such as SCA-1, TROP2 or CD26 (Crowley et al., 390 2020; Goldstein et al., 2008; Guo et al., 2020; Karthaus et al., 2020; Kwon et al., 2016). 391 Furthermore, RUNX1⁺ PLCs predominantly formed unipotent K8⁺ hollow organoids 392 demonstrating their preferential commitment to the luminal fate. The greater clonogenicity of 393 RUNX1⁺ PLCs may in fact be linked to the gene expression profile of the corresponding Lum-D 394 population, suggesting a more immature epithelial state, committed to the luminal lineage but 395 not the secretory function of the prostate. Similar to the enhanced regenerative potential of 396 glandular basal cells under specific regenerative conditions (Centonze et al., 2020), it is

tempting to speculate that these cells act as a latent niche of 'facultative' luminal stem cells
(Clevers & Watt, 2018), primed to generate a structured prostatic epithelium under defined
conditions.

400 Further characterization of RUNX1 expression in prostate development revealed a 401 consistent expression pattern with the adult. RUNX1⁺ luminal cells were restricted to the most 402 proximal region of the developing prostate buds, both in embryos and UGS explant cultures. 403 Our scRNA-seq of the developing prostate revealed a broad basal identity, supporting the 404 presence of multipotent basal progenitors during embryonic development (Ousset et al., 2012; 405 Pignon et al., 2013), switching to unipotency postnatally (Tika et al., 2019). However, we 406 observed a distinct cluster (C2) that strongly resembled the adult Lum-D population, suggesting 407 an early branching event towards the proximal luminal fate at the onset of prostate 408 development. Subsequent lineage tracing experiments indicated that *Runx1* expressing cells 409 preferentially populate the emerging proximal luminal identity. It would be interesting to 410 determine if the adult Lum-A, Lum-B, and Lum-C derive from multipotent-basal progenitors or 411 from any specific clusters identified in the developing prostate. This appears to be the case at 412 least for the adult Lum-D/RUNX1⁺ PLCs which already emerges during embryonic specification. 413 Our data also sheds a light on the regenerative potential of specific epithelial 414 populations. Basal and luminal lineages have previously been shown to be largely self-sustained 415 using generic basal and luminal Cre drivers (Choi et al., 2012; Ousset et al., 2012). However, 416 whether distinct subpopulations of luminal cells contribute to the regeneration of the others 417 remains poorly understood (X. Wang et al., 2009; Yoo et al., 2016). Our characterization of 418 RUNX1⁺ PLCs and the detection of a wide variety of luminal populations in our adult prostate

419 scRNA-seq data highlights the possible existence of multiple self-contained luminal populations. 420 Indeed, Runx1 driven genetic tracing experiments in regression-regeneration assays revealed 421 that RUNX1⁺ PLCs did not contribute substantially to the regeneration of distal NKX3.1⁺ cells. It 422 was however evident that RUNX1⁺ PLCs are intrinsically castration resistant and capable of 423 sustaining their own lineage in the regenerated prostate. Recently, it was proposed that 424 prostate epithelial regeneration is driven by almost all luminal cells persisting in castrated 425 prostates (Karthaus et al., 2020). Our results are compatible with this model, but we further 426 demonstrate that not all luminal subsets retain the same in vivo regenerative potential in 427 response to androgen stimulation. Thus, we suggest that the model of self-sustained basal and 428 luminal populations might be extended to individual luminal subpopulations. This hypothesis 429 should be tested in the future using a more specific Lum-D Cre driver (e.g. Krt4/Psca). It will also 430 be of interest to investigate the self-sustenance of other luminal compartments using Lum-A, 431 Lum-B and Lum-C specific Cre drivers. 432 Finally, our study suggests that the emerging C2/Lum-D population retains a more 433 embryonic-like program, which may relate to their intrinsic castration-resistant potential and 434 have broader relevance to cancer treatment. Along these lines, recent work by Guo and 435 colleagues indicates that Pten loss induced in Psca expressing cells of the proximal prostate can 436 initiate prostatic intraepithelial neoplasia (Guo et al., 2020). These results warrant future 437 investigation of this luminal subset in the context of cancer development, tumor aggressiveness 438 and treatment responses.

439

- 440 In conclusion, we characterized the expression pattern of *Runx1* in the developing,
- 441 normal and castrated mouse prostate. We observed that *Runx1* marks proximal luminal cells,
- 442 which is a distinct luminal lineage emerging early during prostate specification, displaying
- 443 intrinsic castration-resistant and self-sustaining properties. Our results therefore reveal strong
- intrinsic lineage differences within the luminal compartment of the prostate epithelium.

445 MATERIALS AND METHODS

446 **KEY RESOURCES TABLE**

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (<i>Mus musculus,</i> male)	ICR (CD-1) wild-type	Envigo	Hsd:ICR (CD-1)	7-15 week old males
Strain, strain background (<i>Mus musculus,</i> male)	P1- <i>Runx1</i> :GFP	Georges Lacaud lab		7-15 week old males
Strain, strain background (<i>Mus musculus,</i> male)	P2- <i>Runx1</i> :RFP	Georges Lacaud lab		7-15 week old males
Strain, strain background (<i>Mus musculus,</i> male)	Runx1 ^{mER-CRE-} ^{mER} Runx1 ^{CreER} Rosa26 ^{LSL-RFP}	RIKEN (Japan) Samokhvalov et al., 2007	Runx1-MER- Cre-MER	C57BI/6J background 7-15 week old males
Strain, strain background (<i>Mus musculus,</i> male)	Rosa26 ^{flox-stop-} flox-tdRFP Runx1 ^{CreER} Rosa26 ^{LSL-RFP}	European Mouse Mutant Archive Luche et al., 2007	B6.Cg-Thy1 Gt(ROSA)26 Sortm1Hjf	C57BI/6J background 7-15 week old males
Antibody	Anti-RUNX1 (rabbit monoclonal)	Cell Signaling	Cat: 8529 RRID:AB_10 950225	IHC/IF (1:100)

				,
Antibody	Anti-NKX3.1 (rabbit polyclonal)	Athenaes	Cat: AES- 0314	IHC/IF (1:200)
Antibody	Anti-CDH1 (goat polyclonal)	R&D Systems	Cat: AF748 AB_355568	IHC/IF (1:400)
Antibody	Anti-p63 (rabbit monoclonal)	Cell Signaling	Cat: 39692 RRID:AB_27 99159	IHC/IF (1:800)
Antibody	Anti-K5 (rabbit monoclonal)	Abcam	Cat: ab52635 RRID:AB_86 9890	IHC/IF (1:400)
Antibody	Anti-K8 (rabbit monoclonal)	Abcam	Cat: ab53280 RRID:AB_86 9901	IHC/IF (1:400)
Antibody	Anti-K4 (mouse monoclonal)	Abcam	Cat: Ab9004 RRID:AB_30 6932	IHC/IF (1:100)
Antibody	Anti-LY6D (rabbit polyclonal)	Proteintech	Cat: 17361- 1-AP	IHC/IF (1:100)
Antibody	Anti-TROP-2 (goat polyclonal)	R&D Systems	Cat: AF1122 RRID:AB_22 05662	IHC/IF (1:200)
Antibody	Anti-BrdU (rat monoclonal)	Abcam	Cat: ab6326 RRID:AB_30 5426	IHC/IF (1:400)
Antibody	Anti-Ki67 (rabbit monoclonal)	Abcam	Cat: ab15580 RRID:AB_44 3209	IHC/IF (1:800)

Antibody	Anti-RFP (rabbit polyclonal)	Rockland	Cat: 600- 402-379 RRID:AB_82 8391	IHC/IF (1:400)
Antibody	Anti-RFP (rabbit monoclonal)	MBL	Cat: PM005 RRID:AB_59 1279	IF (1:200)
Antibody	Anti-GFP (rabbit polyclonal)	MBL	Cat: 598 RRID:AB_59 1816	IF (1:200)
Antibody	EnVision+/HR P Anti-Rabbit	Dako (Agilent)	Cat: K4003 RRID:AB_26 30375	IHC/IF Ready to use
Antibody	EnVision+/HR P Anti-Rabbit	Dako (Agilent)	Cat: K4001 RRID:AB_28 27819	IHC/IF Ready to use
Antibody	ImmPRESS HRP Anti- Goat	Vector Laboratories	Cat: MP- 7405 RRID:AB_23 36526	IHC/IF Ready to use
Antibody	ImmPRESS HRP Anti-Rat	Vector Laboratories	Cat: MP- 7444 RRID:AB_23 36530	IHC/IF Ready to use
Antibody	Donkey anti- Goat IgG 647	ThermoFische r Scientific	Cat: A- 21447 RRID:AB_14 1844	IF (1:400)
Antibody	Anti-CD16/32 Fc block	Biolegend	Cat: 101301 Clone: 93 RRID:AB_31 2800	FACS (1:200)
Antibody	Anti-CD45 SB436	ThermoFische r Scientific	Cat: 62- 0451-82 Clone: 30- F11	FACS (1:200)

			RRID:AB_27 44774	
Antibody	Anti-EPCAM BV421	Biolegend	Cat: 118225 Clone: G8.8 RRID:AB_25 63983	FACS (1:200)
Antibody	Anti-EPCAM APC	Biolegend	Cat: 118214 Clone: G8.8 RRID:AB_11 34102	FACS (1:200)
Antibody	Anti-CD49f FITC	Biolegend	Cat: 313606 Clone: GoH3 RRID:AB_34 5300	FACS (1:200)
Antibody	Anti-CD49f APC	Biolegend	Cat: 313616 Clone: GoH3 RRID:AB_15 75047	FACS (1:200)
Antibody	Anti-CD24 BV786	BD Biosciences	Cat: 744470 Clone: M1/69 RRID:AB_27 42258	FACS (1:200)
Sequence-based reagent	MULTI-seq reagents	Zev Gartner lab McGinnis, Patterson, et al., 2019		
Software, algorithm	R v3.6.3	CRAN R Project	SCR_001905	https://cran. r-project.org
Software, algorithm	deMULTIplex	McGinnis, Patterson, et al., 2019		https://githu b.com/chris- mcginnis- ucsf/MULTI- seq

Software, algorithm	DoubletFinder	McGinnis, Murrow, et al., 2019	SCR_018771	https://githu b.com/chris- mcginnis- ucsf/Doublet Finder
Software, algorithm	Seurat v3.1.5	Rahul Satija lab	SCR_016341	https://githu b.com/satijal ab/seurat
Software <i>,</i> algorithm	Scanpy v1.4.6 PAGA	Wolf et al. <i>,</i> 2019	SCR_018139	https://scan py.readthed ocs.io/en/sta ble/
Software, algorithm	AUCell v1.8.0	Aibar et al., 2017		https://githu b.com/aertsl ab/AUCell
Software, algorithm	scater v1.14.6	Bioconductor	SCR_015954	https://bioco nductor.org/ packages/rel ease/bioc/ht ml/scater.ht ml
Software, algorithm	QuPath v0.2	Bankhead et al., 2017	SCR_018257	https://qupa th.github.io/
Software <i>,</i> algorithm	Cellranger v3.1.0	10x Genomics	SCR_017344	
Software <i>,</i> algorithm	FlowJo v10	BD Life Sciences	SCR_008520	
Software, algorithm	Harmony	PerkinElmer	SCR_018809	
Software, algorithm	Graphpad Prism v8.4.2	Graphpad	SCR_002798	

448 Animal work

449	Animal experiments were approved by the Animal Welfare and Ethics Review Body
450	(AWERB) of the Cancer Research UK Manchester Institute and conducted according to the UK
451	Home Office Project Licence (PPL 70/8580). Genetic lineage-tracing experiments were
452	performed at the Beatson Biological Services Unit (PPL 70/8645 & P5EE22AEE) and approved by
453	the University of Glasgow AWERB. Mice were maintained in purpose-built facility in a 12-hour
454	light/dark cycle with continual access to food and water.
455	
456	Immunocompetent wild-type ICR (CD-1) mice were purchased from Envigo. P1- <i>Runx1</i> :GFP
457	and P2- <i>Runx1</i> :RFP have been described previously (Draper et al., 2018; Sroczynska et al., 2009).
458	Colonies were maintained on a ICR (CD-1) background. C57BI/6J <i>Runx1</i> ^{mER-CRE-mER} (Samokhvalov
459	et al., 2007) were provided by RIKEN (Japan). C57BI/6J <i>Rosa26</i> ^{flox-stop-flox-tdRFP} mice (Luche et al.,
460	2007) were acquired from the European Mouse Mutant Archive (EMMA). For all transgenic
461	lines, routine genotyping was undertaken at weaning (3 weeks of age) by automated PCR
462	genotyping (Transnetyx). For timed mating experiments, vaginal plug detection was considered
463	as embryonic day (E) 0.5.
464	
465	All animal procedures were performed on adult males at least 7 weeks of age. Surgical
466	castration was carried out under aseptic conditions. For prostate regeneration assays,

467 testosterone pellets (Belma Technologies) were implanted subcutaneously. For *in vivo* genetic

468 lineage-tracing experiments, tamoxifen (Sigma, T5648) was resuspended in ethanol and diluted

469	in corn oil at a concentration of 10 mg/mL and administered via intra-peritoneal injections daily
470	for 4 consecutive days using the following regimen: 3mg, 2mg, 2mg, 2mg.
471	
472	Isolation of mouse prostate cells
473	All dissections were performed under a stereo microscope in sterile PBS. Dissociated murine
474	prostate cells were obtained by digesting pre-minced prostate tissue for 1h at 37°C in digestive
475	medium prepared in prepared in ADMEM/F12 (Gibco), and containing 1mg/mL Collagenase
476	Type I (ThermoFischer Scientific, #17018029), 1mg/mL Dispase II (ThermoFischer Scientific,
477	#17105041), 10% Fetal Bovine Serum (Gibco), 1% Penicillin-Streptomycin-Glutamine (Sigma),

and 10 μM Y-27632 dyhydrochloride (Chemdea, #CD0141). For embryonic urogenital sinuses

479 (UGS), dissociation time was reduced to 30 min. Single cells were obtained after an additional

480 10 min incubation in TrypLE (Gibco) at 37°C before mechanical dissociation with a syringe and

481 needle (25G). Cells were then filtered through a 50 μ m cell strainer.

482

483 Flow-cytometry and cell-sorting

484 Single cell suspensions were kept in Advanced DMEM/F-12 (Gibco) containing 5% FBS

485 supplemented with 10 μM Y-27632. Cells were incubated for 10 min using unconjugated anti-

486 mouse CD16/32 antibody (Biolegend, C93, #101301) at 4°C prior to labelling with specific

487 fluorochrome-labelled antibodies. Details of FACS reagents and antibodies are listed in the Key

- 488 Resources Table. Cells were filtered through a 50 μ m cell strainer prior to acquisition. Hoechst
- 489 33258 or Sytox blue (ThermoFischer Scientific) were used as viability stains. Single-cell

490	suspensions were analyzed on a Fortessa (BD Biosciences) and sorts were performed on a
491	FACSAriaIII (BD Biosciences). FACS data were analyzed using FlowJo software (BD Life Sciences).
492	
493	Organoid formation assays
494	In vitro organoid formation assays were performed as described in Drost et al., 2016. Single
495	cells were resuspended in 40 μL drops of phenol red-free Cultrex RGF BME Type 2 (BME 2,
496	Amsbio, #3533-005-02), and seeded in CellCarrier-96 Ultra Microplates (PerkinElmer,
497	#6055302). Defined organoid culture medium was prepared with Advanced DMEM/F-12
498	(Gibco), supplemented with 10 mM Hepes (Sigma), Gutamax (Gibco), Penicillin/Streptomycin
499	(Sigma), B27 (Life Technologies, 17504-044), 50 mg/mL EGF (PeproTech, #AF-100-15), 500
500	ng/mL R-spondin 1 (R&D Systems, #4645-RS), 100 ng/mL Noggin (R&D Systems, #6057-NG), 10
501	mM Y-27632 dyhydrochloride (Chemdea, #CD0141), 200nM A83-01 (Tocris Bioscience, #2939),
502	1.25 mM N-Acetylcystein (Sigma), and 1 nM Dihydrotestosterone (DHT, Sigma #730637).
503	Medium was refreshed every 2-3 days, and organoid cultures were scored after 7 days.
504	
505	UGS explant cultures
506	UGS explant cultures were performed as described previously (Kruithof-de Julio et al.,
507	2013). Briefly, E15.5 embryos were obtained from timed matings. Urogenital sinuses (UGS)
508	were isolated from the embryos and cultured using a Durapore Membrane Filter 0.65 μm
509	(#DVPP02500) placed on a stainless-steel mesh for up to 7 days in Ham's F-12/DMEM (Gibco)

- 510 $\,$ supplemented with Insulin-Transferrin-Sodium Selenite Supplement (Roche) and 10 μM
- 511 dihydrotestosterone (Sigma). Media were renewed every 2-3 days. For lineage-tracing

512 experiments, tamoxifen-induced labelling was performed using 0.5 μM 4-hydroxytamoxifen

- 513 (#T176, Sigma).
- 514

515 Immunohistochemistry

Prostate tissues were harvested and fixed in 10% buffered formalin for 24h. Fixed tissues 516 517 were processed using standard procedures and embedded in paraffin. Formalin-fixed paraffin-518 embedded (FFPE) sections (4 μ m) were cut and dried overnight at 37°C. Multiplexed 519 immunofluorescent stainings of FFPE sections were performed on an automated Leica BOND RX 520 platform using the Opal multiplexing workflow (PerkinElmer). In brief, sections were dewaxed, 521 and rehydrated, and endogenous peroxidase activity was guenched by 10 min pre-treatment 522 with 3% hydrogen peroxide diluted in TBS-T (Tris-Buffered Saline 0.05% Tween-20). Following 523 on-board heat-induced epitope retrieval with citrate buffer (pH 6.0) for 20 min, sections were 524 incubated for 10 min with 10% Casein (Vector Laboratories) diluted in TBS-T. Each staining cycle included a primary antibody incubation for 30 min, followed by buffer washes, and 30 min 525 526 incubation with HRP labelled secondary antibodies (Key Resources Table). After further washes, 527 the Tyramide labeled with a fluorophore (Opal 520, Opal 570 or Opal 650, PerkinElmer) was 528 added for a final 10 min. Subsequent antibody stainings were performed by repeating the same 529 procedure, separated by heat-mediated antibody denaturation using citrate buffer (pH 6.0) for 530 5 min at 95°C. Nuclei were counterstained with DAPI (Sigma) and slides were sealed using 531 ProLong Gold Antifade Mountant (ThermoFischer Scientific). In situ hybridization (ISH) to detect Nupr1 (ACD, LS 2.5 Mm-Nupr1 #434818) was done using the Multiplex Fluorescent detection kit 532 533 (ACD) on the automated Leica BOND RX platform following the manufacturer's instructions.

534	Pre-treatment was done using an EDTA based pH 9.0 epitope retrieval solution for 15 min at
535	88°C followed by 10 min protease incubation. After ISH, antibody staining was carried out using
536	an anti-RFP antibody for 1h detected with EnVision HRP anti-rabbit secondary (Agilent)
537	followed by incubation with Tyramide-conjugated Opal 570 (PerkinElmer) as described above.
538	Anti-CDH1 antibody was applied for 1h and detected using an anti-goat Alexa Fluor 647
539	secondary antibody (ThermoFischer Scientific, #A-21447). Staining of frozen sections was
540	performed as described previously (Thambyrajah et al., 2016). The list of antibodies used is
541	available in the Key Resources Table.
542	
543	Image acquisition and analysis
544	Whole-slide images were acquired on an Olympus VS120 slide scanner. Images were
545	analyzed using QuPath v0.2 (Bankhead et al., 2017). Briefly, annotations were drawn manually
546	to select areas of interest. Nuclear detection was achieved using the "cell detection" module on
547	the DAPI channel. A classifier was then trained for each batch of images using the random
548	forest algorithm, to detect the epithelial layers based on either CDH1 or K5/K8 stainings. Single-
549	cell intensity measurements were analyzed using R (3.6.3). For Quantitative Imaged-Based
550	Cytometry (QBIC), single-cell intensity measurements were log_{10} transformed and plotted using
551	the 'geom_hex' function of the ggplot2 R package. QuPath was used to extract representative
552	high-quality raw images of selected areas from whole slide images using the 'Send region to
553	ImageJ' tool. Images used for publication were processed with ImageJ (NIH Image, Maryland,
554	USA). Confocal images were acquired using a Leica TCS SP8 confocal microscope and LAS X Leica
555	software. Images of whole UGS explant culture were taken using a Leica MZ FLIII microscope.

556

557 Whole-mount immunofluorescent staining of organoids

558	Whole-mount staining was adapted from Yokomizo et al., 2012. Organoids were fixed
559	directly in 96-well plates using 4% paraformaldehyde for 1h at 4°C. After 3 washes of 5 min in
560	PBS, organoids were incubated in PBS-BST, containing PBS, 1% milk, 1% BSA, 10% goat serum
561	(Agilent, #X090710), 0.4% Triton X-100. Pre-conjugated primary antibodies, K5 Alexa Fluor 647
562	(#ab193895, Abcam) and K8 Alexa Fluor 488 (#ab192467, Abcam) were diluted at 1/400 in PBS-
563	BST and incubated with the organoids overnight at 4°C on a rocking platform. After 3 washes of
564	1h in PBS-BST at 4°C, organoids were stained with DAPI at 2 $\mu g/mL$ diluted in PBS-BST and
565	incubated for another 30 min at 4°C on a rocking platform. Images were acquired on an Opera
566	Phenix High Content Screening System using the 10x air and 20x water lenses. Quantitative

analysis was performed using the Harmony software on maximum projection images.

568

569 scRNA-seq sample preparation

570 A detailed description of the samples, replicates, and the corresponding cellular populations 571 used for each sequencing run is provided in Supplementary file 1. For the adult mouse prostate 572 dataset, AP, DLP, and VP lobes were micro dissected and pooled from P2-Runx1:RFP reporter 573 mice after dissociation. Single live EPCAM⁺ cells from RFP⁺ and RFP⁻ fractions of each lobes were sorted separately (containing a mix of CD49f^{high} basal and CD24^{high} luminal cells). For the UGS 574 575 explant culture dataset, the middle regions of the explants were micro dissected to enrich for 576 prostatic branching events and pooled by time point after dissociation. Single live EPCAM+ cells 577 were sorted for each independent time point.

578

579 scRNA-seq sample multiplexing

580	Individually sorted populations were multiplexed using the MULTI-seq protocol (McGinnis,
581	Patterson, et al., 2019). Reagents were kindly provided by Dr. Zev Gartner. In brief, after
582	sorting, cells were washed once in cold serum- and BSA-free PBS. A lipid-modified DNA
583	oligonucleotide and a specific sample barcode oligonucleotide were then mixed and added to
584	the cells at a final concentration of 200 nM each, and incubated in cold PBS for 5 min. Each
585	individual sample to be multiplexed received an independent sample barcode. Next, a common
586	lipid-modified co-anchor was added at 200 nM to each sample to stabilize the membrane
587	bound barcodes. After an additional 5 min incubation on ice, cells were washed 2 times with
588	PBS containing 1% FBS 1% BSA in order to quench unbound barcodes. Samples were then
589	pooled together and washed once with PBS 1% FBS 1% BSA. After cell counting, cells were
590	loaded in a Chromium Single Cell 3' GEM Library & Gel Bead Kit v3 (10x Genomics).
590 591	loaded in a Chromium Single Cell 3' GEM Library & Gel Bead Kit v3 (10x Genomics).
	loaded in a Chromium Single Cell 3' GEM Library & Gel Bead Kit v3 (10x Genomics). scRNA-seq library preparation, sequencing and pre-processing
591	
591 592	scRNA-seq library preparation, sequencing and pre-processing
591 592 593	scRNA-seq library preparation, sequencing and pre-processing Gene expression (cDNA) libraries were prepared according to the manufacturer's protocol.
591 592 593 594	scRNA-seq library preparation, sequencing and pre-processing Gene expression (cDNA) libraries were prepared according to the manufacturer's protocol. MULTI-seq barcode libraries were separated from the cDNA libraries during the first round of
591 592 593 594 595	scRNA-seq library preparation, sequencing and pre-processing Gene expression (cDNA) libraries were prepared according to the manufacturer's protocol. MULTI-seq barcode libraries were separated from the cDNA libraries during the first round of size selection, and PCR amplified prior to sequencing according to the MULTI-seq library
591 592 593 594 595 596	scRNA-seq library preparation, sequencing and pre-processing Gene expression (cDNA) libraries were prepared according to the manufacturer's protocol. MULTI-seq barcode libraries were separated from the cDNA libraries during the first round of size selection, and PCR amplified prior to sequencing according to the MULTI-seq library preparation protocol (McGinnis, Patterson, et al., 2019). For the adult mouse prostate dataset,

Cellranger v3.1.0 and mapped onto mm10 mouse reference genome. Pre-processing of the
MULTI-seq library fastq files was performed using the 'deMULTIplex' (v1.0.2) R package
(https://github.com/chris-mcginnis-ucsf/MULTI-seq) to generate a sample barcode UMI count
matrix. Detailed quality control metrics of each sequencing run are provided in Supplementary
file 1.

605

606 Adult mouse prostate dataset analysis

607 Quality control and barcode demultiplexing of individual runs. Each run was pre-processed 608 individually prior data integration. Cellranger outputs were loaded into the R package Seurat 609 (v3.1.5). Cells were kept if they had more than 750 detected genes, less than 7500 UMIs and 610 less than 10% mitochondrial transcripts. Sample barcodes were demultiplexed using the 611 HTODemux function implemented in Seurat. Briefly, a negative binomial distribution was used 612 to estimate the background levels based on k-means clustering of the barcode normalized 613 counts. Barcodes with values above the 99% quantile were considered 'positive' for a given 614 sample. Cells positive for more than one barcode were considered as 'doublets'. Doublets and 615 negative cells were excluded for all downstream analyses. Thresholds were empirically adjusted 616 to remove additional cells with possible ambiguous classification (Supplementary file 1). Of 617 note, in both 'run 1' and 'run 2', a large number of cells were classified 'negative' due to the 618 failed labelling of 'Bar3' (corresponding to 'Intact DLP RFP+' sample). For these runs, we used 619 DoubletFinder (McGinnis, Murrow, et al., 2019) to remove predicted doublets missed out as a 620 consequence of the failed labeling of 'Bar3'. After classification, barcodes were represented in

UMAP space to confirm the purity of the barcode assignment obtained for each sample (Figure
3–figure supplement 5A). We obtained a total of 4,499 cells from 3 independent experiments.

624 Integration, low dimensional embedding and clustering. Data aggregation was performed 625 according to the standard integration procedure implemented in Seurat. In brief, each dataset 626 was log normalized, and 3000 variable features were initially computed using the 'vst' method. 627 For integration, 2000 features and 50 dimensions were used as anchors. Integrated data were 628 scaled and the first 50 principal components (PC) were calculated for downstream analyses. 629 Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) was used for 630 visualization. Graph-based louvain clustering was performed on a shared nearest neighbor 631 graph constructed using 20 nearest neighbors for every cell, and a resolution of 0.4, which gave 632 a reasonable segmentation of the data (Figure 3-figure supplement 5B,C). Extensive 633 exploration of each cluster based on known marker genes was then carried out to subset 634 prostate epithelial cells. We found 10 prostate epithelial clusters (Epcam, Krt8, Cd24a, Spink1, 635 Krt19, Tacstd2, Psca, Krt4, Tam4, Nkx3-1, Pbsn, Msmb, Piezo2, Trp63, Krt5, Krt14), 3 clusters of 636 hematopoietic cells (Vim, Ptprc, Cd74, Itgam, Cd3d), 1 cluster of endothelial cells (Pecam1), 1 637 cluster of fibroblasts (Vim, Col1a1) and 1 cluster of mesonephric derivatives (Svs2, Pax2) (Figure 638 3-figure supplement 5D,E).

639

Analysis of prostate epithelial populations. The same dimension reduction approach described
 above was performed on the selected prostate epithelial clusters, using a resolution of 0.3 for
 graph-based louvain clustering. We annotated 1 large population of basal cells by merging 3

643	subclusters highly expressing Krt5, Krt14 and Trp63 as we did not discuss the heterogeneity of
644	the basal compartment in this study (Figures 3B-D; Figure 3–figure supplement 6F,I). We
645	annotated the different luminal clusters expressing higher levels of Cd26/Dpp4, Cd24a, Krt8 and
646	Krt18, as Lum-A, Lum-B, Lum-C, Lum-D, Lum-E and Lum-F. Several genes specifically marked
647	each cluster, including Sbp/Spink1 in Lum-A, Tgm4 in Lum-B, Msmb in Lum-C, Psca/Krt4 in Lum-
648	D, Basp1/Lpl in Lum-E, and Crym in Lum-F (Figures 3C, D; Figure 3–figure supplement 7A). Data
649	were then imported in Scanpy (v1.4.6) to infer lineage relationships between cellular
650	populations via partition-based graph abstraction (PAGA) implemented in the tl.paga function
651	(Wolf et al., 2019). Briefly, a single cell neighborhood graph (n_neighbors = 50) was computed
652	using the integrated principal components previously calculated in Seurat. PAGA was generated
653	based on our annotated clusters. The final UMAP representation was generated using PAGA-
654	initialised positions to better preserve the global topology of the data. All final data
655	visualizations were generated in R.
656	
657	Differential gene expression analysis and gene ontology. Differential gene expression analyses
658	between clusters were performed using the MAST method (Finak et al., 2015) implemented in
659	Seurat within the 'FindAllMarkers' and 'FindMarkers' functions. Testing was limited to genes
660	detected in at least 25% of the tested populations (min.pct = 0.25) and showing at least \pm 0.25
661	log fold change difference (logfc.threshold = 0.25). The 'g:GOSt' function of the gprofiler2 R
662	package was used to perform functional enrichment analysis on gene ontology terms (GO:BP,
663	biological processes). Genes showing at least 0.50 log fold change enrichment in the group
664	tested were kept.

665

666 UGS explant cultures dataset

667 A similar strategy was applied for the analysis of the UGS explant culture dataset, with some

668 alterations described below.

669

670 *Quality control and barcode demultiplexing.* Cells were kept if they had more than 1000

detected genes, and less than 7.5% mitochondrial transcripts. Barcode classification was

672 performed as above, using the 90% quantile in 'HTODemux' (Figure 6–figure supplement 12A).

673 We obtained a total of 5,122 cells that passed quality control from the 4 time points.

674

Low dimensional embedding and clustering. The first 50 principal components and 20 neighbors 675 676 were used for UMAP visualization. Graph-based clustering was done using a resolution 677 parameter of 0.3. We noticed a strong effect of cell cycle using cell cycles genes defined in 678 Tirosh et al., 2016. This was particularly evident using the 'CellCycleScoring' function 679 implemented in Seurat (Figure 6-figure supplement 12B). To minimize the impact of cell cycle 680 on downstream analyses, the cell cycle scores were regressed out during data scaling. We 681 identified 6 main clusters, that we annotated based on the expression of several marker genes 682 (Figure 6-figure supplement 12C-E). We identified 2 clusters of developing mesonephric 683 derivatives (Hoxb7, Wfdc2, Gata3, Sox17, Pax2, Pax8, Lhx1), 1 cluster of developing bladder 684 urothelium (Upk3a, Foxq1, Plaur, Krt7, Krt20), 1 cluster of mesenchymal cells (Vim, Col3a1, 685 Col1a1, Pdgfra, Zeb1) and 1 cluster corresponding to the developing prostatic epithelium

686	(Epcam, Krt8, Krt5, Krt14, Krt15, Shh, Hoxb13, Hoxd13, Nkx3-1). We also identified one cluster
687	largely associated with hypoxia and cellular stress ontologies (Figure 6–figure supplement 12F).
688	
689	Analysis of the developing prostatic epithelium. The same dimension reduction approach was
690	initially applied on the developing prostatic cluster. After graph-based clustering using a
691	resolution of 0.5, 10 clusters were identified and visualized via UMAP (Figure 6–figure
692	supplement 12G-J). We computed diffusion components using 'runDiffusionMap'
693	(ncomponents = 20, k = 20) implemented in the scater (v1.14.6) R package. We found the small
694	cluster C9 to be largely diverging from the remainder fraction in diffusion space, therefore it
695	was excluded for downstream analysis (Figure 6–figure supplement 12K). We then imported
696	the data in Scanpy and used the first 10 diffusion components to compute a neighborhood
697	graph (n_neighbors = 20) which was used for PAGA. We finally computed a force-direct layout
698	(ForceAtlas2) using PAGA-initialised positions.
699	
700	Analysis of gene set activity. Gene signatures were generated from the list of differentially
701	expressed genes by keeping those showing at least 0.50 log fold change enrichment in each
702	given group. Gene lists were used as custom gene sets (Supplementary file 5) in the AUCell
703	(Aibar et al., 2017) R package (v1.8.0). Briefly, AUCell uses the Area Under the Curve to evaluate
704	the enrichment of a given gene set in each cell, in a ranking based manner. It outputs an AUC
705	score for each individual cell, which is used to explore the relative expression of the signature.
706	Per cell AUC scores of each signatures were overlayed on the dimension reduction layout and
707	plotted as boxplots to visualize enrichments across the different cellular subsets.

708

709 Data availability

- 710 Raw sequencing files and processed gene expression matrices have been deposited in the
- 711 NCBI Gene Expression Omnibus under the accession number GSE151944. The processed
- 712 datasets for both mouse adult prostate and UGS prostate explant cultures can be accessed via a
- 713 searchable R Shiny application available at <u>http://shiny.cruk.manchester.ac.uk/pscapp/</u>. All
- code used to process data and generate figures is available on a public GitHub repository at
- 715 https://github.com/glacaud/prostate-scRNAseq.

716

717 Statistical analyses

- 718 Statistical analyses were performed using Graphpad/Prism (v8.4.2). Data are
- represented as mean ±SD. Unless otherwise specified in the corresponding figure legend, two-
- tailed unpaired *t*-tests were used to compare means between two groups. Statistical
- significance was set at p < 0.05. For animal model studies, no statistical method was used to
- 722 pre-determine the sample size. No randomization or blinding was used for *in vivo* studies.

724 ACKNOWLEDGEMENTS

- 725 We thank the laboratories' members for critical reading of the manuscript, in particular Dr.
- 726 Michael Lie-a-ling, Dr. Alice Lallo and Catherine Winchester. We thank the staff at the Histology,
- 727 Flow Cytometry, Advanced Imaging, Molecular Biology, and Breeding Unit Core facilities of
- 728 CRUK Manchester Institute, as well as the CRUK Beatson Biological Services Unit and Flow
- 729 Cytometry Core facility for technical support. We thank Dr. Zev Gartner for kindly providing the
- 730 MULTI-seq reagents. We thank Dr. Kirsteen Campbell with assistance on the lineage tracing
- 731 experiments. We thank Dr. Berenika Plusa and Dr. Roberto de la Fuente with assistance on
- timed matings experiments. We thank Professor Hans Jorg Fehling and the European Mouse
- 733 Mutant Archive for providing the Rosa26^{flox-stop-flox-tdRFP} mice.
- 734

735 COMPETING INTERESTS

736 The authors declare no competing interests.

738 **REFERENCES**

739	Aibar, S.,	González-Blas	С. В.	, Moerman	, T., Hu	vnh-Thu	, V. A.	, Imrichova	, H.	, Hulselmans,	, G.	,

- 740 Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., van den Oord, J., Atak, Z. K., Wouters, J.,
- 741 & Aerts, S. (2017). SCENIC: Single-cell regulatory network inference and clustering.
- 742 Nature Methods, 14(11), 1083–1086. https://doi.org/10.1038/nmeth.4463
- 743 Banach-Petrosky, W., Jessen, W. J., Ouyang, X., Gao, H., Rao, J., Quinn, J., Aronow, B. J., &
- Abate-Shen, C. (2007). Prolonged exposure to reduced levels of androgen accelerates
- 745 prostate cancer progression in Nkx3.1; Pten mutant mice. *Cancer Research*, 67(19),
- 746 9089–9096. https://doi.org/10.1158/0008-5472.CAN-07-2887
- 747 Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P. D.,
- 748 McQuaid, S., Gray, R. T., Murray, L. J., Coleman, H. G., James, J. A., Salto-Tellez, M., &
- 749 Hamilton, P. W. (2017). QuPath: Open source software for digital pathology image
- 750 analysis. *Scientific Reports*, 7(1), 16878. https://doi.org/10.1038/s41598-017-17204-5
- 751 Barros-Silva, J. D., Linn, D. E., Steiner, I., Guo, G., Ali, A., Pakula, H., Ashton, G., Peset, I., Brown,
- 752 M., Clarke, N. W., Bronson, R. T., Yuan, G.-C., Orkin, S. H., Li, Z., & Baena, E. (2018).
- 753 Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate
- Luminal Cells to Prostate Progenitors and Cancer. *Cell Reports*, *25*(12), 3504-3518.e6.
- 755 https://doi.org/10.1016/j.celrep.2018.11.069
- 756 Berman, D. M., Desai, N., Wang, X., Karhadkar, S. S., Reynon, M., Abate-Shen, C., Beachy, P. A.,
- 757 & Shen, M. M. (2004). Roles for Hedgehog signaling in androgen production and
- 758 prostate ductal morphogenesis. *Developmental Biology*, *267*(2), 387–398.
- 759 https://doi.org/10.1016/j.ydbio.2003.11.018

760	Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., Kim, M., Desai, N., Young, P., Norton, C. R.,
761	Gridley, T., Cardiff, R. D., Cunha, G. R., Abate-Shen, C., & Shen, M. M. (1999). Roles for
762	Nkx3.1 in prostate development and cancer. <i>Genes & Development</i> , 13(8), 966–977.
763	Browne, G., Taipaleenmäki, H., Bishop, N. M., Madasu, S. C., Shaw, L. M., van Wijnen, A. J.,
764	Stein, J. L., Stein, G. S., & Lian, J. B. (2015). Runx1 is associated with breast cancer
765	progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration
766	and invasion. Journal of Cellular Physiology, 230(10), 2522–2532.
767	https://doi.org/10.1002/jcp.24989
768	Burger, P. E., Xiong, X., Coetzee, S., Salm, S. N., Moscatelli, D., Goto, K., & Wilson, E. L. (2005).
769	Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high
770	capacity to reconstitute prostatic tissue. Proceedings of the National Academy of
771	Sciences of the United States of America, 102(20), 7180–7185.
772	https://doi.org/10.1073/pnas.0502761102
773	Centonze, A., Lin, S., Tika, E., Sifrim, A., Fioramonti, M., Malfait, M., Song, Y., Wuidart, A., Van
774	Herck, J., Dannau, A., Bouvencourt, G., Dubois, C., Dedoncker, N., Sahay, A., de
775	Maertelaer, V., Siebel, C. W., Van Keymeulen, A., Voet, T., & Blanpain, C. (2020).
776	Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature,
777	<i>584</i> (7822), 608–613. https://doi.org/10.1038/s41586-020-2632-y
778	Chimge, NO., Little, G. H., Baniwal, S. K., Adisetiyo, H., Xie, Y., Zhang, T., O'Laughlin, A., Liu, Z.
779	Y., Ulrich, P., Martin, A., Mhawech-Fauceglia, P., Ellis, M. J., Tripathy, D., Groshen, S.,
780	Liang, C., Li, Z., Schones, D. E., & Frenkel, B. (2016). RUNX1 prevents oestrogen-

781	mediated AXIN1 suppression and β -catenin activation in ER-positive breast cancer.
782	Nature Communications, 7, 10751. https://doi.org/10.1038/ncomms10751
783	Choi, N., Zhang, B., Zhang, L., Ittmann, M., & Xin, L. (2012). Adult murine prostate basal and
784	luminal cells are self-sustained lineages that can both serve as targets for prostate
785	cancer initiation. Cancer Cell, 21(2), 253–265. https://doi.org/10.1016/j.ccr.2012.01.005
786	Chua, C. W., Shibata, M., Lei, M., Toivanen, R., Barlow, L. J., Bergren, S. K., Badani, K. K.,
787	McKiernan, J. M., Benson, M. C., Hibshoosh, H., & Shen, M. M. (2014). Single luminal
788	epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology,
789	<i>16</i> (10), 951–961, 1–4. https://doi.org/10.1038/ncb3047
790	Clevers, H., & Watt, F. M. (2018). Defining Adult Stem Cells by Function, not by Phenotype.
791	Annual Review of Biochemistry, 87(1), 1015–1027. https://doi.org/10.1146/annurev-
792	biochem-062917-012341
793	Crowell, P. D., Fox, J. J., Hashimoto, T., Diaz, J. A., Navarro, H. I., Henry, G. H., Feldmar, B. A.,
794	Lowe, M. G., Garcia, A. J., Wu, Y. E., Sajed, D. P., Strand, D. W., & Goldstein, A. S. (2019).
795	Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell
796	<i>Reports, 28</i> (6), 1499-1510.e6. https://doi.org/10.1016/j.celrep.2019.07.007
797	Crowley, L., Cambuli, F., Aparicio, L., Shibata, M., Robinson, B. D., Xuan, S., Li, W., Hibshoosh, H.,
798	Loda, M., Rabadan, R., & Shen, M. M. (2020). A single-cell atlas of the mouse and human
799	prostate reveals heterogeneity and conservation of epithelial progenitors. ELife, 9.
800	https://doi.org/10.7554/eLife.59465

801	Doles, J. D., Vezina, C. M., Lipinski, R. J., Peterson, R. E., & Bushman, W. (2005). Growth,
802	morphogenesis, and differentiation during mouse prostate development in situ, in renal
803	grafts, and in vitro. The Prostate, 65(4), 390–399. https://doi.org/10.1002/pros.20321
804	Draper, J. E., Sroczynska, P., Fadlullah, M. Z. H., Patel, R., Newton, G., Breitwieser, W., Kouskoff,
805	V., & Lacaud, G. (2018). A novel prospective isolation of murine fetal liver progenitors to
806	study in utero hematopoietic defects. <i>PLoS Genetics</i> , 14(1), e1007127.
807	https://doi.org/10.1371/journal.pgen.1007127
808	Drost, J., Karthaus, W. R., Gao, D., Driehuis, E., Sawyers, C. L., Chen, Y., & Clevers, H. (2016).
809	Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols,
810	11(2), 347–358. https://doi.org/10.1038/nprot.2016.006
811	English, H. F., Santen, R. J., & Isaacs, J. T. (1987). Response of glandular versus basal rat ventral
812	prostatic epithelial cells to androgen withdrawal and replacement. The Prostate, 11(3),
813	229–242.
814	Ferrari, N., Mohammed, Z. M. A., Nixon, C., Mason, S. M., Mallon, E., McMillan, D. C., Morris, J.
815	S., Cameron, E. R., Edwards, J., & Blyth, K. (2014). Expression of RUNX1 Correlates with
816	Poor Patient Prognosis in Triple Negative Breast Cancer. PLoS ONE, 9(6), e100759.
817	https://doi.org/10.1371/journal.pone.0100759
818	Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller, H. W.,
819	McElrath, M. J., Prlic, M., Linsley, P. S., & Gottardo, R. (2015). MAST: A flexible statistical
820	framework for assessing transcriptional changes and characterizing heterogeneity in
821	single-cell RNA sequencing data. Genome Biology, 16(1), 278.
822	https://doi.org/10.1186/s13059-015-0844-5

- 823 Georgas, K. M., Armstrong, J., Keast, J. R., Larkins, C. E., McHugh, K. M., Southard-Smith, E. M.,
- 824 Cohn, M. J., Batourina, E., Dan, H., Schneider, K., Buehler, D. P., Wiese, C. B., Brennan, J.,
- B25 Davies, J. A., Harding, S. D., Baldock, R. A., Little, M. H., Vezina, C. M., & Mendelsohn, C.
- 826 (2015). An illustrated anatomical ontology of the developing mouse lower urogenital
- 827 tract. Development (Cambridge, England), 142(10), 1893–1908.
- 828 https://doi.org/10.1242/dev.117903
- Goldstein, A. S., Lawson, D. A., Cheng, D., Sun, W., Garraway, I. P., & Witte, O. N. (2008). Trop2
- 830 identifies a subpopulation of murine and human prostate basal cells with stem cell
- 831 characteristics. *Proceedings of the National Academy of Sciences of the United States of*
- 832 America, 105(52), 20882–20887. https://doi.org/10.1073/pnas.0811411106
- 833 Goto, K., Salm, S. N., Coetzee, S., Xiong, X., Burger, P. E., Shapiro, E., Lepor, H., Moscatelli, D., &
- 834 Wilson, E. L. (2006). Proximal Prostatic Stem Cells Are Programmed to Regenerate a
- 835 Proximal-Distal Ductal Axis. *STEM CELLS*, *24*(8), 1859–1868.
- 836 https://doi.org/10.1634/stemcells.2005-0585
- 837 Guo, W., Li, L., He, J., Liu, Z., Han, M., Li, F., Xia, X., Zhang, X., Zhu, Y., Wei, Y., Li, Y., Aji, R., Dai,
- 838 H., Wei, H., Li, C., Chen, Y., Chen, L., & Gao, D. (2020). Single-cell transcriptomics
- identifies a distinct luminal progenitor cell type in distal prostate invagination tips.
- 840 *Nature Genetics*, *52*(9), 908–918. https://doi.org/10.1038/s41588-020-0642-1
- 841 Höfner, T., Eisen, C., Klein, C., Rigo-Watermeier, T., Goeppinger, S. M., Jauch, A., Schoell, B.,
- 842 Vogel, V., Noll, E., Weichert, W., Baccelli, I., Schillert, A., Wagner, S., Pahernik, S., Sprick,
- 843 M. R., & Trumpp, A. (2015). Defined Conditions for the Isolation and Expansion of Basal

- 844 Prostate Progenitor Cells of Mouse and Human Origin. *Stem Cell Reports*, *4*(3), 503–518.
- 845 https://doi.org/10.1016/j.stemcr.2015.01.015
- 846 Horton, C., Liu, Y., Yu, C., Xie, Q., & Wang, Z. A. (2019). Luminal-contact-inhibition of epithelial
- basal stem cell multipotency in prostate organogenesis and homeostasis. *Biology Open*,
- 848 8(10). https://doi.org/10.1242/bio.045724
- Joseph, D. B., Henry, G. H., Malewska, A., Iqbal, N. S., Ruetten, H. M., Turco, A. E., Abler, L. L.,
- 850 Sandhu, S. K., Cadena, M. T., Malladi, V. S., Reese, J. C., Mauck, R. J., Gahan, J. C.,
- 851 Hutchinson, R. C., Roehrborn, C. G., Baker, L. A., Vezina, C. M., & Strand, D. W. (2020).
- 852 Urethral luminal epithelia are castration-insensitive cells of the proximal prostate. *The*
- 853 *Prostate*. https://doi.org/10.1002/pros.24020
- 854 Karthaus, W. R., Hofree, M., Choi, D., Linton, E. L., Turkekul, M., Bejnood, A., Carver, B.,
- 855 Gopalan, A., Abida, W., Laudone, V., Biton, M., Chaudhary, O., Xu, T., Masilionis, I.,
- 856 Manova, K., Mazutis, L., Pe'er, D., Regev, A., & Sawyers, C. L. (2020). Regenerative
- potential of prostate luminal cells revealed by single-cell analysis. Science, 368(6490),

858 497–505. https://doi.org/10.1126/science.aay0267

- 859 Karthaus, W. R., Iaquinta, P. J., Drost, J., Gracanin, A., van Boxtel, R., Wongvipat, J., Dowling, C.
- 860 M., Gao, D., Begthel, H., Sachs, N., Vries, R. G. J., Cuppen, E., Chen, Y., Sawyers, C. L., &
- 861 Clevers, H. C. (2014). Identification of multipotent luminal progenitor cells in human
- 862 prostate organoid cultures. *Cell*, *159*(1), 163–175.
- 863 https://doi.org/10.1016/j.cell.2014.08.017
- Keil, K. P., Mehta, V., Abler, L. L., Joshi, P. S., Schmitz, C. T., & Vezina, C. M. (2012). Visualization
- and quantification of mouse prostate development by in situ hybridization.

866 Differentiation; Research in Biological Diversity, 84(3), 232–239.

867 https://doi.org/10.1016/j.diff.2012.07.005

- Keita, M., Bachvarova, M., Morin, C., Plante, M., Gregoire, J., Renaud, M.-C., Sebastianelli, A.,
- 869 Trinh, X. B., & Bachvarov, D. (2013). The RUNX1 transcription factor is expressed in
- 870 serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and
- 871 invasion. *Cell Cycle (Georgetown, Tex.), 12*(6), 972–986.
- 872 https://doi.org/10.4161/cc.23963
- 873 Kruithof-de Julio, M., Shibata, M., Desai, N., Reynon, M., Halili, M. V., Hu, Y.-P., Price, S. M.,
- Abate-Shen, C., & Shen, M. M. (2013). Canonical Wnt signaling regulates Nkx3.1
- 875 expression and luminal epithelial differentiation during prostate organogenesis.
- 876 Developmental Dynamics : An Official Publication of the American Association of

877 Anatomists, 242(10), 1160–1171. https://doi.org/10.1002/dvdy.24008

- 878 Kwon, O.-J., Zhang, L., Ittmann, M. M., & Xin, L. (2014). Prostatic inflammation enhances basal-
- to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell
- 880 origin. Proceedings of the National Academy of Sciences of the United States of America,
- 881 *111*(5), E592-600. https://doi.org/10.1073/pnas.1318157111
- 882 Kwon, O.-J., Zhang, L., & Xin, L. (2016). Stem Cell Antigen-1 Identifies a Distinct Androgen-
- 883 Independent Murine Prostatic Luminal Cell Lineage with Bipotent Potential. *STEM CELLS*,
- 884 34(1), 191–202. https://doi.org/10.1002/stem.2217
- Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D., & Witte, O. N. (2007). Isolation and functional
- characterization of murine prostate stem cells. *Proceedings of the National Academy of*

- 887 Sciences of the United States of America, 104(1), 181–186.
- 888 https://doi.org/10.1073/pnas.0609684104
- Leong, K. G., Wang, B.-E., Johnson, L., & Gao, W.-Q. (2008). Generation of a prostate from a
- single adult stem cell. *Nature*, *456*(7223), 804–808.
- 891 https://doi.org/10.1038/nature07427
- Lie-A-Ling, M., Mevel, R., Patel, R., Blyth, K., Baena, E., Kouskoff, V., & Lacaud, G. (2020). RUNX1
- 893 Dosage in Development and Cancer. *Molecules and Cells*, 43(2), 126–138.
- 894 https://doi.org/10.14348/molcells.2019.0301
- Lopes, E. S., Foster, B. A., Donjacour, A. A., & Cunha, G. R. (1996). Initiation of secretory activity
- of rat prostatic epithelium in organ culture. *Endocrinology*, *137*(10), 4225–4234.
- 897 https://doi.org/10.1210/endo.137.10.8828481
- Luche, H., Weber, O., Nageswara Rao, T., Blum, C., & Fehling, H. J. (2007). Faithful activation of
- an extra-bright red fluorescent protein in 'knock-in' Cre-reporter mice ideally suited for
- 900 lineage tracing studies. *European Journal of Immunology*, *37*(1), 43–53.
- 901 https://doi.org/10.1002/eji.200636745
- 902 Lukacs, R. U., Goldstein, A. S., Lawson, D. A., Cheng, D., & Witte, O. N. (2010). Isolation,
- 903 cultivation and characterization of adult murine prostate stem cells. *Nature Protocols*,
- 904 5(4), 702–713. https://doi.org/10.1038/nprot.2010.11
- 905 McAuley, E., Moline, D., VanOpstall, C., Lamperis, S., Brown, R., & Vander Griend, D. J. (2019).
- 906 Sox2 Expression Marks Castration-Resistant Progenitor Cells in the Adult Murine
- 907 Prostate. *Stem Cells (Dayton, Ohio), 37*(5), 690–700. https://doi.org/10.1002/stem.2987

- 908 McGinnis, C. S., Murrow, L. M., & Gartner, Z. J. (2019). DoubletFinder: Doublet Detection in
- 909 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Systems*, 8(4),
- 910 329-337.e4. https://doi.org/10.1016/j.cels.2019.03.003
- 911 McGinnis, C. S., Patterson, D. M., Winkler, J., Conrad, D. N., Hein, M. Y., Srivastava, V., Hu, J. L.,
- 912 Murrow, L. M., Weissman, J. S., Werb, Z., Chow, E. D., & Gartner, Z. J. (2019). MULTI-
- 913 seq: Sample multiplexing for single-cell RNA sequencing using lipid-tagged indices.
- 914 *Nature Methods*, *16*(7), 619–626. https://doi.org/10.1038/s41592-019-0433-8
- 915 McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform Manifold Approximation and
- 916 Projection for Dimension Reduction. *ArXiv:1802.03426 [Cs, Stat]*.
- 917 http://arxiv.org/abs/1802.03426
- 918 McNeal, J. E. (1981). The zonal anatomy of the prostate. *The Prostate*, *2*(1), 35–49.
- 919 https://doi.org/10.1002/pros.2990020105
- 920 Mevel, R., Draper, J. E., Lie-a-Ling, M., Kouskoff, V., & Lacaud, G. (2019). RUNX transcription
- 921 factors: Orchestrators of development. *Development*, *146*(17), dev148296.
- 922 https://doi.org/10.1242/dev.148296
- 923 Ousset, M., Van Keymeulen, A., Bouvencourt, G., Sharma, N., Achouri, Y., Simons, B. D., &
- 924 Blanpain, C. (2012). Multipotent and unipotent progenitors contribute to prostate
- 925 postnatal development. *Nature Cell Biology*, *14*(11), 1131–1138.
- 926 https://doi.org/10.1038/ncb2600
- 927 Pignon, J.-C., Grisanzio, C., Geng, Y., Song, J., Shivdasani, R. A., & Signoretti, S. (2013). P63-
- 928 expressing cells are the stem cells of developing prostate, bladder, and colorectal

929	epithelia. Proceedings of the National Academy of Sciences of the United States of
930	America, 110(20), 8105–8110. https://doi.org/10.1073/pnas.1221216110
931	Planagumà, J., Díaz-Fuertes, M., Gil-Moreno, A., Abal, M., Monge, M., García, A., Baró, T.,
932	Thomson, T. M., Xercavins, J., Alameda, F., & Reventós, J. (2004). A differential gene
933	expression profile reveals overexpression of RUNX1/AML1 in invasive endometrioid
934	carcinoma. Cancer Research, 64(24), 8846–8853. https://doi.org/10.1158/0008-
935	5472.CAN-04-2066
936	Planagumà, J., Gonzalez, M., Doll, A., Monge, M., Gil-Moreno, A., Baró, T., García, A., Xercavins,
937	J., Alameda, F., Abal, M., & Reventós, J. (2006). The up-regulation profiles of
938	p21WAF1/CIP1 and RUNX1/AML1 correlate with myometrial infiltration in endometrioid
939	endometrial carcinoma. <i>Human Pathology, 37</i> (8), 1050–1057.
940	https://doi.org/10.1016/j.humpath.2006.03.007
941	Richardson, G. D., Robson, C. N., Lang, S. H., Neal, D. E., Maitland, N. J., & Collins, A. T. (2004).
942	CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science,
943	<i>117</i> (16), 3539–3545. https://doi.org/10.1242/jcs.01222
944	Riggio, A. I., & Blyth, K. (2017). The enigmatic role of RUNX1 in female-related cancers—Current
945	knowledge & future perspectives. The FEBS Journal, 284(15), 2345–2362.
946	https://doi.org/10.1111/febs.14059
947	Samokhvalov, I. M., Samokhvalova, N. I., & Nishikawa, S. (2007). Cell tracing shows the
948	contribution of the yolk sac to adult haematopoiesis. <i>Nature, 446</i> (7139), 1056–1061.
949	https://doi.org/10.1038/nature05725

- 950 Scheitz, C. J. F., Lee, T. S., McDermitt, D. J., & Tumbar, T. (2012). Defining a tissue stem cell-
- 951 driven Runx1/Stat3 signalling axis in epithelial cancer. *The EMBO Journal*, 31(21), 4124–
- 952 4139. https://doi.org/10.1038/emboj.2012.270
- 953 Scheitz, C. J. F., & Tumbar, T. (2013). New insights into the role of Runx1 in epithelial stem cell
- biology and pathology. *Journal of Cellular Biochemistry*, *114*(5), 985–993.
- 955 https://doi.org/10.1002/jcb.24453
- 956 Shen, M. M., & Abate-Shen, C. (2010). Molecular genetics of prostate cancer: New prospects for
- 957 old challenges. *Genes & Development*, *24*(18), 1967–2000.
- 958 https://doi.org/10.1101/gad.1965810
- 959 Sroczynska, P., Lancrin, C., Kouskoff, V., & Lacaud, G. (2009). The differential activities of Runx1
- 960 promoters define milestones during embryonic hematopoiesis. Blood, 114(26), 5279–
- 961 5289. https://doi.org/10.1182/blood-2009-05-222307
- 962 Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986a). Morphogenesis of ductal networks in the
- 963 mouse prostate. *Biology of Reproduction*, 34(5), 961–971.
- 964 https://doi.org/10.1095/biolreprod34.5.961
- 965 Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986b). Morphological and histological study of

966 castration-induced degeneration and androgen-induced regeneration in the mouse

- 967 prostate. *Biology of Reproduction*, *34*(5), 973–983.
- 968 Takayama, K., Suzuki, T., Tsutsumi, S., Fujimura, T., Urano, T., Takahashi, S., Homma, Y.,
- 969 Aburatani, H., & Inoue, S. (2015). RUNX1, an androgen- and EZH2-regulated gene, has
- 970 differential roles in AR-dependent and -independent prostate cancer. Oncotarget, 6(4),
- 971 2263–2276. https://doi.org/10.18632/oncotarget.2949

- 972 Thambyrajah, R., Mazan, M., Patel, R., Moignard, V., Stefanska, M., Marinopoulou, E., Li, Y.,
- 973 Lancrin, C., Clapes, T., Möröy, T., Robin, C., Miller, C., Cowley, S., Göttgens, B., Kouskoff,
- 974 V., & Lacaud, G. (2016). GFI1 proteins orchestrate the emergence of haematopoietic
- 975 stem cells through recruitment of LSD1. *Nature Cell Biology*, *18*(1), 21–32.
- 976 https://doi.org/10.1038/ncb3276
- 977 Tika, E., Ousset, M., Dannau, A., & Blanpain, C. (2019). Spatiotemporal regulation of
- 978 multipotency during prostate development. *Development*, dev.180224.
- 979 https://doi.org/10.1242/dev.180224
- 980 Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., Rotem, A.,
- 981 Rodman, C., Lian, C., Murphy, G., Fallahi-Sichani, M., Dutton-Regester, K., Lin, J.-R.,
- 982 Cohen, O., Shah, P., Lu, D., Genshaft, A. S., Hughes, T. K., Ziegler, C. G. K., ... Garraway, L.
- 983 A. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell
- 984 RNA-seq. *Science*, *352*(6282), 189–196. https://doi.org/10.1126/science.aad0501
- 985 Toivanen, R., Mohan, A., & Shen, M. M. (2016). Basal Progenitors Contribute to Repair of the
- 986 Prostate Epithelium Following Induced Luminal Anoikis. *Stem Cell Reports*, *0*(0).
- 987 https://doi.org/10.1016/j.stemcr.2016.03.007
- 988 Toivanen, R., & Shen, M. M. (2017). Prostate organogenesis: Tissue induction, hormonal
- 989 regulation and cell type specification. *Development (Cambridge, England)*, 144(8), 1382–
- 990 1398. https://doi.org/10.1242/dev.148270
- 991 Tsujimura, A., Koikawa, Y., Salm, S., Takao, T., Coetzee, S., Moscatelli, D., Shapiro, E., Lepor, H.,
- 992 Sun, T.-T., & Wilson, E. L. (2002). Proximal location of mouse prostate epithelial stem

- 993 cells. *The Journal of Cell Biology*, *157*(7), 1257–1265.
- 994 https://doi.org/10.1083/jcb.200202067
- 995 van Bragt, M. P. A., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1, a transcription factor mutated in
- breast cancer, controls the fate of ER-positive mammary luminal cells. *ELife*, *3*, e03881.
- 997 https://doi.org/10.7554/eLife.03881
- 998 Wang, B., Wang, X., Long, J. E., Eastham-Anderson, J., Firestein, R., & Junttila, M. R. (2015).
- 999 Castration-Resistant Lgr5+ Cells Are Long-Lived Stem Cells Required for Prostatic
- 1000 Regeneration. *Stem Cell Reports*, 4(5), 768–779.
- 1001 https://doi.org/10.1016/j.stemcr.2015.04.003
- 1002 Wang, X., Kruithof-de Julio, M., Economides, K. D., Walker, D., Yu, H., Halili, M. V., Hu, Y.-P.,
- 1003 Price, S. M., Abate-Shen, C., & Shen, M. M. (2009). A luminal epithelial stem cell that is a

1004 cell of origin for prostate cancer. *Nature*, *461*(7263), 495–500.

- 1005 https://doi.org/10.1038/nature08361
- 1006 Wang, X.-D., Wang, B.-E., Soriano, R., Zha, J., Zhang, Z., Modrusan, Z., Cunha, G. R., & Gao, W.-
- 1007 Q. (2007). Expression profiling of the mouse prostate after castration and hormone
- 1008 replacement: Implication of H-cadherin in prostate tumorigenesis. *Differentiation;*
- 1009 *Research in Biological Diversity*, 75(3), 219–234. https://doi.org/10.1111/j.1432-
- 1010 0436.2006.00135.x
- 1011 Wang, Y., Hayward, S., Cao, M., Thayer, K., & Cunha, G. (2001). Cell differentiation lineage in the
- 1012 prostate. *Differentiation; Research in Biological Diversity, 68*(4–5), 270–279.
- 1013 Wolf, F. A., Hamey, F. K., Plass, M., Solana, J., Dahlin, J. S., Göttgens, B., Rajewsky, N., Simon, L.,
- 1014 & Theis, F. J. (2019). PAGA: Graph abstraction reconciles clustering with trajectory

- 1015 inference through a topology preserving map of single cells. *Genome Biology*, 20(1), 59.
- 1016 https://doi.org/10.1186/s13059-019-1663-x
- 1017 Xin, L., Lawson, D. A., & Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a
- 1018 prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis.
- 1019 Proceedings of the National Academy of Sciences of the United States of America,
- 1020 *102*(19), 6942–6947. https://doi.org/10.1073/pnas.0502320102
- 1021 Yokomizo, T., Yamada-Inagawa, T., Yzaguirre, A. D., Chen, M. J., Speck, N. A., & Dzierzak, E.
- 1022 (2012). Whole-mount three-dimensional imaging of internally localized immunostained
- 1023 cells within mouse embryos. *Nature Protocols*, 7(3), 421–431.
- 1024 https://doi.org/10.1038/nprot.2011.441
- 1025 Yoo, Y. A., Roh, M., Naseem, A. F., Lysy, B., Desouki, M. M., Unno, K., & Abdulkadir, S. A. (2016).
- 1026 Bmi1 marks distinct castration-resistant luminal progenitor cells competent for prostate
- 1027 regeneration and tumour initiation. *Nature Communications*, *7*, 12943.
- 1028 https://doi.org/10.1038/ncomms12943
- 1029 Zhang, D., Zhao, S., Li, X., Kirk, J. S., & Tang, D. G. (2018). Prostate Luminal Progenitor Cells in
- 1030 Development and Cancer. *Trends in Cancer*, 4(11), 769–783.
- 1031 https://doi.org/10.1016/j.trecan.2018.09.003
- 1032

1033 MAIN FIGURE LEGENDS

1034 Figure 1. RUNX1 marks a subpopulation of mouse proximal prostate luminal cells (PLCs).

1035 (A) Co-immunostaining of RUNX1, NKX3.1, CDH1 in the mouse Anterior Prostate (AP). Higher

1036 magnification images of (i) proximal AP and (ii) distal AP are shown. Arrows indicate RUNX1⁺

1037 NKX3.1⁻ cells, arrowheads show RUNX1⁻ NKX3.1⁺ cells. Scale bars: 500μm (yellow) and 50μm

- 1038 (white). (B) Quantification of RUNX1 and NKX3.1 nuclear intensity (log₁₀) in CDH1⁺ epithelial
- 1039 cells by QBIC in proximal and distal AP. *n* = 6-8 mice. (**C**, **D**) Flow-cytometry analysis of P2-
- 1040 *Runx1*:RFP mice, and corresponding quantification of the percentages of RFP⁺ and RFP cells in
- 1041 the basal and luminal fractions of the proximal and distal AP. *n* = 7 mice. (E) Experimental
- 1042 strategy to grow organoids from sorted RFP⁺ and RFP cells from the basal (CD49f^{high}) and
- 1043 luminal (CD24^{high}) lineages of P2-*Runx1*:RFP mouse reporters. (F) Organoid Forming Capacity
- 1044 (OFC) of RFP⁺ and RFP⁻ basal and luminal sorted cells after 7 days in culture. n = 4 mice. (G)
- 1045 Whole-mount immunostaining of unipotent K5⁺, unipotent K8⁺ or multipotent K5⁺ K8⁺
- 1046 organoids. Scale bar: 50 μm. (H) Quantification of the type of organoids characterized by whole-
- 1047 mount immunostaining, as in G. Numbers of organoids quantified are shown above the graph. *p*

1048 value is indicated for the proportion of K8⁺ organoids between Proximal AP Luminal RFP⁺ versus

- 1049 RFP⁻ derived subset. Other comparisons were not statistically significant. n = 2 mice per group.
- 1050 Source files are available in Figure 1—source data 1.
- 1051

1052 Figure 2. RUNX1 expressing cells are enriched in the castrated prostate epithelium.

- 1053 (A) P2-*Runx1*:RFP reporter mice were surgically castrated between 6 to 12 weeks of age and
- 1054 analyzed at least 4 weeks post-castration. (B, C) Flow-cytometry analysis and corresponding

1055	quantification of the proportion of RFP $^+$ and RFP $^-$ cells in the EPCAM $^+$ fraction of intact and
1056	castrated prostates of P2-Runx1:RFP mice. $n = 3$ mice per group. Int: Intact, Cas: Castrated. (D)
1057	Co-immunostaining of RUNX1, NKX3.1, CDH1 in the castrated wild-type mouse prostate. Higher
1058	magnification images of (i) proximal, (ii) intermediate and (iii) distal AP are shown. Arrows
1059	indicate RUNX1 ⁻ NKX3.1 ⁺ cells, arrowheads show a luminal cell co-stained for RUNX1 and
1060	NKX3.1. Amp: ampullary gland. Scale bars: 500 μ m (yellow) and 50 μ m (white). Int: Intact, Cas:
1061	Castrated. (E) Co-immunostaining of RUNX1 and TROP2 showing colocalization of the 2 markers
1062	in both proximal (bottom) and distal (top) castrated AP. Scale bars: 50 μ m (white). Source files
1063	are available in Figure 2—source data 1.
1064	
1065	Figure 3. scRNA-seq profiling of intact and castrated <i>Runx1</i> ⁺ cells reveals transcriptomic
1066	similarity between proximal luminal cells and castration-resistant cells.
1066 1067	similarity between proximal luminal cells and castration-resistant cells. (A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of
1067	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of
1067 1068	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2- <i>Runx1</i> :RFP reporter mice. (B) UMAP
1067 1068 1069	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2- <i>Runx1</i> :RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells
1067 1068 1069 1070	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2- <i>Runx1</i> :RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells (<i>n</i> = 3,825 cells from 3 independent experiments). Colors represent different clusters. In PAGA,
1067 1068 1069 1070 1071	 (A) Experimental strategy for scRNA-seq on RFP⁺ and RFP⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2-<i>Runx1</i>:RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells (<i>n</i> = 3,825 cells from 3 independent experiments). Colors represent different clusters. In PAGA, clusters are linked by weighted edges that represent a statistical measure of connectivity. (C)
1067 1068 1069 1070 1071 1072	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2- <i>Runx1</i> :RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells (<i>n</i> = 3,825 cells from 3 independent experiments). Colors represent different clusters. In PAGA, clusters are linked by weighted edges that represent a statistical measure of connectivity. (C) Dot plot showing the expression of selected marker genes associated with each cluster. (D-H)
1067 1068 1069 1070 1071 1072 1073	(A) Experimental strategy for scRNA-seq on RFP ⁺ and RFP ⁻ cells individually dissected lobes of intact and castrated prostates isolated from P2- <i>Runx1</i> :RFP reporter mice. (B) UMAP visualization (left) and graph-abstracted representation (PAGA, right) of prostate epithelial cells (<i>n</i> = 3,825 cells from 3 independent experiments). Colors represent different clusters. In PAGA, clusters are linked by weighted edges that represent a statistical measure of connectivity. (C) Dot plot showing the expression of selected marker genes associated with each cluster. (D-H) UMAP visualization of prostate epithelial cells. Cells in D and G are colored by a gradient of log-

1077

1078 Figure 4. Lineage-tracing of *Runx1* expressing cells establishes the intrinsic castration-

- 1079 resistant properties of the proximal luminal lineage.
- 1080 (A) Schematic summary of the genetic lineage tracing system employed. (B) Experimental
- 1081 strategy for lineage-tracing experiments. (C) Co-immunostaining of RFP, RUNX1, CDH1 in the
- 1082 proximal AP. Arrows indicate RFP labelled RUNX1⁺ cells. Scale bar: 50 μm. (**D**) Quantification of
- 1083 the percentage of epithelial RFP⁺ cells in proximal and distal regions of the prostate in intact (*n*
- 1084 = 5), castrated (n = 4) and regenerated (n = 4) mice. (E) Quantification of the percentage of
- 1085 epithelial RFP⁺ cells in intact (n = 5), castrated (n = 5) and regenerated (n = 4) mice. (**F**) Co-
- 1086 immunostaining of RFP, K5, K8 in the proximal AP, distal AP, and DLVP (DLP + VP). Arrowheads
- 1087 indicate RFP labelled basal cells (K5⁺) found in distal AP, the white arrow indicates a luminal
- 1088 (K8⁺) RFP⁺ clone made of 2 cells. Scale bar: 50 μ m. (G) Quantification of the percentage of
- 1089 epithelial RFP⁺ clones comprising between 2 to 4 cells in intact (n = 5), castrated (n = 5) and
- 1090 regenerated (n = 4) mice. (H, I) Quantification of the percentage of RFP⁺ cells being K5⁺ or K8⁺ in
- 1091 **H**, or NKX3.1⁺ or NKX3.1⁻ in **I**, in intact (n = 5), castrated (n = 5) and regenerated (n = 4) mice. Int:
- 1092 Intact, Cas: Castrated, Rgn: Regenerated. Source files are available in Figure 4—source data 1.
- 1093

1094 Figure 5. RUNX1 marks proximal cells during embryonic prostate development.

- 1095 (A-C) Co-immunostainings of the mouse urogenital sinus at E18.5 for RUNX1, K5, K8 in A,
- 1096 RUNX1, p63, CDH1 in **B**, RUNX1, NKX3.1, CDH1 in **C**. Scale bar: 50 μm. (**D**) Co-immunostainings
- 1097 of RUNX1, NKX3.1, CDH1 at postnatal (P) day 14. Higher magnification images of (p) proximal,
- 1098 (i) intermediate, and (d) distal regions are shown. Scale bars: 200 μm (yellow) and 50 μm

1099	(white). Amp: ampullary gland; Sv: seminal vesicles; Ur: urethra; p: proximal; i: intermediate; d:
1100	distal. (E) Scheme of the protocol to culture <i>ex vivo</i> explants of mouse UGS harvested at E15.5.
1101	(F) Representative images of UGS explants at E15.5 (day 0), day 3, day 5 and day 7 of culture
1102	showing the formation of premature prostate buds. (G) Co-immunostaining of RUNX1, NKX3.1,
1103	CDH1 in UGS explants harvested at day 0, day 1, day 2 and day 7. Higher magnification images
1104	of each square (left) are shown for each time point. Chevron arrows show RUNX1 $^+$ NKX3.1 $^+$
1105	cells, closed arrows indicate RUNX1 ⁻ NKX3.1 ⁺ cells, arrowheads show RUNX1 ⁺ NKX3.1 ⁻ cells.
1106	Scale bars: 200 μ m (yellow) and 50 μ m (white). (H) Quantification of RUNX1 and NKX3.1 nuclear
1107	intensity (log ₁₀) in CDH1 ⁺ epithelial cells of UGS explants by QBIC. Quantification was performed
1108	within the boundaries delimited in G by dotted lines, at day 0 ($n = 3$ explants), day 1 ($n = 7$
1109	explants), day 2 (<i>n</i> = 6 explants) and day 7 (<i>n</i> = 6 explants). Source files are available in Figure
1110	5—source data 1.

1111

1112 Figure 6. scRNA-seq of UGS explant cultures shows specification of the proximal luminal

1113 lineage during embryonic prostate development.

(A) Experimental strategy for scRNA-seq of UGS explant cultures at day 0, day 1, day 3 and day
6. (B, C) Force directed visualization of the developing prostatic epithelium in UGS explant
cultures. In B cells are colored by experimental time points, and in C cells are colored by
clusters. (D) PAGA representation of the clusters as in C. Weighted edges between cluster
nodes represent a statistical measure of connectivity. (E) Fraction of cells per cluster at each
experimental time point, displaying a progressive cellular diversification. (F-H) PAGA
representations with cluster nodes colored by a gradient representing the mean log-normalized

1121	expression levels of each gene. (I) Force directed visualization of the developing prostatic
1122	epithelium in UGS explant cultures. Color gradient represents AUC scores per cell. Per-cell AUC
1123	scores were calculated using the 'AUCell' package. Gene signatures for 'Lum-D' (left) and 'Basal'
1124	(right) were generated using the list of differentially upregulated genes previously obtained
1125	from our adult mouse prostate clusters.
1126	
1127	Figure 7. RUNX1 ⁺ cells contribute to the establishment of the proximal luminal lineage during
1128	embryonic prostate development.
1129	(A) Strategy for lineage-tracing of RUNX1 ⁺ cells in UGS explant cultures. Tamoxifen was applied
1130	on day 0 and day 1 and washed out on day 2. (B, C) Co-immunostaining of RFP, RUNX1, CDH1 in
1131	UGS explants harvested at day 2 (B) and day 7 (C). Higher magnification images of proximal (i)
1132	and (ii) distal regions are shown for day 7. Arrows show RFP ⁺ RUNX1-low cells, arrowheads
1133	show RFP ⁺ RUNX1 ⁺ cells. Scale bars: 200 μ m (yellow) and 50 μ m (white). (C) Quantification of
1134	the percentage of epithelial RUNX1 ⁺ cells in the RFP subset at day 2 ($n = 7$) and day 7 ($n = 3$) of
1135	UGS explant cultures. Quantification was performed within the boundaries delimited in ${f B}$ by
1136	dotted lines. (E, F) Co-immunostaining of RFP, NKX3.1, CDH1 in UGS explants harvested at day 2
1137	(E) and day 7 (F). Higher magnification images of (i) proximal and (ii) distal regions are shown
1138	for day 7. Arrows show RFP ⁺ NKX3.1 ⁺ cells, arrowheads show RFP ⁺ NKX3.1 ⁻ cells. Scale bars: 200
1139	μm (yellow) and 50 μm (white). (G) Quantification of the percentage of epithelial NKX3.1 ⁺ cells
1140	in the RFP subset at day 2 ($n = 6$) and day 7 ($n = 4$) of UGS explant cultures. Quantification was
1141	performed within the boundaries delimited in F by dotted lines. (H, I) Co-immunostaining of
1142	RFP, K4, CDH1 in UGS explants harvested at day 2 (H) and day 7 (I). Higher magnification images

1143	of (i) proximal and (ii) distal regions are shown for day 7. Arrows show RFP ⁺ K4 cells,
1144	arrowheads show RFP ⁺ K4 ⁺ cells. Scale bars: 200 μ m (yellow) and 50 μ m (white). (J)
1145	Quantification of the percentage of epithelial K4 ⁺ cells in the RFP subset at day 2 ($n = 3$) and day
1146	7 ($n = 3$) of UGS explant cultures. Quantification was performed within the boundaries
1147	delimited in I by dotted lines. Source files are available in Figure 7—source data 1.
1148	
1149	Figure 1—figure supplement 1. RUNX1 is enriched in the mouse prostate epithelium.
1150	(A) Co-immunostaining of RUNX1, NKX3.1, CDH1 in the mouse DLP (top) and VP (bottom).
1151	Closed arrows indicate RUNX1 ⁺ NKX3.1 ⁻ cells, chevron arrows indicate rare RUNX1 ⁺ NKX3.1 ⁺
1152	cells, arrowheads show RUNX1 ⁻ NKX3.1 ⁺ cells. Scale bars: 50 μ m. (B) Quantification of RUNX1
1153	and NKX3.1 nuclear intensity (log ₁₀) in CDH1+ epithelial cells by QBIC in proximal DLP ($n = 3$),
1154	distal DLP ($n = 8$), proximal VP ($n = 3$) and distal VP ($n = 8$). (C) H&E staining of the mouse AP.
1155	Higher magnification images of (i) proximal AP and (ii) distal regions are shown. Arrows show
1156	typical proximal luminal cells with condensed nuclei and cytoplasm, arrowheads show typical
1157	distal secretory luminal cells with enlarged cytoplasm and strong pink eosinophilic staining.
1158	Scale bars: 200 μ m (blue) and 50 μ m (black). Source files are available in Figure 1—figure
1159	supplement 1—source data 1.
1160	
1161	Figure 1—figure supplement 2. <i>Runx1</i> expression is mediated by the P2 promoter in the
1162	mouse prostate epithelium.
1163	(A) Schematic diagrams of the P2-Runx1:RFP reporter allele (top), Runx1 WT allele (middle), and
1164	P1- <i>Runx1</i> :GFP reporter allele (bottom). In P2- <i>Runx1</i> :RFP or P1- <i>Runx1</i> :GFP mice, expression of

1165	RFP or GFP is directed by <i>Runx1</i> proximal P2 or distal P1 promoter respectively. WT <i>Runx1</i>
1166	expression is directed by the remaining WT allele. (B) Flow-cytometry analysis of the epithelial
1167	EPCAM ⁺ fraction of WT, P2- <i>Runx1</i> :RFP and P1- <i>Runx1</i> :GFP mice. Percentages are indicated in
1168	each quadrant gates. (C) Confocal images indicating P2- <i>Runx1</i> :RFP signal in the glandular
1169	epithelium (top), while P1-Runx1:GFP (bottom) activity is detected in the surrounding stroma.
1170	Scale bar: 50 μm. (D) Flow-cytometry analysis of P2- <i>Runx1</i> :RFP mice, and corresponding
1171	quantification of the percentages of RFP ⁺ and RFP ⁻ cells in the basal and luminal fractions of DLP
1172	(n = 4 mice) and VP $(n = 4 mice)$ lobes. Source files are available in Figure 1—figure supplement
1173	2—source data 1.
1174	
1175	Figure 1—figure supplement 3. Characterization of P2Runx1:RFP derived mouse prostate
1176	organoids.
1176 1177	organoids. (A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP
1177	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP
1177 1178	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies
1177 1178 1179	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies determined by brightfield assessment. p values are indicated only for statistically significant ($p <$
1177 1178 1179 1180	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies determined by brightfield assessment. p values are indicated only for statistically significant ($p <$ 0.05) comparisons between RFP ⁺ versus RFP ⁻ derived subsets. $n = 4$ mice. (C) Quantification of
1177 1178 1179 1180 1181	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies determined by brightfield assessment. p values are indicated only for statistically significant ($p <$ 0.05) comparisons between RFP ⁺ versus RFP ⁻ derived subsets. $n = 4$ mice. (C) Quantification of the type of organoids (pink: unipotent K5 ⁺ , green: unipotent K8 ⁺ , orange: multipotent K5 ⁺ K8 ⁺
1177 1178 1179 1180 1181 1182	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies determined by brightfield assessment. p values are indicated only for statistically significant ($p <$ 0.05) comparisons between RFP ⁺ versus RFP ⁻ derived subsets. $n = 4$ mice. (C) Quantification of the type of organoids (pink: unipotent K5 ⁺ , green: unipotent K8 ⁺ , orange: multipotent K5 ⁺ K8 ⁺ organoids) characterized by whole-mount immunostaining. p value is indicated for the
1177 1178 1179 1180 1181 1182 1183	(A) Organoid Forming Capacity (OFC) of RFP ⁺ and RFP ⁻ basal and luminal sorted cells from DLP (left) and VP (right) cultured for 7 days. $n = 4$ mice. (B) Quantification of organoid morphologies determined by brightfield assessment. p values are indicated only for statistically significant ($p <$ 0.05) comparisons between RFP ⁺ versus RFP ⁻ derived subsets. $n = 4$ mice. (C) Quantification of the type of organoids (pink: unipotent K5 ⁺ , green: unipotent K8 ⁺ , orange: multipotent K5 ⁺ K8 ⁺ organoids) characterized by whole-mount immunostaining. p value is indicated for the proportion of K5 ⁺ K8 ⁺ organoids between VP Luminal RFP ⁺ versus RFP ⁻ derived subset. Other

1187	Numbers of organoids quantified are shown above the graph. Two-way ANOVA using Tukey's
1188	multiple comparisons test was used for statistical analysis. (E) Quantification of the organoid
1189	area estimated from maximum projection of stacked images from basal (left) and luminal (right)
1190	fractions of the proximal AP. Numbers of organoids quantified are shown above the graph.
1191	Two-tailed Mann-Whitney test was used for statistical analysis. $n = 2$ mice. Source files are
1192	available in Figure 1—figure supplement 3—source data 1.
1193	
1194	Figure 2—figure supplement 1. Characterization of RUNX1 expression in the castrated mouse
1195	prostate.
1196	(A) Flow cytometry analysis and corresponding quantifications of the basal and luminal EPCAM $^{\scriptscriptstyle +}$
1197	fraction from AP, DLP and VP lobes of castrated P2- <i>Runx1</i> :RFP mice (<i>n</i> = 3). (B, C) Co-
1198	immunostaining of RUNX1, NKX3.1, CDH1 in castrated DLP (B) and VP (C) lobes. Scale bars: 50
1199	μ m (white). Source files are available in Figure 2—figure supplement 2—source data 1.
1200	
1201	Figure 3—figure supplement 1. Pre-processing of the scRNA-seq dataset of adult intact and
1202	castrated mouse prostates.
1203	(A) UMAP visualization in MULTI-seq barcodes space for each independent experiment (Run 1:
1204	left, Run 2: middle, Run 3: right) before (top) and after (bottom) quality control and barcode
1205	filtration (see Methods for details). (B) UMAP visualization of the integrated batch-corrected
1206	dataset (<i>n</i> = 4,499 cells from 3 independent experiments). Colors represent different clusters.
1207	(C) UMAP visualization of the integrated batch-corrected dataset split and colored by individual
1208	experiment (Run 1: left, Run 2: middle, Run 3: right). (D, E) Example key marker genes used for

1209	cell type characterization. (D) UMAP visualization of the integrated batch-corrected dataset.
1210	Cells are colored by a gradient of log-normalized expression levels for each gene indicated. (E)
1211	Dot plot showing the expression of selected marker genes associated with each cluster. Cells
1212	corresponding to the prostatic clusters were kept for downstream analyses.
1213	
1214	Figure 3—figure supplement 2. Characterization of the scRNA-seq prostate epithelial subset.
1215	(A-D) Number of cells present in the prostate epithelial subset. In A colors correspond to
1216	phenotypic sorted populations, in B treatment of origin, in C RFP FACS gate of origin, in D
1217	individual lobes. (E, G) UMAP visualization of prostate epithelial cells. Cells in E are colored by
1218	clusters. Clusters 0, 1 and 5 were merged together. In F and G colors represent phenotypic
1219	sorted populations. (H-J) Cells are colored by a gradient of log-normalized expression levels for
1220	each gene. Canonical epithelial markers are shown in H , luminal lineage markers in I, and basal
1221	lineage markers in J.
1222	
1223	Figure 3—figure supplement 3. Characterization of the scRNA-seq prostate epithelial dataset.
1224	(A) Heatmap of the 10 most differentially upregulated genes per cluster. (B, C) Sankey diagrams
1225	summarizing the proportion of cells and between phenotypic groups. (D, E) Cells are colored by
1226	a gradient of log-normalized expression levels for each gene. (D) shows the expression of Ly6
1227	family members, and in E RUNX family members are shown.
1228	
1229	Figure 3—figure supplement 4. Gene Ontology and differential expression analysis within the

1230 scRNA-seq prostate epithelial dataset.

1231	Bar plots of the 8 most significantly (g:Profiler adjusted p-value < 0.05) enriched gene ontology
1232	(GO) terms (GO:BP, Biological Processes) using the list of differentially upregulated genes
1233	specific to (A) Lum-A, (B) Lum-B, (C) Lum-C, (D) Lum-D, (E) Lum-E, (F) Lum-F, and (G) Basal
1234	clusters. (H, I) 15 most enriched GO terms (g:Profiler adjusted p-value < 0.05) for genes
1235	upregulated in the Lum-D cluster against combined Lum-A, Lum-B and Lum-C clusters in H .
1236	Results of the opposite comparison are shown in I. (J) Violin plots showing the expression levels
1237	of specific genes within the Lum-D cluster. Data are split and colored by treatment for each
1238	lobe. The expression of <i>Krt4, Tacstd2/Trop2</i> and <i>Runx1</i> does not vary upon treatment, while
1239	Androgen Receptor (AR) regulated genes such as <i>Psca</i> and <i>Tspan1</i> are downregulated after
1240	castration.
1241	
1241	
1241	Figure 4—figure supplement 1. Lineage tracing of RUNX1 expressing cells labelled in intact
	Figure 4—figure supplement 1. Lineage tracing of RUNX1 expressing cells labelled in intact mice.
1242	
1242 1243	mice.
1242 1243 1244	mice.(A) Scheme of the tamoxifen labelling strategy to evaluate the labelling efficiency of <i>Runx1</i>
1242 1243 1244 1245	 mice. (A) Scheme of the tamoxifen labelling strategy to evaluate the labelling efficiency of <i>Runx1</i> expressing cells. (B) Flow-cytometry analysis of intact (<i>n</i> = 2), castrated (<i>n</i> = 2), and regenerated
1242 1243 1244 1245 1246	mice. (A) Scheme of the tamoxifen labelling strategy to evaluate the labelling efficiency of <i>Runx1</i> expressing cells. (B) Flow-cytometry analysis of intact ($n = 2$), castrated ($n = 2$), and regenerated ($n = 2$) <i>Runx1^{CreER} Rosa26^{LSL-RFP}</i> mice, and corresponding quantification of the percentage of RFP ⁺
1242 1243 1244 1245 1246 1247	mice. (A) Scheme of the tamoxifen labelling strategy to evaluate the labelling efficiency of <i>Runx1</i> expressing cells. (B) Flow-cytometry analysis of intact ($n = 2$), castrated ($n = 2$), and regenerated ($n = 2$) <i>Runx1^{CreER} Rosa26^{LSL-RFP}</i> mice, and corresponding quantification of the percentage of RFP ⁺ cells in the epithelial EPCAM ⁺ fraction. (C) Estimated absolute number of epithelial RFP ⁺ cells in
1242 1243 1244 1245 1246 1247 1248	mice. (A) Scheme of the tamoxifen labelling strategy to evaluate the labelling efficiency of <i>Runx1</i> expressing cells. (B) Flow-cytometry analysis of intact ($n = 2$), castrated ($n = 2$), and regenerated ($n = 2$) <i>Runx1^{CreER} Rosa26^{LSL-RFP}</i> mice, and corresponding quantification of the percentage of RFP ⁺ cells in the epithelial EPCAM ⁺ fraction. (C) Estimated absolute number of epithelial RFP ⁺ cells in intact ($n = 5$) and castrated ($n = 5$) and regenerated ($n = 4$) prostates based on IHC

1252	cells in the proximal region of the AP (top) and DLVP (bottom) prostate lobes. Scale bar: 50 μ m.
1253	Source files are available in Figure 4—figure supplement 1—source data 1.
1254	
1255	Figure 5—figure supplement 1. Characterization of RUNX1 expression during prostate
1256	development <i>in vivo</i> .
1257	(A) Co-immunostainings of the mouse urogenital sinus at E18.5 for RUNX1, NKX3.1, K4. p:
1258	proximal, d: distal. Scale bar: 50 μ m. Dotted lines indicate the urogenital epithelium. (B) Co-
1259	immunostainings of the mouse urogenital sinus at E18.5 for RUNX1, NKX3.1, LY6D. p: proximal,
1260	d: distal. Scale bar: 50 μ m. (C) Co-immunostaining of RUNX1, NKX3.1, K4 at postnatal (P) day 14.
1261	Higher magnification images of (p) proximal, (i) intermediate, and (d) distal regions are shown.
1262	Scale bars: 200 μ m (yellow) and 50 μ m (white). (D , E) Co-immunostainings at P14 for RUNX1,
1263	K5, K8 in B RUNX1, p63, CDH1 in C . p: proximal, i: intermediate, d: distal. Scale bar: 50 μ m.
1264	
1265	Figure 5—figure supplement 2. Characterization of RUNX1 expression during prostate
1266	development in UGS explant cultures.
1267	(A) Co-immunostaining of RUNX1, K5, K8 in UGS explants harvested at day 2 and day 7. p:
1268	proximal, d: distal. Scale bar: 50 μ m. (E) Quantification of the percentage of K5 ⁺ , K8 ⁺ , K5 ⁺ K8 ⁺
1269	cells during UGS explant cultures at day 0 ($n = 2$ explants), day 1 ($n = 3$ explants), day 2 ($n = 3$
1270	explants), day 7 ($n = 4$ explants), showing a progressive reduction in the proportion of K5 ⁺ K8 ⁺
1271	double positive cells. (C) Co-immunostaining of RUNX1, NKX3.1, LY6D in UGS explants harvested
1272	at day 7. p: proximal, d: distal. Scale bar: 50 μ m. (D) Co-immunostaining of RUNX1, NKX3.1, K4
1273	in UGS explants harvested at day 1 (top), 3 (middle) and 7 (bottom). Higher magnification

1274 images of (p) proximal, (i) intermediate, and (d) distal regions are shown for day 7. Scale bars: 1275 200 μ m (yellow) and 50 μ m (white). Dotted lines indicate the urogenital epithelium. (E) Co-1276 immunostaining of RUNX1, Ki67, CDH1 in UGS explants harvested at day 2 and day 7. p: 1277 proximal, d: distal. Scale bar: 50 μm. Source files are available in Figure 5—figure supplement 1278 2—source data 1. 1279 1280 Figure 6—figure supplement 1. Pre-processing of the scRNA-seq dataset of UGS explant 1281 cultures. 1282 (A) UMAP visualization in MULTI-seq barcodes space before (top) and after (bottom) quality 1283 control and barcode filtration (see Methods for details). (B) UMAP visualization of the dataset 1284 colored by estimated cell cycle phase (top). Due to the strong underlying impact on clustering, 1285 the cell cycle effect was regressed out (bottom). (C, D) UMAP visualization of the dataset 1286 colored in **C** by experimental time point and in **D** by labeled populations. (E) Dot plot showing the expression of selected marker genes associated with each labelled population. (F) Bar plots 1287 1288 of the 10 most significantly (g:Profiler adjusted p-value < 0.05) enriched gene ontology (GO) 1289 terms (GO:BP, Biological Processes) on the differentially upregulated genes specific to the 1290 'Hypoxic/Stressed' cluster. (G-I) UMAP visualization of the prostatic subset (from D), labelled by 1291 time points in G, clusters in H, estimated cell cycle phase in I. (J) Percentage of cells in the 1292 different estimated cell cycle phases in each clusters. (K) Diffusion maps representation of the 1293 prostatic subset using the first 2 diffusion components with (top) and without C9 (bottom). C9 1294 was excluded for downstream analyses due to its outlying profile. 1295

1296 Figure 6—figure supplement 2. Characterization of the developing prostatic epithelium in the

1297 scRNA-seq dataset of UGS explant culture.

- 1298 (A) Heatmap of the 10 most differentially upregulated genes per cluster. (B-E) PAGA
- 1299 representations with cluster nodes colored by a gradient representing the mean log-normalized
- 1300 expression levels of each genes indicated. (B) shows the expression of common prostate
- 1301 lineage markers, (C) shows known regulators of prostate development, (D) shows basal
- 1302 markers, (E) shows proliferation markers. (F) Box plots of per-cell AUC signature scores
- 1303 calculated using the 'AUCell' package for individual UGS explant clusters. Gene signatures were
- 1304 generated using the list of differentially upregulated genes previously obtained from our adult
- 1305 mouse prostate clusters. (G) Force directed visualization of the developing prostatic epithelium
- 1306 in UGS explant cultures. Color gradient represents AUC scores per cell.
- 1307

1308 Figure 7—figure supplement 1. Lineage-tracing of RUNX1 expressing cells in UGS explants.

1309 (A, B) Co-immunostaining of RFP, p63, CDH1 in UGS explants harvested at day 2 (A) and day 7

1310 (B). Higher magnification images of (i) proximal and (ii) distal regions are shown for day 7.

1311 Arrows show RFP⁺ p63⁺ cells, arrowheads show RFP⁺ p63⁻ cells. Scale bars: 200 μ m (yellow) and

1312 50 μ m (white). (C) Quantification of the percentage of epithelial RFP⁺ p63⁺ cells at day 2 (n = 7)

and day 7 (n = 4) of UGS explant cultures. Quantification was performed within the boundaries

delimited in **B** by dotted lines. (**D**) Co-immunostaining of RFP, K5, K8 in UGS explants harvested

- 1315 at day 2 (top) and day 7 (bottom). Higher magnification images of proximal (i) and (ii) distal
- 1316 regions are shown for day 7. Arrows show RFP⁺ K5⁺ K8⁺ cells, chevron arrows show RFP⁺ K5⁻ K8⁺,
- 1317 arrowheads show RFP⁺ K5⁺ K8⁻ cells. Scale bars: 200 μ m (yellow) and 50 μ m (white).

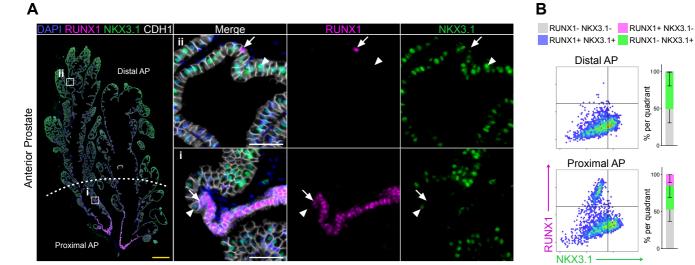
1318	(E) Quantification of the percentage of epithelial K5 ⁺ K8 ⁺ , K5 ⁻ K8 ⁺ cells and K5 ⁺ K8 ⁻ cells in the
1319	RFP subset at day 2 ($n = 4$) and day 7 ($n = 3$) of UGS explant cultures. Quantifications were
1320	performed within the boundaries delimited in D by dotted lines. (F, G) Co-immunostaining of
1321	RFP, Nupr1 (mRNA), CDH1 in UGS explants harvested at day 2 (F) and day 7 (G). Higher
1322	magnification images of (i) proximal and (ii) distal regions are shown for day 7. Arrows show
1323	RFP ⁺ Nupr1 ⁺ cells, arrowheads show RFP ⁺ Nupr1 ⁻ cells. Scale bars: 200 μ m (yellow) and 50 μ m
1324	(white). (J) Quantification of the percentage of epithelial K4 ⁺ cells in the RFP subset at day 2 ($n =$
1325	3) and day 7 ($n = 4$) of UGS explant cultures. Quantification was performed within the
1326	boundaries delimited in G by dotted lines. Source files are available in Figure 7—figure

1327 supplement 1—source data 1.

1328 FIGURE SUPPLEMENTS

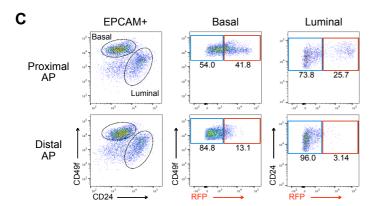
- 1329 Figure 1—figure supplement 1. RUNX1 is enriched in the mouse prostate epithelium.
- 1330 Figure 1—figure supplement 2. Runx1 expression is mediated by the P2 promoter in the
- 1331 mouse prostate epithelium.
- 1332 Figure 1—figure supplement 3. Characterization of P2-Runx1:RFP derived mouse prostate
- 1333 organoids.
- 1334 Figure 2—figure supplement 1. Characterization of RUNX1 expression in the castrated mouse
- 1335 prostate.
- 1336 Figure 3—figure supplement 1. Pre-processing of the scRNA-seq dataset of adult intact and
- 1337 castrated mouse prostates.
- 1338 Figure 3—figure supplement 2. Characterization of the scRNA-seq prostate epithelial subset.
- 1339 Figure 3—figure supplement 3. Characterization of the scRNA-seq prostate epithelial dataset.
- 1340 Figure 3—figure supplement 4. Gene Ontology and differential expression analysis within the
- 1341 scRNA-seq prostate epithelial dataset.
- Figure 4—figure supplement 1. Lineage tracing of RUNX1 expressing cells labelled in intact
 mice.
- 1344 Figure 5—figure supplement 1. Characterization of RUNX1 expression during prostate
- 1345 development in vivo.
- 1346 Figure 5—figure supplement 2. Characterization of RUNX1 expression during prostate
- 1347 development in UGS explant cultures.
- 1348 Figure 6—figure supplement 1. Pre-processing of the scRNA-seq dataset of UGS explant
- 1349 cultures.

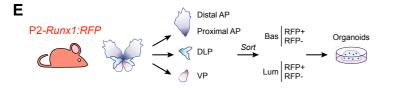
- 1350 Figure 6—figure supplement 2. Characterization of the developing prostatic epithelium in the
- 1351 scRNA-seq dataset of UGS explant culture.
- 1352 Figure 7—figure supplement 1. Lineage-tracing of RUNX1 expressing cells in UGS explants.

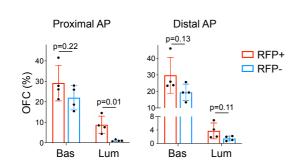

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.19.161604; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1353 SUPPLEMENTARY FILES

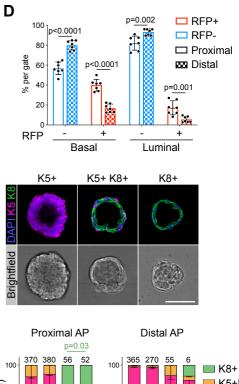
- 1354 Supplementary file 1. Quality control metrics and metadata of scRNAseq experiments
- 1355 Supplementary file 2. Genes differentially expressed between adult clusters
- 1356 Supplementary file 3. Genes differentially expressed in intact versus castrated Lum-D cells
- 1357 Supplementary file 4. Genes differentially expressed between UGS explants clusters
- 1358 Supplementary file 5. Gene lists used for the analysis of gene set activity
- 1359

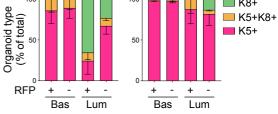

1360 SOURCE DATA FILES

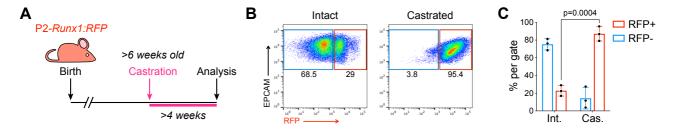

- 1361 Figure 1. source data 1.xlsx
- 1362 Figure 1. figure supplement 1. source data1 .xlsx
- 1363 Figure 1. figure supplement 2. source data1 .xlsx
- 1364 Figure 1. figure supplement 3. source data 1.xlsx
- 1365 Figure 2. figure supplement 1. source data 1.xlsx
- 1366 Figure 2. source data 1.xlsx
- 1367 Figure 4. source data 1.xlsx
- 1368 Figure 4. figure supplement 1. source data 1.xlsx
- 1369 Figure 5. figure supplement 2. source data 1.xlsx
- 1370 Figure 5. source data 1.xlsx
- 1371 Figure 7 figure supplement 1. source data 1.xlsx
- 1372 Figure 7 source data 1.xlsx



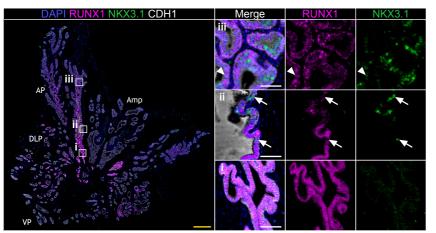
G


Н

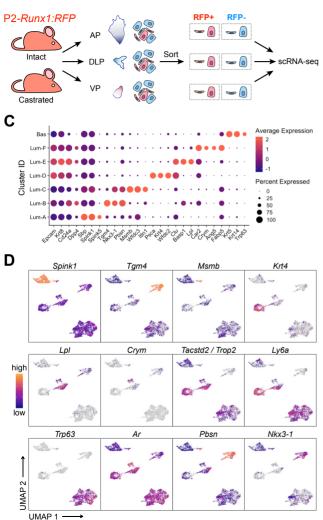


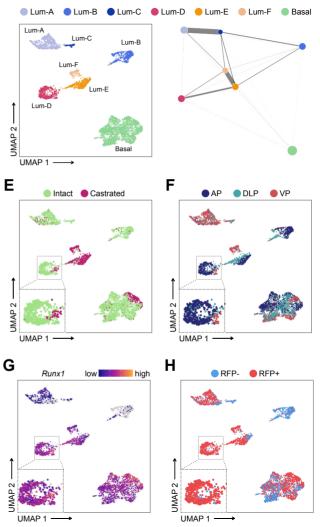


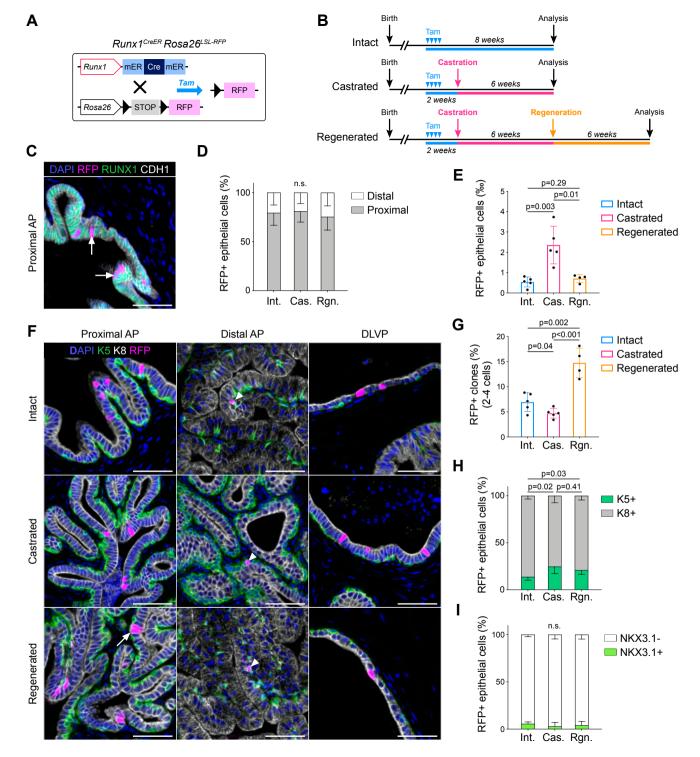
F

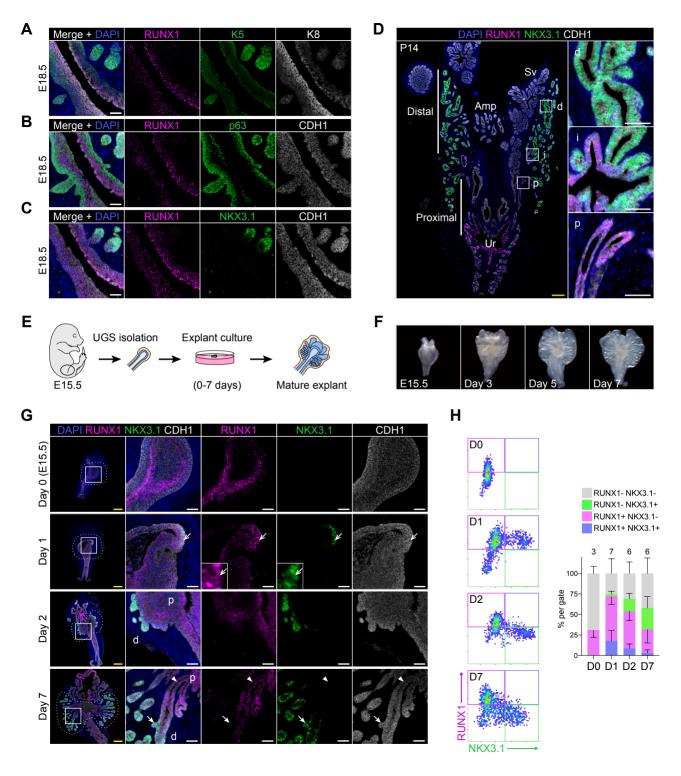


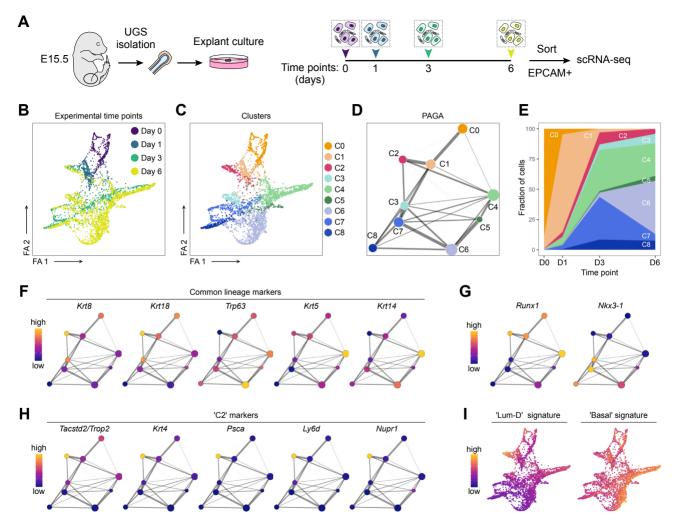
Castrated Prostate

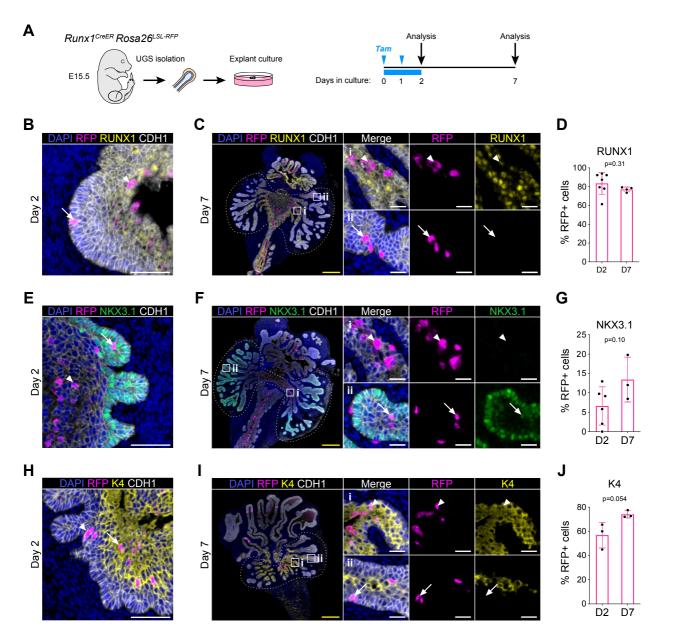

D

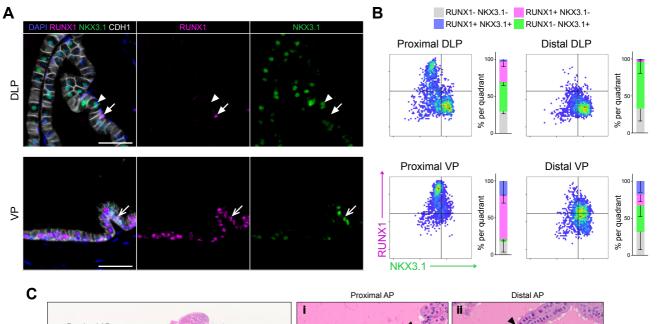

OP Castrated Distal AP Castrated Proximal AP

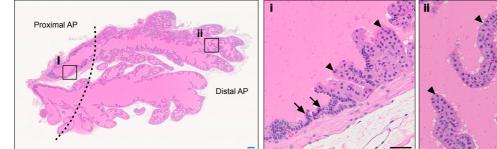

Ε

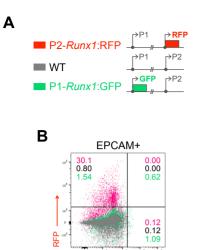

A

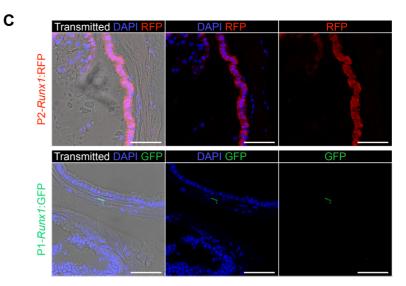


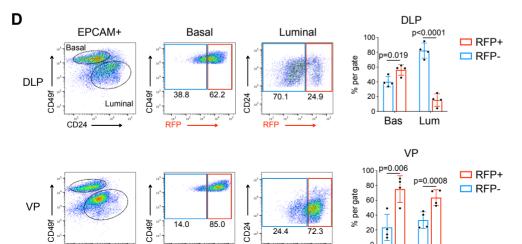

В











GFP

CD24

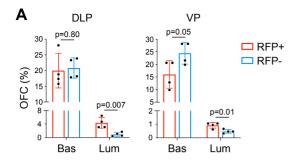
24.4

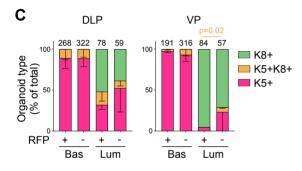
RFP 102

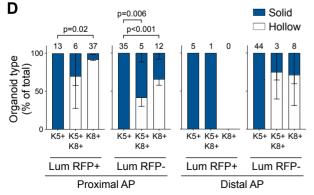
102

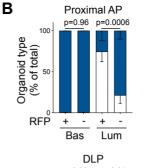
RFP

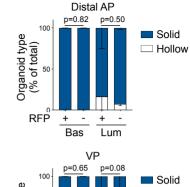
72.3

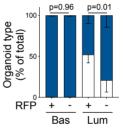

20

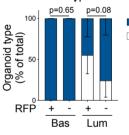

0

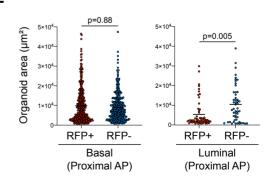

-

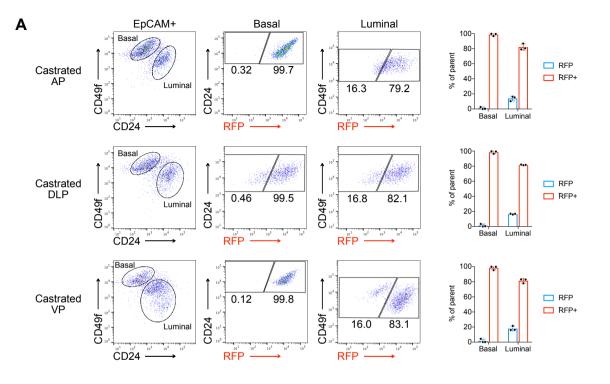

Bas


Lum

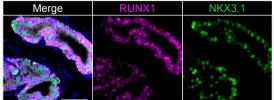


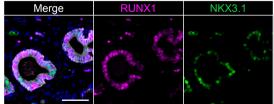


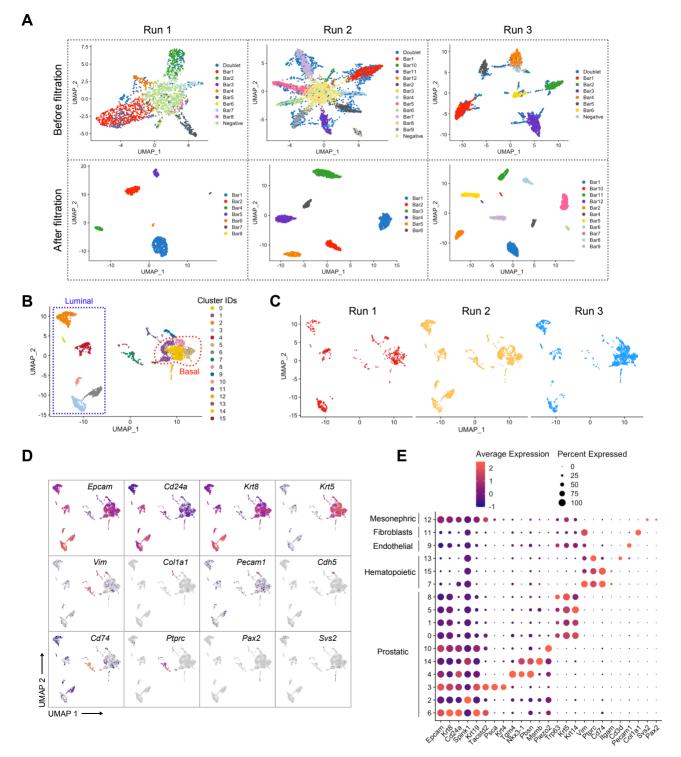


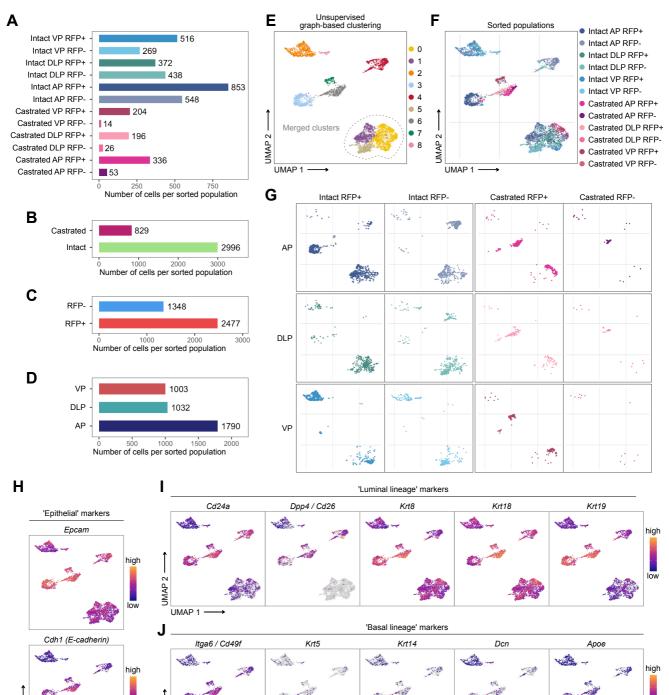

Hollow

Ε

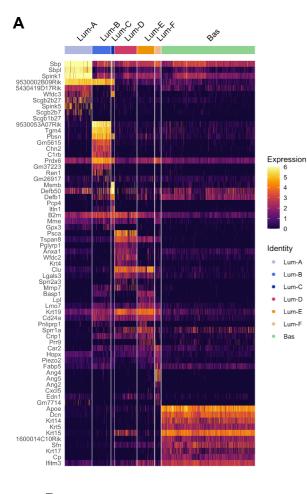



С


Castrated DLP


В

Castrated VP



UMAP 2

UMAP 1 ·

low

6

5 4

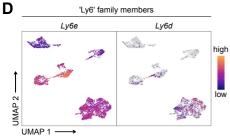
3

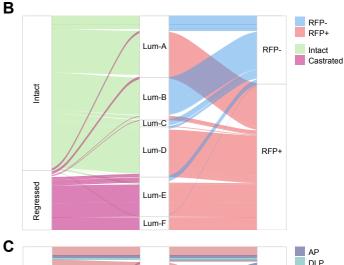
2

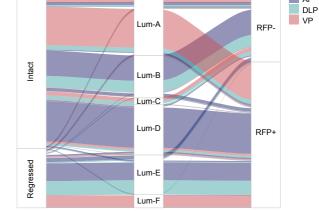
1

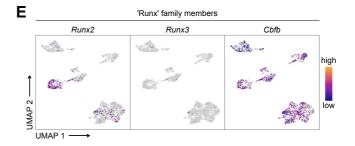
0

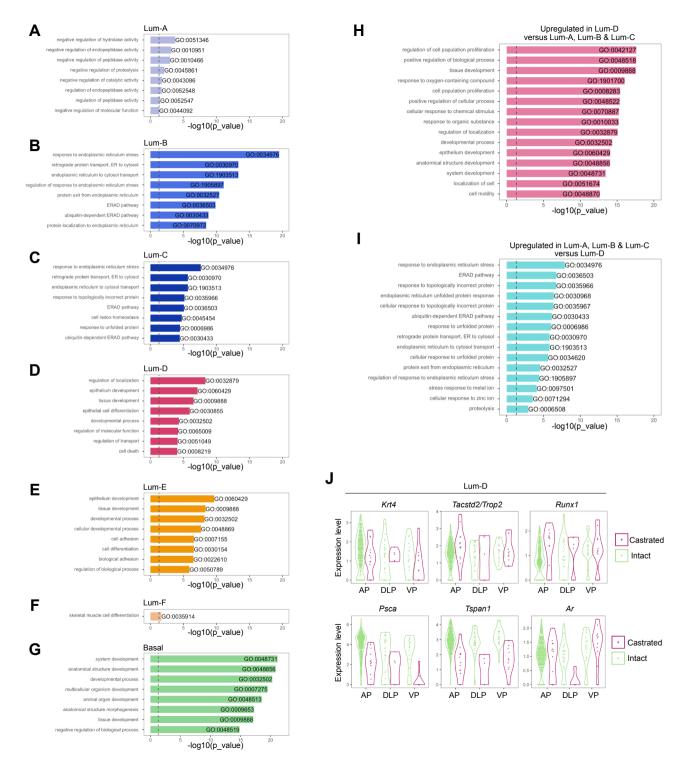
Lum-A

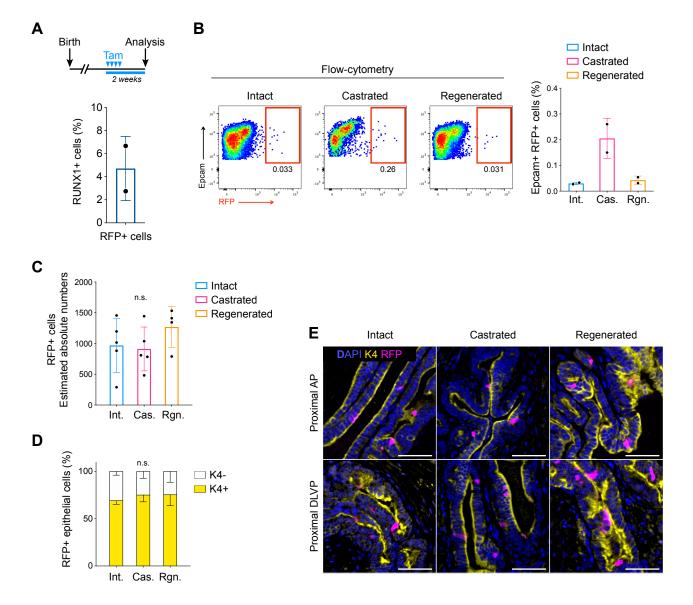

Lum-B

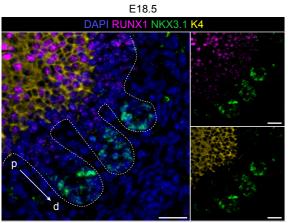

Lum-C

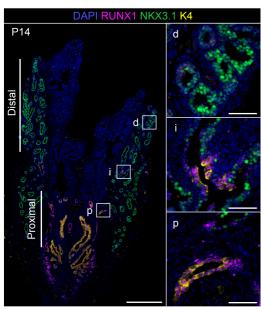

Lum-D

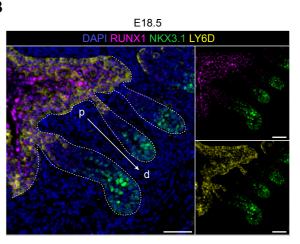

Lum-E Lum-F


Bas

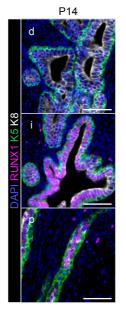


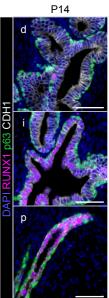






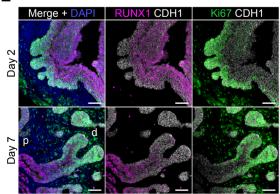
В


С

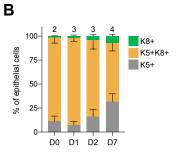


Ε

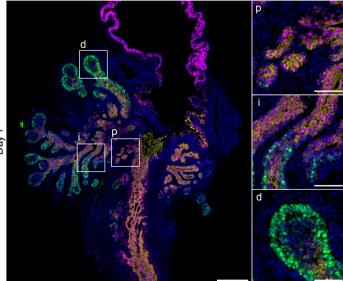
D

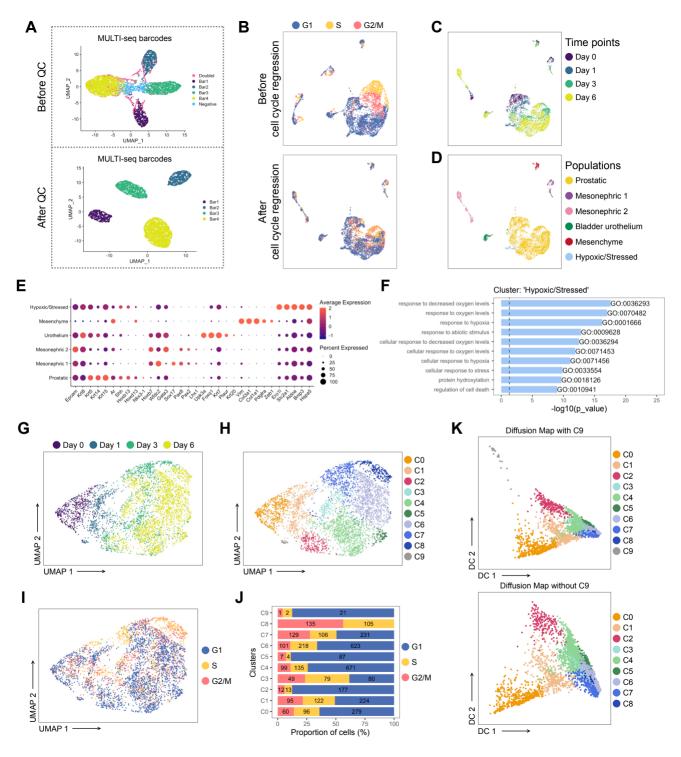


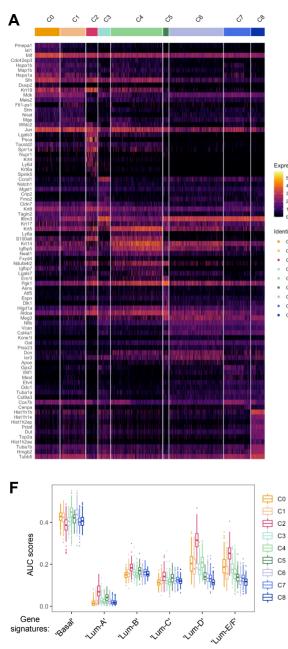
A Merge + DAPI RUNX1 K8 RUNX1 K5

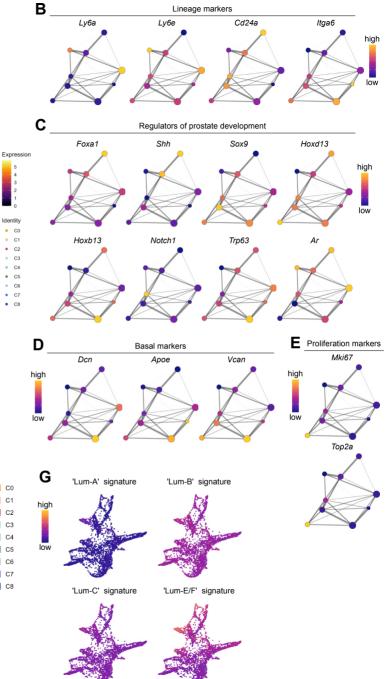


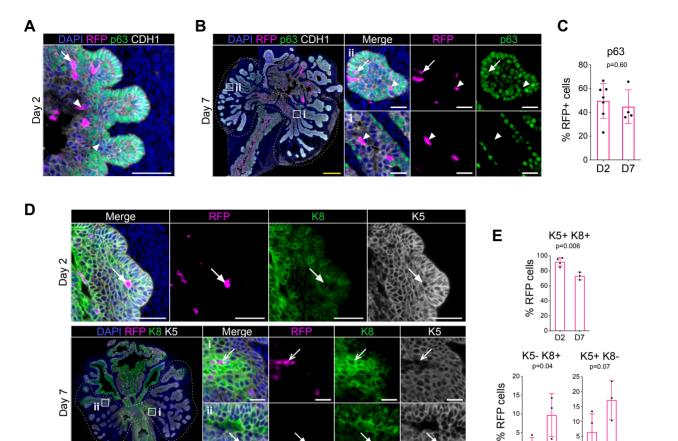
Е

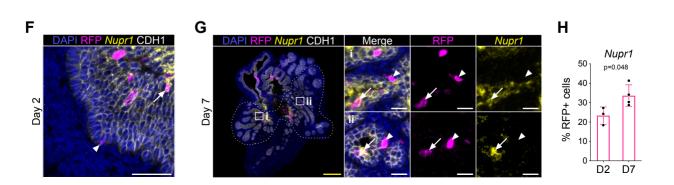



Day 7


D




Merge RUNX1 NKX3.1 K4



5

0

D2 D7

0

D2 D7